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Abstract

The evaluation of image generators remains a challenge due to the limitations of
traditional metrics in providing nuanced insights into specific image regions. This
is a critical problem as not all regions of an image may be learned with similar ease.
In this work, we propose a novel approach to disentangle the cosine similarity of
mean embeddings into the product of cosine similarities for individual pixel clusters
via central kernel alignment. Consequently, we can quantify the contribution of
the cluster-wise performance to the overall image generation performance. We
demonstrate how this enhances the explainability and the likelihood of identifying
pixel regions of model misbehavior across various real-world use cases.

1 Introduction

The increasing prevalence of Artificial Intelligence (AI), particularly with the rise of sophisticated
generative models like image generators, has brought about a transformative shift beyond the field
of machine learning [Singh and Raza, 2021, Mirsky and Lee, 2021, Oppenlaender, 2022]. How-
ever, the evaluation of the outputs from these models, especially in the realm of image generation,
continues to pose a significant challenge [Benny et al., 2021, Elasri et al., 2022, Xu et al., 2024].
Traditional evaluation metrics, like the maximum mean discrepancy (MMD) [Gretton et al., 2012],
the Inception Score Criterion (ISC) [Salimans et al., 2016], the Fréchet Inception Distance (FID)
[Heusel et al., 2017], or the Kernel Inception Distance (KID) [Bińkowski et al., 2018], fall short in
providing a nuanced understanding of specific image regions, thereby limiting their effectiveness in
assessing model performance comprehensively. The MMD is the squared distance between the mean
embeddings of two distributions. A mean embedding is the expectation of a kernel-induced feature
map based on the respective distribution. As we will see, we can decompose, which we refer to as
disentangle based on [Vedral, 2002], mean embeddings as a tensor product under certain conditions.
Depending on the kernel choice, the MMD can be used without an external model, but it cannot be
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decomposed in a meaningful way even when disentangled mean embeddings exist. This disallows
more fine-grained interpretations of model performance by current evaluation approaches. In the
context of this work, interpretation, interpretability, and explainability refer to performance and error
assignment to different image regions, which increases human oversight and understanding, contrary
to “black box” evaluation approaches only assessing entire images [Castelvecchi, 2016, Phillips et al.,
2021, Longo et al., 2024].

In the present work, we contribute a novel approach based on disentangling the mean embedding
of an image space into mean embeddings of independent clusters of pixels. Further, we show that
the cosine similarity of the mean embeddings can be disentangled into the product of the cosine
similarities for each respective cluster. This enables the evaluation and interpretation of the model
performance of each cluster in isolation, significantly enhancing diagnostics of image generation and
the likelihood of identifying the source pixel region of model misbehavior. We illustrate the gain in
interpretability by monitoring the generalization performance of DCGAN [Radford et al., 2015] and
DDPM [Ho et al., 2020] architectures trained on CelebA [Liu et al., 2015] and ChestMNIST [Yang
et al., 2021] datasets.

2 Preliminaries on Mean Embeddings

In this section, we introduce the necessary background for mean embeddings and central kernel
alignment. Given a nonempty set X and a positive semi-definite (p.s.d.) kernel k : X ×X → R, there
exists ϕ and an inner product ⟨., .⟩ such that k (x, y) = ⟨ϕ (x) , ϕ (y)⟩ [Schölkopf and Smola, 2002].
The associated RKHS is defined as the completionH = span {ϕ (x) | x ∈ X}, where ⟨., .⟩H := ⟨., .⟩
and ∥h∥H :=

√
⟨h, h⟩H for h ∈ H. For a distribution P with support X the mean embedding inH

is defined via
µP := EX∼P [ϕ (X)] . (1)

Given another distribution Q with similar support, Gretton et al. [2012] introduce the maximum
mean discrepancy as the squared distance between mean embeddings µP and µQ defined by

MMD2
k (P,Q) := ∥µP − µQ∥2H . (2)

If k is a characteristic kernel, i.e. µ(.) is an injective function for a set of distributions including
P and Q, then it holds P = Q ⇐⇒ MMD2

k (P,Q) = 0 [Gretton et al., 2012]. However, for
the central research question of this paper, we will discover that the MMD cannot be disentangled
into the MMD values of different input regions. Fortunately, there also exist other approaches to
quantify the similarity of vectors µP and µQ in the RKHS H. One of the most classical metrics
is the cosine similarity defined between vectors v, w ∈ Rd via cos (v, w) = ⟨v,w⟩

∥v∥∥w∥ . Compared
to the squared distance, it has the benefit of being easier to interpret as it lies within [−1, 1] with
v = w =⇒ cos (v, w) = 1. For general RKHS, the cosine similarity was already studied implicitly
as the inner product of quantum mean embeddings in [Kübler et al., 2019]. To receive an analogous
definition to the MMD, we define the cosine similarity between the mean embeddings µP and µQ as
the cosine mean similarity given by

CMSk (P,Q) :=
⟨µP , µQ⟩H
∥µP ∥H ∥µQ∥H

. (3)

While the MMD can be seen as the generalization of the squared distance to possibly infinite dimen-
sional RKHS, the CMS is the analogous generalization of the cosine similarity. If k is a c0 universal
kernel and P,Q are Borel probability measures, then it holds P = Q ⇐⇒ CMSk (P,Q) = 1
[Kübler et al., 2019]. If k is c0 universal, then it follows that it is also characteristic, but the opposite
does not always hold [Sriperumbudur et al., 2011]. Consequently, CMS and MMD only share
the uniqueness of their optimum for c0 universal kernels. Examples of c0 universal kernels are
the RBF kernel krbf (x, y) = exp

(
−γ ∥x− y∥22

)
, the Laplacian kernel, the Matérn kernel, or any

other characteristic and translation invariant kernel [Sriperumbudur et al., 2011]. Given datasets
X = (X1, . . . , Xn)

iid∼ P and Y = (Y1, . . . , Ym)
iid∼ Q of independently and identically distributed

(iid) random variables, an empirical estimator for CMSk (P,Q) can be defined via

ĈMSk (X,Y) :=

∑n
i=1

∑m
j=1 k (Xi, Yj)√∑n

i=1

∑n
j=1 k (Xi, Xj)

√∑m
i=1

∑m
j=1 k (Yi, Yj)

. (4)
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Using kernels with images in practice usually follows either of two approaches: Either the image
is flattened and each pixel is an entry in the vector provided as argument for the kernel [Schölkopf,
1997, Gruber and Buettner, 2024], or the image is encoded into a smaller-dimensional seman-
tic vector space, which is then the argument for the kernel [Bińkowski et al., 2018]. While the
latter approach gained more prominence in recent years [Benny et al., 2021, Xu et al., 2024],
the encoding is usually learned by a neural network and not interpretable. In the following of
this work, we focus on the former approach, which allows to disentangle the image provided
that the chosen kernel is a product of pixel-wise kernels. Specifically, we assume that for flat-
tened images x = (x1, . . . , xd)

⊺ ∈ Rd and y = (y1, . . . , yd) ∈ Rd with d pixels the image-
wise kernel kimg : Ximg × Ximg → R with Ximg ⊆ Rd can be decomposed into a product
kimg (x, y) = k⊗d

pxl ((x1, . . . , xd) , (y1, . . . , yd)) = kpxl (x1, y1) · · · kpxl (xd, yd) for a pixel-wise
kernel kpxl : Xpxl × Xpxl → R with Xpxl ⊆ R. Note that this assumes grey-scale images for sim-
plicity, however colored images (with three color channels) can be easily represented by assuming
Ximg ⊆ R3d and Xpxl ⊆ R3. The RBF and Laplacian kernels are such product kernels, since we

can write krbf (x, y) = exp
(
−γ (x1 − y1)

2
)
· · · exp

(
−γ (xd − yd)

2
)

. In general, these are special
cases of product kernels discussed in [Szabó and Sriperumbudur, 2018]. The image-wise RKHS
Himg and feature map ϕimg : Ximg → Himg associated with kimg can also be decomposed into a
tensor product spaceHimg = Hpxl ⊗ · · · ⊗ Hpxl︸ ︷︷ ︸

d times

of the pixel-wise RKHSHpxl and a tensor product

ϕimg (x) = (ϕpxl ⊗ · · · ⊗ ϕpxl) (x1, . . . , xd) =

d⊗
i=1

ϕpxl (xi) (5)

of the pixel-wise feature maps ϕpxl : Xpxl → Hpxl associated with kpxl [Szabó and Sriperumbudur,
2018]. However, when we compute the respective mean embedding for a distribution Pimg of a
random image X = (X1, . . . , Xd), then we cannot decompose it in general into pixel-wise mean
embeddings since

µPimg
= EX∼Pimg

[ϕimg (X)] = EX∼Pimg

[
d⊗

i=1

ϕpxl (Xi)

]
̸=

d⊗
i=1

EXi∼Pi
[ϕpxl (Xi)] (6)

where Pi are the marginal distributions of pixel indices i = 1 . . . d. Such a pixel-wise decomposition,
which we also refer to as disentanglement, is usually not possible in practice since pixels are correlated.
However, for interpretability purposes, we do not necessarily require a complete disentanglement
of all individual pixels, but it may suffice to discover disentangled clusters of pixels. To quantify to
what degree this is possible in practice, we require the following.
The cross-covariance matrix between an Rd-valued random variable X and an Rd′

-valued random
variable Y is defined by

Cov (X,Y ) := E [(X − E [X]) (Y − E [Y ])
⊺
] ∈ Rd×d′

. (7)

Any matrix in Rd×d′
may also be seen as a linear operator from Rd′ → Rd. Consequently, given

another p.s.d. kernel k′ with RKHS H′, a generalization of the cross-covariance matrix to H-
valued andH′-valued random variables ϕ (X) and ϕ′ (Y ) is given via the cross-covariance operator
CXY : H′ → H with

CXY := E [(ϕ (X)− E [ϕ (X)])⊗ (ϕ′ (Y )− E [ϕ′ (Y )])] . (8)

The Hilbert-Schmidt norm of an operator C : H′ → H of Hilbert spacesH andH′ with orthonormal
bases a1, a2, . . . and b1, b2, . . . is defined via ∥C∥HS =

∑
ij ⟨ai, Cbj⟩H [Gretton et al., 2005]. It

reduces to the Frobenius norm if both spaces are finite-dimensional Euclidean spaces. For g ∈ H and
h ∈ H′ it holds ∥g ⊗ h∥HS = ∥g∥H ∥h∥H′ , from which follows that

∥CXY ∥2HS = EX,Y,Xc,Y c [k (X,Xc) k′ (Y, Y c)]− EX,Xc,Y c [k (X,Xc)EY [k′ (Y, Y c)]]

− EY,Xc,Y c [EX [k (X,Xc)] k′ (Y, Y c)] + EX,Xc [k (X,Xc)]EY,Y c [k′ (Y, Y c)] ,
(9)

where (Xc, Y c) is an i.i.d. copy of (X,Y ) [Gretton et al., 2005]. Then, Gretton et al. [2005] show
that it holds

∥CXY ∥HS = 0 ⇐⇒ E [ϕ (X)⊗ ϕ′ (Y )] = µPX
⊗ µ′

PY
(10)
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with µ′
PY

= E [ϕ′ (Y )]. In consequence, they refer to HSICk,k′ (PXY ) := ∥CXY ∥2HS as Hilbert-
Schmidt independence criterion (HSIC). Equation 9 indicates that we can estimate the HSIC
in practice via the kernel trick, even when H or H′ are infinite-dimensional. For two sets of
samples X := {X1, . . . , Xn} and Y := {Y1, . . . , Yn} with i.i.d. (X1, Y1) , . . . , (Xn, Yn) ∼ PXY

an estimator is given by

HSICk,k′ (X,Y) := tr

(
KX

(
I − 1

n
11⊺

)
KY

(
I − 1

n
11⊺

))
, (11)

where [KX ]ij := k (Xi, Xj), [KY ]ij := k′ (Yi, Yj), 1 = (1, . . . , 1)
⊺ is the vector of 1’s, and I is the

unit matrix [Cortes et al., 2012].
However, when we evaluate HSIC in practice, the estimated values will never be precisely zero. This
makes comparing HSIC values across different random variables problematic since their ranges may
have different magnitudes. Consequently, we use the normalized version of HSIC referred to as
central kernel alignment (CKA) [Cortes et al., 2012, Chang et al., 2013], which is defined by

CKAk,k′ (PXY ) :=
∥CXY ∥2HS

∥CXX∥HS ∥CY Y ∥HS

. (12)

It has the form of a squared correlation coefficient and by the Cauchy-Schwartz inequality lies within
[0, 1] [Chang et al., 2013]. Even though CKAk,k′ and CMSk may appear similar in form, they
measure very different things: While CKAk,k′ measures the independence between random variables
according to their joint distribution, CMSk compares how similar their marginal distributions are
via their mean embedding. For two sets of samples X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn)
with i.i.d. (X1, Y1) , . . . , (Xn, Yn) ∼ PXY an estimator for CKAk,k′ (PXY ) is given by re-using the
HSIC estimator via

ĈKAk,k′ (X,Y) :=
HSICk,k′ (X,Y)√

HSICk,k′ (X,X)HSICk,k′ (Y,Y)
. (13)

Similar to the HSIC, it holds

CKAk,k′ (PXY ) = 0 ⇐⇒ EX,Y∼PXY
[ϕ (X)⊗ ϕ′ (Y )] = µPX

⊗ µ′
PY

. (14)

In the next section, we state our theoretical main contribution, which uses the CKA to disentangle the
CMS value of an entire target domain into the product of CMS values in sub-domains.

3 Cosine Similarity of Disentangled Mean Embeddings

We can now state the main theoretical contribution of this work, which describes when we are allowed
to disentangle the image-wise CMS into the product of more fine-grained cluster-wise CMS values.

Theorem 1. Assume for random variables X = (X1, . . . , Xd)
⊺ and Y = (Y1, . . . , Yd)

⊺ with
outcomes in a space X d and for a p.s.d. kernel k : X × X → R, there exists a partition I
of the indices {1 . . . d} such that for all I, I ′ ∈ I it holds CKAk⊗|I|,k⊗|I′|

(
PXIXI′

)
= 0 =

CKAk⊗|I|,k⊗|I′|

(
PYIYI′

)
with XI := (Xi)

⊺
i∈I and YI′ := (Yi)

⊺
i∈I′ . Then, we have

CMSk⊗d (PX ,PY ) =
∏
I∈I

CMSk⊗|I| (PXI
,PYI

) . (15)

The proof located in Appendix D is mostly based on Equation 14. Theorem 1 indicates, that, by
finding appropriate clusters, we can track the individual cluster-wise CMS values without losing
information about the overall image-wise CMS. The cluster-wise CMS values then help to iden-
tify the cluster(s) responsible for certain behavior of the overall image-wise CMS, improving the
interpretability of the model performance and the training dynamics. One practical constraint is
that the estimated CKA values are likely not exactly zero since estimators cannot be expected to be
perfectly precise and there may often be an infinitesimal correlation between pixels. This indicates
that the assumptions of Theorem 1 will be, strictly speaking, violated to some degree in practice.
However, it is straightforward to verify if the disentanglement is meaningful by comparing both sides
of Equation 15, as we will see in Section 4.
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Algorithm 1 Monitoring Cosine Similarity of Disentangled Mean Embeddings

Input: Training data Dtr ∈ Rntr×wh and test data Dte ∈ Rnte×wh with ntr and nte number of
flattened pixels with resolution w × h, generator Gt with training iterations t ∈ N and n′ image
generations, p.s.d. kernel k : R× R→ R.
Initialize empty correlation matrix M ∈ Rwh×wh.
for i = 1, . . . , wh do

for j = 1, . . . , wh do
{ Compute centered kernel alignment between pixel i and j}

Mij ← ĈKAk,k

(
{Dtr

li }l=1...ntr
,
{
Dtr

lj

}
l=1...ntr

)
according to Eq. 13

end for
end for
{I1, . . . , IC} ← HierarchicalClustering (M)
for t = 1, . . . do
Gt+1 ← TrainingIteration (Gt)

D̂ ← generate n′ images with Gt+1

ImageSimilarity← ĈMSk⊗wh

({
Dte

ij

}
i=1...nte,j=1...wh

, {D̂ij}i=1...n′,j=1...wh

)
for I, c in enumerate {I1, . . . , IC} do

ClusterSimilarityc ← ĈMSk⊗|I|

({
Dte

ij

}
i=1...nte,j∈I

, {D̂ij}i=1...n′,j∈I

)
end for
Output ImageSimilarity, {ClusterSimilarityc}c=1...C

end for

Figure 1: Samples of the CelebA dataset. Most faces are centered of similar size and similar angles.
The clusters identified in Figure 2 match this observation.

If we want to turn Theorem 1 into a practical algorithm, we are facing a runtime problem: The
number of possible partitions for a set grows exponentially with the set size [Berend and Tassa,
2010], which makes evaluating the CKA for all possible partitions of an image grid infeasible. As
a workaround, we only compute the CKA between all pairwise pixels, which has O

(
d2
)

runtime
complexity. We then perform hierarchical clustering to identify clusters of pixels with high pairwise
CKA values. Further, we only compute the CKA values based on the training data as the generated
images converge to this distribution during training. As we will see in the experiments, this simple
approach works sufficiently well to find meaningful clusters. The whole algorithm to disentangle the
CMS for monitoring the training performance of an image generator is presented in Algorithm 1,
where we use the CMS estimator of Equation 4 and the CKA estimator of Equation 13.

4 Experiments

The source code for the following experiments is located at https://github.com/MLO-lab/
Disentangling_Mean_Embeddings. We run experiments on the CelebA dataset [Liu et al., 2015],
which consists of 200.000 colored celebrity images with resolution 64 x 64, and on the ChestMNIST
dataset [Yang et al., 2021] consisting of 112.120 gray-scale chest scans with 28 x 28 resolution. Since
both datasets show centered faces/chests at a similar angle, we can expect to identify various clusters
of pixels that can be interpreted in a meaningful way (c.f. Figure 1 and Figure 6 for samples). For
CelebA, we train 20 seeds of the DCGAN architecture [Radford et al., 2015] on randomly sampled
90% of the original set, and use the other 10% for evaluation. As errors, we consider the CMS and
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(c) CMS values throughout training

Figure 2: Top-Left: The identified clusters match how a human may separate the image structure
of CelebA: There are two clusters for the background (Clusters 4 & 5), two clusters for long hair
or alternating head angles (Clusters 1 & 2), and one central cluster for the head and neck (Cluster
3). Top-Right: The correlation matrix in terms of the CKA values indicates how well the clusters
can be separated. The blocks on the diagonal are ordered by cluster number. As can be seen, most
clusters are fairly independent of the other clusters (especially Cluster 3). Only clusters 4 and 5
show a relatively strong dependence on each other, which is expected since these often express the
same background in the images (c.f. Figure 1). Bottom: Unlike the other errors, we can decompose
the image-wise CMS into the CMS of different clusters according to the CKA. This offers novel
insights into model performance. For example, we can detect that Cluster 3 and 5 degrade more in
the training collapses than the other clusters.

MMD based on the RBF kernel with γ set to the inverse of the median of the pairwise Euclidean
distances between training instances, which is a heuristic based on [Schölkopf and Smola, 2002].
Further, we evaluate the Inception Score Criterion (ISC) [Salimans et al., 2016], Fréchet Inception
Distance (FID) [Heusel et al., 2017], and the Kernel Inception Distance (KID) [Bińkowski et al.,
2018]. We average all errors across all seeds. More details are given in Appendix B.
In Figure 2, we show the identified clusters for CelebA on the left, and the respective pairwise CKA
values of the (flattened) pixels on the right, which we refer to as CKA matrix. The indices in the
CKA matrix are arranged according to the clusters. As can be seen, Cluster 3, which represents the
face, is fairly independent of the other clusters. However, Cluster 4 and 5 share a lot of dependence,
which is not surprising, since these represent the background. The training curves for the DCGAN
architecture are depicted in Figure 3. There, on the left, we compare the image-wise CMS with
the product of the cluster-wise CMS to verify that Theorem 1 holds approximately. On the right
in Figure 3, we show the ISC, FID, KID, and MMD for comparison. All metrics capture similar
trends in most cases. The benefits of our approach become apparent in Figure 2c, where we plot the
cluster-wise CMS values for the detected clusters. Here, we can determine how much each cluster
influences the image-wise CMS throughout training. Especially Cluster 3 and 5, which represent the
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Figure 3: Different errors throughout the training of a DCGAN model on the CelebA dataset. All
lines are an average of 20 seeds. Left: The CMS (higher is better) shows how the average training
run improves until epoch 10. After epoch 30, some models collapse, and after epoch 45 additional
collapses occur. Computing the product of the cluster-wise CMS values according to our methodology
shows a close match with the normal CMS, indicating the correctness of the clusters. Right: The
ISC does match the other errors but shows erratic behavior. The KID and FID resemble the CMS
quite closely. The MMD also shows a similar trajectory as the other errors but indicates a minimum
around epochs 5-7. Generated samples of the training runs match these observations (c.f. Figure 5).

head and left background area, are striking: They degrade the worst among all clusters after the two
training collapses. This indicates, that these pixel regions have the highest influence on the worsening
image-wise CMS.
In Appendix B, we discuss the results for ChestMNIST in more detail. Specifically, we compare
the DCGAN with the DDPM architecture [Ho et al., 2020] in Figure 4. There, we discover how a
major performance drop during the training runs with the DCGAN architecture can be assigned to
the background of the images. On the contrary, the DDPM architecture fits all regions quickly except
the background region, which requires further iterations.
Overall, such an analysis is only possible with our approach and the CMS as error, since the other
errors (MMD, FID, KID, ISC) cannot be disentangled similarly.

Limitations. Our approach offers novel insights, but it assumes mean embeddings are a meaningful
representation of the images based on a user-defined product kernel. While kernels scale well to
higher dimensions, they will still degrade at some resolution [Gretton et al., 2012]. Further, computing
the clusters is computationally expensive and we may not expect to find perfectly independent clusters
in practice.

5 Conclusion

In this work, we introduced a novel approach to disentangle the mean embedding of an image space
into mean embeddings of approximately independent pixel clusters. We also proved when the cosine
similarity of the mean embeddings can be disentangled into the product of the cosine similarities
for each respective cluster. This enables the evaluation and interpretation of the generalization
performance of each cluster in isolation, significantly enhancing the explainability and the likelihood
of identifying model misbehavior. We demonstrated the improved interpretability by monitoring the
training of various architectures on the CelebA and ChestMNIST datasets according to the MMD,
ISC, FID, KID, and our approach.
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0 200 400 600

0

200

400

600

0.0

0.2

0.4

0.6

0.8

1.0

(b) CKA matrix of flattened pixels

5 10 15 20
Epochs

0.85

0.90

0.95

1.00

CM
S

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

(c) CMS values throughout training (DCGAN)

2 4 6 8 10
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

CM
S

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

(d) CMS values throughout training (DDPM)
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(e) CMS values throughout training (DCGAN)
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Figure 4: Top-Left: The identified clusters for ChestMNIST match how a human may separate the
image structure: There are three clusters for the lung area, one for the abdomen, and two for the upper
chest and background. Top-Right: The correlation matrix in terms of the CKA values indicates how
well the clusters can be separated. The blocks on the diagonal are ordered by cluster number. As can
be seen, most clusters are fairly independent. Cluster 6 could be further separated. Mid: Comparing
the cluster-wise CMS values throughout training of DCGAN and DDPM architectures shows the
difficulty of learning each cluster. The DCGAN architectures have a performance drop mostly due to
Cluster 5 and 6 around Epoch 4. Lower: The cluster-wise CMS values successfully represent the
image-wise CMS.

A Overview

In the following, we discuss additional experiment results and details in Appendix B, practical time
and space complexity of Algorithm 1 in Appendix C, and missing proofs in Appendix D.
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(a) Epoch 1 (b) Epoch 21

(c) Epoch 41 (d) Epoch 49

Figure 5: Generated samples of the twenty training runs (each row is a seed, each column a sample of
a respective seed). Initially, all models are improving their fit. At 21 epochs, no further improvements
are visible. At 41 epochs, the training of two models collapsed. At 49 epochs, the training of two
additional models collapsed. The collapses are visible in all evaluation metrics in Figure 3, but only
with our approach we can quantify the extend to which the individual pixel regions are affected.

B Additional Experimental Results and Details

In this section, we give more experimental results and details, which are missing in the main part.

B.1 ChestMNIST and additional CelebA Figures

We train 20 seeds of the DCGAN and DDPM architecture on the provided training set of ChestMNIST.
Generated samples of the DCGAN architecture are presented in Figure 6. In Figure 4, we show the
corresponding plots of ChestMNIST as in Figure 2. Specifically, we also discover a meaningful
cluster partition of the image grid: It becomes clear in what regions the lungs, the abdomen, and the
background are located. The CKA matrix shows that the large background region in brown is sparse
and may be split up in additional clusters. The cluster-wise CMS values show how each architecture
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(a) Epoch 3 (b) Epoch 4

(c) Epoch 5 (d) Epoch 10

Figure 6: Generated samples of the twenty training runs (each row is a seed, each column a sample
of a respective seed) of the DCGAN architecture on ChestMNIST.

behaves during training: The DCGAN models suffer from a performance drop after 4 epochs, which
can be assigned to Cluster 4 and 6 (the background). The DDPM models are more stable but learning
Cluster 6 takes longer than the other clusters. The image-wise CMS values at the bottom of Figure 4
indicate that the cluster-wise CMS values are representative for the image-wise CMS.

We also show samples of generated images in Figure 5, which matches the observed trends of the
evaluation metrics in Figure 3.

B.2 Experimental Details

All models were trained on a machine equipped with an AMD Ryzen 9 3950X CPU, an Nvidia RTX
4090 GPU, and 128GB of RAM. However, it is important to note that such high-end hardware is not
strictly necessary for training these models; similar results can be obtained on less powerful systems,
albeit with potentially longer training times. We use a random split of 90% of the CelebA dataset for
training, utilizing the original model architecture as described in [Radford et al., 2015]. The specific
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split can be reproduced via our source code. Each model and training run is initialized with a unique
random seed ranging from 0 to 20.

The models for CelebA were trained with a consistent set of hyperparameters: a batch size of 128,
generator and discriminator feature maps set to 64, a learning rate of 0.0002, and Adam optimizer β
values of (0.5, 0.999). Binary Cross-Entropy (BCE) loss was used for training both the generator and
discriminator. These settings were uniformly applied across all models.

For ChestMNIST we also train with a consistent set of hyperparameters: For the DCGAN architecture
a batch size of 128, generator and discriminator feature maps set to 64, a learning rate of 1e-05, and
Adam optimizer β values of (0.5, 0.999). Binary Cross-Entropy (BCE) loss was used for training
both the generator and discriminator. These settings were uniformly applied across all models.
For the DDPM architecture, we base our implementation on https://github.com/tcapelle/
Diffusion-Models-pytorch with similar hyperparameters.

Similar to the CKA, we also compute the MMD and CMS via their kernel representations according
to the following. Given two datasets X = (X1, . . . Xn)

iid∼ PX and Y = (Y1, . . . Ym)
iid∼ PY , we use

̂∥µPX
∥2H := 1

n2

∑n
i,j=1 k (Xi, Xj) as estimator for ∥µPX

∥2H, ̂∥µPY
∥2H := 1

m2

∑m
i,j=1 k (Xi, Xj)

as estimator for ∥µPY
∥2H, and ̂⟨µPX

, µPY
⟩H := 1

nm

∑n
i=1

∑m
j=1 k (Xi, Yj) as estimator for

⟨µPX
, µPY

⟩H.
Based on [Gretton et al., 2012] and [Kübler et al., 2019] we use these as plugins for the MMD
estimator

M̂MD2 := ̂∥µPX
∥2H + ̂∥µPY

∥2H − 2 ̂⟨µPX
, µPY

⟩H (16)
and the CMS estimator

ĈMS :=
̂⟨µPX
, µPY

⟩H
̂∥µPX
∥2H ̂∥µPY

∥2H
. (17)

To reduce the runtime complexity, the MMD and CMS estimator are computed based on mini-batches
of size 150 and then averaged across all blocks similar to [Zaremba et al., 2013]. We use a total of
1200 CelebA and 1350 ChestMNIST test instances for computing the errors at each epoch. The CKA
is computed on mini-batches of size 100, and we used 1000 CelebA training instances and 2000
ChestMNIST training instances for its computation.

C Practical Time and Space Complexity

In the following, we discuss the time and space complexity of Algorithm 1. Let ntr be the size
of the training data, and d = wh the number of pixels. The CKA estimator of Equation 13 has a
runtime complexity of O

(
n3
tr

)
and a space complexity of O

(
n2
tr

)
due to multiplication of the kernel

matrices. In Algorithm 1, we compute the CKA estimator in a nested for-loop over the number of
pixels, resulting in a runtime complexity of O

(
d2n3

tr

)
. The space complexity does not increase since

we do not require the respective kernel matrices after computing each CKA value. We can reduce
the runtime complexity via the following. We may split the training data into mini-batches of size
mCKA and then average the CKA values across all mini-batches. This results in a runtime complexity
of O

(
d2m2

CKAntr

)
and space complexity of O

(
m2

CKA

)
. Further, we may use less training data

since the estimator may converge with less data than available. In our case, we used mini-batches of
size mCKA = 100 and ntr = 1000 training data for CelebA and mCKA = 100 and ntr = 2000 for
ChestMNIST. The quadratic scaling with the number of pixels can be reduced using a window of
pixels as kernel inputs. However, this was not necessary in our case.

The CMS estimator has a runtime and space complexity identical to the CKA estimator assuming
n ≥ n′, where n′ is the number of generated images per iteration. We use the same mini-batch
approach as for the CKA estimator, where mCMS is the number of instances in a mini-batch. We
also only use a subset of size nte of the test data. In our experiments, we use nte = 1200 and
mCMS = 150 for CelebA, and nte = 1350 and mCMS = 150 for ChestMNIST. The runtime and
space complexities of the CMS estimator with respect to the number of pixels depend on the kernel
choice. They can be neglected for the RBF and Laplacian kernel. We assume the number of chosen
clusters is rather small (for example < 10), so we omit it as a variable.
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D Missing Proofs

In the following, we present the proof for Theorem 1.

Proof. First, note that we can disentangle the mean embedding µPX
due to the assumption

CKAk⊗|I|,k⊗|I′|

(
PXIXI′

)
= 0 and Equivalence 14 via

µPX
= EX∼PX

[
d⊗

i=1

ϕ (Xi)

]
= EX∼PX

[⊗
I∈I

⊗
i∈I

ϕ (Xi)

]
Assumption

=
⊗
I∈I

EX∼PX

[⊗
i∈I

ϕ (Xi)

]
=

⊗
I∈I

µPXI
.

(18)

The same steps apply for µPY
as well. Further, note that for any g1, g2 ∈ H and h1, h2 ∈ H′

we have ⟨g1 ⊗ h1, g2 ⊗ h2⟩H⊗H′ = ⟨g1, g2⟩H ⟨h1, h2⟩H′ . Now, we can use the disentangled mean
embeddings to also disentangle the overall CMS into a product of cluster-wise CMS as stated in
Theorem 1, since

CMSk⊗d (PX ,PY ) =
⟨µPX

, µPY
⟩H⊗d

∥µPX
∥H⊗d ∥µPY

∥H⊗d

=

〈⊗
I∈I µPXI

,
⊗

I∈I µPYI

〉
H⊗|I|∥∥∥⊗I∈I µPXI

∥∥∥
H⊗|I|

∥∥∥⊗I∈I µPYI

∥∥∥
H⊗|I|

=
∏
I∈I

〈
µPXI

, µPYI

〉
H⊗|I|∥∥∥µPXI

∥∥∥
H⊗|I|

∥∥∥µPYI

∥∥∥
H⊗|I|

=
∏
I∈I

CMSk⊗|I| (PXI
,PYI

) .

(19)

Based on the property that CMS always lies within [−1, 1], Theorem 1 directly leads to the following
fact relevant for interpretation.
Corollary 1. Under the same assumptions as in Theorem 1, it holds for all I ∈ I that

|CMSk⊗d (PX ,PY )| ≤ |CMSk⊗|I| (PXI
,PYI

)| . (20)

In other words, the CMS of the whole image grid can never surpass the CMS of any cluster. This
important fact tells us that we may never expect a smaller similarity between prediction and target in
any cluster compared to the overall similarity. If this property is violated in practice, we will have
to be wary of violated assumptions, which may affect the correctness of interpretations based on
Theorem 1.
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