SUTIME: A Library for Recognizing and Normalizing Time Expressions

Angel X. Chang, Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA, 94305
{angelx, manning}@cs.stanford.edu

Abstract
We describe SUTIME, a temporal tagger for recognizing and normalizing temporal expressions in English text. SUTIME is available as
part of the Stanford CoreNLP pipeline and can be used to annotate documents with temporal information. It is a deterministic rule-based
system designed for extensibility. Testing on the TempEval-2 evaluation corpus shows that this system outperforms state-of-the-art

techniques.

Keywords: temporal tagger, time normalization, pattern matching

1. Introduction

The importance of modeling temporal information is in-
creasingly apparent in natural language applications, such
as information extraction and question answering. For in-
stance, in relation extraction, it is not sufficient to just ex-
tract simple relations like President(U.S.A, George Walker
Bush). Rather, one would also need to extract fluents that
capture the temporal range over which such relations hold.
Given the sentence

George Walker Bush (born July 6, 1946) is an
American politician who served as the 43rd Pres-
ident of the United States from 2001 to 2009.

we can extract the following temporal information about
when George Bush was born and when he was president:

Expression Type Normalized
Birth July 6, 1946 DATE 1946-07-06
Pres. | from 2001 to 2009 | RANGE | 2001/2009

Extracting such temporal information requires the ability to
recognize temporal expressions, and to convert them from
text to a normalized form that is easy to process. Systems
that extract temporal expressions are known as temporal
taggers. In this paper, we present SUTIME, a system for
extracting and normalizing temporal expressions.

2. System Description

SUTIME is a rule-based temporal tagger built on regular
expression patterns. Temporal expressions are bounded
in their complexity, so many of them can be captured us-
ing finite automata. As shown by systems such as FAS-
TUS (Hobbs et al., 1997), a cascade of finite automata can
be very effective at extracting information from text. With
SUTIME, we follow a similar staged strategy of (i) building
up patterns over individual words to find numerical expres-
sions; then (ii) using patterns over words and numerical ex-
pressions to find simple temporal expressions; and finally
(iii) forming composite patterns over the discovered tem-
poral expressions.

In NLP applications, text is usually first tokenized and an-
notated, making it convenient to specify regular expres-
sions over the tokens. The resulting regular expressions

can be more concise and easier to understand, manipu-
late and modify than traditional regular expressions over
strings. Regular expressions over tokens facilitate access to
additional features, such as parts-of-speech and named en-
tity tags. With this approach, adding new rules to SUTIME
is simple, by design.

We provide SUTIME as a Java library, implemented as an
annotator in the Stanford CoreNLP pipeline;! its main fea-
tures are described below:

Extraction of temporal expressions from text: Given to-
kenized English text, SUTIME finds temporal expressions
and outputs annotations for further manipulation and inter-
pretation. Its output includes annotations in the form of
TIMEX3 tags. TIMEX3 is part of the TimeML annotation
language (Pustejovsky et al., 2003) for markup of events,
times and their temporal relations in documents. To better
capture temporal information found in natural language, the
value attribute of TIMEX3 tags extends the ISO 8601 stan-
dard. For temporal expressions not covered by this specifi-
cation, we introduce additional attributes.

Representation of temporal objects as Java classes: Natu-
ral language uses many kinds of temporal expressions. SU-
TIME provides tools to map them to logical representations
and data structures that are easier to handle programmati-
cally. For interoperability, our representations are convert-
ible to Joda-Time? classes.

Resolution of temporal expressions with respect to a refer-
ence date: When processing natural language text, one of-
ten has to work with expressions that refer to a relative time
(e.g., last Friday). Determining the actual date to which
such expressions refer requires a reference date, on which
the statement was made. SUTIME uses document dates as
references. For example, for a document from 2011-09-
19, SUTIME would resolve the date referred to by last Fri-
day as 2011-09-16. But there could be confusion about the
time point to which expressions refer: e.g., from a date like

'nlp.stanford.edu/software/corenlp.shtml

2yww.iso. org/iso/date_and_time_format

3Joda-Time — joda-time.sourceforge.net — is a com-
prehensive Java API for working with dates and times.

3735

2011-09-19, a Monday, it is unclear whether Friday should
refer to 2011-09-16 or 2011-09-23. In such cases, the verb
tense of the clause could help resolve the ambiguity.

2.1. Types of Temporal Expressions

SUTIME supports four basic types of temporal objects:
Time, Duration, Interval, and Set.

Time: A time point indicating a particular instance on a
time scale. SUTIME recognizes both relative times, such
as next Monday, as well as absolute times, such as January
12, 1999. SUTIME also handles partially specified times,
such as the nineties. Below, we give examples of some ex-
pressions that it can recognize, using the TIMEX3 type and
normalized value (with 2011-09-19 as the reference date):

Expression Type Value
October of 1963 DATE 1963-10
October DATE 2011-10
last Friday DATE 2011-09-16
next weekend DATE 2011-W39-WE
the day after tomorrow | DATE 2011-09-21
the nineties DATE 199X
winter of 2000 DATE 2000-WI
5th century B.C. DATE -05XX
now DATE PRESENT_REF
Saturday morning TIME | 2011-09-24TMO
4 p.m. Tuesday TIME | 2011-09-20T16:00

Duration: The amount of intervening time between the two
end-points of a time interval. Durations can be specified as
a combination of a unit (e.g., day, month, year, etc.) and a
numeric value (the quantity associated with the unit). SU-
TIME recognizes three types of durations:

e exact durations: both value and unit fully specified;

e inexact durations: unit known, but not its value; and

e duration ranges: the duration is bounded between a min-
imum and a maximum duration. Note that duration ranges
are not part of the TIMEX3 standard.

Examples of temporal expressions corresponding to the
three different types of durations are given below:

Expression Type Value

Exact 3 days DURATION P3D

Inexact a few years DURATION PXY
Range | 2 to 3 months | DURATION | P2M/P3M

Interval: A range of time defined by a start and end time
points. Recognizing an interval expression, such as from
July to August, involves identifying the individual end-
points (July and August). While it is useful to recognize
the entire expression as a time interval, it can also be help-
ful to identify the individual nested time expressions. SU-
TIME optionally tries to recognize ranges and includes such
nested expressions. A time interval is not a separate type in
TIMEX3, but can be represented as a DURATION with be-
gin and end times. For example, SUTIME can provide three
separate TIMEX tags for the expression /7 August 1656 -
21 January 1669:

<TIMEX3 tid="t1" value="1656-08-17"
type="DATE">17 August 1656</TIMEX3>

<TIMEX3 tid="t2" value="1669-01-21"
type="DATE">21 January 1669</TIMEX3>

<TIMEX3 tid="t3" value="PT108966H" type="DURATION"
beginPoint="t1" endPoint="t2">
17 August 1656 - 21 January 1669</TIMEX3>
SUTIME also provides functions for extracting time inter-
vals from temporal objects. For instance, the date 2011-
09-19 can be converted to the interval from 2011-09-
19T00:00:00 to 2011-09-19T24:00:00.

Set: A set of temporals. SUTIME supports periodic tempo-
ral sets representing times that occur with some frequency.
For example, it will provide the following TIMEX3 type
and value for the expression Every third Sunday:

Value
XXXX-WXX-7

Expression Type
Every third Sunday | SET

SUTIME will provide additional attributes with more infor-
mation about the temporal set:

<TIMEX3 tid="t1" value="XXXX-WXX-7" type="SET"
quant="every third" periodicity="P3W">
Every third Sunday</TIMEX3>

2.2. Recognizing and Normalizing Expressions

To recognize temporal expressions, SUTIME applies three
types of rules, in the following order:

1. text regex rules: mappings from simple regular expres-
sions over characters or tokens to temporal representations;

2. compositional rules: mappings from regular expressions
over chunks (both tokens and temporal objects) to temporal
representations; compositional rules are iteratively applied
after the text regex rules. At each stage, nested time ex-
pressions are removed,* and these rules are applied until
the final list of time expressions stabilizes;

3. filtering rules: the final stage, in which ambiguous ex-
pressions that are likely to not be temporal expressions are
removed from the list of candidates. For instance, we can
specify a rule indicating that if a potential temporal expres-
sion is a single word fall and the part of speech tag is not a
noun, then it is likely that fall refers to the act of falling and
not the season autumn, and so SUTIME will refrain from
marking it as a temporal expression.

After all the temporal expressions have been recognized,
each temporal expression is associated with a temporal ob-
ject. Each temporal object is resolved with respect to the
reference date using heuristic rules. At this time, relative
times are converted to an absolute time, and composite time
objects are simplified as much as possible. Finally, SU-
TIME will take the internal time representation and produce
a TIMEX3 annotation for each temporal expression.

2.3. Temporal Pattern Language

SUTIME uses a regular expression language for expressing
how text should be mapped to temporal objects. SUTIME
is built on top of TOKENSREGEX?, a generic framework
included in Stanford CoreNLP for definining patterns
over text and mapping to semantic objects. Using this
framework, rules for how to map text to the temporal
objects provided by the SUTime Java library are specified.

*SUTIME can optionally keep nested time expressions.
nlp.stanford.edu/software/tokensregex. shtml

3736

Below we give a short description of the temporal pattern
language provided by SUTIME. The full specification
for SUTIME’s temporal pattern language can be found at
nlp.stanford.edu/software/sutime.shtml.

SUTIME supports three types of patterns for match-
ing text:

1. token patterns: patterns over tokens using the token
regular expression language specified by TOKEN-
SREGEX, which provides functionality similar to that
of the Java regular expression library but over tokens.
Since the patterns are specified over tokens, annota-
tions on the tokens can be specified for matching.

For example, here is a simple rule specifying a
mapping from a token that matches the regular
expression /years?/ to the predefined duration type
YEAR.

{ ruleType: "tokens",
pattern: (/years?/),
result: YEAR }
We can also specify more complex regular expression
patterns to recognize durations such as 4 fo 5 years,
mapping each to a Duration with the appropriate unit
and numerical value.

{ ruleType: "tokens",

{ ruleType: "time",

pattern: /yyyy-?MM-?dd-?’T’HH(:?mm(:?ss([.,]1S{1,3})?)?)?/ }

An appropriate Time object is created based on the
parts of the pattern matched.

Both composite rules and filtering rules can be specified as
patterns over tokens. Below is an example rule that com-

bines the pattern Date at Time into one temporal object.
{ ruleType: "composite",
pattern: (([{ temporal::IS_TIMEX DATE }])
/at/ ([{ temporal::IS_TIMEX_TIME } 1)),
TemporalCompose (INTERSECT,
$0[0] . temporal,
$0[-1].temporal) }

result:

For instance, we can specify the following rule to indicate
that if a potential temporal expression is a single word like
fall and the part of speech tag is not a noun, then it should

not be resolved to a temporal object.

{ ruleType: "filter",
pattern: ([{ word:/fall|spring|second|march|may/ }
& !'{ tag:/NN.*/ } 1) }

In addition to specifying the pattern and the resulting ob-
ject, it is also possible to specify a priority for each rule.
When multiple rules can be triggered for a sequence of to-
kens, a rule is selected based on the priority of the rule, fol-
lowed by the length of the matched sequence, and finally
the order in which the rule was specified.

2.4. Limitations

pattern: ((SNUM) /to|-/ (SNUM) ["-" 17 (STEUNITS_NODE)), Ag arule-based system, SUTIME is limited by the coverage

result: Duration($1, $2, $3) }

In this example, Duration($1, $2, $3) creates a
range Duration object that uses the first matched
group $1 as the start of the range, the second matched
group $2 as the end of the range, and third matched
group $3 as the time unit of the duration. $NUM and
$TEUNITS_NODE are macros (also defined using the
temporal language) that are expanded during the to-
ken pattern matching to match numbers and duration
unit tokens.

2. string patterns: patterns over text using Java regular
expressions. Instead of targeting tokens, text can also
be matched directly, independently of tokenization.

For example, here is a rule specifying regular
expression patterns that recognize durations such
as 3-years, mapping each to a Duration with the
appropriate unit and numerical value.
{ ruleType: "text",

pattern: /(\d+)[-\s]($TEUnits) (s)?([-\s]old)?/ ,

result: Duration($1, $2) }
Here, Duration($1, $2) creates a Duration object
that uses the first matched group $1 as the numerical
value of the duration and the second matched group
$2 as the duration unit.

3. time patterns: time-specific patterns over text similar
to patterns accepted by Java’s DateFormat and Joda-
Time’s DateTimeFormat. These patterns allow for
a more human-readable format than using standard
regular expressions.

For instance, the pattern below can be used to
recognize variations of ISO 8601 date/time patterns.

of the rules for the different types of temporal expressions
that it recognizes. Some of the known limitations are:

e Handling of ambiguous phrases is poor. One of the
biggest limitations of SUTIME, and other rule-based
systems, is their brittleness when faced with ambigu-
ous language. Consider the phrase The water from the
spring was fresh and clear. Although it is clear that
spring is not a time expression, a rule-based system
could incorrectly identify it as a season. Probabilis-
tic models could help resolve such ambiguities. If we
first ran a named entity recognizer, e.g., the Stanford
NER system (Finkel et al., 2005), we could design pat-
terns taking into account whether a word’s NER tag is
DATE.

e Resolving relative expressions can be difficult. Even
with a reference date, there can be inherent ambigu-
ity about the time point to which a relative time ex-
pression refers. For instance, given a reference date
of 2011-09-19, a Monday, it is unclear whether Fri-
day refers to 2011-09-16 or 2011-09-23. In addition,
SUTIME resolves all temporal expressions to one ref-
erence date, the document date. In some cases, it may
be more appropriate to resolve a particular temporal
expression to a nearby date in the text instead.

e Holidays are not supported. SUTIME does not cur-
rently recognize time expressions relating to holidays,
such as Christmas or Halloween.

e Support for temporal ranges is poor. For instance, the
expression from 3 to 4 p.m. is incorrectly identified as
15:57:00, while the expression /2-13 March 2011 is
identified just as 2011-03.

3737

e Non-whole numbers such as a half are not recog-
nized. Due to limitations of the numeric normalizer
used by SUTIME, non-whole numbers are not recog-
nized. Consequently, SUTIME cannot correctly inter-
pret temporal expressions such as a year and a half
ago.

e Patterns are language specific. SUTIME is limited to
extracting temporal expressions from English text. In
order to recognize temporal expressions in other lan-
guages, separate rules will need to be developed.

3. Evaluation

We evaluated SUTIME’s performance on TempEval-2 Task
A (Verhagen et al., 2010), which consists of two parts:
identifying the extents of a temporal expression and then
providing the correct TIMEX3 type and value attributes for
each recognized expression. For the evaluation of extents,
token-based precision, recall, and F are used. For the eval-
uation of attributes, only tokens that are correctly identified
as being part of a temporal expression are considered. The
official evaluation for TempEval-2 includes the percentage
of correct guesses for both the type and the value attributes.

3.1. Other systems

We compare SUTIME’s performance with several other
systems for the TempEval-2 Task A in English. Table 1
gives the results for all systems on the evaluation set.

e GUTime (Mani, 2004):° a Perl temporal tagger pro-
vided by Georgetown University, part of the TARSQI
toolkit (Verhagen and Pustejovsky, 2008) for tempo-
ral processing. Although GUTime generates TIMEX3
annotations, the format is not the same as that used in
TempEval-2. GUTime is an extension of the TempEx
tagger (Mani and Wilson, 2000), which is targeted for
ACE TIMEX2. Annotations provided by GUTime in-
corporate some TimeML TIMEX3 extensions. We use
simple rules to map from the output of GUTime to a
format that is compatible with the TempEval-2 scorer.

e HeidelTime (Strotgen and Gertz, 2010):7 the best-
performing system from SemEval-2 — also a rule-
based system. HeidelTime1 is optimized for precision,
while HeidelTime2 is tuned for recall. HeidelTime*
corresponds to results from the publicly available ver-
sion of HeidelTime (from December 2011).

e TRIPS/TRIOS (UzZaman and Allen, 2011):® the sec-
ond best system from SemEval-2, which uses a con-
ditional random field (CRF) for recognizing temporal
expressions, and a rule-based system for normalizing
temporal expressions.

3.2. Discussion

Experimental results show that both the rule-based system
(HeidelTime) and the probabilistic system (TRIPS/TRIOS)
were as effective (with similar F scores) for identifying

®timeml.org/site/tarsqi/toolkit/index.html
Tdbs.ifi .uni-heidelberg.de/index.php?id=129
8www.cs.rochester. edu/u/naushad/temporal

Extents Attribute
System P R Fy | type value
GUTime | 0.89 0.79 0.84 | 095 0.68
SUTime | 0.88 096 0.92 | 0.96 0.82
TRIPS/TRIOS | 0.85 0.85 0.85 | 094 0.76
HeidelTimel | 090 0.82 0.86 | 0.96 0.85
HeidelTime2 | 0.82 091 0.86 | 092 0.77
HeidelTime* | 0.57 0.89 0.70 | 0.96 0.85

Table 1: TempEval-2; English evaluation set.

temporal expressions. This validates our intuition that most
temporal patterns can be captured effectively with rules.

SUTIME has the highest overall F and the highest recall
in discovering temporal expressions. Compared to Heidel-
Time2, the high recall system, SUTIME has both higher
precision and higher accuracy for the attribute type and
value. However, compared to HeidelTimel, SUTIME has
a lower precision and lower accuracy for the attribute type
and value. Note that using the attribute scores of the official
TempEval-2 scorer to compare the systems can be mislead-
ing since the attributes are scored only for tokens correctly
identified as belonging to a temporal expression. Because
the attribute scores are computed using a total that is dif-
ferent for each system, it is inappropriate to compare the
attribute scores across systems.

For example, consider a system that only marks one token
as belonging to a temporal expression. Assuming that the
token had the correct type and attribute, the system would
achieve an accuracy of 100% on the type and value at-
tributes (although the F; of identified extents would be ex-
tremely low). From this example, we see that is it difficult
to only compare the attribute scores without considering the
scores for identifying extents.

3.3. Revised Scoring of Attributes

To address the attribute scoring problem, we compare the
systems using a modified attribute scoring method where
we compute the precision, recall, and F} for each attribute
based on the number of temporal expressions with the cor-
rect attribute, the total number of temporal expressions in
the gold, and the total number of temporal expressions in
the system response. Table 2 gives the revised attribute
scores based on the following formulas:

Py = # Correctyy, /# Mentions e,
Ry = # Correcty, /# Mentionsgoiq
F attr — 2PattrRattr/(PatLr + Ram)

The number correct is determined by matching each re-
sponse mention against a gold mention and checking if the
attribute matches.

Using the revised attribute scores, SUTIME has the high-
est recall and F} for both the type and value attributes on
the English evaluation set. HeidelTime has the best pre-
cision. Of the systems listed, GUTime has the lowest at-
tribute value scores, which could be partially due to the in-
complete coverage of our rules for converting its output to
match the TempEval-2 format.

3738

Type Value
System P R Fy P R a2l
GUTime | 0.85 0.79 082 | 0.59 0.55 0.57
SUTime | 0.84 094 0.89 | 0.71 0.78 0.74
HeidelTime* | 0.87 0.89 0.88 | 0.76 0.77 0.76

Table 2: Revised attribute scores for English evaluation set.

3.4. Error Analysis

We performed error analysis on the TempEval-2 training
set. Performance of SUTIME on this training set, using the
official scorer, is given in Table 3. The revised attribute
scores are given in Table 4.

Extents Attribute
System P R Fy | type value
GUTime 088 0.71 0.79 | 092 0.67
SUTime 0.87 090 089 | 092 0.77
HeidelTime* | 0.58 0.82 0.68 | 0.96 0.85

Table 3: TempEval-2; English training set.

Type Value
System P R Fy P R I
GUTime | 0.79 0.71 0.75 | 0.57 0.51 0.54
SUTime | 0.78 0.84 0.81 | 0.65 0.70 0.67
HeidelTime* | 0.84 0.84 0.84 | 0.73 0.74 0.73

Table 4: Revised attribute scores for English training set.

Below, we give some examples of the types of errors that
SUTIME makes.

True errors made by SUTIME. Most of the errors are
due to the limitations of SUTIME, as noted before. Since
SUTIME cannot recognize fractions such as one half, for
the phrase a minute and a half, instead of marking the
entire phrase as a temporal expression with a normalized
value of PT1IM30S, it only recognizes a minute as a tem-
poral expression and gives it a normalized value of PT1M.

In another case, SUTIME has trouble with ambiguous
words. For instance, in the phrase ...where Orangemen
march..., SUTIME incorrectly identifies march as referring
to the month March. In addition, SUTIME will always
try to resolve tomorrow literally to the day after the docu-
ment date, even in phrases such as the people of tomorrow.
Also, despite its best efforts, SUTIME often makes mis-
takes when resolving a relative date. Given a reference date
of 1990-08-16, SUTIME has trouble determining whether
September should refer to 1989-09 or 1990-09. Some other
examples of temporal expressions that are difficult for SU-
TIME to resolve correctly are given below:

Expression SUTime Correct

a year ago 1988-10-27 | 1988-Q3
the full year P1Y 1989
more than two thousand years P2000Y P2L
months ago 1989-09-30 PXM

Despite its high recall, there are still many phrases that SU-
TIME misses, such as the latest period, which happened to
refer to 1989-Q3. This particular case also requires more
advanced semantic understanding to be able to recognize
and infer that the period being referred to is a Quarter,
and the last one that occurred is 1989-Q3.

Different normalization. In some cases, the normalization
selected by SUTIME was different from that of the gold
annotation, but the two could be regarded as equivalent.

Expression SUTime | Correct
the last twenty four hours PT24H P1D
the late 1970s 197X 197
more than two thousand years | P2000Y P2L

In the TempEval-2 annotation, Q is used for Quarters, E
for decades, C for centuries, and L for millennia. Since
these are non-standard, they are not used by SUTIME.

Temporal expression not marked by annotators. In
some cases, our system actually recognized many tempo-
ral expressions that were not marked by annotators.

Expression Type Value
annual SET P1Y
each July SET | XXXX-07
20th century | DATE 20XX

Errors in annotations. In a few rare cases, the disagree-
ment appears to have been due to errors in annotation.

Expression SUTime | Correct
a few minutes | PTXM PXM
July last year | 1997-07 | 1997-06

We would like to note that document ed980111.1130.0089
appears to have an incorrect reference date of 2010-03-24
(the actual date should be 1998-01-11), causing SUTIME
to evaluate incorrect values for Yesterday and today.

Imprecise annotation. The week number is often not
marked by annotators, whereas SUTIME will typically at-
tempt to guess a week.

SUTime
1989-W43

Correct
1989-WXX

Expression
this week

Type Mistakes. SUTIME has difficulty distinguishing
when an expression should be marked as a Duration versus
a Date. There also appear to be problems with annotators
often marking temporal expressions for a Date as Time.

Expression SUTime Correct
[in] five years | DURATION | DATE
January DATE TIME
third-quarter DATE TIME

3739

4. Conclusion

We presented SUTIME, a temporal tagger which provides
a practical and extensible state-of-the-art system for ex-
tracting time expressions. SUTime can be used as a ba-
sic component for building temporally aware systems and
for investigating problems requiring temporal information,
such as event extraction, temporal ordering of events, and
question answering. By incorporating SUTIME in Stanford
CoreNLP, we provided easy access to temporal information
alongside other levels of NLP annotation. SUTIME can
also serve as a strong baseline for comparing future tempo-
ral taggers.

5. Acknowledgements

We gratefully acknowledge the support of Defense Advanced Re-
search Projects Agency (DARPA) Machine Reading Program un-
der Air Force Research Laboratory (AFRL) prime contract no.
FA8750-09-C-0181. Any opinions, findings, and conclusion or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the view of the DARPA,
AFRL, or the US government. Angel X. Chang is supported
by a SAP Stanford Graduate Fellowship. We thank Valentin I.
Spitkovsky, Gabor Angeli, Manolis Savva and the anonymous re-
viewers for helpful comments on draft versions of this paper.

6. References

Jenny Rose Finkel, Trond Grenager, and Christopher Manning.
2005. Incorporating non-local information into information ex-
traction systems by Gibbs sampling. In Proceedings of the
43nd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 363-370.

Jerry R. Hobbs, Douglas E. Appelt, John Bear, David Israel,
Megumi Kameyama, Mark Stickel, and Mabry Tyson. 1997.
FASTUS: A cascaded finite-state transducer for extracting in-
formation from natural-language text. pages 383—406.

Inderjeet Mani and George Wilson. 2000. Robust temporal pro-
cessing of news. In Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics, ACL *00, pages
69-76.

Inderjeet Mani. 2004. Recent developments in temporal infor-
mation extraction. In Proceedings of RANLPO3, pages 45—60.
John Benjamins.

James Pustejovsky, Jos Castao, Robert Ingria, Roser Saur, Robert
Gaizauskas, Andrea Setzer, and Graham Katz. 2003. TimeML:
Robust specification of event and temporal expressions in text.
In in Fifth International Workshop on Computational Seman-
tics (IWCS-5.

Jannik Strotgen and Michael Gertz. 2010. HeidelTime: High
quality rule-based extraction and normalization of temporal ex-
pressions. In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 321-324.

Naushad UzZaman and James F. Allen. 2011. Event and tem-
poral expression extraction from raw text: first step towards
a temporally aware system. International Journal of Semantic
Computing.

Marc Verhagen and James Pustejovsky. 2008. Temporal process-
ing with the TARSQI toolkit. Coling 2008: Companion vol-
ume: Demonstrations.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and James Puste-
jovsky. 2010. SemEval-2010 task 13: TempEval-2. In Pro-
ceedings of the 5th International Workshop on Semantic Eval-
uation, SemEval *10, pages 57-62. Association for Computa-
tional Linguistics.

3740

