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Abstract. Deep learning models have demonstrated promising perfor-
mance for segmenting medical images and are significantly dependent
on a huge amount of well-annotated data. However, it is difficult to
get a large amount of data, particularly in clinical practices. Likewise,
high-performance deep learning models have an enormous model size,
restricting their use in actual applications. In order to reduce the burden
of both expensive annotations and computational expenses, we designed
the semi-supervised knowledge-based method on top of 3D U-Net and
Meta Pseudo Labels. We train the teacher network with labelled data to
generate the pseudo labels. And then we train the student network on
the pseudo labels, and give the training feedback to the teacher network.
The student network on FLARE2022 grand challenge Dataset achieved
81.19 % of DSC and 85.20% of NSD. As for the network inference speed,
it needs 50.59s for a single case.
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1 Introduction

Abdomen organ segmentation is essential and plays an important role in artificial
intelligence-based clinical diagnosis and treatment such as organ quantification
and surgical planning etc [1]. In order to accelerate such research and develop-
ments, Fast and Low-resource semi-supervised Abdominal oRgan sEgmentation
in CT (FLARE 2022) challenge has been introduced, that uses semi-supervised
settings and focuses on the usage of unlabeled data. Though it is not easy to
segment multiple organs automatically. For instance, multiple organs may vary
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in shape and size, and thus, organ lesions lead to abnormal segmentation. Simi-
lalrly, multi-center data with different scan ranges, and high computing resource
are required. However, it is also not easy to collect large amount of annotated
data. Thus, semi-supervised learning techniques are efficient to generate labeled
data from unlabeled data. Therefore, we propose a 3D U-Net Meta pseduo labels
(MPL) method [2], which is a semi-supervise learning approach for segmenting
multiple abdominal organs. The proposed method has the following features.

1. Using the MPL semi-supervise method with 3D U-Net[3] can perform auto-
matic segmentation of multiple organs in abnormal CTs.

2. Combine the nnU-Net[4] framework, a surpervise learning framework, with
the semi-supervise learning.

2 Method

We proposed a pair of networks entails a teacher and student network based on
Meta Pseudo Labels. In the proposed network, teacher module generates pseudo
labels from unlabeled data. Further, the pseudo labels and labeled images are
utillized for training the student module. The teacher network receives feedback
from the student network regarding their performance for the improvement of
their predictions. The schematic diagram of teacher-student network is depicted
in Fig. 1.

Fig. 1. The teacher-student semi-supervised network. When training the models,
teacher model would inference the unlabeled data and use the pseudo-labeled data
from teacher model to train the student model. The student model provides the feed-
back to teacher model.

2.1 Pre-processing

Our preprocessing approach is the same as the nn U-Net. In the preprocess-
ing step, the computed tomography (CT) images were left uncropped. However,
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for anisotropic images (maximum axis spacing > 3), in-plane resampling is per-
formed with third order spline whereas out of plane interpolation is performed
with nearest neighbor interpolation. Furthermore, we use 0.5 and 99.5 percentiles
of the foreground voxels for clipping as well as the global foreground mean (a
standard deviation) for normalization on all images.

2.2 Proposed method

One-step gradient. For the proposed method we formulate our model as fol-
lows. Where T and S refer to teacher and student networks, respectively, whereas
wT and ws refer to their parameters. Let (xl, yl) is a batch of images and their
labels, and define xu as a batch of unlabeled images. p denotes the soft prediction
and L for the loss function. In our method, the loss function is cross-entropy loss
and dice loss.

The Backbone Network. Our backbone network utilizes 3D U-Net, which
has four upsampling and downsampling layers. Each layer is composed of 3D
convolutions, ReLU activations and batch normalization. The first level of the 3D
U-Net extracts 32 feature maps and each downsampling process maximizes the
extracted feature maps up to 512. The 3D U-Net backbone network is depecited
in Fig. 2.

Fig. 2. The 3D U-Net network architecture.

Proposed semi-supervised method. Our semi-supervised learning method is
based on MPL and 3D U-Net as shown in Fig. 3 and their symbolic representation
described in One-step gradient(2.2), which having the detail of the method. In
the proposed method, the teacher’s model (Mt) is trained only by the labeled
data which generates the pseudo data. After that, student’s model (Ms) uses
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Algorithm 1 One-step gradient on MPL
1: Input: Labeled data xl,yl and unlabeled data xu

2: Initialization:ω(0)
t , ω

(0)
s , t← 0

3: repeat
4: Sample a labeled example xl, yl and an unlabeled example xu

5: Put xl, xu into teacher network get soft prediction pTl , p
T
u :

pTl = T (xl;ω
(t)
T ), pTu = T (xu;ω

(t)
T )

6: Generate pseudo label ŷu:ŷu = Argmax(Softmax(pTu ))
7: Feed xl, xu into student network get soft prediction pSl , p

S
u :

pSl = S(xl;ω
(t)
S ), pSu = S(xu;ω

(t)
S )

8: Update the student using the pseudo label ŷu:

ω
(t+1)
S = ω

(t)
S − αs∇ωsL(ŷu, p

S
u)

9: Feed xl into student network get soft prediction: pS
′

l = S(xl;ω
(t+1)
S )

10: Compute the teacher’s gradient g
(t)
T from student’s feedback:

g
(t)
T = ∇ωT (L(ŷu, p

S
′

l )− L(ŷu, p
S
l ) · L(pTu , ŷu))

11: Compute the teacher’s gradient on labeled data:

g
(t)
T,supervised = ∇ωT L(p

T
l , yl)

12: Update the teacher: ω(t+1)
T = ω

(t)
T − αT (g

(t)
T + g

(t)

(T,supervised)
)

13: Update epoch: t← t+ 1
14: until t > N − 1
Output: Teacher model ωN−1

T ,Student model ωN−1
S
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the pseudo data and unlabel data to train student model and uses the pseduo
labels again by utilizing the gradient descent and update Ms to a new student
model i.e., Ms+1. Finally, we use the output from Ms and Ms+1 to calculate
the student’s model feedback which is used as a reward to train the teacher for
generating better pseudo labels.

Fig. 3. Our proposed semi-supervised method based on the Meta pseudo labels where
the backbone model is a 3D U-Net. x denotes the input, y denotes the label or the
output, M represents the model, and p denotes the softmax output.

2.3 Post-processing

As for post-processing, we just resample the data to its original size.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2022 is an extension of the FLARE 2021 [5] with more segmenta-
tion targets and more diverse abdomen CT scans. The dataset is curated from
more than 20 medical groups under the license permission including MSD [6],
KiTS [7,8], AbdomenCT-1K [9], and TCIA [10]. The training set includes 50
labeled CT scans with pancreas disease and 2000 unlabeled CT scans with liver,
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kidney, spleen, or pancreas diseases. The validation set includes 50 CT scans
with liver, kidney, spleen, or pancreas diseases. The testing set includes 200 CT
scans where 100 cases have liver, kidney, spleen, or pancreas diseases and the
other 100 cases have uterine corpus endometrial, urothelial bladder, stomach,
sarcomas, or ovarian diseases. All the CT scans only have image information
and the center information is not available. The evaluation measures consist of
two accuracy measures i.e., Dice Similarity Coefficient (DSC) and Normalized
Surface Dice (NSD), and three running efficiency measures: running time, area
under GPU memory-time curve (lower than 2048 MB is preferred), and area un-
der CPU utilization-time curve. All measures are used to compute the ranking
score.

3.2 Implementation details

Our implementation details with respect to configured environments and require-
ments are provided in Table1. Training protocls for our model are provided in
Table2.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 20.04.1 LTS
CPU AMD EPYC 7742 64-Core Processor
RAM 1.8TB
GPU (number and type) NVIDIA A100 40G(×8)
CUDA version 11.4
Programming language Python 3.8
Deep learning framework Pytorch (1.10)

Table 2. Training and Inference protocols.

Data augmentation scaling, rotation, random crop, mirror
Network initialization "He" normal initialization
Batch size 8
Patch size 32×64×160×160
Total epochs 1000
Optimizer SGD with nesterov momentum(µ=0.99)
Weight decay 3e-5
Initial learning rate (lr) 0.01
Lr scheduler ReduceLROnPlateau
Training time 113 hours
Loss function Dice Loss + Cross Entropy Loss
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4 Results and discussions

4.1 Quantitative results on validation set

For ablation study to analyze the effect of unlabeled data and semi-supervised
learning, the validation set we used was the official data of 50 abdominal CT
cases. For labeled data, 50 cases of data were used to train a 3D U-Net model as
the baseline segmentation model. For unlabeled data, all of the data were used
to train the semi-supervised data model, and the MPL student’s model was
used to segment organs. The ablation study results are provided in the Table 3,
containing the Dice of MPL and baseline method for 13 organs and mean Dice
for all classes. Baseline is the 3D U-Net method using all labeled data belonging
to supervised learning and MPL is the 3D U-Net method based on proposed
MPL, belonging to semi-supervised-based learning. The results show that MPL
is better than baseline method.

Table 3. Quantitative results on 50 cases of validation set.

Method Baseline(Dice) Baseline+MPL(Dice)
Liver 0.9651 0.9752
RK 0.8643 0.8840

Spleen 0.8580 0.9390
Pancreas 0.8530 0.8777

Aorta 0.9510 0.9624
IVC 0.8777 0.8909
RAG 0.8083 0.8076
LAG 0.8100 0.8066

Gallbladder 0.7143 0.7540
Esophagus 0.8794 0.8781
Stomach 0.8633 0.8824

Duodenum 0.7220 0.7520
LK 0.8712 0.8499

mean 0.8491 0.8661

4.2 Qualitative results

Fig. 4 shows successful segmentation of 4 cases including case0002 and case0006
which are easy cases and the two other cases are challenging.The results show
that the proposed method can not segment similar organs and organ boundaries
well. For example, the left kidney of case0033 was not well segmented, and some
of the organ boundaries in case0038 are incomplete.
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Fig. 4. Qualitative results on challenging and easy cases. The case2 and case6 are the
easy inference cases , the case33 and case38 are the challenging cases.

4.3 Segmentation efficiency results

According to official information, If the GPU memory is less than 2GB when
segmenting the organs, the participants would get the prefect score on the
AUC GPU Time metric, but our model actually used GPU memory which is
nearly with 7GB memory. So it indicated that the nnU-Net framework has the
defect of too high GPU memory and leads to a relatively large AUC GPU Time.
The main reason is that model trained by nnU-Net framework is too large, which
leads to a long running time and high GPU occupancy.And we did not have any
optimization at segmentation efficiency.

4.4 Results on final test set

As shown in Table4, we validate our model on the test set from Flare22 and
we achieve the Dice score of 0.8119 and the NSD score of 0.8520. As for the
efficiency, it costs an average of 50.59s for each case.The AUC GPU Time is
178242 and the AUC CPU Time is 1221 where infered a case from the official
result.

4.5 Limitation and future work
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Table 4. the result of testing on the testing set.

Method Dice NSD
Liver 0.93106 0.89955
RK 0.83242 0.79604
Spleen 0.85300 0.84863
Pancreas 0.80521 0.89282
Aorta 0.90872 0.92650
IVC 0.82243 0.82277
RAG 0.82164 0.93450
LAG 0.77253 0.88452
Gallbladder 0.74526 0.74285
Esophagus 0.75769 0.84470
Stomach 0.83977 0.85271
Duodenum 0.68229 0.83226
LK 0.78296 0.79772
mean 0.8119 0.8520

Our method shows great performance. However, it has limitations, such as high
GPU memory usage and long inference time. In the future, we will make efforts
to lower GPU usage and speed up the inference.

5 Conclusion

In this paper, we proposed a 3D U-Net semi-supervised approach based on Meta
Pseudo Labels (MPL) for training the neural networks with limited labeled data
and a large number of unlabeled images for medical image segmentation. We
trained baseline method using labeled data and 3D U-Net MPL on labeled data
and unlabeled data. DSC are used to assess the accuracy. Three different running
computational efficiency measures were also computed which proved the effec-
tiveness of our semi-supervised approach experimentally compared to baseline
method.
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