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ABSTRACT

Class incremental learning (CIL) aims to enable models to continuously learn
new classes without catastrophically forgetting old ones. A promising direction is
to learn and use prototypes of classes during incremental updates. Despite sim-
plicity and intuition, we find that such methods suffer from inadequate represen-
tation capability and unsatisfied confusion caused by distribution drift. In this
paper, we develop a Confusion-REduced AuTo-Encoder classifier (CREATE) for
CIL. Specifically, our method employs a lightweight auto-encoder module to learn
each compact class manifold in latent subspace, constraining samples well recon-
structed only on the semantically correct auto-encoder. Thus, the representation
stability and capability of class distributions are enhanced, alleviating the poten-
tial class-wise confusion problem. To further distinguish the drifted features, we
propose a confusion-aware latent space separation loss that ensures exemplars are
closely distributed in their corresponding low-dimensional manifold while keep-
ing away from the distributions of drifted features from other classes. Our method
demonstrates stronger representational capacity by learning disentangled mani-
folds and reduces class confusion caused by drift. Extensive experiments on mul-
tiple datasets and settings show that CREATE outperforms other state-of-the-art
methods up to 5.41%.

1 INTRODUCTION

Class Incremental Learning (CIL) aims to enable deep learning models to continuously learn new
classes while maintaining old knowledge. It has crucial implications in intelligent systems that re-
quire continuous evolution. For example, in an autonomous driving scenario, the system should
gradually adapt to new environments, infrastructures, and traffic patterns in different countries with-
out forgetting previous driving capabilities. A fundamental challenge in CIL is to tackle catastrophic
forgetting (French, 1999; Kirkpatrick et al., 2017; Lin et al., 2024), where the performance of pre-
viously learned knowledge significantly deteriorates when the model adapts to new class instances.
Existing studies are dedicated to mitigating this problem, and they primarily address the issue from
three perspectives. Knowledge retention-based methods reduce the forgetting of old knowledge by
preventing changes in intrinsic knowledge. Model expansion-based methods enhance adaptation to
new tasks by leveraging adjustments in model parameters. Prototype-based classification methods
reduce forgetting by focusing on changes in the embedding.

Specifically, knowledge retention-based approaches (Douillard et al., 2020; Chen et al., 2022; Gao
et al., 2023; Fan et al., 2024) aim to discover and maintain inherent knowledge structures through
regularization, thereby reducing changes in the model’s intrinsic knowledge structure and minimiz-
ing the forgetting of old knowledge. Such methods impose significant constraints on the model’s old
knowledge, resulting in difficulties when introducing new knowledge. Therefore, model expansion-
based approaches (Yan et al., 2021; Wang et al., 2022; 2023) are designed to dynamically adjust the
representational capacity of a model to fit continuously evolving data. However, this type of ap-
proach typically involves a large number of parameters, and there is redundancy between the newly
expanded and old branches. Prototype-based methods (Rebuffi et al., 2017; McDonnell et al., 2024;
Zhou et al., 2024) construct and update prototypes, transforming the inference into a matching be-
tween features and prototypes. Such approaches are straightforward, intuitive, and require only a
small number of parameters, recently showing promising prospects. However, in a class incremental
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Figure 1: T-SNE visualization of feature distributions under CIFAR100 Base10 Inc10. The points
marked with crosses represent features of the initial phase, while the points marked with circles
indicate features of the final phases. (a) Class distributions and prototypes in the initial phase. (b)
A drift in incremental learning leads to confusion in class distribution. (c) Our method exhibits
reduced confusion during the drift. (d) The Pearson Correlation Coefficients (PCC) of prototypes.

learning scenario, where the distribution continuously changes, prototype-based methods are prone
to occur class confusion (Yu et al., 2020; McDonnell et al., 2024).

We analyze prototype-based methods and identify two key factors that limit their performance.
Firstly, real data often resides on a manifold structure in latent spaces. Observe from Fig. 1(a),
Class 7 forms two distinct clusters in the latent feature space, while the prototype primarily lies
in one of the clusters. This shows a single discriminative vector has limited representation capa-
bility and fails to fit the manifold distribution, leading to class-wise confusion issues. Secondly,
since incremental learning cannot leverage the entire dataset, old classes often suffer from a drift
after learning a new task. Fig. 1(b) shows that the positions of old classes shift severely, exhibiting
significant changes in class manifolds and dispersion of features that lead to overlapping class dis-
tributions. We also calculate the Pearson correlation coefficients (PCC) (McDonnell et al. (2024))
of prototypes to verify the confusion between classes. Fig.1(d) shows that different prototypes have
high linear correlations.

To address the aforementioned issues, this paper proposes a confusion-reduced auto-encoder classi-
fier (CREATE) method as a solution. Considering auto-encoders serve as manifold learners, learn-
ing a manifold structure for each class can enhance the stability of representations while effectively
capturing the essential characteristics of the categories (Bengio et al., 2013; Li et al., 2020; Zheng
et al., 2022), we utilize auto-encoder reconstructions to learn class distributions. Specifically, the
auto-encoder module is applied for each class to capture low-dimensional essential structures and
implicitly encode the feature distribution into it, thus tackling the problem of insufficient represen-
tational capacity. Due to the overlap of the shifted representations caused by dynamically changing
distributions, confusion still persists in the reconstructed representations. We further designed a
confusion-aware separation loss that separates features of different classes in the class-specific la-
tent space to mitigate the class-wise confusion.

The proposed method has the following advantages: (1) The proposed auto-encoder reconstruction
modules are representation condensed and lightweight. It can effectively fit the continuously chang-
ing manifolds of data and is easily applied to existing methods. (2) It can effectively discriminate
samples that suffer from distribution shifts in the feature space, thereby reducing class confusion
and forgetting. Fig. 1(c) exhibits the manifold distributions in latent space, demonstrating that our
method learns disentangled manifolds and reduces the class confusion caused by drift. The main
contributions of this paper are summarized as follows.

• We identify the issue of class-wise confusion in incremental learning, and propose a confusion-
reduced auto-encoder classifier, which uses a lightweight auto-encoder for each class to learn a
compact manifold. This paradigm can exhibit a more expressive capability and effectively adapt to
feature drift at the reconstruction level.

• To further reduce the confusion of drifted features, we employ a confusion-aware separation loss at
the class subspace level by disentangling samples from other classes’ distributions in the subspace.
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• Our proposed method reduces class-wise confusion and has been validated through extensive
experiments. It achieves better performance than the state-of-the-art methods up to 5.41% and is
easily adaptable to other methods.

2 RELATED WORK

2.1 CLASS INCREMENTAL LEARNING

Class incremental learning generally assumes that only a small number of samples can be stored for
old classes, and task-id is not available in the inference phase. Existing methods can be divided into
three main categories.

The knowledge retention-based methods aim to maintain the structure of old knowledge within the
model and reduce knowledge variations to mitigate catastrophic forgetting. MGRB (Chen et al.,
2022) constructs knowledge structure for existing classes and is utilized for regularization when
learning new classes. EDG (Gao et al., 2023) maintains the global and local geometric structures of
data in the mixed curvature space. DSGD (Fan et al., 2024) proposes a dynamic graph construction
and preserves the invariance of the subgraph structure, which maintains instance associations during
the CIL process.

The model expansion-based methods dynamically adjust model architecture to adapt new classes.
For example, DER (Yan et al., 2021) expands a new backbone for each new task. The enhanced
features from multiple backbone networks are concatenated for classification. FOSTER (Wang et al.,
2022) adds an extra backbone for discovering complementary features and eliminates redundant
parameters by distillation. Memo (Zhou et al., 2023b) expands specialized blocks for new tasks to
obtain diverse feature representations.

The prototype-based methods establish a prototype representation for each task and update the pro-
totypes in subsequent phases, classifying samples into the category of the most similar prototype in
the inference phase. Some prototype-based methods use non-parametric class means as their proto-
types. For example, iCaRL (Rebuffi et al., 2017) suggests the nearest class mean (NCM) classifier
determines the predicted label based on the distance from the sample features to the class center.
SDC (Yu et al., 2020) employs a metric loss-based embedding network and applies semantic drift
compensation to adjust the prototypes closer to their correct positions. In recent years, paramet-
ric class prototypes have gained widespread use and achieved impressive performance. PODNet
(Douillard et al., 2020) learns multiple proxy vectors and predicts based on the local similarity clas-
sifier. RandPAC (McDonnell et al., 2024) proposes projecting features to an expanded dimensional
where enhanced linear separability of prototypes. SEED (Rypeść et al., 2024) employs one Gaussian
distribution for each class and performs an ensemble of Bayes classifiers.

2.2 REPRESENTATION OF PROTOTYPES AND DISTRIBUTIONS

Many methods use prototypes to represent a class for classification. For example, Snell et al. (2017)
formulates prototypical networks for few-shot classification. It produces a distribution for query
points using a softmax over distances to the prototypes in the embedding space. Huang et al. (2022)
suggests representing a class with a prototype and multiple sub-prototypes, allowing the model to
better capture the diversity within the same class. Zhou & Wang (2024) proposes utilizing the
centers of sub-clusters as a set of prototypes that comprehensively represent the characteristic prop-
erties. Apart from prototypes, recent methods utilize distributions for representing a category. SEED
(Rypeść et al., 2024) uses multivariate Gaussian distributions to represent each class and employs
Bayesian classification from all experts. This method allows for more flexible and comprehensive
class representations. Considering the complex underlying structure of data distributions. Lin et al.
(2024) models each class with a mixture of von Mises-Fisher distributions by multiple prototypes.

Auto-encoder structure is a type of manifold learner that can embed high-dimensional data into a
low-dimensional manifold through nonlinear mapping. It is widely used for various tasks, such as
anomaly detection, novel class detection, and few-shot learning. Kodirov et al. (2017) introduce a
semantic auto-encoder that maps visual features to a low-dimensional semantic space, where incor-
porating class distribution information. Kim et al. (2019) utilizes a variational auto-encoder to learn
a latent space with strong generalization capabilities for unseen classes through data-prototype im-
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Figure 2: The overview of the proposed method confusion-reduced auto-encoder classifier (CRE-
ATE). The auto-encoder (AE) learns a subspace for each class and generates a latent class distri-
bution. Preserving the trained old AEs facilitates memory retention for old classes, while making
these AEs trainable also ensures adaptability to updates in the feature extractor ϕt. To further alle-
viate class confusion resulting from drifted distributions in class incremental learning, we employ a
confusion-aware separation loss LCR to separate samples from other classes within each subspace.

age pairs. After training, data features are closely distributed around their corresponding prototype
feature points in the latent space. Our method considers utilizing auto-encoders to enhance represen-
tation capability, as data concentrates around a low-dimensional manifold in the latent space, which
is a superior characteristic for CIL to learn efficient representations of classes.

3 METHODS

In this section, we give a description of our confusion-reduced auto-encoder classifier in CIL 3.1.
The core idea of our method is to construct a lightweight learnable auto-encoder (AE) module for
each class. Preserving these trained class-wise AEs can alleviate catastrophic forgetting since they
represent accurate and complete class distributions, as detailed in Section 3.2. To further mitigate
the accumulated class confusion of AEs arising from distribution drift in CIL, we also propose a
confusion-aware latent space separation loss in Section 3.3. Our framework is shown in Fig. 2.

3.1 PROBLEM SETUP

In CIL, we usually assume knowledge is not learned at once but from a sequence of T tasks (phases).
Dt = {(xt

i, y
t
i)}nj=1 represents n samples from the task t. Ct is the number of classes seen by phase

t, and ni represents the number of samples in class i. In rehearsal-based methods, Mt represents
the memory buffer in the t-th task. Therefore the training dataset in task t is Dt

⋃
Mt. Note that

the sets of new classes learned in different incremental tasks are mutually exclusive. The model in
phase t can be decomposed into feature extractor ϕt and classification module θt.

3.2 LEARNING DISENTANGLED MANIFOLDS BY AUTO-ENCODER CLASSIFIER

To effectively depict class distributions and also avoid excessive computation, we consider con-
structing an auto-encoder module for each category so that the original features can be mapped
into the corresponding subspace. The learned subspaces compress the patterns of samples into a
compact and continuous low-dimensional manifold, allowing the auto-encoder to better model the
distribution of the class. To adapt to new tasks and remember old classes, the previous auto-encoders
are retained and kept trainable, and class-specific auto-encoders for new classes are appended. We
hope the class-specific auto-encoders can identify samples of their own categories within the dataset.
Therefore, we consider using reconstruction error to measure the degree of consistency between the
samples and the auto-encoder subspace.
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The overall framework is shown in Fig. 2. The feature extractor is utilized to obtain features,
followed by a group of class-specific auto-encoders that compress and reconstruct these features for
classification. Specifically, for class i, we construct an auto-encoder AEi, consisting of an encoder
fi : Rd → Rl(d > l) learns a mapping that projects the original features into latent subspace,
and a decoder gi : Rl → Rd that reconstructs features based on the latent representations. Both
encoders and decoders use a 1×1 convolutional layer with a tanh activation function. It takes features
h = ϕ(x) as input (here, the task index t is ignored for clarity), and outputs the reconstructed
embeddings on each module: h̃i = gi(fi(h)), where i = 1, ..., Ct. The reconstruction error of
representation h on the i-th auto-encoder is noted as ei =∥ h̃i − h ∥. When a new task arrives,
auto-encoders of previous classes are reserved and keep updating to new distributions.

We use the reconstruction errors as the classification metric. On the one hand, we hope the sample
on the ground truth auto-encoder has the smallest reconstruction error. This indicates that it has
effectively captured the semantic knowledge and learned the distribution of specific classes. This
can be achieved by minimizing the reconstruction errors to zero for samples on their ground truth
auto-encoders. On the other hand, we expect samples processed by modules that do not belong to
their specific classes to exhibit larger errors, indicating that mapping samples to the wrong subspaces
results in significantly mismatched. Therefore, we process the reconstruction errors as Eq.1 to obtain
the predicted probability of the sample x:

pi =
exp(−αei)∑Ct

j=1 exp(−αej)
, (1)

where α is a positive hyper-parameter used to adjust the scale of the reconstruction errors. We can
see that the probability pi is negatively correlated with the distance between the reconstructed feature
on i-th auto-encoder and the original feature. Then, we employ the cross-entropy loss function to
measure the difference between the predicted probability distribution and the ground truth, which is
helpful for inter-class discrimination:

LCE = −
Ct∑
i=1

yi log pi. (2)

To mitigate forgetting of old classes, we apply the distillation loss on the logits-level, formulated as:

LKD = −
Ct−1∑
i=1

exp(−αei/T )∑Ct−1

j=1 exp(−αej/T )
log

exp(−αei/T )∑Ct−1

j=1 exp(−αej/T )
, (3)

where ei is the logits provided by the old network. Note that the feature extractor and auto-encoders
remain unfrozen during training to adapt to new tasks.

3.3 CONFUSION-AWARE LATENT SPACE SEPARATION

Due to the feature shift in incremental learning, confusion between classes is becoming increasingly
severe, leading to catastrophic forgetting. We propose further class separation within the subspace
to reduce confusion when distinguishing shifted features. This process is essential as features of dif-
ferent classes may distribute in similar positions after a shift, causing compressed low-dimensional
features relatively similar to each other on the manifold, and so do the reconstructed features. The
approximate reconstruction errors thus confuse classification.

Firstly, we measure the confusion score si for sample i expressed as follows:

si =
|ei(2) − ei(1)|
eimax − ei(1)

, (4)

where ei(1) and ei(2) are the smallest and the second smallest values in the error sequence ei, respec-
tively. A smaller s for a sample suggests similar reconstruction errors across different auto-encoders,
indicating significant confusion.
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Therefore, we suggest that samples should located far from the manifold region in their non-ground
truth auto-encoders’ latent space. We employ a contrastive loss in the class-specific subspaces,
written as follows:

LCST =

Ct∑
i=1

− 1

|P (i)|
∑

p∈P (i)

log
exp(zTi · zpi

/τ)∑
k∈P (i)∪N(i) exp(z

T
i · zki

/τ)
, (5)

where zi = fi(ϕ(x)), P (i) represents the positive samples set of class i, and zpi is the latent
representation on the i-th class auto-encoder for samples that share the same label as zi. N(i)
denotes the set of negative samples of class i.

Optimizing Eq. 5 allows us to learn more accurate manifold and reduce class-wise confusion prob-
lem. This is achieved by maximizing the mutual information between positive samples, which draws
positive pairs closer in the latent space and fits a low-dimensional manifold, while simultaneously
minimizing the mutual information between negative samples, thereby pushing them further away
from the manifold region of the particular class.

Considering the varying degrees of sample confusion, we transpose the confusion scores into
weights by Eq. 6 and get a confusion-reduce contrastive loss function formulated as Eq. 7.

wi = 1 + e−βsi , wi ∈ [1, 2], (6)

LCR =

Ct∑
i=1

−1

|P (i)|
∑

p∈P (i)

wi log
exp(zTi · zpi

/τ)∑
k∈P (i)∪N(i) exp(z

T
i · zki

/τ)
. (7)

The complete loss for this model is formulated as:

L = LCE + LKD + λLCR. (8)

In summary, our proposed model addresses two issues in existing prototype-based methods: in-
sufficient representational capacity and sensitivity to shifted features. We enhance representational
capability by utilizing a group of auto-encoders to capture the unique distribution information of
each class and improve class separation in the latent representation to reduce sensitivity to shifted
features. Ultimately, this approach helps mitigate the confusion problem encountered in incremental
learning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. CIFAR100 (Krizhevsky et al., 2009) consists of 32x32 pixel images and has 100 classes.
Each class contains 600 images, with 500 for training and 100 for testing. ImageNet100 (Deng
et al., 2009) is selected from the ImageNet-1000 dataset, comprising 100 distinct classes. Each class
contains about 1300 images for training and 500 images for testing.

Protocols. For CIFAR100 and ImageNet100, we evaluate the proposed method on two widely used
protocols: Base0 for learning from scratch and Base50 for learning from half. In Base0, classes are
evenly divided. Inc10 and Inc20 refer to tasks containing 10 and 20 classes, incrementally learning
until all classes are covered. Up to 2,000 exemplars can be stored. Base50 refers to a model that
learns 50 classes in the first phase, and then learns the remaining 50 classes in Inc5 mode (5 classes
per task) or Inc10 mode (10 classes per task). The memory buffer is set to 20 exemplars per class. We
denote the accuracy after task t as At and use the final phase accuracy AT and average incremental
accuracy Ā = 1

T

∑T
t=1 At for comparison. We use ‘#P’ to denote the parameters count in million

after the final phases.

Implementation details. The proposed method is implemented with PyTorch and PyCIL (Zhou
et al., 2023a). Experiments are run on NVIDIA RTX3090 GPU with 24 GB. We employ ResNet18
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Table 1: Last and average accuracy of different methods on CIFAR100. The best performance is
highlighted in bold, while the second-best performance is indicated with underline.

Methods
CIFAR100 B0 CIFAR100 B50

Inc 10 Inc 20 Inc 5 Inc 10

Last Avg Last Avg Last Avg Last Avg

iCaRL (CVPR’ 2017) 49.52 64.42 54.23 67.00 47.27 53.21 52.04 61.29
PODNet (ECCV’ 2020) 36.78 55.22 49.08 62.96 52.11 62.38 55.21 64.45

WA (CVPR’ 2020) 52.30 67.09 57.97 68.51 48.01 55.90 55.85 64.32
DER (CVPR’ 2021) 58.59 69.74 62.40 70.82 56.57 64.50 61.94 68.24

Foster (ECCV’ 2022) 62.54 72.81 64.55 72.54 60.44 67.94 64.01 70.10
DyTox (CVPR’ 2022) 58.72 71.07 64.22 73.05 - - 60.35 69.07
BEEF (ICLR’ 2023) 60.98 71.94 62.58 72.31 63.51 70.71 65.24 71.70
DGR (CVPR’ 2024) 57.10 68.40 61.90 70.70 54.70 61.90 58.90 66.50
DSGD (AAAI’ 2024) 63.18 73.01 67.67 72.91 63.58 68.14 65.83 70.02

CREATE 63.69 75.60 69.99 78.46 63.53 72.27 68.40 75.52
Gain (∆) +0.51 +2.59 +2.32 +5.41 +0.05 +1.56 +2.57 +3.82

Table 2: Last and average accuracy of different methods on ImageNet100. The best performance is
highlighted in bold, while the second-best performance is indicated with underline. ‘#P’ represents
the number of parameters (million).

Methods
ImageNet100 B0 ImageNet100 B50

Inc 10 Inc 20 Inc 5 Inc 10

#P Last Avg #P Last Avg #P Last Avg #P Last Avg

DyTox 11.00 61.78 73.40 11.00 68.78 76.81 11.00 - - 11.00 65.76 74.65
iCaRL 11.17 50.98 67.11 11.17 61.50 73.57 11.17 50.52 57.92 11.17 53.68 62.56

PODNet 11.17 45.40 64.03 11.17 58.04 71.99 11.17 64.70 72.59 11.17 62.94 73.83
WA 11.17 55.04 68.60 11.17 64.84 74.44 11.17 - - 11.17 56.64 65.81

Foster 11.17 60.58 69.36 11.17 68.88 75.27 11.17 67.78 76.21 11.17 63.12 69.85
DGR 11.17 64.00 72.80 11.17 71.10 77.50 11.17 62.60 70.50 11.17 69.30 74.90
DER 111.7 66.84 77.08 55.85 72.10 78.56 122.87 69.30 77.69 67.02 71.10 77.57

DSGD 111.7 68.32 75.68 55.85 71.76 77.07 122.87 69.50 77.20 67.02 73.01 80.30
BEEF 111.7 71.12 79.34 55.85 - - 122.87 - - 67.02 74.62 80.52

CREATE 14.44 66.58 77.49 14.44 74.34 81.37 14.44 71.42 79.44 14.44 77.06 82.43
Gain (∆) +2.24 +2.81 +1.92 +1.75 +2.44 +1.91

(without pre-training) as the feature extractor for both CIFAR100 and ImageNet100. We adopt an
SGD optimizer with a weight decay of 2e-4 and a momentum of 0.9. We train the model for 200
epochs in the initial phase and 120 epochs in the subsequent incremental phase. The batch size
is 128, and the initial learning rate is 0.1. We set the hyper-parameter α to 0.1 and β to 2. The
temperature τ in LKD is set to 2, and λ is set to 1 for all experiments.

4.2 EXPERIMENTAL RESULTS

Comparative performance. Table 1 and Table 2 presents the comparative experiments on CI-
FAR100 and ImageNet100. We run four settings on the CIFAR100 and Imagenet100 dataset includ-
ing both learning from scratch and learning from half, incremental learning 5 and 10 phases, and
report the last phase accuracy and the average accuracy. It can be seen that our method surpasses
the best results in both last accuracy and average incremental accuracy by 1.36% and 3.35%, re-
spectively, on average across the four settings on CIFAR100. The greater enhancements in average
incremental accuracy indicate that our method ensures a steady improvement throughout the entire
learning progress, rather than only in the final phase. In the learning from half setting Base50 Inc10,
our method gets an average accuracy improvement of 3.82% over BEEF (Wang et al., 2023) and a
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Figure 3: Analysis of confusion degree and hyper-parameter sensitivity.

final accuracy enhancement of 2.57% over DSGD (Fan et al., 2024). In the learning from scratch
setting Base0 Inc20, our method achieves 2.32% in last accuracy and 5.41% in average accuracy
higher than the DSGD and DyTox, respectively.

Table 2 presents the comparative experiments on ImageNet100. Our method also surpasses existing
state-of-the-art methods by a significant margin in most settings. In Base50 Inc5, our method gets
an average accuracy improvement of 1.91% and a final accuracy enhancement of 2.44% over BEEF.
Our framework can capture intrinsic manifold distribution and improve the separability of confusing
features, yielding remarkable results in both Base0 and Base50 protocols.

Parameter efficiency. In addition to comparative accuracy, our method exhibit parameter efficiency
in ImageNet100. The comparative experiments conducted on the ImageNet100 are presented in Ta-
ble 2. Our proposed method consistently outperforms the state-of-the-art methods by 5.28% and
1.91% in the average accuracy of learning from half settings, and reduces the parameter by 88.2%
and 78.4%, respectively. This reduction highlights the superiority of our auto-encoder architecture.
Our method benefits from the enhanced representational ability and reduced confusion under severe
drifts. Although BEEF achieves a higher performance in the Base10 Inc10 setting, it comes at the
cost of approximately ten times the parameter scale compared to our method. Our method requires
significantly fewer parameters than model expansion and fusion-based approaches and achieve com-
petitive results.

4.3 ABLATION STUDY

In this section, we conduct experiments to verify the effectiveness of the components. We validated
the following three aspects: (1) quantitative analysis on component effectiveness, (2) class confusion
reduction analysis, and (3) impact of hyper-parameters.

Table 3: Ablations study in our method. We report the accuracy of each phase and the average
accuracy under CIFAR100 Base50 Inc10.

Comp. NCM AEs LCR 50 60 70 80 90 100 Avg
NCM ✓ 84.80 75.90 69.94 65.82 63.03 62.09 70.26

Ours-AE ✓ 84.20 79.75 76.13 71.26 68.47 65.31 74.19
Ours ✓ ✓ 84.64 80.42 76.79 72.80 70.09 68.40 75.52
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Figure 4: Reconstruction errors of misclassified data in CIFAR100 Base50 Inc5 phase2.

Effectiveness of Components. We conduct ablation experiments on CIFAR100 Base50 Inc10.
NCM means predicting the labels of test samples by nearest-class-means that computing distances
between their embeddings and prototypes of each class. Ours-AE infers labels based on class-
specific auto-encoders without the LCR. Ours contains both the proposed framework and LCR.
As shown in Table 3, the accuracy increases as we gradually add the proposed components. The
proposed framework improves the average accuracy by 3.93% over the classical prototype-based
method. The final composition of the method raises the performance to 75.52%.

Class confusion analysis. We draw the box plot of confusion scores for multiple methods on the
test set in Fig. 3(a). The confusion score is defined by Eq. 4, where for other methods, the variable e
is replaced with logits. A smaller confusion score signifies a greater degree of confusion in category
predictions. Our method exhibits a higher confusion scores compared to other approaches. It can
be observed that both the mean value of the confusion score and the upper quartile are higher than
those of the comparison methods. This indicates that our model can effectively distinguish and
reduce confusion when faced with shifted features.

Fig. 4 shows the impact of our confusion-aware separation loss after learning the second phase.
We find that implementing LCR increases the reconstruction error of the auto-encoder for shifted
samples that do not belong to their respective semantic categories. Thus, LCR can help enhance the
class separation in the latent space, thereby alleviating the degree of confusion for CIL.

Impact of hyper-parameters. The hyper-parameters used in the method are α for scaling recon-
struction errors and β for controlling samples confusion weights. We set α to 0.1 in all experiments
to prevent overflow when taking the logarithm of the reconstruction errors. Thus, we conducted
experiments on the remaining hyper-parameter β. As shown in Fig. 3(b), among β values of 1, 2, 3,
4, 5, and 10, the average accuracy remains relatively stable in various settings.

5 CONCLUSION

In this paper, we propose an auto-encoder classifier to reduce class-wise confusion in incremental
learning. It employs a lightweight auto-encoder module and learns disentangled manifolds for each
class to represent their distribution. Moreover, it constrains latent spaces by a confusion-aware
separation loss that enhances class separability. This approach addresses the problem of insufficient
representational capacity and severe class confusion in the dynamic distribution-changing situation
of prototype-based CIL methods. Experimental results show that our method achieves state-of-the-
art performance in various scenarios.
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