
Towards efficient and scalable planning: Learning
search heuristics for multi-agent planning

frameworks

Ashwin Misra
Mujin Corp

United States
ashwin.misra@mujin-corp.com

Viraj Parimi
Massachusetts Institute of Technology

United States
vparimi@mit.edu

Mansi Agarwal
Carnegie Mellon University

United States
magarwa2@andrew.cmu.edu

Zachary B. Rubinstein
Carnegie Mellon University

United States
zbr@cs.cmu.edu

Stephen F. Smith
Carnegie Mellon University

United States
sfs@cs.cmu.edu

Abstract: The combinatorics of various search-based approaches to planning
pose a solid barrier to scalable performance. Such approaches become increas-
ingly complex and complicated, even in single-agent planning contexts, as the
number of goals to be achieved increases. We propose that such complex com-
binatorics can be overcome by learning an abstract model of the planner’s search
that utilizes various state characteristics to learn the relative quality of various
search decisions over time. An efficient machine learning framework consist-
ing of a Long Short Term Memory Network is developed to accelerate the time-
consuming search process and achieve a substantial computational speedup by
learning the planner’s reasoning from spatial and temporal global states and con-
straints. It generalizes well and enables efficient usage of multiple agents across
multiple tasks.

Keywords: Multi-Agent Planning, Machine Learning, Long Short Term Memory
Networks, Hierarchical Task Networks

1 Introduction

Future operations in remote and inaccessible areas (e.g., subterranean exploration, disaster response)
will require teams of robots to plan and execute autonomously and collaboratively under challenging
temporal and spatial constraints, which in turn presents challenging multi-agent planning problems.
The motivating domain of interest in our work, that of maintaining a deep space habitat during those
periods when humans do not occupy the habitat, is a particular case in point. In contrast to current
near-earth operations (e.g., the International Space Station) that can be manually controlled in real-
time from the ground, delays in the range of 20 minutes are observed when communicating from
Earth to a spacecraft in the vicinity of Mars [1]. These delays virtually prohibit the feasibility of real-
time control and necessitate much higher levels of autonomy in multi-robot planning and execution.
Equipped with a set of onboard robotic and autonomous subsystems capable of sensing relevant
conditions (e.g., pressure drops, mechanical failures) and carrying out necessary maintenance tasks
(e.g., changing filters, replacing a power module, manufacturing a damaged part, tending to science
experiments), the spacecraft must continually generate and maintain multi-robot plans that assign
pending tasks to individual robots (or to robot sub-teams when joint actions are required), ensure
collision-free movement, monitor their execution and re-plan when necessary. As is typical in task
planning, we assume that the planner is provided with descriptions of the types of tasks that can
be performed (in our case hierarchical descriptions) and that the multi-agent plan is produced by a

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



Figure 1: Domain setup with two robots on a discrete five-block rail, and an example decomposition
tree

Figure 2: Pre-populated timelines and generated slots triggered by an incoming item

search process that generates and evaluates alternative actions that can be taken at each search state
until a complete final plan is reached. To overcome the computational cost of this search process in
complex multi-agent domains such as deep space habitat maintenance, we attempt to learn a model
for a given domain that can be used to generate new multi-agent plans much more efficiently.

In this paper, we focus specifically on a recent Hierarchical Task Network planning framework
T-HTN [2] for multi-agent planning and scheduling that was developed to support the continual
management of a team of agents. This framework combines the temporal flexibility of timeline-
based planners and the structure of a hierarchical task network. This leads to a more extensive search
space as states across the planning horizon need to be considered. However, T-HTN takes advantage
of problem structure by designating particular objects as resources and assuming that all actions
will be allocated and scheduled on specific resources. As it is a constraint-based search mechanism
with spatio-temporal constraints, a global schedule of activities is maintained over time. During
the search process, multiple feasible options compliant with these constraints are generated and
evaluated based on an objective function (like minimizing makespan), and the best one is selected.
Let us understand this by an example, let us take an example of moving a red cube from its given
location to an edge in our example/evaluation domain 1, which would be referenced as the base of
our experiments in this article.

Considering this incoming high-level request, a path decomposition tree is created for all potential
possible alternatives for low-level tasks which is described in example 1. All the alternative de-
compositions are collected through recursively expanding OR nodes and depth-first search. This
high-level task has corresponding tokens that form a timeline and have empty ’slots’ consisting of
where each token can be placed. Let us say the first sub-task is a grasp and there are pre-existing rail
move actions on the timeline. Moving on to the selection process, the planner checks all the feasible
slots 2 (slots which satisfy all temporal and spatial constraints), for an objective function, which in
this case can be to reduce makespan. It will do so by scheduling the task on each of these slots and
keeping track of the makespan of each schedule, this is called a backtracking search.

This search process becomes increasingly complex with the number of pre-existing tasks (more
rail moves), decomposed sub-tasks (grasp, rail move, ungrasp, move to home), and agents (more
robots). However, we believe this complexity can be mitigated by learning search heuristics as a

2



Item Spatial Features Temporal Features

Slot Start location Early Start Time, Late Start Time
End location Early Finish Time, Late Finish Time

Incoming Task Pick-up location Duration
Drop-off location

Table 1: Dataset: Slot and Task Description

variable ordering problem. We hypothesize that an abstract model of the planner’s search can be
learned that utilizes state descriptions of the planning state to recognize the relative importance
of various search decisions for iterative planning. This model can aid the planner as a surrogate
for the explicit combinatorial search and substantially speed up the computation time required to
generate a partial solution. In our example, the spatial constraints can be dependent on the pick and
place locations, the robot locations, etc. and the temporal constraints can be like grasping before
ungrasping etc. Such constraints are always available in such planning problems and we hypothesize
that these constraints hold the essence of the reasoning behind the planner’s slot-searching process.

Recent and past research have combined Reinforcement Learning, Deep Learning, and Meta-
Learning have combined learning in different aspects of planning to improve backtracking efficiency.
Reinforcement Learning-based scheduling approaches [3, 4] require a very large amount of data to
train the agent and can be computationally expensive. Other planning and learning algorithms [5]
combine tree search with online learning to guide the exploration-exploitation trade-off during the
search process, which is very sensitive to the choice of parameters, such as the depth of the decision
tree and the learning rate for the entropy estimates. Poor choices of these parameters can result in
sub-optimal or even inefficient search behavior. Secondly, using online learning to update the en-
tropy estimates can be computationally expensive, particularly in large search spaces. Most of the
research in this area has been focused on substituting the planner with the learner, or computationally
expensive guiding mechanisms which are not very practical. We argue that a computationally inex-
pensive learning model is needed that does not substitute the deterministic nature of planning with
a probabilistic nature, but instead aids the planner in making quicker decisions on past performance
through global awareness.

To summarize, We propose Learn2Plan [6], a novel memory-driven learning framework that sup-
ports hierarchical planners to enable multi-agent coordination efficiently. We designed Learn2Plan
to learn constraints from spatiotemporal descriptions of the world state and understand the charac-
teristic behavior of hierarchical planners.

2 Methodology

Our broad methodology as described in algorithm 1, learns the slot order heuristic of a planner
through the constraints and ordering for different incoming tasks relative to the already populated
tasks on the timeline. The LSTM structure is important to understand that there are inherent differ-
ences for a sub-task that starts at a different location and comes around the beginning of a high-level
task as compared to one that is at the end of a high-level task. Once for each request(sub-task), a
slot is chosen, this slot is sent to the planner to be validated and then added to a task network. This
ensures that even if the predictions are wrong in some cases, the planner will make sure to check
that particular slot for feasibility.

We consider pick-and-place operations as tasks for our given domain 1. This is because these oper-
ations encompass a wide range of activities, including cargo stowage, object retrieval, and manipu-
lation of parts on board. Each request corresponds to picking a box up and keeping it in the desired
position. We use the domain as described above, and we limit to problems with five incoming
requests and five discrete rail block divisions, with only two slots per request investigated.

Our sampled data from the planner outputs the state descriptions and ground truths. We have focused
on high variance in our data set to capture the different nature of tasks with varied constraints.

3



Algorithm 1 Learn2Plan

1: procedure SLOTORDERHEURISTIC(T, S)
2: S ← Initialize an empty slot list
3: for all t ∈ T do
4: Da ← Sa, t
5: Sorder = LSTM(Da)
6: if Sorder ̸= ∅ then
7: for all s ∈ Sorder do
8: if s is validated by the planner and consistent with constraints then
9: s← task t

10: Add s to TaskNetwork
11: end if
12: end for
13: end if
14: end for
15: return S
16: end procedure

Dataset S = {zi}ni=1 = {(xi,yi)}ni=1 is sampled from a distribution D over a domain Z = X ×Y .
This distribution consists of 100,000 tasks with descriptions defined in Table 1, with all slots per
request and corresponding makespan. The target variable being yi = {SelectedSlot,makespan}.
For an incoming task T , it is divided into sub-tasks t.

X is the instance domain (a set), Y is the label domain (a set), and Z = X × Y is the example
domain (a set).

xi = {RequestID, descriptionstate, descriptiontask, slots,makespan}
RequestID ∈ requestA, requestB, requestC, requestD, requestE

slots = All feasible slots per RequestID

Usually, X is a subset of Rd and Y is a subset of Rdo , where d is the input dimension (10), do is the
output dimension (1). The label for our data is the selected slot and the corresponding makespan.

yi = {SelectedSlot,makespan}

n = 100, 000 is the number of samples. Without specification, S and n are for the training set, where
each sample contains the sequence of all requests required to complete a task. We use a 70/30 split
between training and testing. We do not keep a cross-validation set because the data is well-curated
and structured by the planner.

In our case, we take one primary loss and an auxiliary loss. The primary loss is a standard classi-
fication loss, a stable request-wise Binary Cross Entropy with Logits Loss. The auxiliary loss is a
Root-Mean Squared Error for our linear variable of makespan.

ℓ(fθ, z) = ℓslot + ℓmakespan

ℓslot = LBCE = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

ℓmakespan = RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

where ℓslot is the classification loss for the predicted slot, and ℓmakespan is a regression loss for the
predicted makespan. ŷi is the ground truth, which is the slot chosen by the planner and the makespan

4



Figure 3: LSTM and Downstream Neural Network

value computed by the planner, yi is the prediction by our learner. We predict the makespan but do
not report it because it is not a part of the variable ordering process for slot matching. If we select
the optimum slot for the planner to validate, it will automatically calculate the makespan for that
slot and action. However, we consider it in the loss function because that is the objective function in
our case and gives useful information about guiding the search process.

Empirical risk or training loss for a set S = {(xi,yi)}ni=1 is denoted by LS(θ),

LS(θ) =
1

n

n∑
i=1

ℓ(fθ(xi),yi). (1)

The population risk or expected loss is denoted by LD(θ).

LD(θ) = EDℓ(fθ(x),y), (2)

where z = (x,y) follows the distribution D.

As seen in Figure 3, We pass in five requests, each with two feasible slots. Every request corre-
sponds to one LSTM cell, as it keeps in memory the spatio-temporal difference in the timelines and
locations of each request corresponding with the global state. The encoder-decoder layers in the
LSTM cell have five layers each, and the downstream linear neural network layer has 64 nodes in
the hidden layer with ReLU activation. Our algorithm is defined in 1 which shows how we translate
this architecture as a slot search problem, and short-circuit the search process.

3 Experimental Results

For evaluation, a data set of five requests and five blocks is used, with randomly sampled data
consisting of ten rail blocks to test generalization. We use an Apple Mac M1 CPU with 16GB of
RAM for computation, and all the times quoted from here on are from the same machine. We also
prepare a Multi-layer perceptron baseline for comparison, with the same architecture but no LSTM
cells.

We train the LSTM model for 1200 epochs until we find convergence. As shown in figure 4, we get
expected trends in the loss function. It converges around 500 epochs and continues to perform well.

5



Figure 4: Accuracy curve for the train and test

Figure 5: ROC and Precision-Recall Curve

3.0.1 Accuracy

We calculate accuracy as slot accuracy. It measures how often the LSTM model predicts the same
slot as the T-HTN planner. As shown by Figure 4, we get a good test accuracy value of 90.2%
around 1200 epochs, with high accuracy rates achieved in the early stages of the training. With the
seq2seq modeling, the LSTM achieves better accuracy rates than the baseline. The limited dataset
used in this article which are two slots per robot considered, does not do justice to the difference
in accuracy with the baseline. As we keep increasing our sample space, the LSTM model accuracy
will capture the spatial and temporal constraints in the memory and perform much better than the
baseline.

We also calculate metrics similar to the MLP baseline to measure the model’s performance, as shown
in figure 6. ROC (Receiver Operating Characteristic) curve, AUC (Area Under the ROC Curve), and
F1 score are standard evaluation metrics used in machine learning models to measure the model’s
ability to distinguish between positive and negative classes for classification problems.

All metrics show a positive trend, with an excellent F1 and AUC score. As shown in the Table 2. A
high F1 score says our predictions have low false negatives and positives, and the model classifies
well.

3.1 Computation Times

Our mission is to reduce the computation time for the slot-matching process. The novel thing about
our approach is that no matter how many candidate slots are presented, the learner will take the

6



Table 2: Evaluation Metrics - Learn2Plan
Model Accuracy F1-Score AUC-Score

Learn2Plan 90.2% 0.893 0.996
MLP baseline 86.3% 0.801 0.956

Table 3: Generalization accuracy
5 requests MLP Learn2Plan

10 rail blocks 76.11% 78.21%

same amount of time. However, the planner computation time will grow linearly with the number of
candidate slots. For example, for a particular request, if ten slots have to be evaluated by the planner,
following the Learn2Plan Heuristic will take approximately 1/10th of the computation time that the
planner will take. We compare Learn2Plan with the planner T-HTN from which we have generated
our training data, and POP-F [7] a forward chaining temporal planner used in task-planning and
scheduling benchmarks. For every request, we compute the computation time improvement for our
model (both LSTM and baseline) by the equation:

timprovement = (tPlanner)allslots − tmodel

tmodel = (tmodel)modelinference − (tPlanner)modeloutputslot

Where t is computation time. As shown in the table 4, we get computational speedups compared
to both planners. The results are statistically significant, with p-scores of 0.012 and 0.014 for MLP
and Learn2Plan, respectively, from a one-sample t-test. The MLP baseline achieves a 65.3% and
63.6% computational speedup compared to T-HTN and POP-F, respectively. The LSTM also fairs
well with 14.6% and 15.3%, respectively, due to higher inherent complexity. However, we will
achieve substantial improvement as we increase the number of slots per request, requests, and rail
blocks. As accuracy is a feature for computational speedup, as it requires computing even to validate
sub-optimal slots, LSTM will work reasonably well for complex cases with multiple slots.

3.2 Generalization

We generated sample data with five requests and ten discrete rail blocks to evaluate performance
on unseen data. 10 Tasks were randomly sampled from this dataset and used with Learn2Plan to
evaluate the generalizability of this approach. First, the mean accuracy is calculated in Table 3.
We believe this is due to the difference in rail block locations, as it is from a different statistical
distribution than that of 5 rail blocks. We also analyze feature importance, the spatial and temporal
constraints, such as the pickup location, drop location, and the time bounds of the incoming item
and the slots, have a high correlation. However, the LSTM model is also not dominated by specific
features and understands the interplay of these features equitably, as seen in the last column.

The computation time is also measured to compare with the ten rail block test set that shows the
numbers are relatively similar due to similar input and output sizes as shown in Table 4.

These results show that the model can reasonably generalize for uncertain requests.

4 Conclusion

As seen in our experimental results, an LSTM-based structure proves very well in learning an ef-
fective abstraction of the backtracking search of hierarchical planners. It substantially beats the

Table 4: Computation Metrics
5 requests T-HTN POPF MLP Learn2Plan

5 rail blocks 0.150 0.143 0.052 0.128
10 rail blocks 0.150 0.143 0.06 0.135

7



Figure 6: Correlation matrix of features

planner times in computational cost even in our restricted case of two requests, which can grow
exponentially with more requests. It is observed that the feature heads pertinent to slot deadlines
and durations have higher weights in the learning model, as well as spatial features like the location
of pick up and drop off which is similar to exactly what a planner considers for decisions. It is able
to generalize well and does not overfit to any spatial or temporal features of sample data, and proves
that it is effective in understanding the nature of planning decisions due to the persistence in memory
due to an LSTM cell understanding the inherent characteristic of requests and constraints. The work
in the paper acts as a proof-of-concept for this methodology, and will follow on with wider analysis
for more number of agents and requests. Hence, The future direction of this paper is expanding it to
more diverse problems and benchmarks with various other state-f-the-art planners.

8



Acknowledgments

If a paper is accepted, the final camera-ready version will (and probably should) include acknowl-
edgments. All acknowledgments go at the end of the paper, including thanks to reviewers who gave
useful comments, to colleagues who contributed to the ideas, and to funding agencies and corporate
sponsors that provided financial support.

References
[1] Moving around mars. https://mars.nasa.gov/mer/mission/timeline/surfaceops/

navigation/#:~:text=Moving%20safely%20from%20rock%20to,about%2020%

20minutes%20on%20average.

[2] V. Parimi, Z. B. Rubinstein, and S. F. Smith. T-htn: Timeline based htn planning for multiple
robots. HPlan 2022, page 59.

[3] I. Sung, B. Choi, and P. Nielsen. Reinforcement learning for resource constrained project
scheduling problem with activity iterations and crashing. IFAC-PapersOnLine, 53(2):10493–
10497, 2020. ISSN 2405-8963. doi:https://doi.org/10.1016/j.ifacol.2020.12.2794. URL
https://www.sciencedirect.com/science/article/pii/S2405896320335588. 21st
IFAC World Congress.

[4] W. Song, Z. Cao, J. Zhang, C. Xu, and A. Lim. Learning variable ordering heuristics for
solving constraint satisfaction problems. Engineering Applications of Artificial Intelligence,
109:104603, 2022. ISSN 0952-1976. doi:https://doi.org/10.1016/j.engappai.2021.104603. URL
https://www.sciencedirect.com/science/article/pii/S0952197621004255.

[5] Z. N. Sunberg, Z. Yang, A. Mueller, F. Berkenkamp, and A. Schoellig. Adaptive entropy tree
search for planning and learning. In Proceedings of the 35th International Conference on Ma-
chine Learning, pages 4793–4802, 2018.

[6] A. Misra. Learn2plan: Learning variable ordering heuristics for scalable planning. 2023.

[7] A. Coles, A. Coles, M. Fox, and D. Long. Forward-chaining partial-order planning. Proceedings
of the International Conference on Automated Planning and Scheduling, 20(1):42–49, May
2021. doi:10.1609/icaps.v20i1.13403. URL https://ojs.aaai.org/index.php/ICAPS/

article/view/13403.

9

https://mars.nasa.gov/mer/mission/timeline/surfaceops/navigation/#:~:text=Moving%20safely%20from%20rock%20to,about%2020%20minutes%20on%20average.
https://mars.nasa.gov/mer/mission/timeline/surfaceops/navigation/#:~:text=Moving%20safely%20from%20rock%20to,about%2020%20minutes%20on%20average.
https://mars.nasa.gov/mer/mission/timeline/surfaceops/navigation/#:~:text=Moving%20safely%20from%20rock%20to,about%2020%20minutes%20on%20average.
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2794
https://www.sciencedirect.com/science/article/pii/S2405896320335588
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2021.104603
https://www.sciencedirect.com/science/article/pii/S0952197621004255
http://dx.doi.org/10.1609/icaps.v20i1.13403
https://ojs.aaai.org/index.php/ICAPS/article/view/13403
https://ojs.aaai.org/index.php/ICAPS/article/view/13403

	Introduction
	Methodology
	Experimental Results
	Accuracy
	Computation Times
	Generalization

	Conclusion

