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HQ-EDIT: A HIGH-QUALITY DATASET FOR INSTRUC-
TION BASED IMAGE EDITING

Anonymous authors
Paper under double-blind review

(a) Zoom in on the fox and add snowflakes falling around it. (b) Alter her hair color to black.

(d) Replace the silver teapot with a ceramic blue and white
patterned teapot with a similar wooden handle and a matching

ceramic lid.

(c) Replace the Amazon rainforest background with the
underwater scenery of the Great Barrier Reef and adjust the

parrot's position and wings to depict it flying.

(e) Comparison between InstrictPix2Pix, HIVE, MagicBrush
and HQ-Edit. 
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Figure 1: (a) - (d): example images and edit instructions from HQ-Edit. (e): we compare the dataset
quality between our HQ-Edit and existing ones. Note that “Alignment” and “Coherence” are our
newly developed metrics (introduced in Sec. 3.4) for measuring image/text qualities.

ABSTRACT

This study introduces HQ-Edit, a high-quality instruction-based image editing
dataset with around 200,000 edits. Unlike prior approaches relying on attribute
guidance or human feedback on building datasets, we devise a scalable data col-
lection pipeline leveraging advanced foundation models, namely GPT-4V and
DALL-E 3. To ensure its high quality, diverse examples are first collected on-
line, expanded, and then used to create high-quality diptychs featuring input and
output images with detailed text prompts, followed by precise alignment ensured
through post-processing. In addition, we propose two evaluation metrics, Align-
ment and Coherence, to quantitatively assess the quality of image edit pairs using
GPT-4V. HQ-Edit’s high-resolution images, rich in detail and accompanied by
comprehensive editing prompts, substantially enhance the capabilities of existing
image editing models. For example, an HQ-Edit finetuned InstructPix2Pix can
attain state-of-the-art image editing performance, even surpassing those models
fine-tuned with human-annotated data.

1 INTRODUCTION

The recent advancements in text-to-image generative models (Rombach et al., 2022; Ramesh et al.,
2022; Gu et al., 2022; Saharia et al., 2022; Huang et al., 2024) have catalyzed a new era in diverse
real-world applications ranging from advertising and photography to digital art and movie production.
Among these generative models, applications of domain-specific image conditioned generations (Ruiz
et al., 2023; Ye et al., 2023; Wang & Shi, 2023; Hu et al., 2023), and multi-modal non-specific
generation methods (Pan et al., 2023; Sheynin et al., 2023; Wu et al., 2023) have gathered significant
attention.

Our work concentrates on applications of highly accurate, general instruction-based single image
editing without relying on external attribute guidance, as proposed in previous studies (Avrahami

1
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et al., 2022; Hertz et al., 2022; Ling et al., 2021; Wallace et al., 2023; Shi et al., 2022). We identify
that this particular challenge has not been adequately addressed in the literature yet. To the best
of our knowledge, one of the major hurdles in training an instruct-based image editing model lies
in the limited availability of high-quality datasets pairing editing instructions with corresponding
images. This challenge was best tackled by the seminal work InstructPix2Pix (Brooks et al., 2023).
Specifically, it first leverages GPT-3 (Brown et al., 2020) to generate both an instruction and an edited
image caption based on a given image description; then, it applies Stable Diffusion (SD1.5) (Rombach
et al., 2022) and Prompt-to-Prompt (Hertz et al., 2022) to create the paired input and output images.
However, their underlying models, namely SD1.5 and GPT-3, are outdated compared to current state-
of-the-art counterparts such as DALL-E 3 and GPT-4. Consequently, these models produce images
with lower resolution and suboptimal edit-image alignment. Subsequent studies also attempted to
improve it via incorporating human feedback (Zhang et al., 2023) or segmentation masks (Chakrabarty
et al., 2023; Zhang et al., 2024), yet the generated data continue to exhibit one or more of the
aforementioned issues, as showcased in Figure 1.

In this work, we aim to leverage the ability from the best text-image models, i.e., DALL-E 3 (OpenAI,
2023a), GPT4 & GPT4V (OpenAI, 2023b), to build a high-quality dataset for improving the image
editing datasets. Ideally, in case of accessing the model weights, it should provide high-resolution
images that offer rich detail, both in their visual content and the accompanying instructions; Also, it
should provide more precise alignment between textual instructions and image pairs, ensuring edits
are applied as directed while maintaining fidelity in areas not subject to modification.

However, only with the access to their APIs, in this study, we discover a way of pair image generation
with DALL-E 3 based on prompt-engineer, which enable a similar Prompt-to-Prompt process, yielding
high-quality editing image pairs, which we name as HQ-Edit. HQ-Edit provides a significant leap
forward, featuring high image resolutions of approximately 900× 900 pixels—nearly double that of
existing datasets, and comprises around 200,000 detailed edit instructions. Moreover, unlike prior
approaches relying on attribute guidance or human feedback, HQ-Edit is synthetically generated
through a scalable pipeline that harnesses the image text understanding capabilities of powerful
foundation models of GPT-4V and DALL-E 3.

Our data curation process comprises three key steps: Expansion - Generation - Post-processing.
Firstly, in the Expansion phase, we extract seed triplets with high diversity—consisting of input/output
image descriptions along with edit instructions—from online sources. Subsequently, we leverage
GPT-4 to expand these initial triplets into around 100,000 instances, ensuring the comprehensive
diversity of edit instructions. In the subsequent Generation phase, the seed triplets are processed
by GPT-4 to merge and refine into detailed diptych prompts for DALL-E 3, creating diptychs with
input and output image pairs displayed side-by-side. Note this diptych-based prompting design is
motivated by the finding that, compared to generating input images and output images separately,
generating diptychs generally exhibits superior quality, with better alignment and consistency in
edit-irrelevant areas. Lastly, the generated diptychs and refined prompts undergo post-processing to
ensure precise alignment between the paired images and their corresponding instructions. Specifically,
1) each diptych is decomposed into paired images, which undergo warping and filtering to ensure
correspondence; 2) the instructions are refined using rewritten instructions from GPT-4V; and 3) the
inverse-edit instructions are also generated, allowing for the transformation of output images back
into their input counterparts.

On top of HQ-Edit, we introduce two metrics, Alignment and Coherence, to comprehensively
and quantitatively evaluate the quality of image edit pairs. The first metric, Alignment, checks for
semantic consistency with the edit prompt, ensuring accurate modification of mentioned objects
while preserving image fidelity. The second metric, Coherence, evaluates the edited image’s aesthetic
quality, including lighting and shadow consistency, style coherence, and edge smoothness. Extensive
empirical results show that our synthetically created HQ-Edit can even surpass human-annotated
data in enhancing instruction-based image editing models. For example, the HQ-Edit finetuned
InstructPix2Pix model substantially outperforms its vanilla version, achieving a 12.3 increase at
Alignment, and a 5.64 enhancement at Coherence.
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2 RELATED WORKS

Text Guided Image Editing Model Text guided image editing models have been extensively
discussed recently. Prompt2Prompt (Hertz et al., 2022) modifies words in the original prompts to
perform both local editing and global editing by cross-attention control. Imagic (Kawar et al., 2023)
optimizes a text embedding that aligns with the input image, then interpolates it with the target
description, thus generating correspondingly different images for editing. DiffEdit (Couairon et al.,
2022) locate edit position based on text (generate mask), and limit diffusion model to generate the
mask area. An important type of Text Guided is the instruction, which describes where, what and
how an image should be edited. Instruction-based image editing model will follow the instruction
without requiring elaborate descriptions or region masking, and enables users to modify images more
easily and flexibly. InstructPix2Pix (Brooks et al., 2023) is the first instruction-based image editing
model, by fine-tuning the Stable Diffusion (Rombach et al., 2022) on a dataset of image editing
examples, which generated by GPT-3 (Brown et al., 2020) and Prompt2Prompt. Subsequent work,
such as HIVE (Zhang et al., 2023) and Magicbrush (Zhang et al., 2024), have focused on improving
the quality or quantity of the dataset.

Instruction-based Image Editing Datasets Since it can be challenging to collect high-quality open
data for image editing, early approaches construct datasets by manually labeling image pairs (Zhang
et al., 2024). While this ensured a degree of quality, it inherently restricted the scale and diversity
of the dataset. For example, Magicbrush (Zhang et al., 2024) contains about only 10,000 edits, and
predominantly focuses on object-level transformations, largely overlooking global edits like style or
weather changes. On the other hand, there have been endeavors to synthesize large-scale datasets.
For example, InstructPix2Pix (Brooks et al., 2023) leverages GPT-3 and Prompt2Prompt (Hertz
et al., 2022) to generate editing pairs, and HIVE (Zhang et al., 2023) introduces reinforcement
learning from human feedback to better align the data with human expectations. However, these
synthetic data often have the drawback of low quality and inaccurate editing, resulting in such
trained image editing models outputting low-quality images and deviating from the actual edit
instructions. FaithfulEdits (Chakrabarty et al., 2023) attempts to mitigate these issues by using
inpainting techniques, followed by a filtering process involving VQA models. Yet, this method
tends to underperform, particularly in global edits requiring extensive image modification, like style
transfer.

Different from existing approaches, we leverage the latest foundation models, GPT-4 and DALL-E 3,
to generate high-quality image editing pairs at scale. We also introduce additional enhancements,
e.g., using GPT-4V to rewrite the edit instruction to align with the images more closely.

3 HQ-EDIT DATASET

The process of collecting HQ-Edit, illustrated in Figure 2, comprises three phases. Initially, triples
of input/output image descriptions and edit instructions are expanded into 100,000 instances during
the Expansion phase (Section 3.1). Subsequently, these instances are refined into detailed prompts
for DALL-E 3 to generate diptychs in the Generation phase (Section 3.2). Finally, alignment and
refinement occur in the Post-processing phase (Section 3.3).

3.1 EXPANSION

As illustrated in Figure 2, we first collect a small yet representative dataset comprising 203 samples
from online sources as the seed. To ensure alignment between the text descriptions and image pairs,
we manually revise the descriptions based on the disparities in content. Additionally, we include 90
samples from the Emu Edit (Sheynin et al., 2023) test set. We refer to these 293 samples as seed
triplets, with each triplet comprising input/output image descriptions along with corresponding edit
instructions.

To increase its size, we follow the pipeline in Self-instruct (Wang et al., 2022), which applies large
language models on a small set of seed samples to generate a large volume of expansions that are
both high in quality and consistent with the seed structure. Specifically, we utilize GPT-4 to expand
this initial set of 293 seed triplets into around 100,000 instances, ensuring a thorough representation
of diverse image editing scenarios. This strategy not only broadens the scope of edit instructions but

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Se
ed

Ex
pa

nd
ed

Input Output  Edit

Diptych Prompt

GPT-4

GPT-4

DALL·E 3

Image
Processer

Input Output  Edit

GPT-4V
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Input
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Step #1: Expansion Step #2: Generation Step #3: Post-Processing

Input Output  Edit

Input Output  Edit

Figure 2: Our method consists of three steps: (1)Expansion: Massively generating image descriptions
and edit instructions based on seed samples using GPT-4. (2)Generation: Generating diptychs
using GPT-4V and DALL-E according to image descriptions and instructions. (3)Post-Processing:
Post-process diptychs and edit instructions with GPT-4V and other various methods to produce image
pairs and further enhance the quality of the dataset in different aspects.

Table 1: An example of the diptych prompt.

Input: a graffiti-covered urban alley

Edit: present the photo with a high-

contrast black and white effect

Output: a high-contrast black and 

white image of a graffiti-covered 

alley

Generate a diptych with two side-by-side images. On the left, depict a 

vibrant, narrow urban alley teeming with colorful graffiti on its walls. 

Details should include assorted tags and street art in various styles, with a 

depth indicating the alley stretches far back. Miscellaneous urban 

elements like a dumpster, a stray cat, and fire escape ladders should be 

present, and a subtle sunlight to cast soft shadows, indicating a daytime 

setting. On the right, replicate this scene exactly but convert the image 

into high-contrast black and white with stark lighting to enhance textures 

and shadows, and accentuate the details of the graffiti, giving an edgy, 

gritty aesthetic. Each element from the left image must be recognizable 

in monochrome, especially the contrasts between the shaded areas and 

the illuminated ones created by an overhead midday light.

Input/Output/Edit Diptych Prompt For DALL-E 3

also leverages GPT-4’s knowledge to enrich the diversity and detail of image descriptions and edit
instructions.

3.2 GENERATION

Upon acquiring the essential instructions and image descriptions from Expansion (Section 3.1), the
next step is to generate paired images that align with the instruction data. We hereby employ DALL-E
3 (OpenAI, 2023a), a state-of-the-art image generation model capable of producing high-resolution
images based on textual descriptions. However, DALL-E 3 is not originally designed for instruction-
based image editing, and therefore cannot directly produce paired images. Thus, we devised a
workaround by creating diptychs consisting of input and output images side by side, followed by
post-processing (Section 3.3) to reconstruct paired images. Interestingly, we note that generating
input and output images together in diptych form, rather than separately, significantly enhances the
relevance and correspondence between image pairs. As outlined in Figure 2, each triplet is fed to
GPT-4 to form a diptych prompt for DALL-E 3 to generate a diptych. Moreover, to refine the diptych
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(a) Diptych (b) After Decomposing (c) After Warping

Figure 3: The effect of decomposing and warping in image post-processing.

prompts and improve consistency between image pairs, GPT-4 is also utilized to elaborate further
on the prompts. For instance, a basic description like “an elder Asian woman” can be enriched into

“an elderly East Asian woman with wrinkle-lined skin and white hair pulled back neatly, wearing a
traditional gold silk hanbok”. This enrichment adds complexity to the prompts and subsequently to
the generated diptychs. An example of the enhanced diptych prompt is shown in Table 1. Overall,
this process yields 98,675 data samples comprising input-output text pairs, edit instructions, and
diptych images.

3.3 POST-PROCESSING

After generating the diptych and its corresponding prompt, we implement a tailored post-processing
stage aimed at decomposing the diptych back into paired images and further refining the quality of
both image pairs and text instructions. This process involves two key steps: image post-processing
and instruction refinement.

Image Post-processing The goal of image post-processing is to decompose the diptych into paired
images as well as to improve their correspondence. We later use correspondence as a quality control
to (optionally) filter our training set. It consists of three steps: Decomposing, Warping, and Filtering:

1. Decomposing horizontally separates diptychs generated by DALL-E 3 into image pairs
using a retrained object detection model. Specifically, we train a YOLOv8 (Reis et al., 2023)
object detector on 3,000 diptych images, where human annotators manually mark bounding
boxes for both left and right segments.

2. Warping aligns the decomposed paired images based on semantic correspondence between
input and output images. We employ DIFT (Tang et al., 2023), an advanced diffusion-based
model, to establish pixel-wise semantic correlations between paired images. By leveraging
semantic correspondence, we determine the homography, which maps pixels from the input
image to corresponding pixels in the output image, facilitating the precise alignment between
them. An example of warping in improving alignment between input and output images is
illustrated in Figure 3.

3. Filtering assesses image distortion post-warping and retains those with minimal distortion
for training purposes. When the dimensions of the image before warping are denoted as {w1,
w2, h1, h2}, and those after warping as {w3, w4, h3, h4}, any image undergoing more than a
50% deformation on any single dimension before and after warping, such as w1 < 0.5 ∗ w3,
is filtered out. Note that this step is applied exclusively to the InstructPix2Pix fine-tuning
process for selecting high-quality training samples from our HQ-Edit dataset.

Instruction Refinement While image post-processing improves alignment between input and output
images, further refinement is vital to ensure that editing instructions are well-aligned with image
pairs. First, by leveraging GPT-4V, we rewrite edit instructions based on the differences between
input and output image details, thereby enhancing the detail of the text descriptions. Rewriting not
only helps fix discrepancies in existing descriptions but also includes visual differences between
background objects, which are often omitted in the original text descriptions. Additionally, we use
GPT-4V to directly generate inverse-edit instructions for transforming output images back to input
images. This simple strategy can effectively double the instruction count but at a marginal cost.

Overall, as demonstrated in Figures 4, the application of rewriting and inversion techniques substan-
tially increases both the length and diversity of edit instructions. This enrichment leads to a dataset
enhanced with a wider range of composite operations, resulting in a broader distribution of instruction
lengths. Our edit instructions not only have a larger average length but also display a more expansive
distribution, underscoring the effectiveness of these augmentation strategies.
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Figure 4: The histograms illustrate the distribution of edit instruction lengths for HQEdit and
InstructPix2Pix. HQEdit exhibits a more uniform and dispersed distribution, indicating a broader
diversity in the length of its instructions. This suggests HQEdit’s instructions are presented with
greater detail and flexibility, offering a richer information to carry out editing tasks more effectively.

3.4 DATA QUALITY ASSESSMENT

Diversity of Edit Instruction Unlike previous studies which either focus on global or object
editing (Brooks et al., 2023; Zhang et al., 2023; 2024), our editing operations span a broad spectrum,
encompassing both global operations—such as altering the weather, modifying the background,
and transforming the style—and local operations, which include a variety of object-based editing.
Figure 5 provides a comprehensive overview of the keywords in the edit instructions of HQ-Edit.
This diversity of edit instructions indicates that our HQ-Edit incorporates a vast range of editing tasks,
thereby demonstrating its extensive coverage of potential editing operations.

Alignment and Coherence To quantitatively evaluate the quality of editing, we introduce two formal
metrics: Alignment and Coherence. The Alignment metric assesses the semantic consistency of edits
with the given prompt,utilizing different criteria for various types of edits, such as global editing (e.g.,
stylization) and local editing (e.g., object removal), ensuring accurate modifications while preserving
fidelity in the rest of the image. On the other hand, the Coherence metric evaluates the overall
aesthetic quality of the edited image, considering factors such as lighting and shadow consistency,
style coherence, and edge smoothness. These metrics, performed using GPT-4V, produce scores from
0 to 100, with higher scores indicating better alignment or coherence.

We present evaluation example results with varying Alignment scores in Figure 6, and example images
showing different Coherence scores in Figure 7, both suggesting a potential (positive) correlation
with human perception. Detail of the evaluation can be found at supplemental material.

To further validate the effectiveness of our proposed metrics, as detailed in Section 4.1, we conducted
a human evaluation on 1,651 image pairs generated by DALL-E 3. Notably, our metric exhibited a
much higher correlation to human preference compared to the popular CLIP score.

Table 2: Comparison between different editing datasets.
Dataset Alignment ↑ Coherence ↑
InstructPix2Pix (Brooks et al., 2023) 68.29 83.35
HIVE (Zhang et al., 2023) 9.85 84.65
MagicBrush (Zhang et al., 2024) 80.61 65.42
HQ-Edit 92.80 91.87

Comparisons To demonstrate the su-
perior data quality of HQ-Edit com-
pared to existing public editing
datasets, we conduct evaluations on
500 randomly sampled data points
from InstructPix2Pix, HIVE, Mag-
icBrush, and HQ-Edit (Table 2), as-
sessing their Alignment and Coherence metrics. HQ-Edit significantly outperforms all others with
Alignment and Coherence scores of 92.80 and 91.87, respectively, compared to InstructPix2Pix
(68.29 and 83.35), HIVE (9.85 and 84.65), and MagicBrush (80.61 and 65.42), demonstrating its
superior data quality.

4 EXPERIMENTS

Baselines. We conducted a comparative analysis with existing open-source text-based image editing
methods, i.e., DiffEdit (Couairon et al., 2022), Imagic (Kawar et al., 2023), PromptInverse (Mokady
et al., 2022), HIVE (Zhang et al., 2023), MagicBrush (Zhang et al., 2024). To ensure reproducibility
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Figure 5: Distribution of edit types and keywords in instructions. The inner ring depicts the types of
edit instructions and the outer circle shows the frequencies of instruction keywords. This demonstrates
the rich diversity contained within our instructions.

Input Image "Alignment": 40 "Alignment": 80 "Alignment": 100

Figure 6: Examples of different Alignment. Instruction:"Add a comet in the sky." Editing follows the
edit instruction more accurately as Alignment increases.

and fairness, we utilized default hyperparameters from the official implementations. Our testing set
comprised the 293 samples mentioned in Section 3.1, with all input images generated by DALL-E 3
based on the input image descriptions.

Implementation details. We choose InstructPix2Pix (Brooks et al., 2023) as our default model, and
use HQ-Edit to fine-tune it. During training, we set the image resolution to 512, total training steps to
15000 on 4 A100 GPUs, learning rate to 5e-5, and conditioning dropout prob to 0.05. During the
editing, we set the image guidance scale to 1.5, the instruct guidance scale to 7.0, and the number of
inference steps to 20.
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Coherence : 20 Coherence : 40 Coherence : 100Coherence : 60 Coherence : 80

Figure 7: Examples of different Coherence. As the Coherence score increases, the image quality
improves significantly.

4.1 HUMAN EVALUATION

To verify the consistency of Alignment metric with human preference, we conduct a human evaluation
of 1,651 image pairs generated by DALL-E 3. We utilize Gradio (Abid et al., 2019) to create the
evaluation platform. For each assessment, edit instructions, the input/output image pairs, and their
corresponding descriptions are provided for evaluation. We categorize whether the change between
the input image and the output image matches the corresponding edit instruction into the following 5
levels:
1. Totally not related.
2. Not following edit, but there is some relation between the two images.
3. OK image pair, but not following the edit instruction.
4. Good image pair, but need to modify the edit instruction for better alignment.
5. Perfectly follows the edit instruction.

Table 3: Comparison of Alignment, Clip Score,
and Human Evaluation Score.

Method AVG. Score ↑ Correlation ↑
Alignment 41.78 0.3592
Clip Directional Similarity 25.12 -0.1446
Human Evaluation Score 61.21 1.0

We report the results in Table 3. As different
metrics have different ranges (i.e., Alignment
from 0 to 100, Clip Directional Similarity from
0 to 1, and Human Evaluation Score from 1 to 5),
a normalization procedure to a common scale of
0 to 100 is initially undertaken, followed by the
computation of the average score. Furthermore,
we use Pearson Correlations to analyze the correlation between Alignment and Clip Directional
Similarity to Human Evaluation Score.

We can observe that the proposed Alignment metric significantly surpasses CLIP (Radford et al.,
2021) Directional Similarity in accurately evaluating the fidelity of edit instructions to reflect the
alterations between the input and output images. This notable discrepancy underscores a significant
limitation of CLIP Directional Similarity, namely its inability to comprehensively grasp the nuances
of the editing process and accurately retain fidelity to the intricate details of the images.

4.2 QUANTITATIVE EVALUATION

Table 4: Comparison with existing text-based image editing
models.

Method Alignment ↑ Coherence ↑
Imagic (Kawar et al., 2023) 1.50 63.58
DiffEdit (Couairon et al., 2022) 21.53 81.81
PromptInverse (Mokady et al., 2022) 22.82 80.85
InstructPix2Pix (Brooks et al., 2023)

/Base 34.71 80.52
/XL 35.03 84.45

HIVE (Zhang et al., 2023)
w/conditional 40.34 82.93
w/weighted 40.68 84.94

MagicBrush (Zhang et al., 2024) 43.77 84.19
HQ-Edit 47.01 86.16

The comparison between our model
and existing text-based image editing
models is shown in Table 4. Com-
pared to other methods, our model per-
forms best in all metrics. Specifically,
our model outperforms the vanilla In-
structPix2Pix, achieving a notable in-
crease of 12.30 in Alignment (from
34.71 to 47.01) and 5.56 in Coherence
(from 80.52 to 86.16). Furthermore,
it is noteworthy that our model sur-
passes HIVE and MagicBrush, two
methods fine-tuned on InstructPix2Pix, further validating its capability to enhance InstructPix2Pix’s
image editing outcomes beyond their respective datasets.
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InstructPix2Pix Magic BrushHIVE HQ-EditInput

  Add snow to the scene of the image

Make flowers on ground region in the image

Make the subject surface to be iron material

Make her hair color to purple

Morph her into a robot

Figure 8: Qualitative comparison of InstructPix2Pix, MagicBrush, HIVE and HQ-Edit. HQ-
Edit demonstrates a more comprehensive diversity of editing instructions and possesses the capability
to manipulate images with greater precision and detail.

This distinction underscores the superior efficacy of HQ-Edit in augmenting InstructPix2Pix’s image
editing capabilities in comparison to existing datasets. Furthermore, it emphasizes the comprehensive
nature of our dataset, which comprises high-quality images and edit instructions, thereby establishing
a robust foundation for more intuitive and effective image editing procedures.

4.3 QUALITATIVE EVALUATION

As shown in Figure 8, a comparative analysis of various models’ performance is visually presented,
with each column dedicated to showcasing the results from a distinct model. For example, in the
second line, only the model trained with HQ-Edit understands the ground region in the edit instruction
and correctly adds the flowers in it as required.
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Input Image Make the image anime 

style

Change the background 

of the subject to beach

Add some snow to the 

scene of the image

Add wings

Figure 9: Qualitative results with the same input image but with different edit instructions. HQ-Edit
enhances the editing capabilities of InstructPix2Pix by enabling it to modify the same image of a
black cat in various ways.

It can also be seen in Figure 9 that the model trained with HQ-Edit can carry out various types of edit
operations. This observation not only underscores HQ-Edit’s advanced understanding of spatial and
contextual directives but also its capability to precisely manipulate image content in accordance with
specific editing specifications.

4.4 ABLATION STUDY

We hereby ablate the effectiveness of different post-processing strategies, introduced in Sec. 3.3.
Specifically, we use “RAW” to denote the simply decomposed DALL-E 3 images (i.e., image pairs
that directly splitted from diptych), and use “Rewrite”, “Filter”, “Warp”, and “Inverse” to mark
whether the corresponding operations are applied for further processing. For example, applying
all these four operations to process these will lead to our HQ-Edit dataset. Table 5 reports the
corresponding results.

Table 5: Ablation experiments on Post-processing.
RAW Rewrite Inverse Warp Filter Alignment ↑ Coherence ↑

34.71 80.52
✓ 16.83 85.74
✓ ✓ 28.62 86.68
✓ ✓ ✓ 34.42 87.53
✓ ✓ ✓ ✓ 43.41 87.56
✓ ✓ ✓ ✓ ✓ 47.01 86.16

Interestingly, by comparing the first
row and the second row, we note that
directly fine-tuning the model on the
raw DALL-E 3 images enhances its
performance on Alignment but hurts
Coherence. This potentially suggests
that while the image quality of these
DALL-E 3 generated images exceeds
that of the InstructPix2Pix dataset, the alignment between the image and edit instruction is less
satisfactory. This issue can be mitigated with our post-processing techniques. For example, our
rewrite method, when compared to the second row’s results, delivers improvements of 11.79 in
Alignment and 0.94 in Coherence. This boost, primarily enhancing the images’ alignment with
the edit operation, indicates DALL-E 3’s challenges in producing accurate images from dypitch
prompts—a gap our method effectively bridges. Additionally, employing the inverse technique,
which acts as a form of data augmentation, further elevates Alignment by 5.2 and Coherence by 0.94.
The warp technique serves to augment both pre- and post-edit image alignment, resulting in a notable
5.2 increase in alignment accuracy. Nonetheless, the application of warp may occasionally lead to
undesirable levels of image distortion. Through the implementation of a filtering mechanism targeting
such occurrences, we not only achieve a further enhancement in image alignment, registering a 3.6
increase, but also mitigate the associated data volume. Consequently, this filtering process incurs a
marginal reduction in Coherence, specifically by 1.4 points, yet remains superior to other baselines.
These results indicate that HQ-Edit holds significant potential to enhance instruction-based edit
models, especially when combined with effective post-processing.

5 CONCLUSION
In this study, we present an automatic way to synthesize the image editing dataset at scale. Specifically,
we leverage two foundation models, GPT-4V and DALL-E 3, to automatically generate, rewrite,
and expand a set of seed image editing data with high-quality. Additionally, we develop two GPT-
4V-based evaluation metrics to assess the alignment of the edited images to the editing instruction,
and the coherence of the image content. Our extensive experiments demonstrate that models trained
on HQ-Edit set a new state-of-the-art performance in the task of instruction image editing.
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A APPENDIX

B PROMPTS

We list all the prompts we used for data collection, including the EXPAND PROMPT used for the
Expansion step; DIPTYCH PROMPT and REWRITE PROMPT used for the Generation step; and
two metric prompt ALIGNMENT PROMPT and COHERENCE PROMPT for the evaluation.

B.1 STEP #1: EXPANSION

EXPAND PROMPT (GPT-4)

You are required to generate num examples considering the given examples. The examples
should vary widely, including different human characteristics (such as race, age, and body type),
various animals, insects, furniture, tools, or any object types, etc., and diverse backgrounds
(like different countries, natural environments, landscapes, or skies). The editing attributes
should also be diverse. Make sure the examples are clear, concise, comprehensive, and easier
for DALL-E 3 to generate this diptych image following the prompt. Describe the first image
in "INPUT_DESCRIPTION" like "input", the second image in "OUTPUT_DESCRIPTION"
like "output", both "INPUT_DESCRIPTION" and "OUTPUT_DESCRIPTION" should be
independent complete sentences, and the operation that edits the first image to the second image
in "EDIT_OPERATION", and the operation that edits the second image to the first image in
"INVERSE_EDIT_OPERATION", the output should be a list of JSON format as such:
{ "input": "INPUT_DESCRIPTION",
"edit": "EDIT_OPERATION",
"edit_inv": "INVERSE_EDIT_OPERATION",
"output": "OUTPUT_DESCRIPTION". }.
Do not output anything else, all examples should have complete keys "input", "edit", "edit_inv",
and "output".

B.2 STEP #2: GENERATION

REWRITE PROMPT (GPT-4)

Please rewrite the following prompt to make it more clear and concise, and easier for DALL-E
3 to generate this diptych image follow the prompt. The original prompt is: {prompt}. The
output prompt should start with "REVISED":

DIPTYCH PROMPT (DALL-E 3)

Create a diptych image that consists two images. The left image is {prompt}; The right image
keep everything the same but {edit_action}.

B.3 EVALUATION METRIC

ALIGNMENT PROMPT (GPT-4V)

From 0 to 100, how much do you rate for EDIT TEXT in terms of the correct and comprehensive
description of the change from the first given image to the second given image? Correctness
refers to whether the text mentions any change that are not made between two images. Compre-
hensiveness refers to whether the text misses any change that are made between two images.
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The second image should have minimum change to reflect the changes made with EDIT TEXT.
Be strict about the changes made between two images:
1. If the EDIT TEXT is about stylization or lighting change, then no content should be changed
and all the details should be preserved.
2. If the EDIT TEXT is about a local change, then no irrelevant area nor image style should be
changed.
3. The first image should not have the attribute described inside the EDIT TEXT, rate low, (<80)
if this happens.
4. Be aware to check whether the second image does maintain the important attribute in the left
image that is not reflected in the EDIT TEXT. Rate low (<50) if two images are not related.
Provide a few lines for explanation and give the final response in a json format as such:
{ "Explanation": "",
"Score": "", }

COHERENCE PROMPT (GPT-4V)

Rate the Coherence of the provided image on a scale from 0 to 100, with 0 indicating extreme
disharmony characterized by numerous conflicting or clashing elements, and 100 indicating
perfect harmony with all components blending effortlessly. Your evaluation should rigorously
consider the following criteria:
1. Consistency in lighting and shadows: Confirm that the light source and corresponding
shadows are coherent across various elements, with no discrepancies in direction or intensity.
2. Element cohesion: Every item in the image should logically fit within the scene’s context,
without any appearing misplaced or extraneous.
3. Integration and edge smoothness: Objects or subjects should integrate seamlessly into their
surroundings, with edges that do not appear artificially inserted or poorly blended.
4. Aesthetic uniformity and visual flow: The image should not only be aesthetically pleasing but
also facilitate a natural visual journey, without abrupt interruptions caused by disharmonious
elements.

Implement a stringent scoring guideline:
- Award a high score (90-100) solely if the image could pass as a flawlessly captured scene,
devoid of any discernible disharmony.
- Assign a moderate to high score (70-89) if minor elements of disharmony are present but they
do not significantly detract from the overall harmony.
- Give a moderate score (50-69) if noticeable disharmonious elements are evident, affecting the
image’s harmony to a moderate degree.
- Allocate a low score (30-49) for images where disharmonious elements are prominent, greatly
disturbing the visual harmony.
- Reserve the lowest scores (0-29) for images with severe disharmony, where the elements are
so discordant that it disrupts the intended aesthetic.

Your assessment must be detailed, highlighting the specific reasons for the assigned score based
on the above criteria. Conclude with a response formatted in JSON as shown below:
{ "Explanation": "<Insert detailed explanation here>",
"Score": <Insert precise score here> }

C MORE VISUALIZATION RESULTS

C.1 DATA POINTS

Here, we provide two randomly sampled data points from HQ-Edit in Figure 10 for visual assessment
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“Alignment”: 100 “Coherence”:100 “Alignment”: 60 “Coherence”:100

"input": "A German Shepherd with a black and tan coat, 

pointed ears, and a dog tag is sitting on a grassy lawn with trees 

and sunlight in the background. "

"edit": "Replace the German Shepherd with a fluffy white cat 

with blue eyes and a long tail, keeping the same background. "

"inverse-edit": "Replace the fluffy white cat with the original 

German Shepherd with a black and tan coat, pointed ears, and a 

dog tag. "

"output": "A fluffy white cat with blue eyes and a long tail is 

sitting on the same grassy lawn with trees and sunlight in the 

background."

"input": "portrait of a majestic golden eagle in flight against a 

warm sunset sky."

"edit": "adjust the overall image to a nighttime setting with a 

darker sky and cooler tones."

"inverse-edit": "adjust the overall image to a daytime setting 

with a brighter sky and warmer tones."

"output": "portrait of a majestic golden eagle in flight against 

a cooler, night-time sky with visible clouds and a darker 

ambiance."

Figure 10: Example data sampled from HQ-Edit. Our data contains two main parts, Instruction (input,
edit, inverse-edit, output) and Image (input image, output image). The two samples highlight that, 1)
the image is densely packed with details, 2) the input and ouput offers a comprehensive description
of the input and output image, and 3) the edit and inverse-edit instructions precisely delineate the
transformations occurring between the two images.

C.2 DATA POINTS COMPARISON

We visualize the data of InstructPix2Pix in Fig. 12, of MagicBrush in Fig. 13, of HIVE in Fig. 14,
and HQ-Edit in Fig. 11 with the Edit instruction, Aligment and Coherence. This shows that HQ-Edit
possesses higher image quality and better image-text alignment.
and more data with its Alignment and Coherence score from HQ-Edit in Figure 11.
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Edit: change her hair color to blonde and add waves to it

Alignment：100

Coherence：95

Edit: Replace the heavy-duty power drill with a high-tech precision 

power tool.

Alignment：100

Coherence：95

Edit: Change the weather to rainy.

Alignment：100

Coherence：95

Edit: Transform the elderly woman into a young woman, change 

her traditional dress to a modern black leather jacket, replace her 

sandals with white sneakers, and add a black handbag beside her 

on the bench.

Alignment：100

Coherence：90

Edit: Replace the metal hammer with a plastic toy hammer with a 

bright orange and blue handle.

Alignment：80

Coherence：95

Edit: Change the chameleon's body to a vivid blue hue while 

keeping the green color on its head crest and tail.

Alignment：100

Coherence：100

Edit: Replace the Japanese tea set with a Victorian tea set, 

including porcelain teapots and cups with floral designs, add a lace 

tablecloth, silver cutlery, and a decorative golden tea strainer. 

Change the backdrop to include a framed floral tapestry.

Alignment：100

Coherence：88

Edit: Alter the bird's color to vibrant blue.

Change the backdrop to include a framed floral tapestry.

Alignment：100

Coherence：95

Edit: Replace the bear's body with mechanical robot parts while 

maintaining the bear's head and the same upright pose.

Alignment：95

Coherence：90

Edit: remove the mud from the trail and replace it with dry leaves 

and stones.

Alignment：95

Coherence：90

Figure 11: Data of HQ-Edit, the left side is the input image and the right side is the output image.
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Edit: Make her a farmer

Alignment：80

Coherence：65

Edit: swap the cyclist for a biker

Alignment：40

Coherence：90

Figure 12: Data of InstructPix2Pix, the left side is the input image and the right side is the output
image.

Edit: Add a dolphin jumping out of the water

Alignment：100

Coherence：75

Edit: Turn on the faucet

Alignment：0

Coherence：95

Figure 13: Data of MagicBrush, the left side is the input image and the right side is the output image.

Edit: Change retro to futuristic

Alignment：85

Coherence：95

Edit: make the man a woman

Alignment：50

Coherence：30

Figure 14: Data of HIVE, the left side is the input image and the right side is the output image.
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