
Neurocomputing 558 (2023) 126690

Available online 25 August 2023
0925-2312/© 2023 Elsevier B.V. All rights reserved.

PF-BERxiT: Early exiting for BERT with parameter-efficient fine-tuning and
flexible early exiting strategy

Xiangxiang Gao , Yue Liu , Tao Huang , Zhongyu Hou *

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

A R T I C L E I N F O

Communicated by Danilo Cavaliere

Keywords:
Parameter-efficient
Flexible early exiting
Fine-tuning
BERxiT

A B S T R A C T

The industrial usage of huge pre-training language models such as BERT and ALBERT are limited by the
computational probability problem in the fine-tuning process and overthinking problem in the inference process.
PF-BERxiT has been proposed to optimize the pre-trained languages with a novel parameter-efficient fine-tuning
method and a flexible early exiting strategy. Significantly, the new parameter-efficient fine-tuning model in
tegrates a bottleneck adapter architecture parallel to the transformer architecture, and only the adapter’s pa
rameters are adjusted. In addition, we integrate an extra sub-learning module to learn the samples’
characteristics, improving the accuracy and efficiency simultaneously. The flexible exiting strategy allows the
model to exit early if the similarity score of adjacent layers is less than the threshold for pre-defined times. It is
more flexible than previous early exiting methods, for it can simultaneously adjust the similarity score thresholds
and patience parameters according to the request traffic. Extensive experiments are conducted on the GLUE
benchmark, demonstrating that: (1) PF-BERxiT outperforms conventional training and parameter-efficient
strategies with only a few parameters fine-tuned. (2) PF-BERxiT strikes a better balance between model per
formances and speedup ratios than previous state-of-the-art (SOTA) early exiting methods such as PABEE and
BERxiT. (3) Ablation studies in the fine-tuning process demonstrate that the best bottleneck dimension r of the
adapters is 32, and the adapters placed parallel to the feed-forward module are more efficient. (4) Ablation
studies in the inference process demonstrate that for variants of PF-BERxiT with different similarity scores, PF-
BERxiT-kl and PF-BERxiT-bikl attain better speedup-accuracy trade-offs than PF-BERxiT-rekl. Our PF-BERxiT
helps attain a better trade-off between performance and efficiency, providing a reference for the efficient
application of neural computing.

1. Introduction

Large-scale Pre-trained language models (PLMs) have achieved state-
of-the-art performance on many natural language processing tasks
[1–3]. Fine-tuning all the parameters of PLMs on specific tasks has been
the paradigm in many natural language processing tasks [4,5]. How
ever, PLMs contain hundreds of millions or even hundreds of billions of
parameters, making them computationally expensive and inefficient
regarding memory consumption and latency [6–9]. Another bottleneck
of PLMs is the overthinking problem in the inference process [10–12].
That is, the representations of the model’s shallow layers are adequate to
make decisions, while the representations of the deep layers may be
distracted by irrelevant and over-complicated features [13,14]. The
overthinking problem slows the inference speed and wastes the

computation resources [15,16].
To mitigate the computationally expensive and inefficient problem

in the fine-tuning process, two-stage fine-tuning methods [17] and
alternating fine-tuning methods [18] are proposed. However, the fine-
tuned parameters are still redundant. Therefore, many researchers
propose various parameter-efficient transfer learning methods to update
only a small number of task-specific parameters while keeping most pre-
trained parameters frozen [19]. The parameter-efficient model refers to
integrates a simple module parallel to the transformer architecture,
denoted as an adapter, which is a similar bottleneck architecture that
imposes a low-rank constraint on the parameter updates. Only the pa
rameters of the adapter modules are adjusted during the fine-tuning
process, which only fine-tunes a small number of parameters to attain
comparative performance. However, the performance of the parameter-

* Corresponding author.
E-mail address: zhyhou@sjtu.edu.cn (Z. Hou).

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

https://doi.org/10.1016/j.neucom.2023.126690
Received 27 December 2022; Received in revised form 8 June 2023; Accepted 13 August 2023

mailto:zhyhou@sjtu.edu.cn
www.sciencedirect.com/science/journal/09252312
https://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2023.126690
https://doi.org/10.1016/j.neucom.2023.126690
https://doi.org/10.1016/j.neucom.2023.126690
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126690&domain=pdf

Neurocomputing 558 (2023) 126690

2

efficient transfer learning methods mentioned is limited. It is necessary
to propose an optimized solution to improve accuracy under similar
tunable parameters.

In addition, inspired by early stopping [20,21], many researchers
propose early exiting to mitigate the overthinking problem and accel
erate the inference process [22,23]. Early exiting couples an internal
classifier with each transformer layer [24] and dynamically stops
inference when the intermediate predictions of the classifiers are stable
for several steps [25]. There are mainly two types of early exiting stra
tegies. The first type is the confidence-based early exiting strategy. It
evaluates the current layer’s intermediate predictions based on specific
confidence measurements. The confidence-based early exiting strategies
are based on the predicted probabilities, significantly saving inference
time. However, Schwartz et al. [22] revealed that early exit based on
predicted probabilities often leads to a significant drop in performance
because many samples meet the early exit criteria by chance before
reaching a steady state [18]. Zhou et al. [25] propose PABEE, a patience-
based early exiting method that relies on inter-layer prediction instead
of predicted probabilities to overcome this problem. However, due to its
strict cross-layer comparison strategy, PABEE cannot flexibly adjust the
speedup ratio on a given task and a fixed patience parameter [18].

Therefore, to alleviate the computationally expensive and inefficient
problem in the fine-tuning and inference process, we propose PF-
BERxiT, which optimizes the multi-exit BERT with a novel parameter-
efficient method and a flexible early exiting module. The parameter-
efficient method integrates bottleneck adapters parallel to the trans
former architecture that imposes a low-rank constraint on the parameter
updates, which decreases the tuned parameters [26–29]. The difference
in our method is that sub-learning modules are integrated into the
adapters to learn the hidden characteristics of the samples. This way, the
model can fine-tune a small number of weights to attain strong perfor
mance [30,31]. The flexible early exiting module makes predictions at
each intermediate layer. It calculates the similarity score and will exit
early if the current layer and the adjacent layers have similar predicted
distributions (similarity score less than a threshold) for pre-defined
times (patience). The similarity scores are measured by the distillation
object. The early exiting strategy can be seen as an extension of
confidence-based and patience-based early exiting strategies. It is more
flexible since it can make a trade-off between inference speed and per
formance by simultaneously adjusting the similarity score thresholds
and patience parameters.

We conduct extensive experiments on the GLUE benchmark [32].
The results demonstrate that our PF-BERxiT outperforms the previous
SOTA training and parameter-efficient transfer learning methods in the
fine-tuning processes. In addition, it also makes a better performance
and efficiency trade-off in the inference process than the previous SOTA
early exiting methods such as PABEE and BERxiT. Our contributions are
three-fold: (1) We propose PF-BERxiT, a novel model which optimizes
PLMs with a novel parameter-efficient transfer learning method and a
flexible early exiting method. (2) We integrate the sub-learning module
into the bottleneck adapter to learn the hidden characteristics of the
samples in the fine-tuning process. The model can attain strong perfor
mance by fine-tuning a small number of parameters. (3) We propose a
flexible early exiting method that can balance efficiency and perfor
mance better because it is flexible in adjusting the similarity score and
patience threshold simultaneously.

2. Related works

2.1. Conventional training and parameter-efficient strategies

To mitigate the computation expenses and inefficiency problem in
the fine-tuning process of Joint training (fine-tunes all the parameters of
the backbone and exits simultaneously). Two-stage fine-tuning methods
[17] are proposed, which fine-tune the backbone and the final layer at
the first stage. Then fine-tunes the intermediate exits on the fixed

backbone. The alternating fine-tuning method alternates between joint
and two-stage training, which outperforms two-stage fine-tuning
methods. BERxiT [18] is an improved version of the alternating fine-
tuning strategy, which optimizes the model in the fine-tuning and
inference process (adding learning to the exit module). However, their
parameters are still redundant, and efficiency improvements are limited.

Therefore, many researchers sought to mitigate this problem with
parameter-efficient transfer learning methods [49–52]. For example,
Neil et al. [33] insert adapter modules into each layer of the pre-trained
model, and only the parameters of the adapter modules are adjusted
during the fine-tuning process. Hu et al. [34] freeze the pre-trained
model’s parameters and inject trainable rank decomposition matrices
into each transformer layer, significantly reducing the tunable param
eters of specific tasks. Zhu et al. [35] propose a bottleneck architecture
for the adapter module to save the parameters. The adapter modules are
parallel connected to the transformer layers; the results show that par
allel adapter outperforms series adapter. Besides reducing parameters,
parameter-efficient transfer learning is robust [36] and can be adjusted
rapidly to new tasks without catastrophic forgetting [37]. However, the
performances of the parameter-efficient transformer learning methods
could be improved.

To improve the performance of parameter-efficient transformer
learning methods, we integrate sub-learning modules into the adapters
and improve the model performance under a similar number of tunable
parameters to conventional parameter-efficient methods such as parallel
adapters. Our proposed PF-BERxiT can be seen as an improved version
of BERxiT, significantly improving fine-tuning efficiency.

2.2. Early exiting strategies in the inference process

Early exiting is a method that dynamically adjusts certain hyper-
parameters in response to the samples. It does not need to make huge
changes to the original model structure, which saves computing re
sources [38]. It mainly includes two kinds of early exiting methods:
confidence-based and patience-based early exiting methods. The
confidence-based early exiting methods evaluate the current layer’s
intermediate predictions based on specific confidence measurements.
The patience-based early exiting methods rely on inter-layer prediction
instead of predicted probabilities.

The confidence-based early exiting includes BERxiT, BranchyNet
[39], and DeeBERT [23], which utilize the entropy of the intermediate
predictions as a measure of confidence. If the entropy exceeds the
threshold, the model is confident in the prediction, and the sample exits
the network. In addition, Shallow-deep [10] denotes the maximum
probability mass as the confidence. However, it may occasionally exit
before the model reaches the steady state, which leads to a performance
drop. The patience-based early exiting method is proposed by Zhou et al.
[25], it will stop inference and exit early if the predicted results of the
internal classifiers remain unchanged for a predefined number of steps.
However, the exit criteria are too strict, which reduces efficiency.

To overcome the drawbacks proposed above, we propose PF-BERxiT,
which will exit early if the similarity score of adjacent layers is less than
the threshold for pre-defined times. PF-BERxiT is more flexible because
it can adjust the similarity score threshold and patience parameters
simultaneously. It not only mitigates the performance drop for occa
sional exits before reaching a steady state of confidence-based early
exiting methods. But also alleviates the inefficiency of too strict exiting
criteria of patience-based early exiting methods, making a better speed-
performance trade-off.

3. Methods

PF-BERxiT is a more efficient and flexible version of BERxiT, it op
timizes the BERxiT from two aspects: (1) It proposes a novel parameter-
efficient transfer learning model to mitigate the computationally
expensive and inefficient problem in the fine-tuning process. The

X. Gao et al.

Neurocomputing 558 (2023) 126690

3

parameter-efficient model integrates an adapter to the model, a bottle
neck architecture that integrates a sub-learning module to learn the
hidden characteristics. (2) It proposes a flexible early exiting method
that makes a better trade-off between inference speed and performance
to mitigate inefficiency and overthinking problem in the inference
process.

3.1 Model structure

In this section, we present the novel parameter-efficient transfer
learning and flexible early exiting architecture of PF-BERxiT. As shown
in Fig. 1, the backbone consists of n stacked Transformer blocks. In
addition, a classifier is attached to each transformer layer to enable early
exiting. The classifier is a one-layer fully connected network, which
takes the hidden state of each transformer layer and outputs a predic
tion. Each classifier can make a prediction, and the model can early exit
dynamically according to the prediction of each classifier. Moreover, the
learning-to-exit (LTE) is connected to each classifier to improve the
inference efficiency [18]. The LTE module is a simple one-layer fully-
connected network, which takes the hidden states as the input and
outputs a certain level of the sample of each layer.

Fig. 1 (b) shows that each transformer block consists of a multi-head
attention module and position-wise feed-forward. In addition, a residual
connection is employed, followed by the Normalization module [40].
Firstly, the transformer blocks are trained on the entire corpus, and its
parameters are frozen in the fine-tuning process. Then, the adapters are
connected with the attention module and the feed-forward module of
each transformer block, and the parameters of the adapters are trained
in the fine-tuning process.

The architecture of the adapter is shown in Fig. 1 (c). The adapter is a
bottleneck architecture. It firstly projects the original d dimension input
representations HPA

i− 1 to a small dimension r(r≪d) by a down-projection
matrix Wdown ∈ Rd×r, followed by a non-linear activation function g(.),
and a sub-learning module f(.) to learn the hidden characteristics, then
projects the r dimension representations back to d dimensions by an up-
projection matrix Wup ∈ Rr×d. We denote r as the bottleneck dimension
and HPA

i as the output of each adapter module. The formulation of each
adapter module is denoted as follows:

HPA
i = f (g(HPA

i− 1Wdown))Wup (1)

Among them, the non-linear activation function g(.) is usually RELU
[41],GELU [42], and Tanh [43], or an identity transformation. In

addition, we propose four different sub-learning modules f(.) to learn
the hidden features of the samples, and they are denoted as:

(1) PF-BERxiT(origin-adapter): The sub-learning module is a simple
identity mapping. The architecture of this adapter module is the
conventional adapters presented in parallel adapters [35].

(2) PF-BERxiT(self-attn-adapter): The sub-learning module is a self-
attention layer [24], followed by a non-linear activation function.

(3) PF-BERxiT(conv-adapter): The sub-learning module is a 1-d con
volutional layer [44], followed by a non-linear activation
function.

(4) PF-BERxiT(mlp-adapter): The sub-learning module is a simple
fully-connected layer [45].

During the fine-tuning process, only the parameters of adapters are
trained, alleviating the computational prohibitively and inefficiency
problem. In addition, the added sub-learning module proved beneficial
in learning the samples’ hidden characteristics and improving the
model’s performance.

In addition, to mitigate the computational consumption and over
thinking problem in the inference process. We propose flexible early
exiting strategies, as shown in Fig. 1(a). Among them, Cn is the classifier
attached to each transformer layer, s is the similarity score between
different layers, τ is the similarity score threshold, and t is the pre-
defined patience threshold.

The inference process is evident. The input samples are firstly
embedded as vectors by the embedding layer:

h0 = Embedding(x) (2)

Next, the vectors pass through the transformer blocks L1⋯Li to
extract the hidden features and compute its hidden states hi. Then, the
probability p is calculated by each classifier C1⋯Ci:

hi = Lihi− 1 (3)

pi = Cihi (4)

After that, the similarity score s between layer i and j is calculated
based on the predicted probability, and whether the model is confident
in its prediction results is evaluated, we designed three different eval
uation methods, which are shown as follows:

(1) PF-BERxiT-v1: When the model reaches the current layer i, we
calculate the similarity score si,i− 1 between the prediction results of layer
i and i-1. The smaller the value of si,i− 1, the predicted distribution pi and

Fig. 1. The parameter-efficient fine-tuning and inference architecture of the PF-BERxiT framework.

X. Gao et al.

Neurocomputing 558 (2023) 126690

4

pi− 1 are more consistent with each other, and the model is more confi
dent in the prediction results. In addition, τ is denoted as the similarity
score threshold, and cnti is utilized to store the number of times that the
similarity scores consecutively less than the threshold:

cnti =

{
cnti− 1 + 1si,i− 1 < τ

0si,i− 1 ≥ τ (5)

If the similarity score si,i− 1 is less than the pre-defined threshold τ,
increase the patience counter by 1. Otherwise, reset the patience counter
to 0. This process is repeated until cnt reaches the pre-defined patience
value. The model will stop inference and exit early. However, if this
condition is never met, the model will use the final classifier to make
predictions.

(2) PF-BERxiT-v2: When the model reaches the current layer i, we
calculate the similarity score between layer i and its previous layers i-
1…, i-m. If the similarity score s consecutively less than the threshold τ,
increase the patience counter by 1. Otherwise, reset it to 0. This process
is repeated until cnt reaches the pre-defined patience value. The model
will stop inference and exit early. Otherwise, the model will use the final
classifier to make predictions.

(3) PF-BERxiT-v3: When the model reaches the current layer i, we
calculate the similarity score between layer i and its previous layers i-1,
… i-m. Suppose the number of times the similarity scores E between the
current layer and previous layers less than the threshold reaches the pre-
defined patience τ. In that case, the model will stop inference and exit
early. Otherwise, the model will use the final classifier to make pre
dictions. PF-BERxiT-v3 differs from PF-BERxiT-v2 in that PF-BERxiT-v2
requires the similarity scores of the current layer and previous layers are
continuously less than the threshold, while PF-BERxiT-v3 does not.

Among them, PF-BERxiT-v1 performs better than other early exiting
strategies, therefore, we present it in Fig. 1(a).

Under the framework of PF-BERxiT, we adopt three different
distillation-object-based similarity score measuring methods, shown
below:

(1) This version of PF-BERxiT adopts the distillation object from
probability distribution pi of i layer to pj of j layer:

E
(
pi, pj

)
= −

∑K

k=1
pi(k)log(pj(k)) (6)

(2) PF-BERxiT-rekl: This version of PF-BERxiT also adopts the
distillation object, but in the reverse direction, from probability distri
bution pj of j layer to pi of i layer:

E
(
pj, pi

)
= −

∑K

k=1
pj(k)log(pi(k)) (7)

(3) PF-BERxiT-bikl: Note that the distillation object is usually
asymmetrical so that we can evaluate the performance of symmetrical
entropy:

SymE
(
pj, pi

)
= E

(
pi, pj

)
+E

(
pj, pi

)
(8)

Our flexible early exiting can solve the occasional exits before
reaching a steady state of the confidence-based early exiting methods

and the too strict exiting criteria problem of patience-based early exiting
methods, attaining a better balance between the inference speed and
performance.

4. Experiments

4.1. Datasets

We evaluated the performance of our PF-BERxiT on the GLUE
benchmark [32], including (1) Natural language inference benchmarks
(MNLI, RTE, QNLI), which predict whether the sentence entails, con
tradicts, or is neutral [46]. (2) Sentiment classification benchmark
predicts a sentence’s sentiment (SST-2) [47]. (3) Paraphrase detection
benchmark (MRPC, QQP), and (4) Linguistic acceptability benchmark
(CoLA).

4.2. Baselines

We mainly choose the ALBERT-base-v2 [7] as the backbone model
for baselines. For the performance comparison in the fine-tuning pro
cess, we compare our PF-BERxiT with four different groups of baselines:

(1) JOINT: all model parameters are trained in the fine-tuning pro
cess [2].

(2) 2ST: Two-stage training, fine-tuning the backbone and final exit
in the first stage and fine-tuning the intermediate exits on the
fixed backbone in the second stage [17].

(3) ALT: Alternating training, alternating between joint training and
two-stage training [18].

(4) BERxiT: The fine-tuning strategy is alternating training, and the
intermediate layer parameters are tuned simultaneously to
ensure an efficient exit [18].

For the performance comparison in the inference process, we
compare PF-BERxiT with four different baselines:

(1) Appointed early exiting: The inference exit layers of the model
are appointed. We compare our PF-BERxiT with appointed early
exiting layers: Appointed-Exit-3L, Appointed-Exit-6L, and
Appointed-Exit-9L.

(2) Confidence-based early exiting: We compare our PF-BERxiT with
confidence-based early exiting methods, including BranchyNet
[39], Shallow-deep [10], and BERxiT [18].

(3) Patience-based early exiting: We compare our PF-BERxiT with
patience-based early exiting methods PABEE [25].

(4) Confidence-window-based early exit: We compare our PF-BERxiT
with confidence-window-based early exiting methods ELBERT-
12L [53].

4.3. Training and inference details

A linear classification layer is attached to the intermediate layer of
the backbone model. We fine-tune the backbone with efficient

Table 1
Cross-layer average scores of different fine-tuning strategies with the ALBERT backbone.

CoLA
avg-mcc

RTE
avg-acc

MRPC
avg-acc-f1

SST-2
avg-acc

QNLI
avg-acc

MNLI
avg-acc

QQP
avg-acc

JOINT 41.77 64.26 84.05 88.71 86.27 79.37 86.61
ALT 43.90 67.27 83.68 90.01 86.21 79.71 88.43
2ST 32.03 66.96 77.78 87.51 82.72 67.09 81.64
BERxiT 44.73 66.61 84.88 89.00 86.14 79.16 88.48
PF (orig) 44.08 66.61 85.14 89.74 86.33 79.17 88.96
PF (conv) 43.16 69.40 84.64 89.57 86.33 79.10 88.96
PF (attn) 42.74 64.83 85.24 88.45 86.49 79.17 89.08
PF (mlp) 44.03 66.37 85.09 90.19 86.42 79.82 88.98

X. Gao et al.

Neurocomputing 558 (2023) 126690

5

parameter architectures. The bottleneck dimension r is 32. In addition,
we fine-tune the model with the Adam optimization and warm-up.
Moreover, we perform a grid search over the batch size of {16, 32, 64,
128}, and the learning rate of {1e-5, 2e-5, 3e-5, 5e-5}. And the best
checkpoints in the training process are selected to be used in the infer
ence process. All the experiments are conducted on two Nvidia
TITANX24 GB GPUs. The inference process is based on the best check
points in the fine-tuning process. The inference of PF-BERxiT is on a per-
instance basis, and the batch size is set to 1. In addition, we present the
median speed-accuracy performance of the model over five runs with
different random seeds.

5. Overall comparisons

5.1. Comparisons of different fine-tuning strategies

We compare the performance between PF-BERxiT and other previous
SOTA fine-tuning strategies with the ALBERT backbone. Table.1 shows
the cross-layer average scores of different fine-tuning strategies on seven
tasks of the GLUE benchmark. It can be seen that with the help of
adapter modules, PF-BERxiT outperforms the previous SOTA fine-tuning
strategies by a large margin. In addition, the performances of PF-BERxiT

(conv-adapter), PF-BERxiT(self-attn-adapter), and PF-BERxiT(mlp-
adapter) are better than PF-BERxiT(origin-adapter), indicating the in
tegrated sub-learning module can help learn the hidden features of the
samples. In addition, the fine-tuned parameters and cross-layer accuracy
are compared between different fine-tuning and early-exit models (take
the RTE task as an example), as shown in Table 2. All parameters on the
RTE task of PF-BERxiT (orig), PF-BERxiT (conv), PF-BERxiT (attn), and
PF-BERxiT (mlp) are 12329124, 12342564, 12,380,580 and 12,341,796
respectively. And the fine-tuned parameters on the RTE task of PF-
BERxiT (orig), PF-BERxiT (conv), PF-BERxiT (attn), and PF-BERxiT
(mlp) are 617856, 631296, 669,312 and 630,528 respectively, which
are 5.0%, 5.1%, 5.4% and 5.2% parameters of the joint training model
respectively. Because in the fine-tuning process, the parameters of the
backbone are frozen, and only the parameters of the adapters are fine-
tuned. Therefore, the fine-tuned parameters of PF-BERxiT are much
smaller than the joint training model. At the same time, the cross-layer
accuracy of PF-BERxiT is higher than other fine-tuning methods, indi
cating that our model can attain strong performance by fine-tuning
fewer parameters, making a better trade-off between accuracy and ef
ficiency. In addition, PF-BERxiT only increases fewer than 19 K new
parameters for judging whether the model needs to exit, which is about
0.15% of the original parameter, which can be ignored. Moreover,
compared to the previous early-exit methods, the fine-tuned parameters
of confidence-based early exit method BERxiT and patience-based exit
method (PABEE) are 11,711,268 and 11,702,040 respectively, which is
far more than the parameters of PF-BERxiT. However, PF-BERxiT ach
ieves the highest cross-layer accuracy, indicating that PF-BERxiT makes
better trade-offs between performance and effectiveness. Furthermore,
it can find that for the RTE task, PF-BERxiT (conv) attains the highest
accuracy by fine-tuning 5.1% parameters of the joint training model.

The layers-score curves with different fine-tuning strategies on the
GLUE benchmark are shown in Fig. 2. It is obvious that PF-BERxiT
outperforms other fine-tuning strategies by a large margin, especially
in the shallow layers, which helps the model exit earlier in the inference
process. All the results above indicate that PF-BERxiT outperforms

Table 2
Fine-tuned parameters and accuracy of different models on the RTE task.

Method All
Parameters

Fine-tuned
Parameters

Cross-layer
Accuracy

ALBERT 11,683,584 11,683,584 64.26
PABEE 11,702,040 11,702,040 65.31
Branchy Net 11,702,040 11,702,040 63.21
BERxiT 11,711,268 11,711,268 66.61
PF- BERxiT (orig) 12,329,124 617,856 66.61
PF- BERxiT

(conv)
12,342,564 631,296 69.40

PF- BERxiT (attn) 12,380,580 669,312 64.83
PF- BERxiT (mlp) 12,341,796 630,528 66.37

Fig. 2. The layers-score curves of different fine-tuning strategies on GLUE benchmark with ALBERT backbone.

X. Gao et al.

Neurocomputing 558 (2023) 126690

6

conventional training strategies such as 2ST, JOINT, ALT, and conven
tional parameter-efficient methods with origin adapters by fine-tuning
only a few parameters. Our PF-BERxiT can achieve competitive perfor
mance on the GLUE benchmark by tuning fewer parameters of the
previous SOTA training strategies. In addition, the integrated sub-
learning modules help learn the hidden characteristics and further
improve the average accuracy of the model (Fig. 3).

5.2. Ablation studies on different sub-learning modules

We further investigate the performance of different sub-learning
modules to improve the performance of PF-BERxiT. As demonstrated
before, Table 1 also presents the average scores of PF-BERxiT with
different sub-learning modules integrated into the adapters. It is evident
that PF-BERxiT(self-attn-adapter) performs best for MRPC, QNLI, and
QQP tasks, PF-BERxiT(mlp-adapter) performs best for SST-2 and MNLI
tasks, and PF-BERxiT(conv-adapter) performs best for RTE tasks. Inter
estingly, different sub-modules are suitable for different tasks. It may be
because the neural units of the convolutional neural network are locally
connected. That is, the neural units of each layer are only connected
with some of the neural units of the previous layer. Each neural unit only
responds to the region within the receptive field and does not care about
the region outside the receptive field. Therefore, it has the strongest
response and accuracy for simple tasks (RTE) that emphasize local
patterns. However, it performs poorer than a fully connected network
when faced with complex tasks that require learning the correlation
properties of data in different locations. Because a fully connected
network comprises many neurons connected to other neurons, each
connection is evaluated by a weight coefficient that reflects the impor
tance of a given link in the neural network. Therefore, compared with
the convolutional neural network, it can learn the correlation charac
teristics of data at different locations. Therefore, it performs better in
more complex tasks like SST-2 and MNLI. However, compared with the
fully connected network, the attentional mechanism module can
aggregate the limited local distribution information into the global
distribution of the whole space, which can better learn the global

information. It performs well in complex and simple tasks, performing
best in most tasks, such as MRPC, QNLI, and QQP.

5.3. Ablation studies on different bottleneck dimensions

The bottleneck dimension r has a significant influence on the per
formance of the model. Therefore, we conduct ablation studies to
investigate the model’s performances under different bottleneck di
mensions r on the RTE, MRPC, and SST-2 tasks. The results are shown in
Table 3, we can see that smaller bottleneck dimensions do not result in
significant performance drops. Our model can achieve good perfor
mance even though the dimension of the bottleneck is small, demon
strating that the adapters help attain strong performance with fewer
fine-tuned parameters. In addition, the model performs best when the
bottleneck dimension is 32. Therefore, we set the bottleneck dimensions
r as 32 for further ablation studies and inference processes.

5.4. Ablation studies on placements of the adapters

The placed position of the adapters also affects the model’s perfor
mance. Therefore, we investigate three different placements of the
adapters: (a) The adapters are placed parallel to the multi-head attention
module, denoted as Attn-adapter; (b) The adapters are placed parallel to
the feed-forward module, denoted as FFN-adapter in this paper. (c) The
adapters are inserted between the multi-head attention layer and the
Add&Norm layer, denoted as sequence-adapter in this paper (Seq-
adapter). The experiment results of different adapter positions on RTE,

Fig. 3. Layer-score curves of different sub-learning modules on GLUE benchmark with ALBERT backbone.

Table 3
Experimental results of different bottleneck dimensions with the ALBERT
backbone on the RTE, MRPC, and SST-2 tasks.

2 4 8 16 32 64

RTE (avg-acc) 67.09 65.85 68.92 67.51 69.31 68.38
MRPC (avg-acc-f1) 85.21 85.35 85.22 84.37 85.24 84.01
SST-2(avg-acc) 89.61 89.36 89.83 89.57 90.19 89.56

X. Gao et al.

Neurocomputing 558 (2023) 126690

7

MRPC, and SST-2 tasks are shown in Table 4. It shows that the parallel
adapter performs better than the sequencing adapter. Based on the su
perior results of parallel adapters over sequential adapters, we focus on
parallel adapter results in the following sections. In addition, among
parallel adapters, it is evident that FFN-adapter performs better on the
RTE and SST-2 tasks, and Attn-adapter performs better on the MRPC
task. The results show that the FFN-adapter performs better than the
Attn-adapter, indicating that the FFN-adapter can utilize the fine-tuned
parameters more effectively than the Attn-adapter. We suppose it may

Table 4
Experimental results of different adapter placements on RTE, MRPC, and SST-2
tasks with the ALBERT backbone.

RTE (avg-acc) MRPC (avg-acc-f1) SST-2 (avg-acc)

Attn-adapter 69.31 85.96 89.29
FFN-adapter 69.40 85.24 90.19
Seq-adapter 68.30 84.12 87.95

Table.5
scores and speedup of different early exiting methods with the same fine-tuned ALBERT backbone on the GLUE benchmark. The results show that PF-BERxiT effectively
accelerates ALBERT’s inference speed with less performance loss compared with the baseline methods.

CoLA
Score speed

MNLI
Score speed

MRPC
Score speed

QNLI
Score speed

QQP
Score speed

RTE
Score speed

SST-2
Score speed

Backbone 54.2 0% 83.1 0% 86.8 0% 89.8 0% 89.2 0% 69.1 0% 91.3 0%

Exit-3L
Exit-6L
Exit-9L

0.0 75% 70.0 75% 75.8 75% 77.4 75% 81.8 75% 54.7 75% 81.0 75%
0.0 50% 79.6 50% 84.7 50% 85.3 50% 89.3 50% 68.1 50% 88.6 50%

51.9 25% 83.0 25% 87.0 25% 88.4 25% 90.3 25% 69.0 25% 91.2 25%
Branchy

Net
0.0 74% 63.8 76% 75.7 76% 74.2 80% 71.6 80% 54.7 76% 79.9 76%
0.0 51% 78.3 53% 83.0 52% 87.1 47% 89.3 50% 67.2 48% 88.3 49%

52.1 27% 83.0 25% 85.8 24% 89.3 27% 90.1 26% 67.8 26% 91.2 24%
Shallow-deep 0.0 75% 64.1 77% 75.6 76% 74.3 78% 71.4 79% 54.7 76% 79.5 77%

0.0 52% 78.2 51% 82.8 51% 87.2 49% 89.6 51% 67.2 48% 88.4 48%
52.3 26% 82.9 26% 85.7 25% 89.3 26% 90.1 27% 67.8 26% 91.2 25%

BERxiT 0.0 76% 63.5 76% 75.6 76% 73.3 78% 68.2 80% 55.3 77% 79.5 76%
12.3 52% 78.4 51% 82.9 51% 87.0 48% 89.1 49% 67.3 47% 88.3 49%
52.2 25% 83.2 26% 86.2 26% 89.6 27% 90.1 26% 68.1 27% 91.4 24%

PABEE 0.0 75% 63.9 77% 75.8 75% 73.6 81% 68.6 82% 55.8 75% 79.9 77%
0.0 50% 78.9 52% 83.1 53% 87.2 46% 89.6 49% 67.7 46% 88.7 48%

52.4 26% 83.4 24% 86.1 26% 89.8 28% 90.4 24% 68.3 28% 91.7 22%
ELBERT-12L 32.3 74% 79.6 73% 81.7 77% 86.5 74% 88.7 72% 67.5 75% 85.3 76%

51.3 52% 81.7 49% 87.2 50% 90.1 53% 90.2 53% 71.8 49% 90.1 51%
53.1 24% 83.6 27% 88.4 25% 90.5 26% 90.5 23% 72.1 25% 90.3 24%

PF-BERxiT 40.1 75% 81.3 72% 83.8 77% 88.2 75% 90.4 82% 73.0 76% 91.1 76%
53.7 53% 82.9 53% 89.4 53% 91.1 54% 90.5 49% 76.1 47% 92.0 48%
53.4 25% 83.4 28% 89.6 26% 91.1 28% 90.5 25% 76.9 25% 92.0 25%
54.2 0% 83.6 0% 89.8 0% 91.2 0% 90.5 0% 76.9 0% 92.1 0%

Fig. 4. Speed-accuracy curves of different early exiting strategies on GLUE benchmark with the ALBERT backbone.

X. Gao et al.

Neurocomputing 558 (2023) 126690

8

be because the feed-forward module learns task-specific patterns, while
the attention module learns the positional interactions, which is not
advanced in learning new tasks [48].

5.5. Comparisons of different inference strategies

In the inference process, the best checkpoints in the fine-tuned pro
cess are selected to be used in the inference process to combine with the
flexible early exiting strategy to make a trade-off between performance
and efficiency. We compare the inference performance between our PF-
BERxiT with the previous SOTA early exiting strategies on the GLUE
benchmark of three different speedup settings: (1) 72% to 82% speedup;
(2) 46% to 54% speedup; (3) 25% to 28% speedup. The previous early
exiting strategies included appointed early exiting, which fixes the exit
layers, including appointed-Exit-3L, appointed-Exit-6L, and appointed-
Exit-9L, and confidence-based early exit methods, including Branchy
Net, Shallow-deep, and BERxiT, and patience-based early exit method
PABEE. In addition, ELBERT [53] model, which significantly improves
the average inference speed compared to ALBERT due to the proposed
confidence-window-based early exit mechanism without introducing
additional parameters or extra training overhead, is also compared with
PF-BERxiT. Among them, the original ELBERT model consists of 24
Transformer layers and uses ALBERT-large as the backbone, while our
PF-BERxiT consists of 12 Transformer layers and uses ALBERT-base-v2
as the backbone. Therefore, to ensure a fair comparison, we compare
the performances of PF-BERxiT with the variants of the ELBERT model,
which consists of 12 Transformer layers, denoted as ELBERT-12L, in this
paper. Moreover, since PABEE cannot flexibly adjust the speedup ratios,
we adjust the hyper-parameters (similarity score threshold and patience
parameter) of our PF-BERxiT and the other baselines to achieve similar
speedups with PABEE.

Table 5 shows the score and speedup of different exiting strategies on
the GLUE benchmark. The speed-up ratio equal to 0 means that the
model goes through all layers without using a flexible early exiting
strategy to speed up the inference process, compared with the model
with flexible exiting strategies. It shows that PF-BERxiT with 0 speedups

performs better than the backbone model, indicating that our model can
perform better with fewer fine-tuned parameters. In addition, PF-
BERxiT can attain a better score than other inference strategies
(including static early exit methods, confidence-based early exit
methods, patience-based early exit methods and confidence-window
based early exit mechanism ELBERT-12L) under ~25%, ~50%, and
75% speed up respectively, indicating that PF-BERxiT is effective in
accelerating ALBERT’s inference speed with less performance loss
compared with the baseline exiting strategies.

In addition, we plot the speedup-score curves for the patience-based
early exiting method PABEE, confidence-based early exiting method
BERxiT, and our PF-BERxiT, to further analyze the performance of
different inference strategies. Fig. 4 shows the speedup-score curves of
different inference strategies on GLUE benchmarks. The speed-up ratio
equal to 0 means that the model goes through all layers without using a
flexible early exiting strategy to speed up the inference process,
compared with the model with flexible exiting strategies. It is clearly
shown that our PF-BERxiT outperforms the baseline early exiting
methods on all tasks of the GLUE benchmark. Moreover, the majority of
the computation complexity is from encoding sentences with the back
bone, which is quadratic for sequence length, linear for the depth of
intermediate exits, and the model’s hidden size and the parameters of
the adapter are about 5% of the initial model. Therefore, the adapter’s
impact on the computational complexity is negligible. Furthermore, we
count the inference latency of the backbone and our PF-BERxiT, and we
compare the inference time between PF-BERxiT and the original model.
The results indicate that our method can significantly alleviate the
model’s inference latency. For example, the inference latency is 0.71x of
the backbone for the RTE task, the inference latency is 0.53x of the
backbone for the MRPC task, the inference latency is 0.40x of the
backbone for the SST-2 task, the inference latency is 0.45x of backbone
for QNLI task, the inference latency is 0.39x of backbone for QQP task,
and the inference latency is 0.48x of backbone for MNLI task. We sup
pose that PF-BERxiT can overcome the performance drop of confidence-
based early exiting strategies for the occasional exit before it reaches the
steady state and can overcome the inefficiency problem of patience-

Fig. 5. Speed-accuracy curves of different similarity score calculation methods on GLUE benchmark with the ALBERT backbone.

X. Gao et al.

Neurocomputing 558 (2023) 126690

9

based early exiting strategies for too strict exiting criteria for the reason
that it can flexibly adjust the similarity score threshold and patience
threshold. Our PF-BERxiT can better balance the performance and speed
up, alleviating the overthinking problem of huge pre-trained language
models without any performance loss.

5.6. Ablation studies on different similarity score calculation methods

We adopt three different relative entropy-based similarity score
measuring methods of PF-BERxiT in this paper, denoted as PF-BERxiT-
kl, PF-BERxiT-rekl, and PF-BERxiT-bikl. The speedup-score curves of
PF-BERxiT-kl, PF-BERxiT-rekl, and PF-BERxiT-bikl on GLUE benchmark
are shown in Fig. 5. It can be seen that the PF-BERxiT-kl and PF-BERxiT-
bikl attain better speedup-accuracy trade-offs than PF-BERxiT-rekl. We
suspect it may be because the PF-BERxiT-rekl is asymmetric, not an
accurate distance measurement. In addition, compared to PF-BERxiT-kl,
it has a wide range, which increases the difficulty of tuning the hyper
parameters. PF-BERxiT-bikl is a symmetric divergence, and the simi
larity discrimination is more accurate than asymmetric divergence.
Moreover, its divergence range is between 0 and 1, making hyper
parameters easier to tune. Therefore, PF-BERxiT-bikl and kl perform
better.

5.7. Ablation studies on different batch sizes

In the previous inference process, we present the performance of the
model inference process when the batch size is 1. However, the batch
size may be greater than 1 in the actual industrial scenario. Therefore,
we conduct ablation experiments to explore the inference performance
of PF-BERxiT when batch size is greater than 1. We explore the inference
performance of the model under different speedup settings (72% to 82%
speedup, 46% to 54% speedup, 25% to 28% speedup) on the GLUE
benchmark when the batch size was 1, 2, 4, 8, 16, respectively. The
results are shown in Table.6. It can be seen that even under different
batch sizes, the inference accuracy of PF-BERxiT is very close, with
almost no difference when the acceleration ratio is ~25%, ~50% and
~75%, respectively. This is because we can dynamically adjust the
model’s similarity score threshold and patience parameters based on the
complexity of the data, making it easier for the model to find the optimal
exit. The above results indicate that our PF-BERxiT can also guarantee
excellent inference acceleration performance in practical acceleration
scenarios.

6. Conclusion

To mitigate the redundant computational problems in the fine-tuning

process, we propose PF-BERxiT, which optimizes the pre-trained lan
guage model in the fine-tuning and inference process. Significantly, the
parameter-efficient fine-tuning method integrates a sub-learning mod
ule to the adapters to learn the characteristics of the samples, and the
flexible exiting strategy makes the model exit early if the times that the
similarity score of cross-layers is less than the threshold reaches the pre-
defined patience. Extensive experiments are conducted on the GLUE
benchmark, demonstrating that:

(1) PF-BERxiT outperforms conventional training strategies such as
2ST, JOINT, ALT, and conventional parameter-efficient methods with
origin adapters by fine-tuning only a few parameters. Our model can
achieve good performance even though the dimension of the bottleneck
is small, demonstrating that the adapters with sub-learning module help
attain strong performance with fewer fine-tuned parameters.

(2) PF-BERxiT strikes a better balance between model performances
and speedup ratios than previous state-of-the-art (SOTA) early exiting
methods such as PABEE and BERxiT because it can dynamically adjust
the similarity score thresholds and patience parameters according to the
request traffics.

(3) Ablation studies in the fine-tuning process demonstrate that the
best bottleneck dimension r of the adapters is 32. The adapters placed
parallel to the feed-forward module are more efficient. In addition,
ablation studies in the inference process demonstrate that PF-BERxiT-kl
and PF-BERxiT-bikl attain better speedup-accuracy trade-offs than PF-
BERxiT-rekl.

In summary, PF-BERxiT helps attain a better trade-off between ac
curacy and efficiency, providing a reference for the efficient application
of artificial intelligence.

CRediT authorship contribution statement

Xiangxiang Gao: Writing – original draft, Methodology, Investiga
tion. Yue Liu: Formal analysis, Data curation. Tao Huang: Validation,
Investigation. Zhongyu Hou: Writing – review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential.

Table 6
Scores and speedup of different batch sizes with the same fine-tuned ALBERT backbone on the GLUE benchmark.

Batch size MNLI
Score speed

MRPC
Score speed

QNLI
Score speed

QQP
Score speed

RTE
Score speed

SST-2
Score speed

Base 83.1 0% 86.8 0% 89.8 0% 89.2 0% 69.1 0% 91.3 0%

1 81.3 72% 83.8 72% 91.1 75% 90.4 82% 73.0 76% 91.1 76%
82.9 53% 89.4 53% 91.1 54% 90.5 49% 76.1 47% 92.0 48%
83.4 28% 89.6 26% 91.1 28% 90.5 25% 76.9 25% 92.0 25%

2 78.9 72% 83.3 72% 86.2 72% 89.4 75% 72.9 73% 91.2 72%
82.8 50% 88.9 54% 90.8 49% 90.5 48% 72.2 49% 91.5 48%
83.2 25% 89.4 26% 91.2 26% 90.5 24% 75.8 25% 91.7 26%

4 77.1 73% 84.3 72% 85.8 73% 88.3 73% 72.0 74% 91.1 75%
81.7 51% 88.3 50% 90.2 50% 90.5 47% 72.9 48% 91.7 54%
83.2 25% 89.4 25% 91.2 26% 90.5 25% 75.5 24% 91.7 25%

8 76.2 73% 82.8 73% 84.8 73% 87.7 72% 71.2 73% 90.8 73%
81.8 50% 87.2 52% 89.8 49% 90.1 52% 72.2 49% 91.7 53%
83.2 24% 89.3 25% 91.0 28% 90.5 25% 75.5 25% 91.9 25%

16 76.0 73% 81.3 72% 84.3 72% 87.4 73% 70.2 74% 90.3 74%
81.5 50% 87.4 48% 89.7 52% 90.1 52% 72.9 48% 92.0 50%
82.9 25% 89.3 24% 90.8 25% 90.5 25% 74.7 28% 92.0 25%

X. Gao et al.

Neurocomputing 558 (2023) 126690

10

Acknowledgments

This work was financially supported by the National Natural Science
Foundation of China (60906053, 61204069), Shanghai Science Inno
vation Project (15DZ1160800), CASIC Frontier Technology Topic
(2022-QY-12), Fundamental Research Funds of non-profit Central In
stitutes (No. ZX2230).

References

[1] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer,
Deep contextualized word representations, CoRR abs/1802.05365. arXiv:
1802.05365.

[2] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional
transformers for language understanding, CoRR abs/1810.04805. arXiv:
1810.04805.

[3] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, K. Keutzer, I-BERT: integer-only BERT
quantization, arXiv abs/2101.01321. arXiv:2101.01321.

[4] M. Lewis, et al. BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension, CoRR abs/1910.13461.
arXiv:1910.13461.

[5] W. Fedus, B. Zoph, N. Shazeer, Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, CoRR abs/2101.03961. arXiv:
2101.03961.

[6] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.
Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized BERT pretraining
approach, arXiv:1907.11692.

[7] Z. Lan, et al, ALBERT: A lite BERT for self-supervised learning of language represen
tations, arXiv:1909.11942.

[8] A. Radford, et al, Language models are unsupervised multi task learners, 2019.
[9] V. Sanh, et al, Distilbert, a distilled version of BERT: smaller, faster, cheaper and

lighter, arXiv:1910.01108.
[10] Y. Kaya, T. Dumitras, How to stop off-the shelf deep neural networks from

overthinking, arXiv:1810.07052.
[11] D. Jin, Z. Jin, J. T. Zhou, P. Szolovits, Is BERT really robust? natural language

attack on text classification and entailment, arXiv:1907.11932.
[12] P. Michel, et al. Are sixteen heads really better than one? arXivabs/1905.10650.
[13] S. Sun, et al. Patient knowledge distillation for BERT model compression, arXiv:

1908.09355.
[14] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, Q. Liu, Tinybert:

Distilling BERT for natural language understanding, arXiv:1909.10351.
[15] A. Fan, E. Grave, A. Joulin, Reducing transformer depth on demand with structured

dropout, arXivabs/1909.11556.
[16] L. Hou, L. Shang, X. Jiang, Q. Liu, Dynabert: Dynamic BERT with adaptive width

and depth,arXivabs/2004.04037.
[17] W. Liu, P. Zhou, Z. Zhao, Z. Wang, H. Deng, Q. Ju, Fastbert: a self-distilling BERT

with adaptive inference time, arXiv:2004.02178.
[18] J.Xin, R.Tang, Y.Yu, J.J.Lin, Berxit: Early exiting for bert with better fine-tuning

and extension to regression, in:EACL, 2021.
[19] J. He, et al, Towards a unified view of parameter-efficient transfer learning, arXiv:

2110. 04366.
[20] N. Morgan, et al., Generalization and Parameter Estimation in Feedforward Nets:

Some Experiments, in: Proceedings of the 2nd International Conference on Neural
Information Processing Systems, NIPS’89, MIT Press, Cambridge, MA, USA, 1989,
pp. 630–637.

[21] L. Prechelt, Early stopping but when? Neural Networks: Tricks of the Trade,
Vol.1524 of Lecture Notes in Computer Science, Springer, 1996, pp. 55–69.

[22] R. Schwartz, G. Stanovsky, S. Swayamdipta, J. Dodge, N. A. Smith, The right tool
for the job: Matching model and instance complexities, arXiv:2004.07453.

[23] J. Xin, R. Tang, J. Lee, Y. Yu, J. Lin, Deebert: Dynamic early exiting for accelerating
BERT inference, CoRR abs/2004.12993. arXiv:2004.12993.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I.
Polosukhin, Attention is all you need, CoRR abs/1706.03762. arXiv:1706.03762.

[25] W. Zhou, et al, BERT loses patience: Fast and robust inference with early exit,
arXiv:2006.04152.

[26] X. Liu, et al, GPT understands, too, arXiv:2103.10385.
[27] Y. Li, Y. Liang, A. Risteski, Recovery guarantee of weighted low-rank

approximation via alternating minimization, arXiv:1602.02262.
[28] S. Oymak, Z. Fabian, M. Li, M. Soltanolkotabi, Generalization guarantees for neural

networks via harnessing the low-rank structure of the jacobian, arXiv:1906.05392.
[29] Z. Allen-Zhu, et al, A convergence theory for deep learning via over-

parameterization, arXiv:1811.03962.
[30] E.B. Zaken, et al, Bitfit: Simple parameter-efficient fine-tuning for transformer-

based masked language models, arXiv:2106.10199.
[31] R. K. Mahabadi, J. Henderson, S. Ruder, Compacter: Efficient low-rank

hypercomplex adapter layers, arXiv:2106.04647.
[32] A. Wang, et al, GLUE: A multi-task benchmark and analysis platform for natural

language understanding, arXiv:1804.07461.
[33] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe, A.

Gesmundo, M. Attariyan, S. Gelly, Parameter-efficient transfer learning for NLP,
arXiv:1902.00751.

[34] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, W. Chen, Lora: Low-rank
adaptation of large language models, arXiv:2106.09685.

[35] Y. Zhu, J. Feng, C. Zhao, M. Wang, L. Li, Serial or parallel? plug able adapter for
multilingual machine translation, arXiv:2104.08154.

[36] X.L. Li, P. Liang, Prefix-tuning: Optimizing continuous prompts for generation,
arXiv:2101.00190.

[37] J. Pfeiffer, A. Kamath, A. Ru ̈ckle ́, K. Cho, I. Gurevych, Adapter fusion: Non-
destructive task composition for transfer learning, arXiv:2005.00247.

[38] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, L. Kaiser, Universal transformers,
arXivabs/1807.03819.

[39] S.Teerapittayanon, B.McDanel, H.Kung, Branchynet: Fast inference via early
exiting from deep neural networks, in: 2016, 23rd International Conference on
Pattern Recognition (ICPR), 2016, pp. 2464–2469. doi:10.1109/
ICPR.2016.7900006.

[40] G.E.H.JimmyLeiBa, Jamie RyanKiros, Layer normalization, CoRRabs/1607.06450.
[41] K. Fukushima, Cognitron: A self-organizing multilayered neural network, Biol.

Cybernetics 20 (3-4) (1975) 121–136.
[42] D. Hendrycks, K. Gimpel, Bridging nonlinearities and stochastic regularizers with

gaussian error linear units, arXiv:1606.08415.
[43] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)

(1997) 1735–1780.
[44] Y.Kim, Convolutional neural networks for sentence classification, arXiv:

1408.5882.
[45] D. Svozil, V. Kvasnicka, J. Pospichal, Introduction to multi-layer feed forward

neural networks, Chemometr. Intelligent Labor. Syst. 39 (1) (1997) 43–62.
[46] A. Williams, N. Nangia, S. R. Bowman, A broad-coverage challenge corpus for

sentence understanding through inference, arXiv:1704.05426.
[47] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, C. Potts, Recursive

deep models for semantic compositionality over a sentiment treebank, EMNLP
1631 (2013) 1631–1642.

[48] M. Geva, R. Schuster, J. Berant, O. Levy, Transformer feed-forward layers are key-
value memories, arXiv:2012.14913.

[49] Dongze Lian, Daquan Zhou, Jiashi Feng, Xinchao Wang, Scaling & Shifting Your
Features: A New Baseline for Efficient Model Tuning, NeurIPS2022, arXiv:
2210.08823.

[50] Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu,
Maosong Sun, sparse structure search for parameter-efficient tuning, NeurIPS2033,
arXiv:2206.07382.

[51] Yi-Lin Sung, Jaemin Cho, Mohit Bansal. LST: Ladder Side-Tuning for Parameter
and Memory Efficient Transfer Learning. NeurIPS2022, arXiv:2206.06522.

[52] Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, Xipeng Qiu, Black-Box
Tuning for Language-model-as-a-service. ICML2022, arXiv:2201.03514.

[53] Xie, Keli, et al. Elbert: Fast albert with confidence-window based early exit. ICASSP
2021-2021. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021.

XiangXiang Gao received a B.S. degree in Metal Materials and
Engineering from the school of mechanical and electrical en
gineering, HoHai University, China, in 2018. She is currently
pursuing a Ph.D. degree in electronic science and technology at
Shanghai Jiao Tong University, China. Her research interest
includes the engineering applications of artificial intelligence.

Yue Liu received her B.S. degree from the Dalian University of
Technology in 2008. She received her Ph.D. degree from
Shanghai Jiao Tong University in 2013. From March 2014 to
December 2015, Dr. Liu worked as a junior researcher with the
European laser research project (ELI). In January 2016, she
joined the Department of Micro/Nano-Electronics of Shanghai
Jiao Tong University as an assistant professor. Her research
directions include laser-plasma interaction, electron and proton
accelerations, radiation source generation, etc. Her accom
plishments have been published in many academic journals,
such as Physical Review Letter and New Journal of Physics, as
well as some international conferences.

X. Gao et al.

http://refhub.elsevier.com/S0925-2312(23)00813-5/h0100
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0100
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0100
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0100
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0205
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0205
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0215
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0215
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0225
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0225
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0235
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0235
http://refhub.elsevier.com/S0925-2312(23)00813-5/h0235

Neurocomputing 558 (2023) 126690

11

Tao Huang received a B.S. degree in material forming and
control engineering from the Beijing Institute of Technology.
He is currently pursuing a Master’s degree in Integrated Circuit
Engineering at Shanghai Jiao Tong University. His research
interest includes the design of neural network accelerators.

Zhongyu Hou received a Ph.D. in electronic science and en
gineering from Shanghai Jiao Tong University. He is currently a
Professor at Shanghai Jiao Tong University. His research in
terests include plasma science and technology in the applica
tion context of microwave technology, aerodynamics,
environment, and MEMS-based sensors and actuators. He is
also working on the development of a new research method
ology incorporating artificial intelligent techniques.

X. Gao et al.

	PF-BERxiT: Early exiting for BERT with parameter-efficient fine-tuning and flexible early exiting strategy
	1 Introduction
	2 Related works
	2.1 Conventional training and parameter-efficient strategies
	2.2 Early exiting strategies in the inference process

	3 Methods
	3.1 Model structure

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Training and inference details

	5 Overall comparisons
	5.1 Comparisons of different fine-tuning strategies
	5.2 Ablation studies on different sub-learning modules
	5.3 Ablation studies on different bottleneck dimensions
	5.4 Ablation studies on placements of the adapters
	5.5 Comparisons of different inference strategies
	5.6 Ablation studies on different similarity score calculation methods
	5.7 Ablation studies on different batch sizes

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

