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Abstract

It is a well-known fact that correlated equilibria can be computed in polynomial
time in a large class of concisely represented games using the celebrated Ellipsoid
Against Hope algorithm (Papadimitriou and Roughgarden, 2008; Jiang and Leyton-
Brown, 2015). However, the landscape of efficiently computable equilibria in
sequential (extensive-form) games remains unknown. The Ellipsoid Against Hope
does not apply directly to these games, because they do not have the required
“polynomial type” property. Despite this barrier, Huang and von Stengel (2008)
altered the algorithm to compute exact extensive-form correlated equilibria.
In this paper, we generalize the Ellipsoid Against Hope and develop a simple
algorithmic framework for efficiently computing saddle-points in bilinear zero-sum
games, even when one of the dimensions is exponentially large. Moreover, the
framework only requires a “good-enough-response” oracle, which is a weakened
notion of a best-response oracle.
Using this machinery, we develop a general algorithmic framework for computing
exact linear Φ-equilibria in any polyhedral game (under mild assumptions), includ-
ing correlated equilibria in normal-form games, and extensive-form correlated equi-
libria in extensive-form games. This enables us to give the first polynomial-time
algorithm for computing exact linear-deviation correlated equilibria in extensive-
form games, thus resolving an open question by Farina and Pipis (2023). Further-
more, even for the cases for which a polynomial time algorithm for exact equilibria
was already known, our framework provides a conceptually simpler solution.

1 Introduction

The correlated equilibrium (CE), introduced by Aumann (1974), is one of the most seminal solution
concepts in multi-player games. Contrary to the Nash equilibrium, in a correlated equilibrium the
players’ strategies are correlated by a fictitious mediator that can recommend (but not enforce)
behavior. It is then up to this mediator to ensure that the distribution of recommendations does not
incentivize any player to deviate from their recommended strategy. It is known that this type of
equilibrium naturally emerges from the repeated interaction of learning agents (Hart and Mas-Colell,
2000). In practice, this means that one can compute ϵ-approximate CEs in normal-form games by
implementing suitable decentralized no-regret dynamics, of which several efficient implementations
are known (see, e.g., Blum and Mansour (2007) and Anagnostides et al. (2022)). However, this
approach requires Ω(poly(1/ϵ)) iterations to compute an ϵ-approximate equilibrium, making it a
non-viable choice for high-precision equilibrium computation. In a celebrated result, Papadimitriou
and Roughgarden (2008) (with later refinements by Jiang and Leyton-Brown (2015)) devised an
algorithm, called Ellipsoid Against Hope, that can compute an exact CE in a concisely represented
normal-form game in polynomial time in the representation of the game. Their algorithm is an
algorithmic version of the clever reduction of Hart and Schmeidler (1989) that casts the computation
of CEs as a two-player zero-sum game.
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The positive results for normal-form games, however, do not transfer directly to the significantly
more involved setting of extensive-form games. Extensive-form games are games played on a game
tree and can model sequential and simultaneous moves, as well as imperfect information. Despite a
significant stream of positive results related to learning and equilibrium computation in extensive-form
games, the complexity of computing CEs in extensive-form games remains to this day a major open
question (Farina and Pipis, 2023; von Stengel and Forges, 2008). Due to its conjectured intractability,
researchers have resorted to considering the computation of weaker and generalized notions of
correlated equilibrium. A key reference point in this space is given by the framework of Gordon et al.
(2008), who define a generalized notion of CE called Φ-equilibria. In a Φ-equilibrium, every player p
is endowed with a set Φp of behavior transformation functions. The goal of the fictitious mediator is
then simply to recommend strategies such that no player could unilaterally benefit from deviating
by using any of the functions ϕ ∈ Φp. In this language, a CE corresponds to the Φ-equilibrium
in which each Φp is the set of all possible functions from the strategy set of the player to itself.
However, by considering appropriate subsets of behavior transformations, weaker supersets of CEs
can be efficiently computed and learned through uncoupled learning dynamics. Notable examples of
such equilibria in extensive-form games include the extensive-form correlated equilibrium (EFCE)
(von Stengel and Forges, 2008), the extensive-form coarse-correlated equilibrium (EFCCE) (Farina
et al., 2020), the normal-form coarse-correlated equilibrium (NFCCE) (Moulin and Vial, 1978),
the recently-introduced linear-deviation correlated equilibrium (LCE) (Farina and Pipis, 2023), and
others (Morrill et al., 2021).

Huang and von Stengel (2008) proposed a specialization of the Ellipsoid Against Hope algorithm to
compute exact EFCE in extensive-form games. Later, Farina et al. (2022a) showed efficient no-regret
dynamics that converge to the EFCE. More recently, there has been increased interest in understanding
what is the Φ-equilibrium that is the closest to CE while still enabling efficient computation and
learning. Farina and Pipis (2023) introduced the linear-deviation correlated equilibrium (LCE)
that arises from the set ΦLIN of all linear-swap deviations in sequence-form strategies and devise
efficient no-linear-swap regret dynamics to approximate it. The LCE captures all notable notions of
equilibrium that were previously known to be efficiently computable (including EFCE, EFCCE, and
NFCCE). However, Farina and Pipis (2023) left open the key question as to whether LCEs themselves
can also be computed exactly in polynomial time, akin to the generalization of the Ellipsoid Against
Hope algorithm by Huang and von Stengel (2008) , as opposed to just learned via uncoupled learning
dynamics. The approach by Huang and von Stengel (2008) relies heavily on the combinatorial
structure of the deviation functions that define EFCE, resulting in a rather involved algorithm. This
is in stark contrast to the simple framework for constructing Φ-regret minimizers championed by
Gordon et al. (2008). This begs the natural question:

Can we always construct an efficient algorithm for exactly computing Φ-equilibria,
when there exists an efficient no-Φ-regret minimizer?

In other words, can we create a simple and general framework in the spirit of Gordon et al. (2008)
that can enable us to construct algorithms for the exact computation of Φ-equilibria in polyhedral
games for any Φ ⊆ ΦLIN? We answer this question in the affirmative.

Contributions. In this paper, we propose a framework for computing exact Φ-equilibria in general
polyhedral games. Our framework recovers all positive results established by Papadimitriou and
Roughgarden (2008), and crucially applies to polyhedral games such as extensive-form games. Using
our framework, we develop the first polynomial-time algorithm for computing exact linear-deviation
correlated equilibria in extensive-form games, thus resolving an open question by Farina and Pipis
(2023). Furthermore, even for the cases for which a polynomial time algorithm for exact equilibria
was already known (CEs in normal-form games (Papadimitriou and Roughgarden, 2008; Jiang and
Leyton-Brown, 2015) and EFCEs in extensive-form games (Huang and von Stengel, 2008)), our
framework provides a conceptually simpler solution.

We show that to compute an exact Φ-equilibrium in a polyhedral game, the following three conditions
are sufficient:

1. The game satisfies the “polynomial utility gradient property” (Assumption 4.2) which states
that given a product distribution over the joint strategy space of all n players, we can
efficiently compute the expectation of the gradient of any player’s utility. This is a natural
generalization of the “polynomial expectation property” of Papadimitriou and Roughgarden

2



(2008), and it is a rather low bar to clear (in fact, it is implicitly assumed in every no-regret
learning algorithm).

2. Φ is a set of linear transformations (i.e., of the form ϕ(x) = Bx for some matrix B) that
map the strategy set to itself. This is a technical requirement so that the expectation operator
and the application of the deviation function can commute.1 This condition is satisfied by
all notions of Φ-equilibrium mentioned above, including EFCE and LCE in extensive-form
games, and CE in normal-form games.

3. The set Φ of transformations is a polytope that admits a polynomial-time separation oracle.

The separation oracle requirement in the third condition is known to be equivalent to efficient
linear optimization (Grötschel et al., 1993). In essence, this means that giving a polynomially-sized
characterization of a set Φ of linear transformations for a polyhedral set is a sufficient condition to
provide both efficient no-regret learning dynamics and an efficient algorithm for computing exact
Φ-equilibria. This is exactly what we achieve by applying our result to the set of linear-swap
deviations that was recently characterized (Farina and Pipis, 2023; Zhang et al., 2024b) as a polytope
of polynomially many constraints and was used to prove efficient no-linear-swap regret dynamics. In
light of all these considerations, our framework can be thought of as the counterpart of the Φ-regret
minimization framework by Gordon et al. (2008), but for computation of exact equilibria rather than
regret minimization.

At the heart of our construction, our main technical tool is a generalization of the methodology of the
Ellipsoid Against Hope (Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown, 2015) to
general polyhedral bilinear games. In more detail, we give a new constructive proof of the minimax
theorem for players with polyhedral strategy sets, by using only a weakened type of a best-response
oracle that we coin Good-Enough-Response (GER) oracle. An interesting property of the GER oracle
is that it can be computationally tractable even when the respective best-response oracle is intractable,
as we show in Section 4. This algorithmic idea is likely of independent interest and is especially
useful when the strategy space of one of the players is very large but there exists an efficient GER
oracle that outputs sparse solutions (e.g., vertices of a high-dimensional polytope). This is exactly
the type of problem we face when we need to compute exact Φ-equilibria in polyhedral games and
we then proceed to apply this machinery to the above question. Interestingly, in order to show the
existence of structured good-enough responses in the context of Φ-equilibria, we use an argument
based on the existence of an efficient fixed-point oracle for each deviation ϕ ∈ Φ. Such an ingredient
was fundamental (albeit used differently; see Hazan and Kale (2007) for a discussion of the role
played by fixed-point oracles in the construction of no-Φ-regret algorithms) also in Gordon et al.
(2008). In our case, it is one of the technical insights that enable us to sidestep much of the intricacy
encountered by Huang and von Stengel (2008).

We defer all proofs of the paper to the appendix.

Related work. We include an extensive discussion of related work in Appendix A.

2 Preliminaries

In this section, we introduce some basic concepts and definitions that will be used in developing our
framework.

2.1 Polyhedra, polytopes, and convex sets

Definition 2.1 (Rational polyhedron). A rational polyhedron P = {x ∈ ℝn | Ax ≤ b} is the
solution set of a system of linear inequalities with rational coefficients. We say that P has facet-
complexity φ if there exists a system of linear inequalities, where each inequality has encoding length
2 at most φ, and whose solution set is P . A rational polyhedron that is bounded is called a rational
polytope.

1Note that going beyond linear transformations can introduce several complications. Most notably, in a recent
paper, Zhang et al. (2024a) observe that computing exact fixed-points of non-linear transformations might be
PPAD-hard and they instead introduce a new way to perform regret minimization using “approximate expected
fixed-points”.

2The encoding length of an inequality is the total amount of bits required to represent all of its coefficients.
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One important property of rational polytopes that we will use repeatedly throughout the paper is
that they can equivalently be written as the convex hull of a finite number of points. We call these
points the vertices V (P) of polytope P . Additionally, the vertices of a rational polytope always have
rational coordinates and encoding length poly(φ) (Grötschel et al., 1993, Lemma 6.2.4).

Since we are interested in constructing algorithms that perform exact computations, any discussion
of non-rational numbers is not relevant. Thus, from now on, every time we deal with a polytope we
will mean a rational polytope.

In our algorithm, we will also make use of the concept of conic hull, which is introduced next.

Definition 2.2 (Conic hull). The conic hull of a convex set X is ℝ+X = {t · x | t ≥ 0,x ∈ X}.
Furthermore, if X is a rational polyhedron, its conic hull is also a rational polyhedron.

2.2 Game theory definitions

We begin by defining polyhedral games, following Gordon et al. (2008). But first, we need to define
multi-linear functions.

Definition 2.3 (Multi-linear function). Let V1, . . . , Vn be vector spaces. A function f : V1 × · · · ×
Vn → ℝ is said to be multi-linear if for each p ∈ [n] and fixed v−p ∈ V−p the function f(vp,v−p) is
linear in vp ∈ Vp. In other words, if ∇f(v−p) is the gradient of f(vp,v−p) with respect to vp when
v−p is fixed, then f(vp,v−p) = vp · ∇f(v−p).

Definition 2.4 (Polyhedral game). In a polyhedral game with n players, every player p ∈ [n] has a
polytope3 strategy set Ap ⊂ ℝdp and a multi-linear utility function up : A1 × · · · × An → ℝ

Some notable examples of polyhedral games are: normal-form games, where every player has a
probability simplex as their strategy set, and extensive-form games, where the strategy sets of the
players are the sets of sequence-form strategies (Romanovskii, 1962; Koller et al., 1996; von Stengel,
1996). We will refer to the encoding length of the game as the size of the game. In games of interest
this is usually much smaller than holding the full utility function; for example, extensive-form games
are encoded using a game tree and different classes of normal-form games can have other succinct
descriptions (Papadimitriou and Roughgarden, 2008).

A sub-class of polyhedral games that will be particularly useful in our paper is that of bilinear
zero-sum games, which is defined below.

Definition 2.5 (Bilinear zero-sum game). Let X ⊂ ℝM , Y ⊂ ℝN be two rational polytopes. A
bilinear zero-sum game is a game between two players with strategy sets X and Y such that the
utility of the X -player is u1(x,y) = x⊤Ay, for some A ∈ ℚM×N , and the utility of the Y-player
is u2(x,y) = −u1(x,y)

We can now define the notion of a Φ-equilibrium, which generalizes the correlated equilibrium for
arbitrary n-player polyhedral games and sets of strategy transformations Φ. Before we do that, we
first need to define the corner game Γ(G) of a polyhedral game G, following Gordon et al. (2008);
Marks (2008). This is the game that arises if we let the action sets of every player p be equal to the
vertices V (Ap) of the polytope strategy set of that player. Note that since Ap is a polytope, it will
have a finite number of vertices. The utilities of this game for a player p ∈ [n] and pure strategy
profile s ∈ V (A1) × · · · × V (An) are simply given by up(s). In this paper, we will denote the
vertices of every strategy set in a polyhedral game as Πp = V (Ap). We are now ready to define the
Φ-equilibrium.

Definition 2.6 (Φ-equilibrium). Let G be a polyhedral game of n players and Φp be a set of strategy
transformations ϕp : Ap → Ap for each player p ∈ [n]. A {Φp}-equilibrium for G is a joint
distribution µ ∈ ∆(Π1 × · · · ×Πn) on the pure strategy profiles of Γ(G), such that for every player
p ∈ [n] and deviation ϕ ∈ Φp it holds

𝔼
s∼µ

[up(s)] ≥ 𝔼
s∼µ

[up(ϕ(sp), s−p)].

That is, no player p has an incentive to unilaterally deviate from the recommended joint strategy s
using any transformation ϕ ∈ Φp.

3Despite their name, polyhedral games have strategy sets that are polytopes, that is, bounded polyhedra.
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3 A simple framework for computing equilibria in bilinear zero-sum games
using good-enough-response (GER) oracles

We begin by introducing a simple algorithmic framework (Theorem 3.1) for computing min-max
equilibria in bilinear zero-sum games. As mentioned before, it relies on the idea of good-enough-
responses. The motivation behind this is that sometimes a best-response oracle is not known, or even
NP-hard to construct (as we prove in Theorem 4.7). On the contrary, good-enough-responses might
be a readily available primitive. For example, we will see in Section 4 that a good-enough-response
oracle materializes through the use of fixed-point oracles for transformations ϕ ∈ Φ and this enables
us to devise polynomial time algorithms for computing exact Φ-equilibria in polyhedral games.

Let us assume that we have a bilinear zero-sum game G(X ,Y,A), where the strategy sets X ⊂
ℝM ,Y ⊂ ℝN are rational polytopes. We typically assume that M ≫ N . Additionally, let

OPT = max
x∈X

min
y∈Y

x⊤Ay,

be the value of the game at equilibrium, which is known to us. In the rest of the paper we assume that
OPT = 0. This is without loss of generality because otherwise, it is possible to create a new game
with this property by augmenting the vectors x,y with an extra dimension as follows:[

x⊤ 1
] [ A 0

0⊤ −OPT

] [
y
1

]
= x⊤Ay − OPT.

Our framework is a formalization of the following observation. The statement

(S1) Given any y ∈ Y we can find some x = x(y) ∈ X such that x⊤Ay ≥ 0.

implies the following

(S2) There exists x∗ ∈ X such that (x∗)⊤Ay ≥ 0 for all y ∈ Y .

This follows from the minimax theorem (Neumann, 1928), as the first statement (S1) is equivalent to
miny maxx x⊤Ay ≥ 0, while the second statement (S2) is equivalent maxx miny x⊤Ay ≥ 0.

We are interested in the following question: “Is there an efficient algorithm that when given access to
an oracle for (S1), it constructs a solution x∗ for (S2) represented as a mixture of a small number of
oracle responses?".

3.1 Good-Enough-Response (GER) oracle

We begin by formally defining the oracle we presented previously, which we coin a Good-Enough-
Response (GER) oracle. It is defined as follows:

GER(y):
return (x,x⊤A) ∈ X ×ℚN s.t. x⊤Ay ≥ OPT = 0

where y ∈ Y ⊂ ℝN , and OPT = 0 as was discussed earlier. Note that this is not a best-response
oracle, because it does not return an x ∈ X that maximizes the utility of the max-player. Rather, it
suffices to return a “good enough response”, hence the name.

In fact, our algorithms will often need to query a GER oracle for y′ ∈ ℝ+Y and not just for vectors
in Y . This however is not a problem because it suffices to find any y = y′/α for some α > 0 and
y ∈ Y and then query GER(y) instead. To find such a y efficiently we can again, without loss of
generality, assume that all vectors y ∈ Y are augmented with an extra dimension (call it y[∅]) such
that y[∅] = 1 for all y ∈ Y . Then we can find the desired scaling factor immediately because
y′[∅] = α if and only if y′ = αy for y ∈ Y .

In addition to a good-enough-response oracle, our algorithm also requires a separation oracle SEPY
for the polytope Y , which can be easily converted to a separation oracle for ℝ+Y by the same
“augmenting” argument as before. Combining these two, we can make the final separation oracle
(Algorithm 2) that is needed to execute the ellipsoid method on (D), as presented later. Specifically, if
y /∈ ℝ+Y then we simply return a separating hyperplane via SEPℝ+Y , else we return a good-enough-
response from GER.
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3.2 The framework

Our goal is to compute an x ∈ X that is an optimal (min-max) strategy for the max-player. Equiva-
lently, we seek to find a solution to the following linear program

find x ∈ X s.t. min
y∈Y

x⊤Ay ≥ 0 (P )

This is an LP with M variables which is typically assumed to be much greater (even super-
exponentially greater) than N . When faced with this situation, one might want to attempt to
directly solve the dual of (P ) using the ellipsoid method. However, this would require a proper
separation oracle for the dual problem, which corresponds to a linear optimization oracle, or at least a
best-response oracle. But as we explained, the oracle access we have is weaker.

Instead, we focus on the below linear program. Note that for any y ∈ ℝ+Y , GER(y) should always
return an x ∈ X such that (x⊤A)y ≥ 0, which is a violated constraint of (D). Thus, we can combine
GER and a separation oracle for ℝ+Y (as in Algorithm 2) to make a separation oracle for this LP.

find y ∈ ℝ+Y s.t. max
x∈X

x⊤Ay ≤ −1 (D)

By the Generalized Farkas lemma (Lemma B.2) and the fact that (P ) is feasible, it immediately
follows that (D) must be infeasible. Despite the infeasibility, and following the “Against Hope” step
of Papadimitriou and Roughgarden (2008), we execute the ellipsoid method on (D) using Algorithm 2
as a separation oracle. The ellipsoid method will run for a number L = poly(N) of steps and then
conclude that (D) is infeasible. Let x1, . . . ,xL be the response vectors returned by GER during this
process. We now consider a “compressed" version of the previous LP that only uses vectors x from
the convex hull co{xk} of these responses.

find y ∈ ℝ+Y s.t. max
x∈co{xk}

x⊤Ay ≤ −1 (D′)

We argue that this LP must also be infeasible; the ellipsoid method is a deterministic algorithm and if
we execute it on (D′) it will go through the same sequence of candidate points yk, to which we can
respond with the same sequence of separating hyperplanes as before. These hyperplanes will still be
valid for (D′) because all of the response vectors we used previously exist in co{xk}.

Now, using Generalized Farkas lemma (Lemma B.2) again and the fact that (D′) is infeasible, it
follows that the LP shown below must be feasible.

find x ∈ co{xk} s.t. min
y∈Y

x⊤Ay ≥ 0 (P ′)

This is a “compressed” version of (P ), because now every vector x ∈ co{xk} can be represented
as a vector of size L that corresponds to a convex combination of the response vectors x1, . . . ,xL.
Finally, since (P ′) is an LP with only a polynomial number of variables, we can solve it in polynomial
time using any LP algorithm. This will clearly be a feasible solution for our initial LP (P ), because
co{xk} ⊂ X . The full algorithm is shown below, in Algorithm 1. Note that in reality we only use
the LPs (D) and (P ′). The rest were used as intermediate steps for the presentation of the algorithm.

Algorithm 1: Ellipsoid Against Hope for bilinear zero-sum games
Input: Separation oracle SEPℝ+Y for ℝ+Y , and a good-enough-response oracle GER.
Output: A sparse solution x∗ of (P ) represented as a mixture of GER oracle responses.
Execute the ellipsoid method on (D), using Algorithm 2 as a separation oracle;
Create (P ′) using the response vectors and compute a feasible solution x∗;

Theorem 3.1. If the following hold

1. X ⊂ ℝM ,Y ⊂ ℝN are rational polytopes and Y has facet-complexity at most φ,

2. we have access to a separation oracle SEPY for Y and a good-enough-response oracle GER,

3. the encoding length of x⊤A is at most φ for all GER oracle responses and all vertices of X ,

then Algorithm 1 runs in poly(N,φ) time, performs L = poly(N,φ) oracle calls, and computes an
exact solution x∗ of (P ) that is a mixture of at most N oracle responses. In particular, the encoding
length of x∗ depends polynomially on the encoding length of the GER oracle responses.

6



Note that since we have assumed that M ≫ N , it would not make sense for the final solution x∗

to have encoding length poly(M), as this would invalidate the whole algorithm. In order for the
solution to make sense, the GER oracle must only give responses with low encoding length. This is
exactly the case in Section 4, where M is a doubly-exponential quantity in the size of the problem,
while the GER responses are vectors with only one non-zero entry.

4 Computing linear Φ-equilibria in polynomial time

We have seen in Section 3 how one can compute exact min-max equilibria using good-enough-
response (GER) oracles. Now it is time to apply this machinery in the problem of computing exact
Φ-equilibria in polyhedral games. Crucially, the factor that enables us to utilize the framework of
Section 3 is the existence of an efficient GER oracle, which effectively boils down to constructing a
product distribution consisting of fixed-points for the strategies of every player of the game.

Let G be any polyhedral game (Definition 2.4) with n players and strategy sets Ap ⊂ ℝdp for
p ∈ [n]. In this section we apply the framework we developed previously to construct an algorithm
that computes an exact Φ-equilibrium of G in polynomial time when Φ is a polytope containing
valid linear transformations from polyhedral strategies to polyhedral strategies. Notable examples
of sets with these properties are the trigger deviations used for EFCE (Farina et al., 2022a), and the
linear-swap deviations used for LCE (Farina and Pipis, 2023) in extensive-form games.

The general idea of our construction is that of the existence proof by Hart and Schmeidler (1989)
that casts the problem of Φ-equilibrium computation as one of computing a min-max equilibrium in
a two-player zero-sum meta-game between a “Correlator”, who acts upon the simplex of all pure
strategy profiles, and a “Deviator”, whose actions correspond to deviations for every player. We call
this a Correlator-Deviator game.

To make this idea applicable to polyhedral games, we generalize it as follows. We define a bilinear
zero-sum meta-game with strategy sets X ,Y for the two players, where X is the set of all joint
distributions over strategy profiles, X = ∆(Π1×· · ·×Πn) (hence, a polytope) and Y is the Cartesian
product of Φp for all players p, Y = Φ1 × · · · × Φn, which is a convex set – and in our case, a
polytope.

We remark here that linear transformations ϕp can be represented using a matrix Bp such that
ϕp(xp) = Bpxp. Thus, when we say that Φp is a polytope, it means that there exists a system of
inequalities that can describe the entries of the corresponding matrix Bp for every ϕp ∈ Φp. For
notational convenience, we will interchangeably use Φp to denote either the set of transformation
functions, or a polytope describing the vectors (flattened Bp matrices) that correspond to transforma-
tions. In any event, it should not matter which of the two representations we have, because they are
completely equivalent.

The utility matrix U of the Correlator in the meta-game is shown below. Specifically, it has one row
for each pure strategy profile s ∈ Π1 × · · · ×Πn, and one column for each tuple j = (p, a, b), where
a, b ∈ [dp] are used as indices over strategy vectors sp ∈ Ap. Additionally, we always want the final
expression to have a quantity (

∑
p 𝔼s∼x[up(s)]) that is independent of the value of y. To achieve

this we can use a trick similar to the one used to make OPT = 0 in Section 3 by augmenting vectors
y ∈ Y with an extra dimension ∅ such that y[∅] = 1 always holds. Then we have 4

Usj =

{ ∑
p up(s), j = ∅

−sp[a]up(1b, s−p), otherwise

where 1b denotes the vector having all 0, apart from index b, which is 1. Note that the number of rows
of U might be doubly-exponential (exponential both in the number of players and the dimension of
the polyhedral strategies), which is in contrast to the original Ellipsoid Against Hope algorithm that
only allowed a number of rows exponential in the number of players.
Lemma 4.1. Let G be a polyhedral game with pure strategy set Πp for every player p ∈ [n].
Additionally, let Φp be a set of linear transformations for every p ∈ [n]. If x ∈ X = ∆(Π1×· · ·×Πn)
and y = (ϕ1, . . . , ϕn) ∈ Y = Φ1 × · · · × Φn then

x⊤Uy =
∑
p

𝔼
s∼x

[up(s)− up(ϕp(sp), s−p)].

4We are slightly abusing the notation here and use up(1b, s−p) instead of 1b · ∇up(s−p).

7



It is now evident that our goal is to compute a joint distribution that is a solution to the following
linear program: find x ∈ X s.t. miny∈Y x⊤Uy ≥ 0.

Observe that this is slightly different from the required non-negativity in Definition 2.6; there we want
the individual (per-player) expectations to be non-negative, while here it suffices for the minimum of
the sum of expectations to be non-negative. However, we can assume without loss of generality that
the identity transformation is always a valid transformation5. Then, every LP solution x ∈ X will
satisfy x⊤Uy ≥ 0 for all y ∈ Y , including y = (ϕ1, I, . . . , I), (I, ϕ2, . . . , I), . . . that correspond to
to the individual expectations.

The previous LP respects exactly the structure of (P ) that our min-max framework can handle. The
only remaining component to get a polynomial-time algorithm is to have an efficient good-enough-
response oracle GER. Specifically, for any valid y ∈ Y , we need to respond with an x such that
x⊤Uy ≥ 0. The important insight that allows us to construct an efficient oracle and uncover sparse
solutions is that we can always find such an x that is a product distribution — similar to the original
Ellipsoid Against Hope algorithm (Papadimitriou and Roughgarden, 2008) that was based on the
observation by Hart and Schmeidler (1989). Note that we can always represent a product distribution
by simply specifying its marginals and those, in turn, can always be represented as polyhedral
strategies. Thus, representing the product distribution x only requires linear space in the game size.

Next, we define an important property that a game must have to enable the efficient implementation
of the GER oracle we propose (Lemma D.1) for our algorithm.
Assumption 4.2 (Polynomial utility gradient property). Given a product distribution x ∈ ∆(Π1 ×
· · · ×Πn), it is possible to compute the value of

gp(x−p) = 𝔼
s−p∼x−p

[∇up(s−p)]

for all players p ∈ [n] in polynomial time in the encoding length of x and the size of the game.

This assumption generalizes the polynomial expectation property defined in Papadimitriou and
Roughgarden (2008) to more general, polyhedral games. In particular, if we have a normal-form
game, the polynomial expectation property amounts to computing gp(x−p) · xp for a product
distribution x. Moreover, as we stated in the introduction, this assumption is very natural for one
more reason; it is implicitly assumed in every no-regret learning algorithm.
Remark 4.3. Papadimitriou and Roughgarden (2008) also defined a second property that is required
for efficient computation, called the “polynomial type” property. Even though our algorithm does
not require this property, a variant of it is implicit in the fact that the complexity of the algorithm
depends polynomially in the number of players and the dimension of every player’s strategy set Ap.
However, this relaxation is what allows our algorithm to handle much broader classes of games, such
as the extensive-form games that do not have the polynomial type property.

Theorem 4.4. Let G be a polyhedral game (Definition 2.4) of n players and {Φp} be a collection of
polytopes corresponding to sets of linear strategy transformations that map every strategy set Ap to
itself. Additionally, let N =

∑
p d

2
p. Assume that

• there exist polynomial-time separation oracles for Ap and Φp,

• G satisfies the polynomial utility gradient property (Assumption 4.2),

• ψ is an upper bound on the facet-complexity of every Ap and Φp,

• log u is the maximum encoding length of the utilities of G.

Then there exists an algorithm that computes an exact {Φp}-equilibrium of G in time
poly(N, log u, ψ) and performs poly(N, log u, ψ) number of calls to all the separation oracles.
Additionally, the equilibrium is represented as a convex combination of at most N pure strategy
profiles.

As a first application of this framework, we argue that it can be applied to normal-form games that
satisfy the polynomial type and the polynomial expectation property, defined in Papadimitriou and
Roughgarden (2008).

5Otherwise we can replace each Φp with co{Φp ∪ {I}} which remains a rational polytope and admits a
separation oracle when Φp has a separation oracle.
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Corollary 4.5 (Exact CE in normal-form games). If a normal-form game G has the polynomial type
and the polynomial expectation property, defined in Papadimitriou and Roughgarden (2008), then
our algorithm computes an exact correlated equilibrium of G and runs in polynomial time in the size
of the game.

As we have discussed, a very notable example of polyhedral games is that of extensive-form games.
Next, we apply Theorem 4.4 to this class of games, and specifically to the set of all linear-swap
deviations, recently defined in Farina and Pipis (2023). In particular, this set contains all trigger
deviations and thus, our algorithm also produces an extensive-form correlated equilibrium (EFCE) in
a conceptually simpler manner than in the early work of Huang and von Stengel (2008).

Corollary 4.6 (Exact LCE computation). There exists an algorithm that runs in poly(N, log u) time
and computes an exact linear-deviation correlated equilibrium (LCE) in an extensive-form game.

Finally, we prove in Theorem 4.7 that, at least in the case of computing Φ-equilibria in polyhedral
games, the use of a GER over a best-response oracle is not just more elegant, but it is also necessary
because constructing a best-response oracle is NP-hard. At the heart of our hardness result lies a
reduction from SAT to equilibrium computation in extensive-form games that has also been used
in the past to prove the hardness of equilibrium selection for EFCE and LCE (von Stengel and
Forges, 2008; Farina and Pipis, 2023). In a sense, constructing a best-response oracle is as hard as
the equilibrium selection problem, while constructing a good-enough-response oracle amounts to
computing fixed-points of strategy transformation functions. This further highlights the importance of
having a framework akin to the one presented in Section 3 for designing new algorithms; the hardness
result rules out solutions that require responses competitive against any threshold, but sometimes it is
sufficient to only compete with a particular good-enough threshold.

Theorem 4.7 (Hardness of BR oracle). It is NP-hard to construct a best-response oracle for the
Correlator in the Correlator-Deviator game.

5 Discussion and Future Work

In this paper, we devise a polynomial-time algorithm for computing min-max equilibria in bilinear
zero-sum games, by utilizing a good-enough-response oracle. We use this machinery to develop a
simple general framework for the exact computation of Φ-equilibria in polyhedral games for sets
Φ of linear strategy transformations. This framework parallels that of Gordon et al. (2008) on
no-regret dynamics, but for exact equilibrium computation. Applying this to extensive-form games,
we construct the first polynomial-time algorithm for computing exact linear-deviation correlated
equilibria in extensive-form games – a question that had been left open by Farina and Pipis (2023).

We believe that having a simple framework to use as a mental model to guide algorithm design is of
paramount importance for the advancement of the field. The Φ-regret minimization framework of
Gordon et al. (2008) is indicative of this fact, because it has been key to many interesting results over
the years (Morrill et al., 2021; Farina et al., 2022a; Anagnostides et al., 2022; Farina and Pipis, 2023).
Compared to no-regret learning, the problem of exact equilibrium computation has been much less
studied (basically only in Papadimitriou and Roughgarden (2008); Jiang and Leyton-Brown (2015);
Huang and von Stengel (2008)) and we hope that offering a simplified framework will give new
insights to advance this front, perhaps aiding in the discovery of new, more practical, algorithms.

Several key questions remain underinvestigated.

• Despite its great theoretical importance, our framework (based on the ellipsoid algorithm)
has a polynomial time complexity of rather large degree. Could one devise a more practical
alternative while retaining a similar level of generality?

• Can our framework be easily generalized to convex strategy spaces (instead of polytopes)?

• Is there a similar algorithmic framework to compute exact Φ-equilibria in extensive-form
games for non-linear transformations Φ? In recent work, Zhang et al. (2024a) give param-
eterized algorithms for minimizing Φ-regret when Φ is the set of all degree-k polynomial
swap deviations. Can similar guarantees be achieved for high-precision computation of
these Φ-equilibria?

• Can ideas similar to those presented in this paper be applied to Markov games?
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A Related work

Algorithms for computing equilibria can be classified broadly into three categories:

• Polynomial-time algorithms compute an exact equilibrium in time polynomial in the input game
size. Note that exact equilibria only make sense when the game has rational utilities, otherwise we
settle for ϵ-approximate equilibria in time polynomial in log(1/ϵ) and the size of the game.

• Fully polynomial-time approximation schemes (FPTASs) compute ϵ-approximate equilibria in time
polynomial in 1/ϵ and the size of the input game.

• Polynomial-time approximation schemes (PTASs) compute ϵ-approximate equilibria in time that is
polynomial in the size of the input game, for every fixed ϵ > 0—however, they might in general
have an exponential dependence on 1/ϵ.

Nash equilibria are known to be PPAD-complete, thus ruling out any polynomial-time algorithm
for them (Daskalakis et al., 2009). Additionally, approximating a Nash equilibrium, even for a
constant ϵ is known to also be PPAD-complete for n-player games (Rubinstein, 2015) and to require
quasi-polynomial time for 2-player games, assuming ETH for PPAD (Rubinstein, 2016), thus ruling
out any PTAS or FPTAS algorithm.

The complexity landscape is significantly more favorable for the case of correlated equilibrium
(CE). Specifically, Hart and Mas-Colell (2000); Blum and Mansour (2007) gave efficient no-regret
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dynamics (minimizing the so-called internal regret) that, if used by all players in a game, can be
used to compute an ϵ-approximate CE in normal-form games in time polynomial in the size of the
game and 1/ϵ. This constitutes the first FPTAS for the computation of CEs. Finally, Papadimitriou
and Roughgarden (2008) gave a centralized algorithm that exactly computes a CE in a concisely
represented normal-form game in polynomial time in the size of the game. This was the first
polynomial-time algorithm for CEs.

The complexity of CE is not settled for extensive-form games (EFGs), and its determination remains
a major unresolved question in the field (von Stengel and Forges, 2008; Farina and Pipis, 2023). An
advance in this direction was provided very recently by the breakthrough results from two concurrent
works of Dagan et al. (2024) and Peng and Rubinstein (2024), which provide a PTAS for CE in
extensive-form games, though it remains unclear whether a polynomial-time algorithm or even an
FPTAS exist.

Due to the conjectured intractability of computing a normal-form CE in EFGs, researchers have
come up with other notions of equilibrium (von Stengel and Forges, 2008; Morrill et al., 2021; Farina
and Pipis, 2023; Zhang et al., 2024b) that lie on a spectrum of Φ-equilibria. Φ-equilibria provide
a generalization of CE that ranges from least hindsight-rational (coarse correlated equilibria), to
maximum hindsight rational (CE), depending on the size of the set of behavior transformation Φ
considered by the players. One of the most notable and natural notions of sequential rationality is that
of the extensive-form correlated equilibrium (EFCE) (von Stengel and Forges, 2008). The EFCE was
shown to be efficiently computable exactly (Huang and von Stengel, 2008) using a method similar to
the Ellipsoid Against Hope of Papadimitriou and Roughgarden (2008). Additionally, it was shown
that there exist efficient regret dynamics (minimizing the so called trigger regret) that can be used to
compute an ϵ-approximate equilibrium by Farina et al. (2022a). This also gives an FPTAS for EFCE.

Currently, the highest notion of rationality that admits an FPTAS is the recently defined linear-
deviation correlated equilibrium (LCE) (Farina and Pipis, 2023), which subsumes previous equilib-
rium notions such as EFCE. Farina and Pipis (2023) proved that there exist efficient regret dynamics
(minimizing linear-swap regret) that can converge to an LCE; the polynomial complexity was then
later improved by Zhang et al. (2024b). They however left open the question as to whether there exists
a polynomial time algorithm that can compute an exact LCE. We resolve this open question in this
paper, showing that the exact computability of equilibria in EFGs extends up to the linear-deviation
correlated equilibrium.

Relationship with work on combinatorially-structured games. Our algorithmic framework in
Section 3 can be used to compute exact min-max equilibria in bilinear games when one of the players
has an exponentially large action space and we can only use a good-enough-response oracle—a
weaker notion than the best-response oracle.

In light of applications related to Machine Learning and Deep Learning, there has recently been
increased renewed interest in games having exponential (or even infinite) action spaces. For example,
Assos et al. (2023) propose regret dynamics that can converge to approximate coarse correlated
equilibria in infinite (nonparametric) games when a suitable notion of dimension of the game
(Littlestone and fat-threshold) is bounded. Dagan et al. (2024) generalize this result even further
proving that there also exist regret-dynamics in these cases that can converge in approximate correlated
equilibria. Interestingly, recent breakthroughs in Large Language Models have inspired work on
“language-based” games that typically have an enormous number of strategies (FAIR et al., 2022;
Gemp et al., 2024).

However, the interest in games involving large strategy spaces is by no means a recent phenomenon.
For instance, the community of security games has traditionally been interested in the problem
of computing Stackelberg equilibria for games where one player (the leader) can possibly have
exponentially many strategies (Kiekintveld et al., 2009; Xu, 2016). Another notable example is
that of the Colonel Blotto game, which involves exponentially large strategy sets in both players
(Ahmadinejad et al., 2019). Finally, work on learning in combinatorially-structured games has found
applications to online optimization on combinatorial domains such as EFG strategy spaces and flow
polytopes (Farina et al., 2022b; Koolen et al., 2010; Takimoto and Warmuth, 2003).

Even though our framework for computing min-max equilibria might have some resemblance to some
of the methods in these papers, to the best of our knowledge, in all of the past cases the algorithms
cleverly exploit the special combinatorial structure inherent in security games and usually involve
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reducing the dimensionality of the strategy space as a first step. Our framework on the other hand,
might allow for applications where the large decision set of a player is not amenable to some kind of
smaller-dimensional representation.

Finally, we remark that an interesting recurring theme in games with large strategy spaces is that they
often assume some kind of best-response oracle access.

Relationship with work based on best-response oracle access to games Using best-response
oracles is a ubiquitous technique for learning in games or equilibrium computation, starting from the
foundational method of fictitious play (Brown, 1951) where players apply a best-response oracle at
every round to respond to the empirical frequency of play of their opponent. Best-response oracles (or
variants thereof) have additionally been used in security games (Ahmadinejad et al., 2019; Xu et al.,
2014), in bilinear games (Gidel et al., 2017), in efficient learning on polytopes (Chakrabarti et al.,
2024), in the computation of well-supported equilibria in bilinear games (Goldberg and Marmolejo-
Cossío, 2021), in the PSRO for Reinforcement Learning (Lanctot et al., 2017), in infinite games
(Assos et al., 2023; Dagan et al., 2024). We remark however that in this paper we do not use a
best-response oracle in our algorithms. Rather, we use a weaker notion that we coin “Good-Enough-
Response” (GER) oracle. In certain cases (such as the computation of Φ-equilibria in Section 4) it is
critical to relax the requirement for a best-response oracle because no such oracle can be constructed
unless P = NP (Theorem 4.7).

B Further preliminaries on linear programs

Here, we introduce some more specialized Lemmas that will be useful for proving the main results of
Section 3. The first one concerns feasibility sets of the form we use in our main LPs and shows that
they are, in fact, polytopes and that their facet-complexity is properly bounded.
Lemma B.1. Let A be a matrix and

P =

{
u ∈ U

∣∣ max
q∈Q

q⊤Au ≤ c

}
.

If the following conditions hold

• U be a rational polyhedron with facet-complexity at most φ,

• Q be the convex hull of a set of finitely many points V (Q) = {q̂1, . . . , q̂K},

• the inequality (q̂⊤A)u ≤ c has encoding length at most φ for all vertices q̂ ∈ V (Q).

Then the set P is a rational polytope with facet-complexity at most φ.

Proof. First we show that P = P ′, where

P ′ :=
{
u ∈ U

∣∣ (q̂⊤A)u ≤ c ∀q̂ ∈ V (Q)
}
,

is the polytope defined by finitely many inequality constraints, corresponding to the vertices of Q.
Combining this with the assumption that each such inequality has encoding length at most φ, the
result follows immediately. It remains to prove the desired set equality:

• Case P ⊆ P ′:

u ∈ P =⇒ u ∈ U , max
q∈Q

q⊤Au ≤ c =⇒ u ∈ U , (q̂⊤A)u ≤ c ∀q̂ ∈ V (Q),

where the last implication follows from the fact that for all q̂ ∈ V (Q) ⊆ Q,

(q̂⊤A)u ≤ max
q∈Q

q⊤Au ≤ c.

• Case P ⊇ P ′: By definition, any point q ∈ Q can be written as the convex combination of
all vertices q =

∑K
i λiq̂i. Thus, we have

u ∈ P ′ =⇒ u ∈ U , (q̂⊤A)u ≤ c ∀q̂ ∈ V (Q) =⇒ u ∈ U , max
q∈Q

q⊤Au ≤ c,
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where the last implication holds because for any q ∈ Q,

q⊤Au =

K∑
i

λiq̂
⊤
i Au ≤

K∑
i

λic.

This concludes the proof.

We also mention a result in the spirit of the classical Farkas lemma. We use this result in to prove our
main Theorem of Section 3.
Lemma B.2 (Generalized Farkas lemma). Let X ⊂ ℝM ,Y ⊂ ℝN be convex compact sets. Then
exactly one of the following two statements is true.

1. There exists x ∈ X such that min
y∈Y

x⊤Ay ≥ 0.

2. There exists y ∈ ℝ+Y such that max
x∈X

x⊤Ay ≤ −1.

Proof. I) We first show that (1) and (2) cannot be true simultaneously. Assume otherwise and let
x̂ ∈ X , ŷ ∈ ℝ+Y be values that satisfy (1) and (2) respectively. Since ŷ belongs to the conic hull of
Y it must be ŷ = ky′ for some k > 0 and y′ ∈ Y . Thus,

max
x∈X

x⊤Aŷ ≤ −1 =⇒ max
x∈X

x⊤Ay′ ≤ −1

k
.

Additionally, it holds

0 ≤ min
y∈Y

x̂⊤Ay ≤ x̂⊤Ay′ ≤ max
x∈X

x⊤Ay′ ≤ −1

k
,

which is a contradiction. Thus, the statements (1) and (2) cannot be true simultaneously.

II) We now proceed to prove that when (2) is false then (1) must be true. We begin by showing
that (2) being false implies that for any γ > 0 there does not exist any y ∈ ℝ+Y such that
max
x∈X

x⊤Ay ≤ −γ. Suppose otherwise; then y′ = y/γ is a multiple of an element of ℝ+Y and thus

y′ ∈ ℝ+Y . Furthermore,

max
x∈X

x⊤Ay′ =
1

γ
max
x∈X

x⊤Ay ≤ −1,

which is a contradiction because we have assumed that (2) is false. It directly follows that

min
y∈Y

max
x∈X

x⊤Ay ≥ 0.

By the minimax theorem it also holds

max
x∈X

min
y∈Y

x⊤Ay ≥ 0 =⇒ ∃x∈X : min
y∈Y

x⊤Ay ≥ 0

and thus, statement (1) is true.

III) Finally, we need to prove the inverse direction; when (1) is false then (2) must be true. This
is trivial because if (2) was false, then by II) we would have that (1) is true, which contradicts the
assumption.

C Omitted proofs from Section 3

Theorem 3.1. If the following hold

1. X ⊂ ℝM ,Y ⊂ ℝN are rational polytopes and Y has facet-complexity at most φ,

2. we have access to a separation oracle SEPY for Y and a good-enough-response oracle GER,

3. the encoding length of x⊤A is at most φ for all GER oracle responses and all vertices of X ,
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Algorithm 2: Separation oracle for the ellipsoid method on (D)
Input: Separation oracle SEPℝ+Y for ℝ+Y , and a good-enough-response oracle GER.
Output: A separating hyperplane c for y in (D), and a corresponding vector x from GER, if it

exists.
if SEPℝ+Y deems that y is in ℝ+Y then

Set (x, c) to the output (x,A⊤x) of GER(y);
else

Set c to the separating hyperplane output by SEPℝ+Y ;
x = ∅;

end

then Algorithm 1 runs in poly(N,φ) time, performs L = poly(N,φ) oracle calls, and computes an
exact solution x∗ of (P ) that is a mixture of at most N oracle responses. In particular, the encoding
length of x∗ depends polynomially on the encoding length of the GER oracle responses.

Proof. First, we can assume without loss of generality that there exists a dimension ∅ in all y ∈ Y
such that y[∅] = 1. Otherwise, it is always possible to augment these vectors with an extra dimension
before applying the next steps of the algorithm. This allows us to convert the given separation oracle
SEPY into a new separation oracle SEPℝ+Y for ℝ+Y that we can then use to construct the general
oracle of Algorithm 2.

The first step of the algorithm is to execute the ellipsoid method on (D). Using the assumptions of
the theorem in Lemma B.1 with U = ℝ+Y and Q = X , it follows that (D) is a polytope and has
facet-complexity at most φ. Additionally, by the fact that (P ) is feasible (it has an equilibrium with
OPT = 0) and by Lemma B.2 it follows that (D) must be infeasible.

To execute the ellipsoid method on (D) would then mean, in the language of Grötschel et al. (1993),
to solve the Strong Nonemptiness Problem for (D) using the strong separation oracle of Algorithm 2.
To this end, we use the algorithm from Theorem 6.4.1 of Grötschel et al. (1993). This algorithm
works for any polyhedron, even if it is not bounded or full-dimensional, as might be the case here. To
do that, it might execute the central-cut ellipsoid method more than once, but never more than N
times. In our case, we already know that (D) is infeasible and thus, the algorithm terminates after N
executions of the central-cut ellipsoid and concludes that (D) is infeasible.

Since the central-cut ellipsoid method is an oracle-polynomial algorithm that is executed N times in
polyhedra of facet-complexity at most φ, the whole process runs in polynomial time and performs a
polynomial number of separation oracle calls. To calculate the exact number L of oracle calls, we
note that the algorithm in Grötschel et al. (1993, Theorem 6.4.1) initializes the central-cut ellipsoid
method with

R = 2O(N2φ) and ϵ = 2−O(N5φ),

while the central-cut method terminates in O(N log(1/ϵ) +N2 logR) iterations (Grötschel et al.,
1993, Theorem 3.2.1). Combining these with the fact that the central-cut ellipsoid method is repeated
N times, we get that the number of oracle calls is L = O(N7φ).

Next, note that (D′) is comprised of constraints coming from GER oracle responses, which by
Lemma B.1 gives that the facet-complexity of (D′) must also be at most φ. By going through the
same process as before, the algorithm will reach the same conclusion after executing the central-cut
ellipsoid method N times; (D′) is infeasible.

Finally, by the infeasibility of (D′) and Lemma B.2, it follows that (P ′) must be feasible. An
equivalent way to express (P ′) is

find a

s.t. min
y∈Y

a⊤(X⊤A)y ≥ 0

a ∈ ∆L,

where ∆L is the L-dimensional simplex and X = [x1 | · · · | xL] is a matrix with the GER oracle
responses as its columns.
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Applying Lemma B.1 for U = ∆L and Q = Y we conclude that (P ′) describes a polytope

P =

{
a ∈ ∆L

∣∣ min
y∈Y

a⊤(X⊤A)y ≥ 0

}
of encoding length at most Lpoly(φ). This is because, for any vertex ŷ ∈ V (Y), the inequality
a⊤(X⊤A)ŷ ≥ 0 has L coefficients, each of which having encoding length poly(φ). This can be
solved in polynomial time by any known linear programming method. Even better, it is possible to
compute a basic feasible solution of this LP, which will have at most N non-zero entries and thus the
final solution x∗ = Xa will be a mixture of at most N oracle responses.

D Omitted proofs from Section 4

Lemma 4.1. Let G be a polyhedral game with pure strategy set Πp for every player p ∈ [n].
Additionally, let Φp be a set of linear transformations for every p ∈ [n]. If x ∈ X = ∆(Π1×· · ·×Πn)
and y = (ϕ1, . . . , ϕn) ∈ Y = Φ1 × · · · × Φn then

x⊤Uy =
∑
p

𝔼
s∼x

[up(s)− up(ϕp(sp), s−p)].

Proof. As we discussed, each linear transformation ϕp can be viewed as a dp × dp transformation
matrix Bp. We denote the matrix entries with Bp[b, a]. In particular, if s′p = ϕp(sp), we have
s′p[b] =

∑
a Bp[b, a]sp[a]. Then for any x ∈ X and y = (ϕ1, . . . , ϕn) ∈ Y we have

x⊤Uy =
∑
s

xs
∑
p

up(s)− ∑
a∈[dp]

∑
b∈[dp]

Bp[b, a]sp[a]up(1b, s−p)


=

∑
p

∑
s

xs

up(s)− up

 ∑
b∈[dp]

1b

∑
a∈[dp]

Bp[b, a]sp[a], s−p


=

∑
p

∑
s

xs

up(s)− up

 ∑
b∈[dp]

1bs
′
p[b], s−p


=

∑
p

∑
s

xs (up(s)− up(ϕp(sp), s−p))

=
∑
p

𝔼
s∼x

[up(s)− up(ϕp(sp), s−p)],

where in the second equality we have used the multi-linearity of the utilities.

Now we are ready to present the good-enough-response oracle that will allow us to develop an
efficient algorithm for computing exact Φ-equilibria in polyhedral games. As a general backbone,
this Lemma follows the constructive proof that Papadimitriou and Roughgarden (2008) did for the
CE existence result of Hart and Schmeidler (1989) and, crucially, it produces pure strategies using
the idea of Jiang and Leyton-Brown (2015).

Lemma D.1 (GER oracle for Φ-equilibria). For every y ∈ Y = Φ1 × · · · × Φn there exists a pure
strategy profile s ∈ Π1 × · · · × Πn such that 1⊤

s Uy ≥ 0. Furthermore, such a strategy profile
alongside with the vector 1⊤

s U can be computed efficiently, provided that the game satisfies the
polynomial utility gradient property (Assumption 4.2) and there exists a polynomial-time separation
oracle for every Ap.

Proof. As we have discussed, we can denote all linear transformations ϕp using a matrix Bp such
that ϕp(xp) = Bpxp.

First note that there always exists a fixed-point of any linear strategy transformation ϕp; this follows
from Brouwer’s fixed-point theorem and the fact that these transformations are continuous maps of a
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Algorithm 3: Purified GER oracle
Input: Polyhedral game G of n players, y ∈ Y = Φ1 × · · · × Φn, separation oracles SEPAp

for
all p ∈ [n].

Output: A pure strategy profile s ∈ Π1 × · · · ×Πn such that 1⊤
s Uy ≥ 0.

Compute a product distribution x s.t. x⊤Uy = 0 by finding fixed points xp = ϕp(xp) for all
p ∈ [n] ;

for p ∈ [n] do
Find a set of k ≤ dp + 1 vertices

{
ŝ
(1)
p , . . . , ŝ

(k)
p

}
⊂ V (Ap) s.t. xp =

∑k
i=1 λiŝ

(i)
p ;

Set s∗p to the vertex ŝ
(i)
p that satisfies x⊤

(p→s∗
p)
Uy ≥ 0;

Set x to be x(p→s∗
p)

;
end
Finally, x must correspond to a pure strategy profile s;

compact convex set Ap to itself. Additionally, since the transformations are linear we can always
efficiently compute a fixed-point of any transformation by solving the following LP:

find xp

s.t. Bpxp = xp

xp ∈ Ap

that can be solved in polynomial time using the ellipsoid method with the given separation oracle for
Ap.

Next, let us restrict our attention only to product distributions x ∈ ∆(Π1 × · · · ×Πn). In this case it
will be xs = x−p(s−p)xp(sp) for all pure strategy profiles s, which gives

x⊤Uy =
∑
p

∑
s−p

∑
sp∈Πp

x−p(s−p)xp(sp) [up(sp, s−p)− up(ϕp(sp), s−p)]

=
∑
p

∑
s−p

x−p(s−p)up ([xp − ϕp(xp)] , s−p)

=
∑
p

gp(x−p) · [xp − ϕp(xp)] , (1)

where xp ∈ Ap is the marginal distribution for player p represented as a point of the polyhedral
strategy set. In the second equality we have used the multi-linearity of up(·, s−p) and the linearity
of the transformations;

∑
sp
xp(sp)ϕp(sp) = ϕp(xp). It directly follows from the last equality that

if we set each marginal distribution equal to the corresponding fixed-point xp = ϕp(xp), we get a
product distribution x such that x⊤Uy = 0.

Now, it remains to find a way to extract the desired pure strategy profile s from this product distribution.
We follow a similar procedure to the purification technique used by Jiang and Leyton-Brown (2015).
Similar to their algorithm, we define x(p→sp) for a product distribution x to be the product distribution
in which player p plays pure action sp ∈ Ap and all other players act according to x−p. Additionally,
note that since Ap is a polytope, it must hold

xp =
∑

sp∈V (Ap)

λsp
sp

for some convex combination {λsp ≥ 0 |
∑

sp
λsp = 1}. By the product distribution structure, it is

easy to see that for every player p ∈ [n],

x⊤Uy =
∑

sp∈V (Ap)

[
x⊤
(p→sp)

Uy
]
λsp (2)

The algorithm of Jiang and Leyton-Brown (2015) iterates over all players and for each player p
they search over all its pure strategies and find one, s∗p, for which x⊤

(p→s∗
p)
Uy ≥ 0. Such a pure
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strategy must always exist because (2) represents a convex combination over all vertices (a.k.a. pure
strategies). However, in our case we cannot iterate over all pure strategies for a player because they
might be exponentially many.

To make this procedure general for all polyhedral games, we observe that by Carathéodory’s theorem
there must always exist a subset

{
ŝ
(1)
p , . . . , ŝ

(k)
p

}
⊂ V (Ap) of at most k ≤ dp + 1 vertices of Ap

that satisfy

xp =

k∑
i=1

λiŝ
(i)
p

for some convex combination represented with λ1, . . . , λk. Thus, we can follow the same procedure
as before but this time only search over k vertices instead of all (possibly exponentially many) vertices
of Ap. The complete algorithm is shown in Algorithm 3.

This can be implemented in polynomial time because: (a) there exists an algorithmic version of
Carathéodory’s theorem Grötschel et al. (1993, Theorem 6.5.11) that only requires access to a
separation oracle for Ap, and (b) Assumption 4.2 allows us to compute x⊤

(p→s∗
p)
Uy in polynomial

time for any product distribution x(p→s∗
p)

, as is evident from (1).

Theorem 4.4. Let G be a polyhedral game (Definition 2.4) of n players and {Φp} be a collection of
polytopes corresponding to sets of linear strategy transformations that map every strategy set Ap to
itself. Additionally, let N =

∑
p d

2
p. Assume that

• there exist polynomial-time separation oracles for Ap and Φp,

• G satisfies the polynomial utility gradient property (Assumption 4.2),

• ψ is an upper bound on the facet-complexity of every Ap and Φp,

• log u is the maximum encoding length of the utilities of G.

Then there exists an algorithm that computes an exact {Φp}-equilibrium of G in time
poly(N, log u, ψ) and performs poly(N, log u, ψ) number of calls to all the separation oracles.
Additionally, the equilibrium is represented as a convex combination of at most N pure strategy
profiles.

Proof. The set X = ∆(Π1×· · ·×Πn) is trivially a rational polytope and the set Y = Φ1×· · ·×Φn ⊂
ℝN is the Cartesian product of rational polytopes, hence a rational polytope. Furthermore, we can
directly construct a polynomial-time separation oracle for Y by calling the separation oracles for
each one of the sets Φp. Additionally, every row of the U matrix has N entries, each with encoding
length at most 2 log u. Using the good-enough-response oracle from Lemma D.1, each response
(xk,x

⊤
k U) ∈ X ×ℚN corresponds to a pair of a pure strategy profile (vertex of X ) and a row of U.

Thus, each response has encoding length at most 2N log u. Set φ = max(2N log u, ψ).

Now, we can apply Theorem 3.1, which gives us an algorithm running in poly(N,φ) time and
performing poly(N,φ) oracle calls. Combining this with Lemma D.1, it follows that the total time
complexity is poly(N,φ) = poly(N, log u, ψ). Finally, the optimal solution x∗ will be comprised
of a mixture of N oracle responses. In other words, x∗ will be an exact {Φp}-equilibrium for the
game G with probability mass on at most N pure strategy profiles.

Corollary 4.5 (Exact CE in normal-form games). If a normal-form game G has the polynomial type
and the polynomial expectation property, defined in Papadimitriou and Roughgarden (2008), then
our algorithm computes an exact correlated equilibrium of G and runs in polynomial time in the size
of the game.

Proof. A normal-form game is a polyhedral game where every strategy set is a probability simplex.
Additionally, the set Φ of all linear transformations in normal-form games is that of swap-deviations
which is equivalent to the set of all stochastic matrices (Gordon et al., 2008). Both the sets of
strategies and the sets of stochastic matrices can easily be represented as polytopes of bounded facet-
complexity having polynomially many constraints. Finally, the polynomial utility gradient property
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(Assumption 4.2) reduces to the polynomial expectation property in succinct normal-form games
and the polynomial type property is implicitly satisfied (see Remark 4.3). Thus, all requirements
of Theorem 4.4 are satisfied and we conclude that there exists a polynomial time algorithm for
computing CEs in normal-form games.

Corollary 4.6 (Exact LCE computation). There exists an algorithm that runs in poly(N, log u) time
and computes an exact linear-deviation correlated equilibrium (LCE) in an extensive-form game.

Proof. We apply Theorem 4.4 for the set of linear-swap deviations. Specifically, in Farina and Pipis
(2023, Theorem 3.1) it is proved that:

• The set ΦLIN of linear-swap deviations for a player p is a rational polytope.

• This polytope can be described using a polynomial number of equality constraints, which
immediately implies the existence of an efficient separation oracle.

• Every constraint of the characterization has at most |Σp|2 coefficients, each belonging to
{0, 1,−1}. Thus, the facet-complexity of ΦLIN must be ψ = |Σp|2.

Finally, since the number of non-zero utilities are at most equal to the game tree size, it trivially
follows that extensive-form games satisfy the polynomial utility gradient property (Assumption 4.2).
It follows that there exists a polynomial time algorithm for computing LCEs.

Theorem 4.7 (Hardness of BR oracle). It is NP-hard to construct a best-response oracle for the
Correlator in the Correlator-Deviator game.

Proof. A best-response oracle for the Correlator in the Correlator-Deviator game must respond with
the optimal x ∈ X = ∆(Π1 × · · · × Πn) for any given y ∈ Y = Φ1 × · · · × Φn. More precisely,
we have to be able to compute

x∗ = argmax
x∈X

{
x⊤Uy

}
= argmax

x∈X

{∑
p

𝔼
s∼x

[up(s)− up(ϕp(sp), s−p)]

}

for all y ∈ Y .

To prove that this process is intractable it suffices to find a game and an equilibrium concept such
that it is NP-hard to compute x∗ for at least one y ∈ Y . For the solution concept we choose the
coarse-correlated equilibrium, in which the sets Φp consist of all constant (or external) deviations that
output a fixed strategy ϕp(xp) = s̄p ∈ Πp no matter the input strategy xp. For the game, we choose
the SAT-game that was also used to prove the hardness of equilibrium selection for EFCE and LCE in
extensive-form games (von Stengel and Forges, 2008; Farina and Pipis, 2023). The exact details are
not important for our purposes, but we will only use the fact that any SAT instance can be encoded in
a 2-player extensive-form game using a polynomial-time reduction. In this game, any pure strategy
profile s ∈ Π1 × · · · ×Πn with social welfare (sum of players’ utilities) equal to 2 corresponds to
a satisfying assignment for the SAT instance, while any other strategy profile has social welfare at
most 2(1− 1/n). Thus, there exists a Nash equilibrium (and hence, a CCE) corresponding to a pure
strategy profile that has maximum social welfare.

Before we proceed, we augment the SAT-game by adding an extra decision point for both players at
the beginning of the game that asks whether they want to play. If both players respond “Yes” then the
game continues as normal, otherwise –if at least one player responds “No”– the game ends and both
players get a 0 payoff. We denote the pure strategy of the “No” answer from player 1 with sN1 and
the “No” answer from player 2 with sN2 .

Now, to prove the desired result consider a Correlator-Deviator game applied to the computation of a
CCE in the above augmented SAT-game. Assume that there exists a polynomial-time best-response
oracle for this game that returns a solution of polynomial size in the representation of the game
(and hence, the size of the SAT instance). Then, we can use it to best-respond to y = (ϕ1, ϕ2) for
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ϕ1(x1) = sN1 and ϕ2(x2) = sN2 . Specifically, we have

x∗ = argmax
x∈X

{∑
p

𝔼
s∼x

[up(s)− up(ϕp(sp), s−p)]

}

= argmax
x∈X

{∑
p

𝔼
s∼x

[up(s)]−
∑
p

𝔼
s∼x

[up(s
N
p , s−p)]

}

= argmax
x∈X

{∑
p

𝔼
s∼x

[up(s)]

}
.

In other words, the BR oracle returns in this case a distribution x∗ over pure strategy profiles with
maximum social welfare. Since the BR oracle computes a polynomially-sized x∗ in polynomial-time,
we can uncover a pure strategy profile of maximum social welfare that corresponds, by construction
of the SAT-game, to a satisfying assignment of the SAT instance. We conclude that constructing a
best-response oracle in the Correlator-Deviator game corresponding to the compution of a CCE in
extensive-form games is NP-hard.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include our contributions in the abstract as well as in the “Contributions”
paragraph of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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• The paper should point out any strong assumptions and how robust the results are to
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
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high-precision equilibria in games (and giving a polynomial-time algorithm of rather high
complexity), it does not include any experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is a theoretical investigation of the tractability of computing high-
precision equilibria in polyhedral games and does not suggest a way to deploy new tech-
nologies. Thus, it does not have any immediate societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper concerns theoretical results of equilibrium computation in games
and poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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