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A B S T R A C T   

The industrial usage of huge pre-training language models such as BERT and ALBERT are limited by the 
computational probability problem in the fine-tuning process and overthinking problem in the inference process. 
PF-BERxiT has been proposed to optimize the pre-trained languages with a novel parameter-efficient fine-tuning 
method and a flexible early exiting strategy. Significantly, the new parameter-efficient fine-tuning model in
tegrates a bottleneck adapter architecture parallel to the transformer architecture, and only the adapter’s pa
rameters are adjusted. In addition, we integrate an extra sub-learning module to learn the samples’ 
characteristics, improving the accuracy and efficiency simultaneously. The flexible exiting strategy allows the 
model to exit early if the similarity score of adjacent layers is less than the threshold for pre-defined times. It is 
more flexible than previous early exiting methods, for it can simultaneously adjust the similarity score thresholds 
and patience parameters according to the request traffic. Extensive experiments are conducted on the GLUE 
benchmark, demonstrating that: (1) PF-BERxiT outperforms conventional training and parameter-efficient 
strategies with only a few parameters fine-tuned. (2) PF-BERxiT strikes a better balance between model per
formances and speedup ratios than previous state-of-the-art (SOTA) early exiting methods such as PABEE and 
BERxiT. (3) Ablation studies in the fine-tuning process demonstrate that the best bottleneck dimension r of the 
adapters is 32, and the adapters placed parallel to the feed-forward module are more efficient. (4) Ablation 
studies in the inference process demonstrate that for variants of PF-BERxiT with different similarity scores, PF- 
BERxiT-kl and PF-BERxiT-bikl attain better speedup-accuracy trade-offs than PF-BERxiT-rekl. Our PF-BERxiT 
helps attain a better trade-off between performance and efficiency, providing a reference for the efficient 
application of neural computing.   

1. Introduction 

Large-scale Pre-trained language models (PLMs) have achieved state- 
of-the-art performance on many natural language processing tasks 
[1–3]. Fine-tuning all the parameters of PLMs on specific tasks has been 
the paradigm in many natural language processing tasks [4,5]. How
ever, PLMs contain hundreds of millions or even hundreds of billions of 
parameters, making them computationally expensive and inefficient 
regarding memory consumption and latency [6–9]. Another bottleneck 
of PLMs is the overthinking problem in the inference process [10–12]. 
That is, the representations of the model’s shallow layers are adequate to 
make decisions, while the representations of the deep layers may be 
distracted by irrelevant and over-complicated features [13,14]. The 
overthinking problem slows the inference speed and wastes the 

computation resources [15,16]. 
To mitigate the computationally expensive and inefficient problem 

in the fine-tuning process, two-stage fine-tuning methods [17] and 
alternating fine-tuning methods [18] are proposed. However, the fine- 
tuned parameters are still redundant. Therefore, many researchers 
propose various parameter-efficient transfer learning methods to update 
only a small number of task-specific parameters while keeping most pre- 
trained parameters frozen [19]. The parameter-efficient model refers to 
integrates a simple module parallel to the transformer architecture, 
denoted as an adapter, which is a similar bottleneck architecture that 
imposes a low-rank constraint on the parameter updates. Only the pa
rameters of the adapter modules are adjusted during the fine-tuning 
process, which only fine-tunes a small number of parameters to attain 
comparative performance. However, the performance of the parameter- 
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efficient transfer learning methods mentioned is limited. It is necessary 
to propose an optimized solution to improve accuracy under similar 
tunable parameters. 

In addition, inspired by early stopping [20,21], many researchers 
propose early exiting to mitigate the overthinking problem and accel
erate the inference process [22,23]. Early exiting couples an internal 
classifier with each transformer layer [24] and dynamically stops 
inference when the intermediate predictions of the classifiers are stable 
for several steps [25]. There are mainly two types of early exiting stra
tegies. The first type is the confidence-based early exiting strategy. It 
evaluates the current layer’s intermediate predictions based on specific 
confidence measurements. The confidence-based early exiting strategies 
are based on the predicted probabilities, significantly saving inference 
time. However, Schwartz et al. [22] revealed that early exit based on 
predicted probabilities often leads to a significant drop in performance 
because many samples meet the early exit criteria by chance before 
reaching a steady state [18]. Zhou et al. [25] propose PABEE, a patience- 
based early exiting method that relies on inter-layer prediction instead 
of predicted probabilities to overcome this problem. However, due to its 
strict cross-layer comparison strategy, PABEE cannot flexibly adjust the 
speedup ratio on a given task and a fixed patience parameter [18]. 

Therefore, to alleviate the computationally expensive and inefficient 
problem in the fine-tuning and inference process, we propose PF- 
BERxiT, which optimizes the multi-exit BERT with a novel parameter- 
efficient method and a flexible early exiting module. The parameter- 
efficient method integrates bottleneck adapters parallel to the trans
former architecture that imposes a low-rank constraint on the parameter 
updates, which decreases the tuned parameters [26–29]. The difference 
in our method is that sub-learning modules are integrated into the 
adapters to learn the hidden characteristics of the samples. This way, the 
model can fine-tune a small number of weights to attain strong perfor
mance [30,31]. The flexible early exiting module makes predictions at 
each intermediate layer. It calculates the similarity score and will exit 
early if the current layer and the adjacent layers have similar predicted 
distributions (similarity score less than a threshold) for pre-defined 
times (patience). The similarity scores are measured by the distillation 
object. The early exiting strategy can be seen as an extension of 
confidence-based and patience-based early exiting strategies. It is more 
flexible since it can make a trade-off between inference speed and per
formance by simultaneously adjusting the similarity score thresholds 
and patience parameters. 

We conduct extensive experiments on the GLUE benchmark [32]. 
The results demonstrate that our PF-BERxiT outperforms the previous 
SOTA training and parameter-efficient transfer learning methods in the 
fine-tuning processes. In addition, it also makes a better performance 
and efficiency trade-off in the inference process than the previous SOTA 
early exiting methods such as PABEE and BERxiT. Our contributions are 
three-fold: (1) We propose PF-BERxiT, a novel model which optimizes 
PLMs with a novel parameter-efficient transfer learning method and a 
flexible early exiting method. (2) We integrate the sub-learning module 
into the bottleneck adapter to learn the hidden characteristics of the 
samples in the fine-tuning process. The model can attain strong perfor
mance by fine-tuning a small number of parameters. (3) We propose a 
flexible early exiting method that can balance efficiency and perfor
mance better because it is flexible in adjusting the similarity score and 
patience threshold simultaneously. 

2. Related works 

2.1. Conventional training and parameter-efficient strategies 

To mitigate the computation expenses and inefficiency problem in 
the fine-tuning process of Joint training (fine-tunes all the parameters of 
the backbone and exits simultaneously). Two-stage fine-tuning methods 
[17] are proposed, which fine-tune the backbone and the final layer at 
the first stage. Then fine-tunes the intermediate exits on the fixed 

backbone. The alternating fine-tuning method alternates between joint 
and two-stage training, which outperforms two-stage fine-tuning 
methods. BERxiT [18] is an improved version of the alternating fine- 
tuning strategy, which optimizes the model in the fine-tuning and 
inference process (adding learning to the exit module). However, their 
parameters are still redundant, and efficiency improvements are limited. 

Therefore, many researchers sought to mitigate this problem with 
parameter-efficient transfer learning methods [49–52]. For example, 
Neil et al. [33] insert adapter modules into each layer of the pre-trained 
model, and only the parameters of the adapter modules are adjusted 
during the fine-tuning process. Hu et al. [34] freeze the pre-trained 
model’s parameters and inject trainable rank decomposition matrices 
into each transformer layer, significantly reducing the tunable param
eters of specific tasks. Zhu et al. [35] propose a bottleneck architecture 
for the adapter module to save the parameters. The adapter modules are 
parallel connected to the transformer layers; the results show that par
allel adapter outperforms series adapter. Besides reducing parameters, 
parameter-efficient transfer learning is robust [36] and can be adjusted 
rapidly to new tasks without catastrophic forgetting [37]. However, the 
performances of the parameter-efficient transformer learning methods 
could be improved. 

To improve the performance of parameter-efficient transformer 
learning methods, we integrate sub-learning modules into the adapters 
and improve the model performance under a similar number of tunable 
parameters to conventional parameter-efficient methods such as parallel 
adapters. Our proposed PF-BERxiT can be seen as an improved version 
of BERxiT, significantly improving fine-tuning efficiency. 

2.2. Early exiting strategies in the inference process 

Early exiting is a method that dynamically adjusts certain hyper- 
parameters in response to the samples. It does not need to make huge 
changes to the original model structure, which saves computing re
sources [38]. It mainly includes two kinds of early exiting methods: 
confidence-based and patience-based early exiting methods. The 
confidence-based early exiting methods evaluate the current layer’s 
intermediate predictions based on specific confidence measurements. 
The patience-based early exiting methods rely on inter-layer prediction 
instead of predicted probabilities. 

The confidence-based early exiting includes BERxiT, BranchyNet 
[39], and DeeBERT [23], which utilize the entropy of the intermediate 
predictions as a measure of confidence. If the entropy exceeds the 
threshold, the model is confident in the prediction, and the sample exits 
the network. In addition, Shallow-deep [10] denotes the maximum 
probability mass as the confidence. However, it may occasionally exit 
before the model reaches the steady state, which leads to a performance 
drop. The patience-based early exiting method is proposed by Zhou et al. 
[25], it will stop inference and exit early if the predicted results of the 
internal classifiers remain unchanged for a predefined number of steps. 
However, the exit criteria are too strict, which reduces efficiency. 

To overcome the drawbacks proposed above, we propose PF-BERxiT, 
which will exit early if the similarity score of adjacent layers is less than 
the threshold for pre-defined times. PF-BERxiT is more flexible because 
it can adjust the similarity score threshold and patience parameters 
simultaneously. It not only mitigates the performance drop for occa
sional exits before reaching a steady state of confidence-based early 
exiting methods. But also alleviates the inefficiency of too strict exiting 
criteria of patience-based early exiting methods, making a better speed- 
performance trade-off. 

3. Methods 

PF-BERxiT is a more efficient and flexible version of BERxiT, it op
timizes the BERxiT from two aspects: (1) It proposes a novel parameter- 
efficient transfer learning model to mitigate the computationally 
expensive and inefficient problem in the fine-tuning process. The 
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parameter-efficient model integrates an adapter to the model, a bottle
neck architecture that integrates a sub-learning module to learn the 
hidden characteristics. (2) It proposes a flexible early exiting method 
that makes a better trade-off between inference speed and performance 
to mitigate inefficiency and overthinking problem in the inference 
process. 

3.1 Model structure 

In this section, we present the novel parameter-efficient transfer 
learning and flexible early exiting architecture of PF-BERxiT. As shown 
in Fig. 1, the backbone consists of n stacked Transformer blocks. In 
addition, a classifier is attached to each transformer layer to enable early 
exiting. The classifier is a one-layer fully connected network, which 
takes the hidden state of each transformer layer and outputs a predic
tion. Each classifier can make a prediction, and the model can early exit 
dynamically according to the prediction of each classifier. Moreover, the 
learning-to-exit (LTE) is connected to each classifier to improve the 
inference efficiency [18]. The LTE module is a simple one-layer fully- 
connected network, which takes the hidden states as the input and 
outputs a certain level of the sample of each layer. 

Fig. 1 (b) shows that each transformer block consists of a multi-head 
attention module and position-wise feed-forward. In addition, a residual 
connection is employed, followed by the Normalization module [40]. 
Firstly, the transformer blocks are trained on the entire corpus, and its 
parameters are frozen in the fine-tuning process. Then, the adapters are 
connected with the attention module and the feed-forward module of 
each transformer block, and the parameters of the adapters are trained 
in the fine-tuning process. 

The architecture of the adapter is shown in Fig. 1 (c). The adapter is a 
bottleneck architecture. It firstly projects the original d dimension input 
representations HPA

i− 1 to a small dimension r(r≪d) by a down-projection 
matrix Wdown ∈ Rd×r, followed by a non-linear activation function g(.), 
and a sub-learning module f(.) to learn the hidden characteristics, then 
projects the r dimension representations back to d dimensions by an up- 
projection matrix Wup ∈ Rr×d. We denote r as the bottleneck dimension 
and HPA

i as the output of each adapter module. The formulation of each 
adapter module is denoted as follows: 

HPA
i = f (g(HPA

i− 1Wdown))Wup (1) 

Among them, the non-linear activation function g(.) is usually RELU 
[41],GELU [42], and Tanh [43], or an identity transformation. In 

addition, we propose four different sub-learning modules f(.) to learn 
the hidden features of the samples, and they are denoted as:  

(1) PF-BERxiT(origin-adapter): The sub-learning module is a simple 
identity mapping. The architecture of this adapter module is the 
conventional adapters presented in parallel adapters [35].  

(2) PF-BERxiT(self-attn-adapter): The sub-learning module is a self- 
attention layer [24], followed by a non-linear activation function. 

(3) PF-BERxiT(conv-adapter): The sub-learning module is a 1-d con
volutional layer [44], followed by a non-linear activation 
function.  

(4) PF-BERxiT(mlp-adapter): The sub-learning module is a simple 
fully-connected layer [45]. 

During the fine-tuning process, only the parameters of adapters are 
trained, alleviating the computational prohibitively and inefficiency 
problem. In addition, the added sub-learning module proved beneficial 
in learning the samples’ hidden characteristics and improving the 
model’s performance. 

In addition, to mitigate the computational consumption and over
thinking problem in the inference process. We propose flexible early 
exiting strategies, as shown in Fig. 1(a). Among them, Cn is the classifier 
attached to each transformer layer, s is the similarity score between 
different layers, τ is the similarity score threshold, and t is the pre- 
defined patience threshold. 

The inference process is evident. The input samples are firstly 
embedded as vectors by the embedding layer: 

h0 = Embedding(x) (2) 

Next, the vectors pass through the transformer blocks L1⋯Li to 
extract the hidden features and compute its hidden states hi. Then, the 
probability p is calculated by each classifier C1⋯Ci: 

hi = Lihi− 1 (3)  

pi = Cihi (4) 

After that, the similarity score s between layer i and j is calculated 
based on the predicted probability, and whether the model is confident 
in its prediction results is evaluated, we designed three different eval
uation methods, which are shown as follows: 

(1) PF-BERxiT-v1: When the model reaches the current layer i, we 
calculate the similarity score si,i− 1 between the prediction results of layer 
i and i-1. The smaller the value of si,i− 1, the predicted distribution pi and 

Fig. 1. The parameter-efficient fine-tuning and inference architecture of the PF-BERxiT framework.  

X. Gao et al.                                                                                                                                                                                                                                     



Neurocomputing 558 (2023) 126690

4

pi− 1 are more consistent with each other, and the model is more confi
dent in the prediction results. In addition, τ is denoted as the similarity 
score threshold, and cnti is utilized to store the number of times that the 
similarity scores consecutively less than the threshold: 

cnti =

{
cnti− 1 + 1si,i− 1 < τ

0si,i− 1 ≥ τ (5) 

If the similarity score si,i− 1 is less than the pre-defined threshold τ, 
increase the patience counter by 1. Otherwise, reset the patience counter 
to 0. This process is repeated until cnt reaches the pre-defined patience 
value. The model will stop inference and exit early. However, if this 
condition is never met, the model will use the final classifier to make 
predictions. 

(2) PF-BERxiT-v2: When the model reaches the current layer i, we 
calculate the similarity score between layer i and its previous layers i- 
1…, i-m. If the similarity score s consecutively less than the threshold τ, 
increase the patience counter by 1. Otherwise, reset it to 0. This process 
is repeated until cnt reaches the pre-defined patience value. The model 
will stop inference and exit early. Otherwise, the model will use the final 
classifier to make predictions. 

(3) PF-BERxiT-v3: When the model reaches the current layer i, we 
calculate the similarity score between layer i and its previous layers i-1, 
… i-m. Suppose the number of times the similarity scores E between the 
current layer and previous layers less than the threshold reaches the pre- 
defined patience τ. In that case, the model will stop inference and exit 
early. Otherwise, the model will use the final classifier to make pre
dictions. PF-BERxiT-v3 differs from PF-BERxiT-v2 in that PF-BERxiT-v2 
requires the similarity scores of the current layer and previous layers are 
continuously less than the threshold, while PF-BERxiT-v3 does not. 

Among them, PF-BERxiT-v1 performs better than other early exiting 
strategies, therefore, we present it in Fig. 1(a). 

Under the framework of PF-BERxiT, we adopt three different 
distillation-object-based similarity score measuring methods, shown 
below: 

(1) This version of PF-BERxiT adopts the distillation object from 
probability distribution pi of i layer to pj of j layer: 

E
(
pi, pj

)
= −

∑K

k=1
pi(k)log(pj(k)) (6) 

(2) PF-BERxiT-rekl: This version of PF-BERxiT also adopts the 
distillation object, but in the reverse direction, from probability distri
bution pj of j layer to pi of i layer: 

E
(
pj, pi

)
= −

∑K

k=1
pj(k)log(pi(k)) (7) 

(3) PF-BERxiT-bikl: Note that the distillation object is usually 
asymmetrical so that we can evaluate the performance of symmetrical 
entropy: 

SymE
(
pj, pi

)
= E

(
pi, pj

)
+E

(
pj, pi

)
(8) 

Our flexible early exiting can solve the occasional exits before 
reaching a steady state of the confidence-based early exiting methods 

and the too strict exiting criteria problem of patience-based early exiting 
methods, attaining a better balance between the inference speed and 
performance. 

4. Experiments 

4.1. Datasets 

We evaluated the performance of our PF-BERxiT on the GLUE 
benchmark [32], including (1) Natural language inference benchmarks 
(MNLI, RTE, QNLI), which predict whether the sentence entails, con
tradicts, or is neutral [46]. (2) Sentiment classification benchmark 
predicts a sentence’s sentiment (SST-2) [47]. (3) Paraphrase detection 
benchmark (MRPC, QQP), and (4) Linguistic acceptability benchmark 
(CoLA). 

4.2. Baselines 

We mainly choose the ALBERT-base-v2 [7] as the backbone model 
for baselines. For the performance comparison in the fine-tuning pro
cess, we compare our PF-BERxiT with four different groups of baselines: 

(1) JOINT: all model parameters are trained in the fine-tuning pro
cess [2].  

(2) 2ST: Two-stage training, fine-tuning the backbone and final exit 
in the first stage and fine-tuning the intermediate exits on the 
fixed backbone in the second stage [17].  

(3) ALT: Alternating training, alternating between joint training and 
two-stage training [18].  

(4) BERxiT: The fine-tuning strategy is alternating training, and the 
intermediate layer parameters are tuned simultaneously to 
ensure an efficient exit [18]. 

For the performance comparison in the inference process, we 
compare PF-BERxiT with four different baselines:  

(1) Appointed early exiting: The inference exit layers of the model 
are appointed. We compare our PF-BERxiT with appointed early 
exiting layers: Appointed-Exit-3L, Appointed-Exit-6L, and 
Appointed-Exit-9L.  

(2) Confidence-based early exiting: We compare our PF-BERxiT with 
confidence-based early exiting methods, including BranchyNet 
[39], Shallow-deep [10], and BERxiT [18].  

(3) Patience-based early exiting: We compare our PF-BERxiT with 
patience-based early exiting methods PABEE [25].  

(4) Confidence-window-based early exit: We compare our PF-BERxiT 
with confidence-window-based early exiting methods ELBERT- 
12L [53]. 

4.3. Training and inference details 

A linear classification layer is attached to the intermediate layer of 
the backbone model. We fine-tune the backbone with efficient 

Table 1 
Cross-layer average scores of different fine-tuning strategies with the ALBERT backbone.   

CoLA 
avg-mcc 

RTE 
avg-acc 

MRPC 
avg-acc-f1 

SST-2 
avg-acc 

QNLI 
avg-acc 

MNLI 
avg-acc 

QQP 
avg-acc 

JOINT  41.77  64.26  84.05  88.71  86.27  79.37  86.61 
ALT  43.90  67.27  83.68  90.01  86.21  79.71  88.43 
2ST  32.03  66.96  77.78  87.51  82.72  67.09  81.64 
BERxiT  44.73  66.61  84.88  89.00  86.14  79.16  88.48 
PF (orig)  44.08  66.61  85.14  89.74  86.33  79.17  88.96 
PF (conv)  43.16  69.40  84.64  89.57  86.33  79.10  88.96 
PF (attn)  42.74  64.83  85.24  88.45  86.49  79.17  89.08 
PF (mlp)  44.03  66.37  85.09  90.19  86.42  79.82  88.98  
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parameter architectures. The bottleneck dimension r is 32. In addition, 
we fine-tune the model with the Adam optimization and warm-up. 
Moreover, we perform a grid search over the batch size of {16, 32, 64, 
128}, and the learning rate of {1e-5, 2e-5, 3e-5, 5e-5}. And the best 
checkpoints in the training process are selected to be used in the infer
ence process. All the experiments are conducted on two Nvidia 
TITANX24 GB GPUs. The inference process is based on the best check
points in the fine-tuning process. The inference of PF-BERxiT is on a per- 
instance basis, and the batch size is set to 1. In addition, we present the 
median speed-accuracy performance of the model over five runs with 
different random seeds. 

5. Overall comparisons 

5.1. Comparisons of different fine-tuning strategies 

We compare the performance between PF-BERxiT and other previous 
SOTA fine-tuning strategies with the ALBERT backbone. Table.1 shows 
the cross-layer average scores of different fine-tuning strategies on seven 
tasks of the GLUE benchmark. It can be seen that with the help of 
adapter modules, PF-BERxiT outperforms the previous SOTA fine-tuning 
strategies by a large margin. In addition, the performances of PF-BERxiT 

(conv-adapter), PF-BERxiT(self-attn-adapter), and PF-BERxiT(mlp- 
adapter) are better than PF-BERxiT(origin-adapter), indicating the in
tegrated sub-learning module can help learn the hidden features of the 
samples. In addition, the fine-tuned parameters and cross-layer accuracy 
are compared between different fine-tuning and early-exit models (take 
the RTE task as an example), as shown in Table 2. All parameters on the 
RTE task of PF-BERxiT (orig), PF-BERxiT (conv), PF-BERxiT (attn), and 
PF-BERxiT (mlp) are 12329124, 12342564, 12,380,580 and 12,341,796 
respectively. And the fine-tuned parameters on the RTE task of PF- 
BERxiT (orig), PF-BERxiT (conv), PF-BERxiT (attn), and PF-BERxiT 
(mlp) are 617856, 631296, 669,312 and 630,528 respectively, which 
are 5.0%, 5.1%, 5.4% and 5.2% parameters of the joint training model 
respectively. Because in the fine-tuning process, the parameters of the 
backbone are frozen, and only the parameters of the adapters are fine- 
tuned. Therefore, the fine-tuned parameters of PF-BERxiT are much 
smaller than the joint training model. At the same time, the cross-layer 
accuracy of PF-BERxiT is higher than other fine-tuning methods, indi
cating that our model can attain strong performance by fine-tuning 
fewer parameters, making a better trade-off between accuracy and ef
ficiency. In addition, PF-BERxiT only increases fewer than 19 K new 
parameters for judging whether the model needs to exit, which is about 
0.15% of the original parameter, which can be ignored. Moreover, 
compared to the previous early-exit methods, the fine-tuned parameters 
of confidence-based early exit method BERxiT and patience-based exit 
method (PABEE) are 11,711,268 and 11,702,040 respectively, which is 
far more than the parameters of PF-BERxiT. However, PF-BERxiT ach
ieves the highest cross-layer accuracy, indicating that PF-BERxiT makes 
better trade-offs between performance and effectiveness. Furthermore, 
it can find that for the RTE task, PF-BERxiT (conv) attains the highest 
accuracy by fine-tuning 5.1% parameters of the joint training model. 

The layers-score curves with different fine-tuning strategies on the 
GLUE benchmark are shown in Fig. 2. It is obvious that PF-BERxiT 
outperforms other fine-tuning strategies by a large margin, especially 
in the shallow layers, which helps the model exit earlier in the inference 
process. All the results above indicate that PF-BERxiT outperforms 

Table 2 
Fine-tuned parameters and accuracy of different models on the RTE task.  

Method All 
Parameters 

Fine-tuned 
Parameters 

Cross-layer 
Accuracy 

ALBERT 11,683,584 11,683,584  64.26 
PABEE 11,702,040 11,702,040  65.31 
Branchy Net 11,702,040 11,702,040  63.21 
BERxiT 11,711,268 11,711,268  66.61 
PF- BERxiT (orig) 12,329,124 617,856  66.61 
PF- BERxiT 

(conv) 
12,342,564 631,296  69.40 

PF- BERxiT (attn) 12,380,580 669,312  64.83 
PF- BERxiT (mlp) 12,341,796 630,528  66.37  

Fig. 2. The layers-score curves of different fine-tuning strategies on GLUE benchmark with ALBERT backbone.  
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conventional training strategies such as 2ST, JOINT, ALT, and conven
tional parameter-efficient methods with origin adapters by fine-tuning 
only a few parameters. Our PF-BERxiT can achieve competitive perfor
mance on the GLUE benchmark by tuning fewer parameters of the 
previous SOTA training strategies. In addition, the integrated sub- 
learning modules help learn the hidden characteristics and further 
improve the average accuracy of the model (Fig. 3). 

5.2. Ablation studies on different sub-learning modules 

We further investigate the performance of different sub-learning 
modules to improve the performance of PF-BERxiT. As demonstrated 
before, Table 1 also presents the average scores of PF-BERxiT with 
different sub-learning modules integrated into the adapters. It is evident 
that PF-BERxiT(self-attn-adapter) performs best for MRPC, QNLI, and 
QQP tasks, PF-BERxiT(mlp-adapter) performs best for SST-2 and MNLI 
tasks, and PF-BERxiT(conv-adapter) performs best for RTE tasks. Inter
estingly, different sub-modules are suitable for different tasks. It may be 
because the neural units of the convolutional neural network are locally 
connected. That is, the neural units of each layer are only connected 
with some of the neural units of the previous layer. Each neural unit only 
responds to the region within the receptive field and does not care about 
the region outside the receptive field. Therefore, it has the strongest 
response and accuracy for simple tasks (RTE) that emphasize local 
patterns. However, it performs poorer than a fully connected network 
when faced with complex tasks that require learning the correlation 
properties of data in different locations. Because a fully connected 
network comprises many neurons connected to other neurons, each 
connection is evaluated by a weight coefficient that reflects the impor
tance of a given link in the neural network. Therefore, compared with 
the convolutional neural network, it can learn the correlation charac
teristics of data at different locations. Therefore, it performs better in 
more complex tasks like SST-2 and MNLI. However, compared with the 
fully connected network, the attentional mechanism module can 
aggregate the limited local distribution information into the global 
distribution of the whole space, which can better learn the global 

information. It performs well in complex and simple tasks, performing 
best in most tasks, such as MRPC, QNLI, and QQP. 

5.3. Ablation studies on different bottleneck dimensions 

The bottleneck dimension r has a significant influence on the per
formance of the model. Therefore, we conduct ablation studies to 
investigate the model’s performances under different bottleneck di
mensions r on the RTE, MRPC, and SST-2 tasks. The results are shown in 
Table 3, we can see that smaller bottleneck dimensions do not result in 
significant performance drops. Our model can achieve good perfor
mance even though the dimension of the bottleneck is small, demon
strating that the adapters help attain strong performance with fewer 
fine-tuned parameters. In addition, the model performs best when the 
bottleneck dimension is 32. Therefore, we set the bottleneck dimensions 
r as 32 for further ablation studies and inference processes. 

5.4. Ablation studies on placements of the adapters 

The placed position of the adapters also affects the model’s perfor
mance. Therefore, we investigate three different placements of the 
adapters: (a) The adapters are placed parallel to the multi-head attention 
module, denoted as Attn-adapter; (b) The adapters are placed parallel to 
the feed-forward module, denoted as FFN-adapter in this paper. (c) The 
adapters are inserted between the multi-head attention layer and the 
Add&Norm layer, denoted as sequence-adapter in this paper (Seq- 
adapter). The experiment results of different adapter positions on RTE, 

Fig. 3. Layer-score curves of different sub-learning modules on GLUE benchmark with ALBERT backbone.  

Table 3 
Experimental results of different bottleneck dimensions with the ALBERT 
backbone on the RTE, MRPC, and SST-2 tasks.   

2 4 8 16 32 64 

RTE (avg-acc)  67.09  65.85  68.92  67.51  69.31  68.38 
MRPC (avg-acc-f1)  85.21  85.35  85.22  84.37  85.24  84.01 
SST-2(avg-acc)  89.61  89.36  89.83  89.57  90.19  89.56  
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MRPC, and SST-2 tasks are shown in Table 4. It shows that the parallel 
adapter performs better than the sequencing adapter. Based on the su
perior results of parallel adapters over sequential adapters, we focus on 
parallel adapter results in the following sections. In addition, among 
parallel adapters, it is evident that FFN-adapter performs better on the 
RTE and SST-2 tasks, and Attn-adapter performs better on the MRPC 
task. The results show that the FFN-adapter performs better than the 
Attn-adapter, indicating that the FFN-adapter can utilize the fine-tuned 
parameters more effectively than the Attn-adapter. We suppose it may 

Table 4 
Experimental results of different adapter placements on RTE, MRPC, and SST-2 
tasks with the ALBERT backbone.   

RTE (avg-acc) MRPC (avg-acc-f1) SST-2 (avg-acc) 

Attn-adapter  69.31  85.96  89.29 
FFN-adapter  69.40  85.24  90.19 
Seq-adapter  68.30  84.12  87.95  

Table.5 
scores and speedup of different early exiting methods with the same fine-tuned ALBERT backbone on the GLUE benchmark. The results show that PF-BERxiT effectively 
accelerates ALBERT’s inference speed with less performance loss compared with the baseline methods.   

CoLA 
Score speed 

MNLI 
Score speed 

MRPC 
Score speed 

QNLI 
Score speed 

QQP 
Score speed 

RTE 
Score speed 

SST-2 
Score speed 

Backbone 54.2 0% 83.1 0% 86.8 0% 89.8 0% 89.2 0% 69.1 0% 91.3 0% 

Exit-3L 
Exit-6L 
Exit-9L  

0.0 75%  70.0 75%  75.8 75%  77.4 75%  81.8 75%  54.7 75%  81.0 75%  
0.0 50%  79.6 50%  84.7 50%  85.3 50%  89.3 50%  68.1 50%  88.6 50%  

51.9 25%  83.0 25%  87.0 25%  88.4 25%  90.3 25%  69.0 25%  91.2 25% 
Branchy 

Net  
0.0 74%  63.8 76%  75.7 76%  74.2 80%  71.6 80%  54.7 76%  79.9 76%  
0.0 51%  78.3 53%  83.0 52%  87.1 47%  89.3 50%  67.2 48%  88.3 49%  

52.1 27%  83.0 25%  85.8 24%  89.3 27%  90.1 26%  67.8 26%  91.2 24% 
Shallow-deep  0.0 75%  64.1 77%  75.6 76%  74.3 78%  71.4 79%  54.7 76%  79.5 77%  

0.0 52%  78.2 51%  82.8 51%  87.2 49%  89.6 51%  67.2 48%  88.4 48%  
52.3 26%  82.9 26%  85.7 25%  89.3 26%  90.1 27%  67.8 26%  91.2 25% 

BERxiT  0.0 76%  63.5 76%  75.6 76%  73.3 78%  68.2 80%  55.3 77%  79.5 76%  
12.3 52%  78.4 51%  82.9 51%  87.0 48%  89.1 49%  67.3 47%  88.3 49%  
52.2 25%  83.2 26%  86.2 26%  89.6 27%  90.1 26%  68.1 27%  91.4 24% 

PABEE  0.0 75%  63.9 77%  75.8 75%  73.6 81%  68.6 82%  55.8 75%  79.9 77%  
0.0 50%  78.9 52%  83.1 53%  87.2 46%  89.6 49%  67.7 46%  88.7 48%  

52.4 26%  83.4 24%  86.1 26%  89.8 28%  90.4 24%  68.3 28%  91.7 22% 
ELBERT-12L  32.3 74%  79.6 73%  81.7 77%  86.5 74%  88.7 72%  67.5 75%  85.3 76%  

51.3 52%  81.7 49%  87.2 50%  90.1 53%  90.2 53%  71.8 49%  90.1 51%  
53.1 24%  83.6 27%  88.4 25%  90.5 26%  90.5 23%  72.1 25%  90.3 24% 

PF-BERxiT  40.1 75%  81.3 72%  83.8 77%  88.2 75%  90.4 82%  73.0 76%  91.1 76%  
53.7 53%  82.9 53%  89.4 53%  91.1 54%  90.5 49%  76.1 47%  92.0 48%  
53.4 25%  83.4 28%  89.6 26%  91.1 28%  90.5 25%  76.9 25%  92.0 25%  
54.2 0%  83.6 0%  89.8 0%  91.2 0%  90.5 0%  76.9 0%  92.1 0%  

Fig. 4. Speed-accuracy curves of different early exiting strategies on GLUE benchmark with the ALBERT backbone.  
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be because the feed-forward module learns task-specific patterns, while 
the attention module learns the positional interactions, which is not 
advanced in learning new tasks [48]. 

5.5. Comparisons of different inference strategies 

In the inference process, the best checkpoints in the fine-tuned pro
cess are selected to be used in the inference process to combine with the 
flexible early exiting strategy to make a trade-off between performance 
and efficiency. We compare the inference performance between our PF- 
BERxiT with the previous SOTA early exiting strategies on the GLUE 
benchmark of three different speedup settings: (1) 72% to 82% speedup; 
(2) 46% to 54% speedup; (3) 25% to 28% speedup. The previous early 
exiting strategies included appointed early exiting, which fixes the exit 
layers, including appointed-Exit-3L, appointed-Exit-6L, and appointed- 
Exit-9L, and confidence-based early exit methods, including Branchy 
Net, Shallow-deep, and BERxiT, and patience-based early exit method 
PABEE. In addition, ELBERT [53] model, which significantly improves 
the average inference speed compared to ALBERT due to the proposed 
confidence-window-based early exit mechanism without introducing 
additional parameters or extra training overhead, is also compared with 
PF-BERxiT. Among them, the original ELBERT model consists of 24 
Transformer layers and uses ALBERT-large as the backbone, while our 
PF-BERxiT consists of 12 Transformer layers and uses ALBERT-base-v2 
as the backbone. Therefore, to ensure a fair comparison, we compare 
the performances of PF-BERxiT with the variants of the ELBERT model, 
which consists of 12 Transformer layers, denoted as ELBERT-12L, in this 
paper. Moreover, since PABEE cannot flexibly adjust the speedup ratios, 
we adjust the hyper-parameters (similarity score threshold and patience 
parameter) of our PF-BERxiT and the other baselines to achieve similar 
speedups with PABEE. 

Table 5 shows the score and speedup of different exiting strategies on 
the GLUE benchmark. The speed-up ratio equal to 0 means that the 
model goes through all layers without using a flexible early exiting 
strategy to speed up the inference process, compared with the model 
with flexible exiting strategies. It shows that PF-BERxiT with 0 speedups 

performs better than the backbone model, indicating that our model can 
perform better with fewer fine-tuned parameters. In addition, PF- 
BERxiT can attain a better score than other inference strategies 
(including static early exit methods, confidence-based early exit 
methods, patience-based early exit methods and confidence-window 
based early exit mechanism ELBERT-12L) under ~25%, ~50%, and 
75% speed up respectively, indicating that PF-BERxiT is effective in 
accelerating ALBERT’s inference speed with less performance loss 
compared with the baseline exiting strategies. 

In addition, we plot the speedup-score curves for the patience-based 
early exiting method PABEE, confidence-based early exiting method 
BERxiT, and our PF-BERxiT, to further analyze the performance of 
different inference strategies. Fig. 4 shows the speedup-score curves of 
different inference strategies on GLUE benchmarks. The speed-up ratio 
equal to 0 means that the model goes through all layers without using a 
flexible early exiting strategy to speed up the inference process, 
compared with the model with flexible exiting strategies. It is clearly 
shown that our PF-BERxiT outperforms the baseline early exiting 
methods on all tasks of the GLUE benchmark. Moreover, the majority of 
the computation complexity is from encoding sentences with the back
bone, which is quadratic for sequence length, linear for the depth of 
intermediate exits, and the model’s hidden size and the parameters of 
the adapter are about 5% of the initial model. Therefore, the adapter’s 
impact on the computational complexity is negligible. Furthermore, we 
count the inference latency of the backbone and our PF-BERxiT, and we 
compare the inference time between PF-BERxiT and the original model. 
The results indicate that our method can significantly alleviate the 
model’s inference latency. For example, the inference latency is 0.71x of 
the backbone for the RTE task, the inference latency is 0.53x of the 
backbone for the MRPC task, the inference latency is 0.40x of the 
backbone for the SST-2 task, the inference latency is 0.45x of backbone 
for QNLI task, the inference latency is 0.39x of backbone for QQP task, 
and the inference latency is 0.48x of backbone for MNLI task. We sup
pose that PF-BERxiT can overcome the performance drop of confidence- 
based early exiting strategies for the occasional exit before it reaches the 
steady state and can overcome the inefficiency problem of patience- 

Fig. 5. Speed-accuracy curves of different similarity score calculation methods on GLUE benchmark with the ALBERT backbone.  
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based early exiting strategies for too strict exiting criteria for the reason 
that it can flexibly adjust the similarity score threshold and patience 
threshold. Our PF-BERxiT can better balance the performance and speed 
up, alleviating the overthinking problem of huge pre-trained language 
models without any performance loss. 

5.6. Ablation studies on different similarity score calculation methods 

We adopt three different relative entropy-based similarity score 
measuring methods of PF-BERxiT in this paper, denoted as PF-BERxiT- 
kl, PF-BERxiT-rekl, and PF-BERxiT-bikl. The speedup-score curves of 
PF-BERxiT-kl, PF-BERxiT-rekl, and PF-BERxiT-bikl on GLUE benchmark 
are shown in Fig. 5. It can be seen that the PF-BERxiT-kl and PF-BERxiT- 
bikl attain better speedup-accuracy trade-offs than PF-BERxiT-rekl. We 
suspect it may be because the PF-BERxiT-rekl is asymmetric, not an 
accurate distance measurement. In addition, compared to PF-BERxiT-kl, 
it has a wide range, which increases the difficulty of tuning the hyper
parameters. PF-BERxiT-bikl is a symmetric divergence, and the simi
larity discrimination is more accurate than asymmetric divergence. 
Moreover, its divergence range is between 0 and 1, making hyper
parameters easier to tune. Therefore, PF-BERxiT-bikl and kl perform 
better. 

5.7. Ablation studies on different batch sizes 

In the previous inference process, we present the performance of the 
model inference process when the batch size is 1. However, the batch 
size may be greater than 1 in the actual industrial scenario. Therefore, 
we conduct ablation experiments to explore the inference performance 
of PF-BERxiT when batch size is greater than 1. We explore the inference 
performance of the model under different speedup settings (72% to 82% 
speedup, 46% to 54% speedup, 25% to 28% speedup) on the GLUE 
benchmark when the batch size was 1, 2, 4, 8, 16, respectively. The 
results are shown in Table.6. It can be seen that even under different 
batch sizes, the inference accuracy of PF-BERxiT is very close, with 
almost no difference when the acceleration ratio is ~25%, ~50% and 
~75%, respectively. This is because we can dynamically adjust the 
model’s similarity score threshold and patience parameters based on the 
complexity of the data, making it easier for the model to find the optimal 
exit. The above results indicate that our PF-BERxiT can also guarantee 
excellent inference acceleration performance in practical acceleration 
scenarios. 

6. Conclusion 

To mitigate the redundant computational problems in the fine-tuning 

process, we propose PF-BERxiT, which optimizes the pre-trained lan
guage model in the fine-tuning and inference process. Significantly, the 
parameter-efficient fine-tuning method integrates a sub-learning mod
ule to the adapters to learn the characteristics of the samples, and the 
flexible exiting strategy makes the model exit early if the times that the 
similarity score of cross-layers is less than the threshold reaches the pre- 
defined patience. Extensive experiments are conducted on the GLUE 
benchmark, demonstrating that: 

(1) PF-BERxiT outperforms conventional training strategies such as 
2ST, JOINT, ALT, and conventional parameter-efficient methods with 
origin adapters by fine-tuning only a few parameters. Our model can 
achieve good performance even though the dimension of the bottleneck 
is small, demonstrating that the adapters with sub-learning module help 
attain strong performance with fewer fine-tuned parameters. 

(2) PF-BERxiT strikes a better balance between model performances 
and speedup ratios than previous state-of-the-art (SOTA) early exiting 
methods such as PABEE and BERxiT because it can dynamically adjust 
the similarity score thresholds and patience parameters according to the 
request traffics. 

(3) Ablation studies in the fine-tuning process demonstrate that the 
best bottleneck dimension r of the adapters is 32. The adapters placed 
parallel to the feed-forward module are more efficient. In addition, 
ablation studies in the inference process demonstrate that PF-BERxiT-kl 
and PF-BERxiT-bikl attain better speedup-accuracy trade-offs than PF- 
BERxiT-rekl. 

In summary, PF-BERxiT helps attain a better trade-off between ac
curacy and efficiency, providing a reference for the efficient application 
of artificial intelligence. 
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Table 6 
Scores and speedup of different batch sizes with the same fine-tuned ALBERT backbone on the GLUE benchmark.  

Batch size MNLI 
Score speed 

MRPC 
Score speed 

QNLI 
Score speed 

QQP 
Score speed 

RTE 
Score speed 

SST-2 
Score speed 

Base 83.1 0% 86.8 0% 89.8 0% 89.2 0% 69.1 0% 91.3 0% 

1  81.3 72%  83.8 72%  91.1 75%  90.4 82%  73.0 76%  91.1 76%  
82.9 53%  89.4 53%  91.1 54%  90.5 49%  76.1 47%  92.0 48%  
83.4 28%  89.6 26%  91.1 28%  90.5 25%  76.9 25%  92.0 25% 

2  78.9 72%  83.3 72%  86.2 72%  89.4 75%  72.9 73%  91.2 72%  
82.8 50%  88.9 54%  90.8 49%  90.5 48%  72.2 49%  91.5 48%  
83.2 25%  89.4 26%  91.2 26%  90.5 24%  75.8 25%  91.7 26% 

4  77.1 73%  84.3 72%  85.8 73%  88.3 73%  72.0 74%  91.1 75%  
81.7 51%  88.3 50%  90.2 50%  90.5 47%  72.9 48%  91.7 54%  
83.2 25%  89.4 25%  91.2 26%  90.5 25%  75.5 24%  91.7 25% 

8  76.2 73%  82.8 73%  84.8 73%  87.7 72%  71.2 73%  90.8 73%  
81.8 50%  87.2 52%  89.8 49%  90.1 52%  72.2 49%  91.7 53%  
83.2 24%  89.3 25%  91.0 28%  90.5 25%  75.5 25%  91.9 25% 

16  76.0 73%  81.3 72%  84.3 72%  87.4 73%  70.2 74%  90.3 74%  
81.5 50%  87.4 48%  89.7 52%  90.1 52%  72.9 48%  92.0 50%  
82.9 25%  89.3 24%  90.8 25%  90.5 25%  74.7 28%  92.0 25%  
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