
Dirac–Bianconi Graph Neural Networks – Enabling Non-Diffusive Long-Range
Graph Predictions

Christian Nauck 1 Rohan Gorantla 2 3 Michael Lindner 1 Konstantin Schürholt 4 Antonia S. J. S. Mey 2

Frank Hellmann 1

Editors: S. Vadgama, E.J. Bekkers, A. Pouplin, S.O. Kaba, H. Lawrence, R. Walters, T. Emerson, H. Kvinge, J.M. Tomczak, S. Jegelka

Abstract
The geometry of a graph is encoded in dynami-
cal processes on the graph. Many graph neural
network (GNN) architectures are inspired by such
dynamical systems, typically based on the graph
Laplacian. Here, we introduce Dirac–Bianconi
GNNs (DBGNNs), which are based on the topo-
logical Dirac equation recently proposed by Bian-
coni. Based on the graph Laplacian, we demon-
strate that DBGNNs explore the geometry of
the graph in a fundamentally different way than
conventional message passing neural networks
(MPNNs). While regular MPNNs propagate fea-
tures diffusively, analogous to the heat equation,
DBGNNs allow for coherent long-range propa-
gation. Experimental results showcase the supe-
rior performance of DBGNNs over existing con-
ventional MPNNs for long-range predictions of
power grid stability and peptide properties. This
study highlights the effectiveness of DBGNNs
in capturing intricate graph dynamics, providing
notable advancements in GNN architectures.

1. Introduction
Understanding the geometric and physical properties of real-
world data is crucial for AI applications in physics, chem-
istry, and robotics. For the common case of graph structured

1Potsdam Institute for Climate Impact Research, Telegrafenberg
A31, 14473 Potsdam, Germany 2EaStCHEM School of Chemistry,
University of Edinburgh, EH9 3FJ, UK 3School of Informatics,
University of Edinburgh, EH8 9AB, UK 4AIML Lab, University of
St. Gallen, Rosenbergstrasse 30, CH-9000 St. Gallen, Switzerland.
Correspondence to: Christian Nauck <nauck@pik-potsdam.de>,
Frank Hellmann <hellmann@pik-potsdam.de>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at the 41 st International Conference
on Machine Learning, Vienna, Austria. PMLR Vol Number 251,
2024. Copyright 2024 by the author(s).

data, various graph neural network (GNN) architectures
have been developed (Wu et al., 2021).

GNNs have been motivated in various ways. Spectral ap-
proaches see the eigenbasis of the graph Laplacian L as
playing a similar role as that of Fourier modes in spatial
data.

Spatial convolution approaches, instead, build on the idea of
aggregating features by considering spatial neighborhoods.
Message passing is one of the most prominent implemen-
tations of this idea. For the edge connecting nodes i and j,
we construct a message eij from inputs xin

i , xin
j at its ends,

and some invariant edge features efij . Then each node aggre-
gates messages on the edges connected to it to produce an
output. Denoting general, potentially non-linear, functions
by f , g, h, and for the set of neighbors Ni of node i, the
most general structure usually assumed for message passing
neural networks (MPNNs) is:

eij = g
(
xin
i , x

in
j , e

f
ij

)
, (1)

xout
i = f

xin
i ,

∑
j∈Ni

h(eij , x
in
j)

 . (2)

Here, g can compute simple differences across edges and
attention scores. There is a large body of work exploring the
potential of this style of architecture, including variations
of updates to edge features. In this context, the case where
edge features are updated simultaneously with node features
from layer to layer (see for example Yang & Li (2020); Chen
& Chen (2021); He et al. (2023); Zhou et al. (2023)) has not
been explored as extensively:

eout
ij = g

(
xin
i , x

in
j , e

in
ij

)
, (3)

xout
i = f

xin
i ,

∑
j∈Ni

h(ein
ij , x

in
j)

 . (4)

In contrast to ordinary MPNNs, the variable e cannot be
eliminated from the equations. Edge features propagate

1

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

from layer to layer. Note that this also falls outside the edge
update model of Battaglia et al. (2018), which considers
node updates of the form

∑
h(eout

ij , x
in
j).

Exploring GNNs as dynamical systems These structures
resemble that of a discrete dynamical system on a network.
This perspective has led to novel approaches to GNN archi-
tectures that draw inspiration from dynamical systems to
overcome limitations observed in earlier architectures. A no-
table example is the work of Rusch et al. (2022), who intro-
duce neural networks based on inertial Kuramoto oscillator
networks (Kuramoto, 1975; Acebrón et al., 2005; Rodrigues
et al., 2016). They argue that oversmoothing – the obser-
vation that many GNN architectures tend to average out
features across the graph when iterated too deeply – is anal-
ogous to synchronization in such dynamical systems. The
fact that the synchronous manifold is unstable for oscillator
dynamics under a natural parameter condition then suggests
that its architecture should not suffer from oversmoothing.

GNN architectures have been inspired by theoretical physics
in numerous related works. Notable works draw from ge-
ometric curvature (Topping et al., 2022), discrete dynami-
cal systems (Oono & Suzuki, 2021), ordinary differential
equations (Poli et al., 2021), as well as partial differential
equations and their discretization schemes (Chamberlain
et al., 2021b;a; Eliasof et al., 2021).

Generally, these works are based on dynamical systems
defined in terms of variants of the graph Laplacian. The
paradigmatic example of a dynamical system defined by the
Laplacian is the heat equation, which describes diffusion of
a density ρ in space (r) and time (t):

∂tρ(r, t) = −∆ρ(r, t). (5)

The process of heat spreading involves the gradual equaliza-
tion of temperature throughout the system. This spreading
can be adjusted in various ways, leading to the development
of analogous GNN architectures. Advection plays a role in
moving heat around (Eliasof et al., 2023; Zhao et al., 2023),
different regions may exhibit varying heat conductivities,
and anomalous diffusion can impact the speed at which the
system reaches equilibrium (Maskey et al., 2023).

The main motivation of our work is to investigate a new
class of physical processes that can be used as the basis for
GNN architectures. Consider the way that light travels: It
can slow down in a medium, reflect, refract, and travel long
distances without losing its shape. The underlying equa-
tion has oscillating plane waves as solutions, which can be
combined into wave packets that maintain their shape while
traveling long distances. Fiber optics provide a great exam-
ple of how a medium can shape the path of a signal while the
wave packet keeps its shape, allowing a light pulse to trans-
mit information over hundreds of kilometers. Unfortunately,
there is no direct analogy to electromagnetic equations in

graphs, since there is no natural gradient operator.

Inspiration from the Dirac equation on networks In-
stead, we base our work on the topological Dirac equation
on networks, recently introduced by Bianconi (2021). The
Dirac equation is one of the fundamental equations of quan-
tum mechanics. It describes the evolution of the Dirac field,
representing most elementary particles such as electrons,
protons, and quarks. Like electromagnetic equations, it
allows wave packets to maintain their shape.

The Dirac equation is based on the Dirac operator, a square
root of the Laplacian. It is obtained by mixing spatial
derivatives with transformations in ‘internal space’, i.e.,
transformations between different components of the
Dirac field. Bianconi (2021) builds on earlier work on
quantum information processing by Lloyd et al. (2016),
introducing a Dirac operator on simplicial complexes to
create a topological Dirac equation for graphs.

The topological Dirac equation falls outside the dynamics
captured by the standard MPNN framework shown in Equa-
tion (1), as it treats edges and nodes on the same footing.
It is thus an example of the less studied layer of the type
described by Equation (3) with propagating edge features.
Given that it is based on a physical equation that allows for
wave packets to propagate long distances without losing
their shape, we expect this architecture to be of interest
where oversmoothing and long distance dependencies are
important. Furthermore, the fact that edges and nodes are
treated equally is also appropriate for some tasks.

Potential for longe-range predictions One motivating ap-
plication for GNNs with long-range capabilities inspired by
dynamical systems is predicting stability properties of power
grids. Ringsquandl et al. (2021) show that GNNs with 13 or
more layers are needed to achieve good performance in pre-
dicting stability properties of power grids with roughly 300
buses. This differs from many commonly used benchmark
datasets where GNNs with only 2-3 layers perform best.
This suggests that architectures that tend to oversmooth will
struggle in the context of power grids. Power grids have
node and edge features of similar nature and importance,
suggesting the need to treat edges and nodes similarly, rather
than considering the former as just a coupling for the latter.
In addition, the complex topological aspects of the graph
topology play a significant role in shaping the dynamic
properties in power grids. A striking example is shown by
Nitzbon et al. (2017), who find that certain desynchroniza-
tion modes of their power grid model occur only in specific
topological settings, regardless of the node features.

Our key contributions are:

• We analyze the diffusive character of conventional
MPNNs by visualizing the trajectories of signals
through the GNNs.

2

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

• We generalize the topological Dirac equation and use
it to define the novel Dirac–Bianconi T-Step Layer
(DBTS).

• We show experimentally that this layer allows for
shape-preserving long-range propagation of feature ac-
tivation along the graph. MPNN architectures with the
same random weights do not exhibit this behavior. We
also show empirically that the Dirichlet energy does
not go to zero under repeated applications of this layer.

• To validate its performance on benchmark datasets,
we use an architecture with several DBTS layers
and skip connections. We find that the new layer
shows superior performance on challenging power
grid tasks with crucial long-range dependencies. On
molecular tasks for predicting peptide properties from
long-range benchmark datasets, DBGNN outperforms
conventional message passing (MPNN) methods while
using a quarter of the parameters, and is competitive
with transformer-based GNNs.

Our work presents a key contribution to improving GNNs
and providing long-range capabilities by propagating node
and edge features. This paves the way for assembling more
complex graph-based datasets that rely on edge features and
long-range propagation. In the following sections, we in-
troduce Bianconi’s Dirac operator for graphs, as well as the
topological Dirac equation and our generalization thereof
in more detail. This provides the basis for the introduction
of the DBGNN layer. We then present experimental results
and compare the performance with benchmark models.

2. Background
Notation: Graphs G consist of nodes N and edges E . Each
edge occurs twice, with the two possible orientations, and
we write an edge e as an ordered pair [i, j] ∈ E of nodes
i, j ∈ N . The set of neighbors of node i is denoted as Ni.
The space of features on an edge/node is called Fe/n, the
space of all edge features of our graph G is F E

e , and FN
n

for node features.

The structure of a graph can be described using the
incidence matrix B ∈ R|N |×|E|:

Bie =

+1 if e = [i, j]

−1 if e = [j, i]

0 otherwise.
(6)

Introducing the Dirac operator: The incidence matrix
B maps from the edge space to the node space. It can
be checked that matrix BB† gives the usual Laplacian
matrix, where † denotes the conjugate transpose. Consider
a vector of node features x and a vector of edge features
e. Bianconi’s Dirac operator on graphs is given by:

∂DB

(
x
e

)
=

(
0 bB

(bB)† 0

)(
x
e

)
=

(
bBe
b∗B†x

)
(7)

for some b ∈ C. We see that this operator maps node
features to edge features, and vice versa. The equation
considered by Bianconi (2021) contains a mass term β.
Taking x and e as a function of t ∈ R, the topological Dirac
equation is

i∂t

(
x(t)
e(t)

)
=

(
∂DB +

(
β 0
0 −β

))(
x(t)
e(t)

)
(8)

= (∂DB +Wβ)

(
x(t)
e(t)

)
. (9)

Bianconi (2021) discusses in detail how this equation relates
to the motivating Dirac equation for certain graphs; however,
it is not at all obvious what the analog of plane waves and
wave packets should be for arbitrary topologies. This is a
topic of ongoing research.

At the same time, the spectral properties of this equation
make it clear that it is fundamentally different from the heat
equation. Recall that the heat equation is ∂tx = ∆x with
solutions given in terms of eigenvectors vi and eigenvalues
λi by

∑
i e

λitvi. Since ∆ is a negative semi-definite matrix,
we have λi ≤ 0. For connected graphs, only one λ is zero
and all solutions decay to the corresponding eigenvector.

In contrast, the operator ∂DB +Wβ has an equal number of
positive and negative eigenvalues (Bianconi, 2021). These
are bounded away from zero by |β|. Thus, the evolution
according to this operator cannot equilibrate – there are al-
ways expanding and contracting directions. Furthermore, if
we note the imaginary unit in front of the time-derivative on
the left-hand side, i∂t, the positive and negative eigenvalues
correspond to rotating and counter-rotating oscillations in
time, which can be superimposed to approximate temporal
envelopes for wave packets. Spatially, these oscillations
couple the node and edge spaces together. We therefore
hypothesize that such wave packets propagate directly into
the graph.

Details on the Dirac operator: For completeness,
the following subsection discusses further aspects and
motivation for the Dirac operator, although the details are
not necessary for understanding the rest of the paper.

In differential geometry, any square root of the Laplacian
(typically on a vector bundle over a Riemannian manifold) is
called a Dirac operator. While the eigenvalues of the Lapla-
cian operator show how diffusive processes disperse, they
do not distinguish between different directions in the man-
ifold. In contrast, those of the Dirac operators typically do
so by coupling directions in space to different directions in

3

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

the bundle. This can be illustrated by the simplest example.
For the tangent bundle over R, the Dirac operator −i∂x has
eigenvalues ±1 for eigenmodes e±it. The Laplace operator
has the same eigenmodes, but both correspond to the eigen-
value 1. Exponentiating the Laplacian leads to the heat ker-
nel, which smooths out the differences and leads to equilibra-
tion in the long run: All states converge to the kernel of the
Laplace operator. In contrast, exponentiating −i∂x simply
induces shifts along the real axis: e−si∂xf(x) = f(x− s),
which can be verified by taking the Fourier transform.

As already noted above, the incidence matrix B satisfies
L = BB†. In the context of homological algebra, B is
called the boundary operator, and B†B is the so-called
one-down Laplacian connecting edges to edges. Such
boundary operators play a central role in the extension of
GNNs to simplicial complexes. A principled approach to
simplicial message passing using this approach is given in
Bodnar et al. (2021).

In our context, the relationship between the incidence matrix
and the Laplacian suggests that the incidence matrix should
play a role similar to that of the Dirac operator. However,
since it maps between edges and nodes, it cannot be used
directly to update features, which motivates the definition
above.

As discussed in detail in (Bianconi, 2021), this Dirac
operator does not capture directionality in the same way
as the usual Dirac operators of quantum mechanics. For ex-
ample, on a regular lattice, the operator does not distinguish
between edges that are parallel or orthogonal to each other.
However, it does mix edge features and node features in non-
trivial ways. In addition, its eigenstates encode topological
features of the graph on both the edges and the nodes.

Since ∂DB squares the block matrix consisting of the usual
graph Laplacian and the one-down Laplacian, iteration
of this operator does not introduce any interesting non-
diffusive dynamics on the feature space of the graph. How-
ever, as the spectral analysis shows, the dynamical equations
based on it are genuinely different. We will see further evi-
dence of this difference in the numerical experiments that
study the spreading behavior of feature activation.

3. The Dirac–Bianconi Layer
We consider the Euler discretization of Equation (9) and
introduce higher-dimensional feature spaces of dimension
dn for nodes and dimension de for edges, Fn = Rdn and
Fe = Rde . Consider coupling matrices W ne ∈ Rdn×de

and W en ∈ Rde×dn , and mass matrices W n
β ∈ Rdn×dn ,

W e
β ∈ Rde×de , we can write

xi(t+ 1) = xi(t) +W ne
∑
j∈Ni

eij(t) +W n
β xi(t), (10)

eij(t+ 1) = eij(t) +W en(xi(t)− xj(t))−W e
βeij(t).

We call this equation the generalized linear Dirac–Bianconi
equation. Here FN

n = Rdn|N | denotes the total node
feature space and F E

e the total edge feature space. However,
after applying ∂DB we also have the space of one edge
feature space per node, FN

e , and one node feature space per
edge, F E

n . The action of W ne and W en then maps us back
to the original FN

n and F E
e . This equation contains both

the wave behavior and the expanding/contracting dynamics
as a special case. The oscillatory behavior occurs when
we mimic the imaginary unit by making the right-hand
side of Equation (10) antisymmetric: βn/e = −β†

n/e, and

W ne = −W en†. This should be compared to a simple
linear message passing neural network (MPNN)-style
dynamics with edge weights, omitting activation functions:

xi(t+ 1) = xi(t) +WMPNN
n

∑
j∈Ni

eij(t) + βnxi(t), (11)

eij(t) = WMPNN
e (xi(t)− xj(t))

while the edge messages change over time, there is no time
evolution of the edge features themselves. The messages
can be trivially eliminated, while this is not the case for
Equation (10). This changes the way dynamics spread in
the network, see Figure 1. The propagation of edge features
allows oscillations to couple directly to the graph structure,
enabling waves to propagate. Note that this is true even if
the dataset itself has no edge features.

Equation (10) is of the general form considered in Bodnar
et al. (2021), but the specific form here was not considered
there. From the perspective of simplicial topology, the main
difference is that we use the boundary and coboundary
operators, together with a simultaneous update of nodes
and edges, but no Laplacian. For simplicial two-complexes
this has been considered (Bunch et al., 2020), but we are
not aware of any previous work of this kind on graphs.

To conclude this section, Laplacian operators, which are
common message passing frameworks, lead to smoothing
with loss of information. In contrast, the Dirac operator,
with its form of the wave equation, does not lead to
oversmoothing, which can also be seen visually in Figure 1.

4. Dirac–Bianconi Graph Neural Networks
In the following, we use the generalized linear Dirac–
Bianconi equation (Equation (10)) to define a novel GNN
layer for problems where long-range interactions in the
graph are expected to play a profound role. This is achieved

4

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Figure 1. Feature activation versus steps of linear DB Equation (10) (left) and MPNN Equation (11) (right) on a path graph, dn = df = 1,
same random weights. The initial condition has all features zero, except at node 1, where the node features are randomly activated. Linear
DB shows activation moving linearly down the graph, while MPNN shows diffusion.

by explicitly considering node and edge features in a
coupled system and by using the Dirac operator, which
does not smooth wave signals.

We define the DB 1-Step layer as one step of the linear DB
Equation (10), followed by a dropout and a non-linearity.
The matrices W ne ∈ Rdn×de , W en ∈ Rde×dn , W n

β ∈
Rdn×dn , and W e

β ∈ Rde×de are learnable weights. This
layer is sketched in Figure 2a. We sequentially apply T such
layers with shared weights to obtain the DB T-step layer of
Figure 2b. The full Dirac Bianconi Graph Neural Network
(DBGNN) with K T-step layers is then constructed as in
Figure 2c:

• First we linearly map the input features to the hidden
feature spaces Fn = Rdhidden

n and Fe = Rdhidden
e for nodes

and edges, respectively.
• We then alternate DB T-step layers and skip connec-

tions that mix in the input features using a linear map
K times. This allows for different dynamics that see
both the initial conditions and the features processed
by the previous layers.

• Finally, we use MLP to map from the hidden feature
dimension to the output dimension, optionally followed
by pooling and another MLP layer.

Such a DBGNN makes KT/2 node-to-node hops on the
graph. Before testing DBGNNs on real datasets, we per-
form synthetic analyses that demonstrate the key properties,
including long-range capabilities.

5. Synthetic analysis of DBGNN properties
DBGNNs do not suffer from oversmoothing A common
way to understand whether an architecture suffers from over-
smoothing is to study the different variations of the Dirichlet
energy (DE) (Zhou et al., 2021; Wang et al., 2023; Rusch
et al., 2022; Chen et al., 2023; Liu et al., 2023; Fu et al.,
2023; Di Giovanni et al., 2023), for which the definition and
computation are given in Appendix A.2.

To assess the intrinsic equilibration properties of DBGNNs
in comparison to Graph Convolutional Networks (GCNs),
we evaluate the DE over approximately 1,000 steps for
DBGNNs and 100 steps for GCNs in untrained networks.
GCNs are included in our analysis due to their widespread
use and established effectiveness in various applications.

The results are shown in Figure 3. From the spectral
analysis of Equation (9), we find that no equilibration occurs
for DBGNNs, while GCNs introduced by Kipf & Welling
(2017) quickly lose heterogeneity. Hence, DBGNNs allow
information to be propagated across very long ranges, while
in the case of GCNs, information is diffused quickly.

Wave aspects of DBGNNs enable deep propagation of
signals To analyze the long-range capabilities of DBGNNs,
we analyze how the layers can spread a localized feature
into a graph. Compared to MPNNs, there are two aspects
that might enable deep spreading: One is the intrinsic wave
dynamics of the linear DB equation, and the other is that
we apply a non-linearity to the edges. This second aspect
resembles the approach of (Bodnar et al., 2022; Zhao et al.,
2023; Rossi et al., 2023). It is noteworthy that with a ReLU
activation function on the edges, either xi−xj or xj −xi is
completely suppressed. This induces a strong directionality
in the behavior of the layer, which could enable long-range
propagation.

To investigate the effect of edge non-linearity and edge
updating separately, we will compare Equation (10) and the
iterated DB 1-step layer with Equation (11) and an MPNN
Equation (12) with and without edge non-linearity:

xi(t+ 1) = σ(W ne
∑

j∈N (i)

eij +W n
β xi(t)) (12)

eij(t) = σ(W en(xi(t)− xj(t))) or
eij(t) = W en(xi(t)− xj(t)),

for the same randomly initialized weights drawn from a
normal distribution with spread 0.1. As discussed in the

5

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

(a) Dirac Bianconi 1-Step (DB1S) (b) Dirac Bianconi T-Step (c) DBGNN layer, where Lin denotes a linear layer.

Figure 2. Illustration of the Dirac–Bianconi Graph Neural Network (DBGNN) layer (c) and its components. The Dirac–Bianconi T-step
layer (b) consists of multiple DB1S (a). By stacking multiple DB1S and applying them sequentially, information can be propagated along
the graph.

(a) DBGNN with 1 layer and 1,000 steps per layer (b) GCN with 100 layers

Figure 3. Evolution of the normalized Dirichlet energy (DE) of the node feature embeddings for a sample of dataset20 with five different
seeds and no training. For DBGNNs, the DE remains at a high level, meaning that information can be deeply propagated, while for GCNs,
information is quickly lost.

introduction, Equation (10) can induce both oscillatory and
non-oscillatory behavior, depending on the weights. Here
we investigate the properties of the oscillatory regime, in
which we might expect propagating waves. To do so, we
constrain the weights to be W ne = −W en† and W

n/e
β

antisymmetric.

We evolve these models on a 5x20 rectangular grid, where
one of the short edges has all nodes randomly initialized,
and all other edge and node features are identically zero.
Figure 4 shows example trajectories for five models with
four edge and node features to illustrate the behavior of
DBGNNs in comparison to MPNNs. The linear DB equa-
tion shows a leading edge, a concentrated wave of activation
that spreads rapidly into the network before dissipating,
with ripples radiating into the rest of the network. Due to
the oscillatory initialization, the linear MPNN equation also
shows oscillatory behavior, but this does not result in spread-
ing into the network. Adding the non-linearities stabilizes
the leading edge of the DB equation, which now reaches the
other end of the graph, and also sharpens the ripples into
a coherent excitation that travels slower down the graph.
For the MPNN, the non-linearities suppress the oscillations,

leaving us with pure diffusion. For higher dimensional
internal spaces, as well as for many non-oscillatory random
weights, most configurations of all layers exhibit slow diffu-
sion in the system. Occasionally, we can randomly generate
coherent traveling excitations in the DBGNN, which are
not observed in the MPNN. We provide examples of these
trajectories in the appendix. We conclude that the wave
aspects of the DBGNN enable deep propagation of signals
into the graph, while edge non-linearities play a minor role.

6. Experimental results
We evaluate the performance of our DBGNN on challenging
tasks involving long-range dependencies. The datasets
deal with power grid properties and properties associated
with the molecular structures of peptides. Power grids
are known to encompass long-range dependencies, as
highlighted by Ringsquandl et al. (2021). For the power
grid dataset, GNNs capable of effectively propagating
information over extended distances demonstrate superior
performance (Nauck et al., 2023). The emphasis for this
dataset is on topological relationships, given the absence
of edge features and the presence of only one binary node

6

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Figure 4. Oscillatory regime: Feature activation versus steps of the linear DB Equation (10) (top left), the non-linear DB 1-step layer
Equation (10) + ReLU (top right), the linear MPNN layer Equation (11) (bottom left), and MPNN Equation (12) without (middle) and
with non-linear messages (bottom right). dn = df = 4, same random weights. In the case of DBGNN, information can be propagated
and is not lost by diffusion.

feature. In contrast, the molecular dataset exhibits a diverse
array of node and edge features. These peptide datasets
were released with the specific purpose of benchmarking
the handling of long-range dependencies by various GNNs.
The selected tasks encompass node regression, graph
regression, and graph classification.

Dynamic stability of power grids The most sophisticated
dataset dealing with the dynamic stability of power grids
is published by Nauck et al. (2023), which is based on
Nauck et al. (2022b;a). There are a total of 20,000 grids:
10,000 small grids of size 20 (dataset20), and 10,000
medium-sized grids of size 100 (dataset100). Besides
training and evaluating the models on the same grid sizes,
we also analyze the out-of-distribution generalization by
training the models on grids of size 20 and evaluating them
on grids of size 100. We follow the nomenclature from
Nauck et al. (2023) and refer to this task as tr20ev100.

Training models on smaller grids and evaluating them on
larger grids is important for real-world applications because
the computational effort increases at least quadratically with
the size of the grid.

The results are given in Table 1, where we compare them
with the current benchmark performances. The DBGNN
achieves the best performance on all tasks and significantly
outperforms the other models on out-of-distribution gen-
eralization. One of the reasons for its superior performance
may be related to its ability to go deep without encountering
the problem of oversmoothing. The final DBGNN consists
of 4 DB 12-step layers, resulting in a total of 48 steps.

To further investigate the absence of smoothing, we

Table 1. Performance of dynamic stability prediction measured by
the R2 score in % using the benchmark models from Nauck et al.
(2023), distinguishing between in- and out-of-distribution (distr.)
The columns tr20ev20 and tr100ev100 indicate that the models are
trained and evaluated on the same datasets. The out-of-distribution
performance is measured by evaluating the models on dataset100
after training them on dataset20 (tr20ev100). Following Nauck
et al. (2023), we show the mean performance of the best three
configurations out of five different initializations.

Model In-distr. Out-of-distr.

tr20ev20 tr100ev100 tr20ev100

ArmaNet 82.22 ± 0.12 88.35 ± 0.12 67.12 ± 0.80

GCNNet 70.74 ± 0.15 75.19 ± 0.14 58.24 ± 0.47

TAGNet 82.50 ± 0.36 88.32 ± 0.10 66.32 ± 0.74

DBGNN 85.68 ± 0.10 90.08 ± 0.02 73.73 ± 0.07

compute the Dirichlet energy for a sample of dataset20 in
the forward pass using the node embeddings at each step.
Figure 5 shows that for trained models, the Dirichlet energy
remains high throughout the forward pass, confirming the
intuition that DBGNNs do not suffer from oversmoothing
even at considerable depth. Some seeds go through periods
of considerable ”sharpening”, especially following the
change in dynamics after each T-step.

Peptide property prediction To assess the performance
of the DBGNN model on long-range interactions, we use
the Peptides-struct dataset from the long-range benchmark
dataset (Dwivedi et al., 2023). Peptides, defined as short
chains of amino acids, play a crucial role in numerous bio-
logical processes. Given the intricate relationships between

7

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Figure 5. Evolution of normalized Dirichlet energy of node feature
embeddings in a trained DBGNN layer for a sample of dataset20
with five different seeds.

peptides and their biological functions, computational pre-
diction of peptide properties is crucial for advancing drug
development and biomolecular engineering. The peptide
datasets contain 15,535 graphs, with an average of 150.94
nodes per graph and an average diameter of 56.99.

The Peptides-struct dataset is a multi-label graph regression
task. Various properties of the peptides are predicted, with
the full details presented in Dwivedi et al. (2023).

The performance of the baselines from Dwivedi et al. (2023)
and the DBGNN is shown in Table 2. The baselines make
use of additional methods such as random-walk structural
encoding (RWSE) (Dwivedi et al., 2022) and Laplacian po-
sitional encoding (LapPE) (Dwivedi et al., 2020) to improve
performance. Spectral attention networks (SANs) are im-
proved transformers introduced by Kreuzer et al. (2021).
Tönshoff et al. (2023) show that the performance of MPNNs
such as GCNs can be significantly improved by adding
multi-layer regression heads to the output of GNNs. How-
ever, we refrain from including multi-head regressions in or-
der to focus on the pure properties of message passing com-
ponents. The DBGNN, consisting of only about a quarter of
the parameters, still significantly outperforms all message
passing graph neural networks, but achieves lower perfor-
mance than the transformers. We conclude that the DBGNN
is a powerful MPNN capable of dealing with node and edge
features and correctly identifying long-range dependencies.

Comparison with other oversmoothing techniques
Considering the inherent flaw of oversmoothing in GNNs
and especially in MPNNs, various methods have been
introduced to mitigate the issue (Rusch et al., 2023). These
approaches include diverse strategies such as applying nor-
malization techniques, employing regularization methods,
incorporating residual connections, and modifying the dy-
namics of GNNs (Rusch et al., 2023). Residual connections,
exemplified by models such as GatedGCN (Bresson & Lau-
rent, 2018) and GCNII (Chen et al., 2020), provide a way
to address oversmoothing. GCNII is specifically designed

Table 2. Performance on Peptides-struct visualized by mean abso-
lute error (MAE). The performance of the baseline is taken from
Dwivedi et al. (2023). The number of parameters is shown in
column # param.

Model # param train MAE test MAE

GCN 508k 0.2939 ±0.0055 0.3496 ±0.0013

GCNII 505k 0.2957 ±0.0025 0.3471 ±0.0010

GINE 476k 0.3116 ±0.0047 0.3547 ±0.0045

GatedGCN 509k 0.2761±0.0032 0.3420 ±0.0013

GatedGCN+RWSE 506k 0.2578 ±0.0116 0.3357 ±0.0006

Transform+LapPE 488k 0.2403 ±0.0066 0.2529 ±0.0016

SAN+LapPE 493k 0.2822 ±0.0108 0.2683 ±0.0043

SAN+RWSE 500k 0.2680 ±0.0038 0.2545 ±0.0012

DBGNN 127k 0.2433 ±0.0044 0.2864 ±0.0046

to tackle oversmoothing using Initial residual and Identity
mapping. Distinct but related methods include ArmaNet
(Bianchi et al., 2021) and TAGNet (Du et al., 2017), which
involve multiple steps within a single layer, enabling the con-
struction of deeper GNNs that provide meaningful output.
To address oversmoothing in MPNNs, Kreuzer et al. (2021)
propose SANs and use positional encoding techniques.

In contrast, the DBGNN motivated by dynamical systems
has several interesting implications. One is that it is inher-
ently non-oversmoothing, as demonstrated in Section 5.
This intrinsic attribute potentially contributes to the outstand-
ing performance of the DBGNN across various datasets, as
demonstrated in Tables 1 and 2, which may provide valuable
insights for the development of enhanced GNN models.

7. Conclusion
We introduced a new graph neural network layer based
on a straightforward generalization of the topological
Dirac–Bianconi equation on networks. We show that this
model has no intrinsic tendency to equilibrate features on
the network. This has the potential to handle long-range
dependencies and treat edge and node features equally. By
incorporating multiple steps with weight sharing within a
layer, we enable the layer to efficiently learn dynamics that
probe the graph deeply. The DBGNN is a straightforward
adaptation of the topological Dirac–Bianconi equation, and
thus offers the potential for many further modifications. In
its current form, the DBGNN already outperforms other
layers in predicting the dynamic stability of power grids and
achieves competitive performance in predicting molecular
properties, outperforming conventional MPNN methods.

By analyzing the internal node embeddings using the
Dirichlet energy, we can show that the DBGNN does not
seem to suffer from the oversmoothing problem. Further-
more, we observe a sudden sharpening of the features when
the dynamics change after many steps, a phenomenon that
needs to be better understood. We provide evidence that

8

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

the long-range capabilities result from the underlying Dirac–
Bianconi dynamics rather than from edge non-linearity. The
experiments were performed without adapting the model
to the task at hand. Since the DBGNN is close to standard
MPNN-style networks, the vast array of modifications that
exist for them can be easily adapted here. It remains to be
seen whether they can also enhance DBGNN-style networks.
One particularly interesting question is whether long-range
modifications to GCNs, such as Gutteridge et al. (2023),
can further enhance the long-range behavior of DBGNNs.

Overall, the expanded long-range capabilities provide
new opportunities for power grid analysis and molecular
prediction, offering increased potential for scientific
exploration and understanding.

8. Acknowledgements
All authors gratefully acknowledge Land Brandenburg for
supporting this project by providing resources on the high-
performance computer system at the Potsdam Institute for
Climate Impact Research. The work was in part sup-
ported by DFG Grant Numbers KU 837/39-2 (360460668),
BMWK Grant 03EI1016A, and BMBF Grant 03SF0766.
Christian Nauck would like to thank the German Federal En-
vironmental Foundation (DBU) for funding his PhD schol-
arship and Professor Jörg Raisch for supervising his PhD.
Michael Lindner greatly acknowledges support from the
Berlin International Graduate School in Model and Sim-
ulation (BIMoS) and from his doctoral supervisor Pro-
fessor Eckehard Schöll. Rohan Gorantla was supported
by the United Kingdom Research and Innovation (grant
EP/S02431X/1), UKRI Centre for Doctoral Training in
Biomedical AI at the University of Edinburgh, School of
Informatics and Exscientia Plc, Oxford. AI tools are used on
the (sub-)sentence level to improve language. We especially
want to thank the reviewers for their valuable comments and
feedback, which have significantly enhanced the quality of
this paper. We also express our gratitude to Teresa Gehrs
from LinguaConnect and the Proofreading Service for Ju-
nior Scholars at TU Berlin for their help in proofreading
this paper.

References
Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort,

F., and Spigler, R. The Kuramoto model: A simple
paradigm for synchronization phenomena. Reviews of
Modern Physics, 77(1):137–185, April 2005. doi: 10.110
3/RevModPhys.77.137.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.

arXiv preprint arXiv:1806.01261, 2018.

Besard, T., Foket, C., and De Sutter, B. Effective Exten-
sible Programming: Unleashing Julia on GPUs. IEEE
Transactions on Parallel and Distributed Systems, 30(4):
827–841, April 2019. ISSN 1558-2183. doi: 10.1109/TP
DS.2018.2872064.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.
Julia: A fresh approach to numerical computing. SIAM
Review, 2017. ISSN 00361445. doi: 10.1137/141000671.

Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C.
Graph Neural Networks with Convolutional ARMA Fil-
ters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (01):1–1, January 2021. ISSN 0162-8828.
doi: 10.1109/TPAMI.2021.3054830.

Bianconi, G. The topological Dirac equation of networks
and simplicial complexes. Journal of Physics: Complex-
ity, 2(3):035022, September 2021. ISSN 2632-072X. doi:
10.1088/2632-072X/ac19be.

Blakely, D., Lanchantin, J., and Qi, Y. Time and Space
Complexity of Graph Convolutional Networks. 2021.
URL https://qdata.github.io/deep2Read/
talks-mb2019/Derrick_201906_GCN_compl
exityAnalysis-writeup.pdf.

Bodnar, C., Frasca, F., Wang, Y. G., Otter, N., Montúfar, G.,
Liò, P., and Bronstein, M. Weisfeiler and Lehman Go
Topological: Message Passing Simplicial Networks, June
2021.

Bodnar, C., Di Giovanni, F., Chamberlain, B., Lió, P., and
Bronstein, M. Neural Sheaf Diffusion: A Topological
Perspective on Heterophily and Oversmoothing in GNNs.
Advances in Neural Information Processing Systems, 35:
18527–18541, December 2022. URL https://pape
rs.nips.cc/paper_files/paper/2022/ha
sh/75c45fca2aa416ada062b26cc4fb7641-A
bstract-Conference.html.

Bresson, X. and Laurent, T. Residual Gated Graph Con-
vNets, April 2018.

Bunch, E., You, Q., Fung, G., and Singh, V. Simplicial
2-Complex Convolutional Neural Nets, December 2020.

Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni,
F., Dong, X., and Bronstein, M. Beltrami Flow and
Neural Diffusion on Graphs. In Advances in Neural
Information Processing Systems, volume 34, pp. 1594–
1609. Curran Associates, Inc., 2021a. URL https:
//proceedings.neurips.cc/paper/2021/
hash/0cbed40c0d920b94126eaf5e707be1f
5-Abstract.html.

9

https://qdata.github.io/deep2Read/talks-mb2019/Derrick_201906_GCN_complexityAnalysis-writeup.pdf
https://qdata.github.io/deep2Read/talks-mb2019/Derrick_201906_GCN_complexityAnalysis-writeup.pdf
https://qdata.github.io/deep2Read/talks-mb2019/Derrick_201906_GCN_complexityAnalysis-writeup.pdf
https://papers.nips.cc/paper_files/paper/2022/hash/75c45fca2aa416ada062b26cc4fb7641-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/75c45fca2aa416ada062b26cc4fb7641-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/75c45fca2aa416ada062b26cc4fb7641-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/75c45fca2aa416ada062b26cc4fb7641-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/0cbed40c0d920b94126eaf5e707be1f5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0cbed40c0d920b94126eaf5e707be1f5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0cbed40c0d920b94126eaf5e707be1f5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0cbed40c0d920b94126eaf5e707be1f5-Abstract.html

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein,
M., Webb, S., and Rossi, E. GRAND: Graph Neural Dif-
fusion. In Proceedings of the 38th International Confer-
ence on Machine Learning, pp. 1407–1418. PMLR, July
2021b. URL https://proceedings.mlr.pres
s/v139/chamberlain21a.html.

Chen, J. and Chen, H. Edge-Featured Graph Attention
Network, January 2021. URL http://arxiv.org/
abs/2101.07671.

Chen, J., Wang, Y., Bodnar, C., Ying, R., Lio, P., and Wang,
Y. G. Dirichlet Energy Enhancement of Graph Neural
Networks by Framelet Augmentation, November 2023.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and Deep Graph Convolutional Networks, July 2020.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Understanding con-
volution on graphs via energies, September 2023. URL
http://arxiv.org/abs/2206.10991.

Du, J., Zhang, S., Wu, G., Moura, J. M. F., and Kar, S.
Topology Adaptive Graph Convolutional Networks. arxiv,
October 2017. doi: 10.48550/arXiv.1710.10370.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y.,
and Bresson, X. Benchmarking Graph Neural Net-
works. arXiv:2003.00982 [cs, stat], July 2020. URL
http://arxiv.org/abs/2003.00982.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph Neural Networks with Learnable
Structural and Positional Representations, February 2022.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long Range Graph Bench-
mark, January 2023.

Eliasof, M., Haber, E., and Treister, E. PDE-GCN: Novel
Architectures for Graph Neural Networks Motivated by
Partial Differential Equations, October 2021.

Eliasof, M., Haber, E., and Treister, E. Feature Transporta-
tion Improves Graph Neural Networks, December 2023.

Fey, M. and Lenssen, J. E. Fast Graph Representation
Learning with PyTorch Geometric. arxiv preprint, 2019.
doi: 10.48550/ARXIV.1903.02428.

Fu, G., Dupty, M. H., Dong, Y., and Sun, L. W. Implicit
Graph Neural Diffusion Based on Constrained Dirichlet
Energy Minimization, August 2023. URL http://ar
xiv.org/abs/2308.03306.

Gutteridge, B., Dong, X., Bronstein, M., and Di Giovanni,
F. DRew: Dynamically Rewired Message Passing with
Delay, May 2023.

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A Generalization of ViT/MLP-Mixer to
Graphs, May 2023.

Innes, M., Saba, E., Fischer, K., Gandhi, D., Rudilosso,
M. C., Joy, N. M., Karmali, T., Pal, A., and Shah, V.
Fashionable Modelling with Flux, November 2018.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. arXiv:1609.02907
[cs, stat], February 2017. doi: arXiv:1609.02907.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking Graph Transformers with
Spectral Attention, October 2021.

Kuramoto, Y. Self-entrainment of a population of coupled
non-linear oscillators. In Araki, H. (ed.), International
Symposium on Mathematical Problems in Theoretical
Physics 1975, pp. 420–422, Berlin, Heidelberg, 1975.
Springer. ISBN 978-3-540-37509-8. doi: 10.1007/BFb0
013365.

Liu, X., Zhou, B., Zhang, C., and Wang, Y. G. Framelet
Message Passing, February 2023.

Lloyd, S., Garnerone, S., and Zanardi, P. Quantum algo-
rithms for topological and geometric analysis of data. Na-
ture Communications, 7(1):10138, January 2016. ISSN
2041-1723. doi: 10.1038/ncomms10138.

Lucibello, C. GraphNeuralNetworks.jl, July 2023. URL
https://github.com/CarloLucibello/Gr
aphNeuralNetworks.jl.

Maskey, S., Paolino, R., Bacho, A., and Kutyniok, G. A
Fractional Graph Laplacian Approach to Oversmoothing,
October 2023.

Menck, P. J., Heitzig, J., Marwan, N., and Kurths, J. How
basin stability complements the linear-stability paradigm.
Nature Physics, 9(2):89–92, February 2013. ISSN 1745-
2481. doi: 10.1038/nphys2516.

Nauck, C., Lindner, M., Schürholt, K., and Hellmann, F.
Towards dynamic stability analysis of sustainable power
grids using graph neural networks. NeurIPS 2022 Work-
shop on Tackling Climate Change with Machine Learn-
ing, December 2022a. doi: 10.48550/arXiv.2212.11130.

Nauck, C., Lindner, M., Schürholt, K., Zhang, H., Schultz,
P., Kurths, J., Isenhardt, I., and Hellmann, F. Predicting
basin stability of power grids using graph neural networks.
New Journal of Physics, 24(4):043041, April 2022b.
ISSN 1367-2630. doi: 10.1088/1367-2630/ac54c9.

10

https://proceedings.mlr.press/v139/chamberlain21a.html
https://proceedings.mlr.press/v139/chamberlain21a.html
http://arxiv.org/abs/2101.07671
http://arxiv.org/abs/2101.07671
http://arxiv.org/abs/2206.10991
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2308.03306
http://arxiv.org/abs/2308.03306
https://github.com/CarloLucibello/GraphNeuralNetworks.jl
https://github.com/CarloLucibello/GraphNeuralNetworks.jl

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Nauck, C., Lindner, M., Schürholt, K., and Hellmann, F. To-
ward dynamic stability assessment of power grid topolo-
gies using graph neural networks. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 33(10):103103, Oc-
tober 2023. ISSN 1054-1500. doi: 10.1063/5.0160915.

Nitzbon, J., Schultz, P., Heitzig, J., Kurths, J., and Hellmann,
F. Deciphering the imprint of topology on nonlinear
dynamical network stability. New Journal of Physics, 19
(3):033029, March 2017. ISSN 1367-2630. doi: 10.108
8/1367-2630/aa6321.

Oono, K. and Suzuki, T. Graph Neural Networks Expo-
nentially Lose Expressive Power for Node Classification,
January 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. PyTorch: An
Imperative Style, High-Performance Deep Learning Li-
brary. In Wallach, H., Larochelle, H., Beygelzimer,
A., Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015-p
ytorch-an-imperative-style-high-perfo
rmance-deep-learning-library.pdf.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama,
H., and Park, J. Graph Neural Ordinary Differential
Equations, June 2021.

Ringsquandl, M., Sellami, H., Hildebrandt, M., Beyer, D.,
Henselmeyer, S., Weber, S., and Joblin, M. Power
to the Relational Inductive Bias: Graph Neural Net-
works in Electrical Power Grids. In Proceedings of the
30th ACM International Conference on Information &
Knowledge Management, CIKM ’21, pp. 1538–1547,
New York, NY, USA, October 2021. Association for
Computing Machinery. ISBN 978-1-4503-8446-9. doi:
10.1145/3459637.3482464.

Rodrigues, F. A., Peron, T. K. D., Ji, P., and Kurths, J. The
Kuramoto model in complex networks. Physics Reports,
610:1–98, January 2016. ISSN 0370-1573. doi: 10.1016/
j.physrep.2015.10.008.

Rossi, E., Charpentier, B., Di Giovanni, F., Frasca, F.,
Günnemann, S., and Bronstein, M. Edge Directionality
Improves Learning on Heterophilic Graphs, November
2023.

Rusch, T. K., Chamberlain, B. P., Rowbottom, J., Mishra,
S., and Bronstein, M. M. Graph-Coupled Oscillator Net-
works, June 2022.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A Survey on
Oversmoothing in Graph Neural Networks, March 2023.

Tönshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where Did the Gap Go? Reassessing the Long-Range
Graph Benchmark, September 2023.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature, November 2022.

Wang, Y., Yi, K., Liu, X., Wang, Y. G., and Jin, S. ACMP:
Allen-Cahn Message Passing for Graph Neural Networks
with Particle Phase Transition. 2023. doi: 10.48550/A
RXIV.2206.05437.

Witthaut, D., Hellmann, F., Kurths, J., Kettemann, S.,
Meyer-Ortmanns, H., and Timme, M. Collective non-
linear dynamics and self-organization in decentralized
power grids. Reviews of Modern Physics, 94(1):015005,
February 2022. doi: 10.1103/RevModPhys.94.015005.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A Comprehensive Survey on Graph Neural Networks.
IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24, January 2021. ISSN 2162-2388.
doi: 10.1109/TNNLS.2020.2978386.

Yang, Y. and Li, D. NENN: Incorporate Node and Edge
Features in Graph Neural Networks. In Proceedings of
The 12th Asian Conference on Machine Learning, pp.
593–608. PMLR, September 2020. URL https://pr
oceedings.mlr.press/v129/yang20a.html.

Zhao, K., Kang, Q., Song, Y., She, R., Wang, S., and
Tay, W. P. Graph Neural Convection-Diffusion with Het-
erophily, May 2023. URL http://arxiv.org/ab
s/2305.16780.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet Energy Constrained Learning for
Deep Graph Neural Networks, July 2021.

Zhou, Y., Huo, H., Hou, Z., Bu, L., Mao, J., Wang, Y.,
Lv, X., and Bu, F. Co-embedding of edges and nodes
with deep graph convolutional neural networks. Scientific
Reports, 13(1):16966, October 2023. ISSN 2045-2322.
doi: 10.1038/s41598-023-44224-1.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.mlr.press/v129/yang20a.html
https://proceedings.mlr.press/v129/yang20a.html
http://arxiv.org/abs/2305.16780
http://arxiv.org/abs/2305.16780

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

A. Appendix
A.1. Data availability

The code to train the DBGNNs and to generate the figures is available on https://github.com/PIK-ICoNe/DBG
NN_paper-companion.git and https://doi.org/10.5281/zenodo.12687981.

A.2. Dirichlet energy

The Dirichlet energy is a measure of the heterogeneity of features across the graph. The normalized Dirichlet energy (DE) is
computed by:

Dirichlet energy =
tr(x(k)⊤Lx(k))

tr(x(k)⊤x(k))
, (13)

where x(k) denotes the node embedding after k steps and tr denotes the trace operator. The interpretation becomes apparent
by rewriting the Dirichlet energy in terms of edge differences:

Dirichlet energy =

∑
(i,j)∈E ||xi(k)− xj(k)||2∑

i∈N ||xi(k)||2
, (14)

where xi(k) ∈ Fn denotes the state of node i after k steps.

A.3. Hyperparameters for reproducibility

The following tables provide the hyperparameters to reproduce the main results. For the power grid dataset, the information
is given in Table 3, and for the peptide structure task in Table 4.

Table 3. Properties of DBGNN after hyperparameter studies for power grid datasets

parameter dataset with grids of size 20 dataset with grids of size 100

number of layers (K) 2 2
number of steps (with shared weights)
per layer (T)

68 68

dhidden
n 113 113

dhidden
e 109 109

dropout for node convolution ≈ 1.4× 10−2 ≈ 2.1× 10−2

dropout for edge convolution ≈ 1.9× 10−3 5.7× 10−4

batch size 50 50
epochs 2 000 2 000
learning rate (LR) max 6.1× 10−4 max: ≈ 2.6× 10−3

scheduler oneCycleLR with initial div factor: 32,
final div factor: 5.8× 105

oneCycleLR with initial div factor: 75,
final div factor: ≈ 1.7× 106

A.4. Implementation and computation details

The packages GraphNeuralNetworks.jl(Lucibello, 2023) and Flux.jl (Innes et al., 2018) are used for the Julia implementation
of the DBGNN (Bezanson et al., 2017). Furthermore, Cuda.jl (Besard et al., 2019) and MLDatasets.jl are used. We also
provide a PyTorch (Paszke et al., 2019) implementation using PyTorch Geometric (Fey & Lenssen, 2019). We run all
experiments on NVIDIA V100 and H100 accelerators.

For the power grid task and tr20ev20, training five seeds in parallel on one V100 takes about three days and 20 hours for
2,000 epochs, but significant overfitting occurs after roughly 500 epochs. For tr100ev100, overfitting occurs after roughly
600 epochs, and training two seeds in parallel take four days and eight hours for 2,000 epochs. For peptides-struct, 2,000
epochs with two seeds in parallel take roughly five days and 13 hours. For peptides-func, training two seeds in parallel takes
about one day and 18 hours in total for 500 epochs.

12

https://github.com/PIK-ICoNe/DBGNN_paper-companion.git
https://github.com/PIK-ICoNe/DBGNN_paper-companion.git
https://doi.org/10.5281/zenodo.12687981

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Table 4. Properties of the DBGNN after hyperparameter studies for peptide structure datasets

parameter peptides-struct

number of layers (K) 2
number of steps (with shared weights) per layer (T) 68
dhidden
n 113

dhidden
e 109

dropout for node convolution ≈ 0.0554
dropout for edge convolution ≈ 0.01058
batch size 60
epochs 2000
max. learning rate (LR) ≈ 0.00548
oneCyle scheduler init div factor: 151, final div factor: ≈ 4.217× 109

A.5. Computational complexity of the DBGNN

The computational complexity is mostly determined by the repeated application of LinDB from Equation (10), which we
will focus on in the following. Hence, we neglect the mapping of the input features to the hidden feature spaces, which only
needs to be done once before applying the DBGNN steps, as well as the concatenation of matrices and the application of
non-linearities. For the expensive LinDB layer, we make use of sparse operators, such as PyTorch Scatter (Paszke et al.,
2019), by exploiting the sparsity of the adjacency matrix to reduce the computational effort, which is explained in more
detail in (Blakely et al., 2021). The following paragraph describes the computational complexity in more detail.

For simplicity, we assume that de = dn, meaning that the hidden dimension of node and edge features is the same. There are
two relevant terms of the sum for node and edge propagation, respectively. First, for node propagation, using the coupling
matrix W ne and multiplying it by the edge features F E

e for all neighbors yields: O(|E| × dn). The second term, which is a
dense matrix multiplication of Wn

β and the node features FN
n yields: O(dn × dn × |E|). Similarly, for the propagation of

edges, we have O(|N |×dn) and the multiplication of W e
β×F E

e yields: O(de×de×|E|). These multiplications are repeated
T -times, where T denotes the number of DB steps. Hence, we get: O

(
T (|E| × dn + |N | × dn + d2n × |E|+ d2n × |N |)

)
,

which is comparable to the effort of the GCN (Blakely et al., 2021).

The runtime of the implemented layer can be improved by utilizing the sparsity of the adjacency matrix for the matrix
multiplication as well, which does not work in the current implementation.

A.6. Experimental details on power grids

The dynamics of power grids is characterized by complex collective phenomena that extend over the whole system (Witthaut
et al., 2022). The chosen task is based on the so-called single-node basin stability, originally introduced by (Menck et al.,
2013), which describes nodal dynamic stability. It is the result of expensive Monte Carlo simulations and quantifies the
probabilistic behavior of the entire power grid after applying nodal perturbations.

For the power grid models, the nodal input features are categorical representations of sources or sinks. The power lines are
assumed to be homogeneous; therefore, the input edge features are simply set to 1. The absence of diverse features puts the
emphasis on topological properties.

The datasets contain individual training, validation, and test sets (70:15:15). The only input feature per node, which
describes whether a node is considered a source (P = 1) or sink (P = −1), is based on the injected power P . Since
homogeneous coupling is used, there are no edge features. Performance on the nodal regression setup is evaluated using
the coefficient of determination (R2).

A.7. Non-oscillatory random weights

Figure 6 provides example trajectories with random initial weights for which the MPNN and the DBGNN do not differ
significantly. We suspect that random initialization leads to a washout of the directionality required to generate coherent
propagation. How to robustly generate traveling activation remains an open research question.

13

Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

Figure 6. Non-oscillatory regime: Feature activation versus steps of the linear DB Equation (10) (top left), the non-linear DB 1-step layer
Equation (10) + ReLU (top right), the linear MPNN layer Equation (11) (bottom left), and the MPNN Equation (12) without (middle) and
with non-linear messages (bottom right). dn = df = 4, same random weights.

Figure 7. Oscillatory regime, full DB 1-step layer Equation (10) + non-linearity, ladder graph, dn = df = 4.

We also provide two videos in the supplementary materials DB that show how a DBGNN layer can have activation that
travels along a ladder graph and is reflected at the far edge compared to MPNN. The trajectory is provided in Figure 7.

B. Limitations
The introduced DBGNN uses the Dirac operator, but no other special methods that could improve performance. It would be
interesting to integrate other techniques, such as attention, to obtain better performance.

C. Social impact
We present a potentially powerful GNN for analyzing graph-structured data. We currently have no reason to believe that the
new method introduces specific negative societal impacts beyond the general drawbacks of ML in general and improved
graph neural networks in particular.

14

