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Abstract

Intrinsically motivated exploration in reinforcement learning typically relies on
novelty, prediction error, or surprise to guide agents toward underexplored states.
However, these signals often ignore valuable structural knowledge gained from
prior tasks, leading to inefficient or redundant exploration. We introduce Cross-task
Successor Feature Similarity Exploration (C-SFSE), a novel intrinsic reward mecha-
nism that leverages retrospective similarities in task-conditioned successor features
to prioritize exploration of semantically meaningful states. C-SFSE constructs a
cross-task similarity signal from previously learned policies, identifying regions,
such as bottlenecks or reusable subgoals, that consistently support goal-directed
behavior. This enables the agent to focus its exploration on state space areas that
are not only novel but informative across tasks. We evaluate C-SFSE in continuous
control tasks to demonstrate its effectiveness in realistic and challenging settings
where traditional count-based or discrete exploration methods often fall short.
Specifically, we show that C-SFSE enables structured, sample-efficient exploration
in high-dimensional action spaces, as evidenced by its performance across several
MuJoCo environments.Our experiments demonstrate that C-SFSE consistently
outperforms existing intrinsic motivation and successor feature-based exploration
approaches in terms of both sample efficiency and overall performance.

1 Introduction

Exploration is a long-standing challenge in reinforcement learning that has been extensively studied,
resulting in a wide range of methods, from simple random action selection to more sophisticated
approaches like entropy maximization [12]. A category of exploration methods augments the
extrinsic reward received from the environment with intrinsic motivations, such as curiosity [24} [7]],
surprise [26]], diversity [[LO], and novelty [5 [21]], to encourage the agent to explore underexplored
regions of the environment.

These intrinsically motivated exploration methods mostly fall into two broad categories: (i) count-
based and (ii) prediction error-based methods [1l]. Count-based methods measure how surprising
a state-action pair is by tracking the number of times it has been visited. Prediction error-based
methods, on the other hand, learn a forward dynamics model of the environment and use the error
between the predicted next state and the actual next state as the intrinsic motivation [27, 24]. A
high prediction error indicates that the agent has encountered that state less frequently and therefore
receives a bonus reward to encourage further exploration of that region.

Although exploration of novel states is key to finding optimal decisions [30], it also presents several
problems. The first problem, as suggested by Lu et al. [19], is the curse of curiosity. Since the
uncertainty in a real-world environment is typically intractably large, a curiosity-driven agent might
devote significant effort gathering irrelevant information. Burda et al. [6] have shown how irrelevant
but complex patterns, like a noisy TV, can attract the attention of a curious agent. The second problem
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Figure 1: (a) In goal-directed tasks, agents must reinforce visitations to critical regions, like bottleneck
states, to reach the goal. However, novelty-based exploration methods penalize revisiting such states
after they have been previously visited, leading to inefficient behavior. (b) Our proposed method,
Cross-task Successor Feature Similarity Exploration (C-SFSE), leverages retrospective information
from previously learned tasks to identify and prioritize exploration of structurally important regions,
such as bottlenecks or subgoals, by measuring cross-task similarity in successor features. This enables
more informed and efficient exploration by recognizing states that are useful across multiple tasks.

is that encouraging exploration of novel regions could actually reduce useful exploration by ignoring
the importance of already visited states [31]]. For example, in the environment shown in Fig.[I] the
bottleneck state is an important milestone for reaching the goal, but it would no longer be incentivized
due to the reduced curiosity bonus.

Since not all available information is equally valuable, the agent should be able to prioritize what
information to acquire [19]. We argue that the retrospective information gained from the agent’s past
interactions with the environment can be leveraged to guide its behavior in downstream tasks, which
has often been overlooked by previous exploration methods. Consider the agent shown in Fig. [Tb]
deployed in the environment to learn a downstream task. By utilizing experience from previous
tasks, the agent should recognize that reaching the goal requires passing through the bottleneck
state. However, a curiosity-driven agent might instead focus on exploring novel states, ignoring the
bottleneck.

In this work, we propose Cross-task Successor Feature Similarity Exploration (C-SFSE), a method
that prioritizes exploration using cross-task retrospective similarity in successor features. Successor
features summarize the expected discounted future feature activations under a policy; by comparing
these features across different tasks, C-SFSE constructs a similarity-based intrinsic reward that
highlights states consistently useful for achieving goals, such as bottleneck regions or shared subgoals.
Unlike prior approaches that use successor features for single-task novelty estimation or pseudo-
counts, C-SFSE utilizes previously learned tasks to extract a richer, structurally grounded signal for
guiding exploration in new tasks.

We implement C-SFSE for continuous action spaces using a lightweight training architecture and
evaluate its performance on several MuJoCo environments. Our results show that C-SFSE consistently
improves sample efficiency and accelerates learning compared to existing SF-based and curiosity-
driven baselines.

2 Background and related work

Reinforcement Learning We consider the standard RL setting [4] in Markov Decision Process
defined by a tuple (S, A, P, R,~), where S is the state space, A is the action space, P : S x A —
[0, 1] is the state transition probability function, R : S x A — R is the reward function, and v € [0, 1)
is the discount factor. At each time step ¢, the agent observes state S; € S and takes an action 4; € A
sampled from a policy 7 : § x A — [0, 1], resulting in the transition to the next state S;11 with
probability p(Sty1|S, A¢) and the reward Ry 1.

The agent’s goal is to learn the optimal policy: 7*(a|s) = argmax,.¢" (s, a),V(s,a) € S x A, where
q™ (s, a) is the state-action value function.



q"(s,a) = Ep=[3220 7" R(St, Ar)[So = s, Ag = a] = Ep~[R(s,a) + v¢"(s',a')] (D)

Successor Representations and Successor Features The successor representation (SR; [9]) is a
state representation method that encodes the expected future state visitations following a policy. The
SR with respect to a policy 7 is defined as
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Successor features (SF; [2]]) generalize the successor representation for the function approximation
setting, and it is defined as
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where ¢ € R? is a set of basis features. The 1/, summarizes the dynamics induced by 7 in a given
environment. One can think of it as a discounted prediction of the agent about its future interactions
with the environment.

Successor features (SF) have been used to decompose action-value functions for efficient policy
transfer [2], estimate pseudo-counts for intrinsic motivation [21]], and discover options for task
decomposition [20]]. SF similarity has also been applied to identify landmarks in large environments
[L3]. In contrast, our work is the first to leverage cross-task SF similarity to guide exploration,
prioritizing states that are informative across tasks.

Successor features (SF) are typically learned via temporal difference (TD) error [3], but this can cause
representational collapse, where inputs map to indistinguishable embeddings [8]. To address this,
prior work has explored reconstruction losses [22], high-entropy regularization [18]], and orthogonality
constraints [21]. Simple SF [8] introduces a two-part loss that disentangles value learning from task
encoding, ensuring meaningful SF representations. We adopt this method for learning successor
features in our approach.

Intrinsically-motivated exploration We focus on the problem of intrinsically-motivated explo-
ration, where the agent utilizes some form of intrinsic information to encourage the exploration of
state space. In this setting, the total reward is comprised of the intrinsic motivation calculated by the
agent itself and extrinsic reward provided by the environment to the agent.

R (s,0) = RES™(s, @) + SRE(s,a), @

where R&¥™(s, a) is the extrinsic reward from the environment, R"""(a) is the intrinsic reward
produced by the agent, and [ is a scaling factor. The previous intrinsically-motivated exploration
approaches often introduced intrinsic rewards that try to encourage the agent to explore the less
visited parts of the environment.

Table 1: Intrinsically motivated exploration methods categorized by intrinsic reward types

Count-based Prediction error Informative exploration
Bellemare et al. [S]] Stadie et al. [27] Kim et al. [[15]]

Fuetal. [L1]] Pathak et al. [24] Zhang et al. [33]]

Tang et al. [29] Burda et al. [7] Luetal. [19]

Machado et al. [21] Hong et al. [[14] Yu et al. [31]

Rashid et al. [25] Yu et al. [32] Sukhija et al. [28]

Count-based exploration methods estimate surprise based on how frequently state-action pairs have
been visited, providing higher intrinsic rewards for rarely visited states. While effective in tabular
settings with discrete spaces, these methods face challenges in high-dimensional or continuous



domains, where exact counts are infeasible. To address this, approximation techniques have been
developed, including density estimation [} [11]], hashing-based state encodings [29]], and successor
feature-based pseudo-counts [21]].

In contrast, prediction error-based methods derive intrinsic rewards from the discrepancy between
predicted and actual outcomes, typically using forward dynamics models to estimate the agent’s
uncertainty about the environment [1]]. Agents are incentivized to explore transitions that yield
high prediction error, under the assumption that unfamiliar or poorly understood states are more
informative [[7, 127, 24, 32]].

However, both approaches are inherently tied to local novelty or uncertainty and do not leverage the
agent’s broader experience—particularly across tasks—to identify semantically meaningful regions
of the environment.To address the limitations of purely novelty-driven exploration, recent work has
proposed more informative intrinsic signals. For example, Kim et al. [15] learns latent representations
that preserve only task-relevant aspects for reward prediction, filtering out distractors. Others have
begun to incorporate retrospective signals: Zhang et al. [33]] and Yu et al. [31]] consider differences in
novelty over time to bias exploration toward persistently unfamiliar regions, while Lu et al. [19] and
Sukhija et al. [28] use task-level information gain to prioritize exploration targets.

In contrast, our proposed method—Cross-task Successor Feature Similarity Exploration (C-SFSE)—is
the first to leverage cross-task retrospective similarity of successor features as an intrinsic reward.
Unlike prior methods that operate within single-task dynamics or compute novelty based solely on
local uncertainty, C-SFSE identifies states that have consistently proven useful across different tasks.
This allows the agent to prioritize exploration of structurally informative regions—such as bottlenecks
or shared subgoals—that traditional novelty or uncertainty-based methods may overlook.

3 Method

To overcome the curse of curiosity, the agent must prioritize what information to seek instead of
curiously exploring the environment. We follow the notations in Lu et al. [[19] to define our method.
An agent must prioritize information to retain, since it cannot save all of the environment-relevant
information. This could be done through learning an environment proxy &£, which is designed to
encode essential features of the environment using far less memory, e.g., value functions, general value
functions (GVFs; [4]), or generative models of the environment. Then, to prioritize its exploration, the
agent should seek knowledge about an alternative objective, which we refer to as the learning target.
The learning target X is a function of the environment proxy £, which defines the prioritization of
information acquisition—what bits of information the agent should aim to learn in order to improve
its behavior.

Existing intrinsic exploration methods use intrinsic rewards based on either predictive information in
a temporally forward fashion or the empirical marginal distribution. These approaches incentivize
exploration of novel states and overlook the importance of states that have already been explored. We
argue that the information obtained from previous trajectories and tasks can also be used as a useful
exploratory signal. Consider Fig. [Tal where the environment is separated into two regions connected
by a bottleneck state. If the starting location and the goal location are in separate regions, to reach
the goal, the agent should go through the bottleneck state. However, previous intrinsic exploration
approaches instead encourage the agent to explore other parts, although they are less informative.

Successor features form a link between model-based and model-free approaches. Being predictive
of the future is a key property of model-based methods, while learning SF is a form of temporal
difference learning to predict a single policy’s utility, which is a characteristic of model-free methods
[L6]. One of the interesting properties of SF is that it captures environment dynamics induced by
a policy, which we use to find regions in the environment where different policies follow similar
discounted trajectories. We empirically demonstrate that encouraging the agent to visit these regions
improves sample efficiency.

Successor multi-task features We define the successor multi-task features (SMF) matrix as follows

Upi(s,a) = [Yren(s,a) Ymen(s,a) ... ¥r, en(s,a)l, (5)
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Figure 2: Architecture of our proposed C-SFSE. Successor features are learned using the method of
Chua et al. [8], where the task encoding vector w is optimized via a reward prediction loss, and the
basis features and successor features are trained using a temporal difference loss. To compute the
intrinsic reward, successor features from previously learned tasks are aggregated to form a cross-task
similarity matrix, which guides exploration by identifying states with high structural relevance across
tasks.

where II is a set of learned policies on tasks that differ in their reward function. Each column of
Uri(s,a) contains SF of s produced by m; € II. The ¥p(s,a) matrix can be considered as an

environment proxy £. It contains different successor features, each representing the environment
dynamics issued by a different policy. Intuitively, (s, a) is a compact model of environment based
on the policies in the set II. Although this model cannot be used for planning, we show that it could
be utilized to find learning targets useful for prioritized exploration.

Cross-task Successor Features Similarity Exploration (C-SFSE) The pairwise similarity matrix
of ¢ (s, a) can be calculated as M (s,a) = Uri(s,a)” - Ur(s,a). M;; is normalized using the ¢2
norm of successor feature vectors to indicate the cosine similarity between 1, and ¢ .. We use the
mean of the elements of M as the learning target X" for the agent. X’ encourages the agent to visit
regions that £ had previously retained information about, which are environment-relevant information
used for previously learned goals.

To avoid the representation collapse, where the temporal difference loss is minimized without
contributing to meaningful representations during learning SF, we follow the method described in
Chua et al. [8] by using the following loss functions

1 _
L, = §HRt+1 - ¢(St+1)TwH2 (6)

1 2
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where ¢(S;11) is constant. The architecture of our network is shown in Fig. [2} which is inspired by
Chua et al. [8]], and Liu and Abbeel [18]. To calculate the successor features (.S, A¢), the latent
representation is combined with the task encoding vector w, and fed into an multilayer perceptron to
generate representations for each action. These representations are then combined with w via a dot
product to estimate the action-value function. The ¥ry(S;, A;) is also calculated by rolling out the
previously learned policies.

To learn the basis features ¢ and successor features v, the losses in Eq. [6} and Eq. are
minimized using the mini-batch samples from the replay buffer, collected as experience tuples
(St, At, Riy1, St+1, w), while interacting with the environment [[17,[23]]. The task encoding vector
w only gets updated by optimizing L,,, whereas successor features v and basis features ¢ are learned
using L. The R;‘f{ contains both intrinsic motivation and extrinsic reward and is defined as
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Figure 3: Normalized returns in MuJoCo environments across 4 random seeds. In more straightfor-
ward exploration tasks like walker-stand the performance of C-SFSE is much like the Simple SF
method that has been used as the base successor feature estimator of C-SFSE. However, in harder
tasks the performance gap is more visible. It can be seen from the results that C-SFSE achieves an
improved performance in comparison with the baselines.
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where [ is the identity matrix, n is number of tasks used to create the Uyy(s, a), § is a scaling factor,
and e is the informative exploration activation threshold. We show that by using C-SFSE the agent
can explore its environment more efficiently, resulting in a better sample efficiency compared to
previous methods.

4 Experiments

We evaluate C-SFSE in continuous control environments to demonstrate its effectiveness in more
realistic and challenging settings where traditional count-based exploration or discrete approximations
often struggle. Continuous action spaces are common in robotics and embodied learning scenarios,
and they require exploration strategies that generalize across smooth, high-dimensional control
landscapes. These tasks amplify the exploration-exploitation dilemma, making them a rigorous
testbed for assessing the structural and retrospective benefits of our cross-task intrinsic reward.

C-SFSE is instantiated based on DDPG [[17]], with the successor feature learning approach from Simple
SF [8]], and our proposed intrinsic reward is included in the learning process. In our experiments, we
compare several baselines, including Simple SF, DDPG, and the count-based exploration method
using successor features introduced by Machado et al. [21]. We observe from Fig. 3] that C-SFSE
outperforms the baselines.

To shape the W (.S, A;), we use successor feature estimators trained on different tasks from the one
being trained. For the Walker-Stand task, we used estimators from Walker-Run and Walker-Walk. For
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Figure 4: Comparison between the initialization of state-action value in two instantiations of Simple
SF. One is using the pre-trained state-action values only trained on C-SFSE intrinsic reward without
receiving extrinsic reward from the environment, and the other follows the normal initialization of
Simple SF method. Runs are across 4 different seeds.

Walker-Walk, we used estimators from Walker-Stand and Walker-Run, and for Walker-Run, estimators
from Walker-Stand and Walker-Walk. For Quadruped-Walk, we used estimators from Quadruped-
Stand and Quadruped-Run, and for both Cheetah tasks, we used estimators from Cheetah-Flip and
Cheetah-Flip-Backward.

We further evaluate the effectiveness of the C-SFSE intrinsic reward in a transfer setting, where the
agent is initially trained using only intrinsic rewards. The resulting pre-trained action-value function
is then used to initialize learning in a downstream task, in which the agent receives only extrinsic
rewards and no additional exploration incentives. As shown in Fig.[4] the Simple SF agent initialized
with action-values learned via C-SFSE significantly outperforms an agent that learns from scratch.
Notably, both agents receive the same extrinsic rewards during downstream training, with the only
difference being the initialization of their action-value functions. These results indicate that C-SFSE
enables the agent to acquire transferable structural knowledge during intrinsic-only pretraining. The
learned representations support faster convergence in downstream tasks, even without additional
intrinsic rewards. Its broader implications are discussed in the conclusion.

5 Conclusion

In this work, we introduced C-SFSE, a novel intrinsic reward framework that leverages cross-task
similarity of successor features to guide exploration. By incorporating retrospective knowledge from
previously learned tasks, C-SFSE encourages agents to prioritize structurally important regions of
the environment, enabling more informed and sample-efficient exploration. Our experiments on
continuous control benchmarks demonstrate that C-SFSE consistently improves performance over
prior successor feature-based and intrinsic motivation methods.

Moreover, beyond its benefits during exploration, our findings show that C-SFSE also supports
effective pretraining: agents trained solely with intrinsic rewards acquire transferable structural
knowledge that accelerates learning in downstream tasks, even without further exploration incentives.
This highlights the potential of using intrinsic motivation purely for pretraining: C-SFSE enables
upfront exploration, allowing agents to rely solely on extrinsic rewards during deployment. This
decouples exploration from downstream task learning, an essential property for real-world applications
such as robotics, autonomous vehicles, or healthcare, where exploration at deployment can increase
risk and complicate control. Pretraining with intrinsic rewards simplifies deployment by enabling
agents to focus purely on task execution.

One current limitation is the reliance on previously trained policies to construct the successor multi-
task feature matrix, which may pose scalability challenges in real-world settings. Future work could
explore more efficient or online mechanisms for leveraging retrospective knowledge. Additionally,
using the multi-task successor feature matrix as a lightweight model of environment dynamics
presents an intriguing direction for bridging model-free and model-based reinforcement learning.
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