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ABSTRACT

Federated Learning (FL) is a machine learning paradigm that learns from data kept
locally to safeguard the privacy of clients, whereas local SGD is typically employed
on the clients’ devices to improve communication efficiency. However, such a
scheme is currently constrained by the slow and unstable convergence induced
by clients’ heterogeneous data. In this work, we identify three under-explored
phenomena of the biased local learning that may explain these challenges caused
by local updates in supervised FL. As a remedy, we propose FedDebias, a novel
unified algorithm that reduces the local learning bias on features and classifiers
to tackle these challenges. FedDebias consists of two components: The first
component alleviates the bias in the local classifiers by balancing the output
distribution of models. The second component learns client invariant features that
are close to global features but considerably distinct from those learned from other
input distributions. In a series of experiments, we show that FedDebias consistently
outperforms other SOTA FL and domain generalization (DG) baselines, in which
both two components have individual performance gains.

1 INTRODUCTION

Federated Learning (FL) is an emerging privacy-preserving distributed machine learning paradigm.
The model is transmitted to the clients by the server, and when the clients have completed local
training, the parameter updates are sent back to the server for integration. Clients are not required to
provide local raw data during this procedure, maintaining their privacy. As the workhorse algorithm
in FL, FedAvg (McMahan et al., 2016) proposes local SGD to improve communication efficiency.
However, the considerable heterogeneity between local client datasets leads to inconsistent local
updates and hinders convergence.
Several studies propose variance reduction methods (Karimireddy et al., 2019; Das et al., 2020), or
suggest regularizing local updates towards global models (Li et al., 2018b; 2021) to tackle this issue.
Almost all these existing works directly regularize models by utilizing the global model collected
from previous rounds to reduce the variance or minimize the distance between global and local
models (Li et al., 2018b; 2021). However, it is hard to balance the trade-offs between optimization
and regularization to perform well, and data heterogeneity remains an open question in the community,
as justified by the limited performance gain, e.g. in our Table 1.
To this end, we begin by revisiting and reinterpreting the issues caused by data heterogeneity and
local updates. We identify three pitfalls of FL, termed local learning bias, from the perspective of
representation learning1: 1) Biased local classifiers are unable to effectively classify unseen data (in
Figure 1(a)), due to the shifted decision boundaries dominated by local class distributions; 2) Local
features (extracted by a local model) differ significantly from global features (similarly extracted
by a centralized global model), even for the same input data. (c.f. Figure 1(b)); and 3) Local features,
even for data from different classes, are close to each other and cannot be accurately distinguished
(c.f. Figure 1(b)).
As a remedy, we propose FedDebias, a unified method that leverages a globally shared pseudo-data
and two key algorithmic components to simultaneously address the three difficulties outlined above.
The first component of FedDebias alleviates the first difficulty by forcing the output distribution of

1Please refer to section 3 for more justification about the existence of our observations.
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Figure 1: Observation for learning bias: three pitfalls of FL on heterogeneous data with local updates. There
are two clients in the figure (denoted by two colors), and each has two classes of data (red and blue points).
Figure 1(a): Client 1’s decision boundary cannot accurately classify data samples from client 2. Figure 1(b):
The difference between features extracted by client 1’s local feature extractor and global feature extractor
is sustainable large. However, client 2’s local feature is close enough to client 1’s, even for input data from
different data distributions/clients.

the pseudo-data to be close to the global prior distribution. The second component of FedDebias is
designed for the second and third difficulties. In order to tackle the last two difficulties simultaneously,
we develop a min-max contrastive learning method to learn client invariant local features. More pre-
cisely, instead of directly minimizing the distance between global and local features, we design a two-
stage algorithm. The first stage learns a projection space—an operation that can maximize the differ-
ence between global and local features but minimize local features of different inputs—to distinguish
the features of two types. The second stage then debiases the features by leveraging the trained projec-
tion space to enforce learned features that are farther from local features and closer to global features.
We examine the performance of FedDebias and compare it with other FL and domain generalization
baselines on RotatedMNIST, CIFAR10, and CIFAR100. Numerical results show that FedDebias
consistently outperforms other algorithms by a large margin on mean accuracy and convergence
speed. Furthermore, both components have individual performance gains, and the combined approach
FedDebias yields the best results.

Contributions
• We propose FedDebias, a unified algorithm that leverages pseudo-data to reduce the learning bias

on local features and classifiers. We design two orthogonal key components of FedDebias to
complement each other to improve the learning quality of clients with heterogeneous data.

• FedDebias considerably outperforms other FL and domain generalization (DG) baselines, as
justified by extensive numerical evaluation.

2 RELATED WORKS

Federated Learning (FL). As the de facto FL algorithm, McMahan et al. (2016); Lin et al. (2020b)
propose to use local SGD steps to alleviate the communication bottleneck. However, the objective
inconsistency caused by the local data heterogeneity considerably hinders the convergence of FL
algorithms (Li et al., 2018b; Wang et al., 2020; Karimireddy et al., 2019; 2020; Guo et al., 2021). To
address the issue of heterogeneity in FL, a series of projects has been proposed. FedProx (Li et al.,
2018b) incorporates a proximal term into local objective functions to reduce the gap between the local
and global models. SCAFFOLD (Karimireddy et al., 2019) adopts the variance reduction method on
local updates, and Mime (Karimireddy et al., 2020) increases convergence speed by adding global
momentum to global updates.

Data Augmentation in FL. To reduce data heterogeneity, some data-based approaches suggest
sharing a global dataset among clients and combining global datasets with local datasets (Tuor
et al., 2021; Yoshida et al., 2019). Some knowledge distillation-based methods also require a global
dataset (Lin et al., 2020a; Li & Wang, 2019), which is used to transfer knowledge from local models
(teachers) to global models (students). Considering the impractical of sharing the global datasets in
FL settings, some recent research use proxy datasets with augmentation techniques. Astraea (Duan
et al., 2019) uses local augmentation to create a globally balanced distribution. XorMixFL (Shin
et al., 2020) encodes a couple of local data and decodes it on the server using the XOR operator.
FedMix (Yoon et al., 2021b) creates the privacy-protected augmentation data by averaging local
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batches and then applying Mixup in local iterations. VHL (Tang et al., 2022) relies on the created
virtual data with labels and forces the local features to be close to the features of same-class virtual
data. Our framework significantly outperforms VHL; unlike VHL, our solution has no label constraint
and uses much less pseudo-data than VHL.

Distribution Robust FL. Domain generalization is a well-studied field, aiming to learn domain-
robust models that perform well on unknown distributions. Some methods apply domain robust
optimization methods (Sagawa et al., 2019; Hu & Hong, 2013; Michel et al., 2021) to minimize the
worst-case empirical error, and others propose to learn domain invariant features (Ganin et al., 2015;
Li et al., 2018c;a; Sun & Saenko, 2016) by minimizing the distance of features from different domains.
By treating each client as a domain, some existing works tackle the FL problem as a domain
generalization problem. Several methods include optimizing the weights of different clients to lower
the worst empirical error among all clients (Mohri et al., 2019; Deng et al., 2021). Huang et al. (2021)
assumes each client has two local datasets with a different distribution, and the robustness is obtained
by balancing the two local datasets. Xie et al. (2021) proposes collecting gradients from one segment
of clients first, then combining them as a global gradient to reduce variance in the other segments.
Reisizadeh et al. (2020) assumes the local distribution is perturbed by an affine function, i.e., from x
to Ax+ b. There are also some methods that aim to learn client invariant features (Peng et al., 2019;
Wang et al., 2022; Shen et al., 2021; Sun et al., 2022; Gan et al., 2021). However, these methods are
designed to learn a model that can perform well on unseen deployment distributions that differ from
the (seen) clients’ local distributions, which is beyond the scope of this paper.
Recently, Moon (Li et al., 2021) has proposed to employ contrastive loss to reduce the distance
between global and local features. However, their projection layer is only used as part of the feature
extractor, and cannot contribute to distinguish the local and global features—a crucial step identified
by our investigation for a better model performance.

3 THE PITFALLS OF FL ON HETEROGENEOUS DATA DISTRIBUTIONS

FL and local SGD. FL is an emerging learning paradigm that supposes learning on various clients
while clients can not exchange data to protect users’ privacy. Learning occurs locally on the clients,
while the server collects and aggregates gradient updates from the clients. The standard FL considers
the following problem:

f∗ = minω∈Rd

[
f(ω) =

∑N
i=1 pifi(ω)

]
, (1)

where fi(ω) is the local objective function of client i, and pi is the weight for fi(ω). In practice, we
set pi = |Di|/|D| by default, where Di is the local dataset of client i and D is the combination of all
local datasets. The global objective function f(ω) aims to find ω that can perform well on all clients.
In the training process of FL, the communication cost between client and server has become an
essential factor affecting the training efficiency. Therefore, local SGD (McMahan et al., 2016) has
been proposed to reduce the communication round. In local SGD, clients perform multiple local steps
before synchronizing to the server in each communication round.

The negative impact of local update steps. Despite the success of local SGD, the non-iid nature
of clients’ local data leads to local gradient inconsistency, which will slow down the convergence
(Li et al., 2018b; Karimireddy et al., 2019). A series of studies have proposed several methods for
client heterogeneity to address this issue. One natural idea considers using the global gradient/model
of previous rounds during the local updates to reduce variance or minimize the distance between
the global and local model (Karimireddy et al., 2019; 2020; Li et al., 2018b; 2021). However, the
performance of such algorithms is limited in our challenging scenarios (as we shown in Table 1).
Using FedProx (Li et al., 2018b) as an example, setting larger weights for proximal terms will hinder
the further optimization steps of the local model, while setting a small weight will result in a marginal
improvement of FedProx over FedAvg.

Bias caused by local updates. To mitigate the negative impact of local updates, we first identify
the pitfalls of FL on heterogeneous data with a sufficient number of local updates and then design the
algorithms to address the issues caused by the local updates.
The pitfalls can be justified by a toy experiment. More precisely, we divide the MNIST dataset into
two sets. The first dataset, denoted by X1, contains the 5 classes 0-4. The other dataset, denoted by
X2, contains the remaining five classes. Then we train a CNN model on X1 for 10 epochs and store
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(a) Global feature of X1, Fg(X1) (b) Local feature of X1, F1(X1) (c) Local feature of X2, F1(X2)

Figure 2: Observation for biased local features on a shared t-SNE projection space. Local updates will cause:
• Large difference in local and global features for the same input data. Colored points in sub-figures (a) & (b)
denote the global and local features of data from X1, and the same color indicates data from the same class.
Notice that even for data from the same class (same color), the global and local features are clustered into two
distinct groups, implying a considerable distance between global and local features even for the same input data
distribution. • High similarity of local features for different inputs. Notice from sub-figure (b) & (c) that X1 and
X2 are two disjoint datasets (no data from the same class). However, the local features of X1 and X2 are clustered
into the same group by t-SNE, indicating the relatively small distance between local features of different classes.

(a) Sample from class 8 (b) All samples in X2

Figure 3: Observation for biased local classifiers: the output distribution of the local classifiers will be
dominated by the local class distribution. The model is trained on data X1 and tested on data X2. The sub-figure
(a) illustrates the model output distribution of a sample belonging to Class 8. The sub-figure (b) shows the
total prediction distribution of all samples in X2. Results show that the biased local model will classify all
samples into classes that are only present in the X1.

the feature extractor of the local model as F1. We also train a global model on the mixture of X1

and X2 (equal to centralized training) and store the feature extractor as Fg . We use Fg as the ground
truth model because it works well over the entire dataset and does not suffer from local updates.
Example 3.1 (Observation for biased local features). Figures 2(a) and 2(b) show that local features
differ from global features for the same input, and Figures 2(b) and 2(c) show that local features
are similar even for different input distributions. We define this observation as the “biased local
feature”. In detail, we calculate F1(X1), F1(X2), Fg(X1), and Fg(X2), and use t-SNE to project
all the features to the same 2D space. 2 We can observe that the local features of data in X2 are so
close to local features of data in X1, and it is non-trivial to tell which category the current input
belongs to by merely looking at the local features.
Example 3.2 (Observation for biased local classifiers). Figure 3 shows the output of local model on
data X2, where all data in X2 are incorrectly categorized into classes 0 to 4 of X1. The observation,
i.e., data from classes that are absent from local datasets cannot be correctly classified by the local
classifiers, refers to the “biased local classifiers”. More precisely, Figure 3(a) shows the prediction
result of one sample (class 8) and Figure 3(b) shows the predicted distribution of all samples in X2.

Based on Example 3.1 and Example 3.2, we summarize our observations and introduce the formal
definition of “local learning bias” caused by local updates:
Definition 3.3 (Local Learning Bias). We define the local learning bias below:
• Biased local feature: For local feature extractor Fi(·), and centralized trained global feature

extractor Fg(·), we have: 1) Given the data input X , Fi(X) could deviate largely from Fg(X).
2) Given the input from different data distributions X1 and X2, Fi(X1) could be very similar or
almost identical to Fi(X2).

• Biased local classifier: After a sufficient number of iterations, local models classify all samples
into only the classes that appeared in the local datasets.
2We provide the results after using FedDebias in Appendix C.3.
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It is worth to note that some related works also discussed the learning bias(Karimireddy et al., 2019;
Li et al., 2018b; 2021). However, we have an inherent difference compared with previous works. 1)
FedProx defines the local drifts as the difference between model weights ∥ωg −ωi∥, and SCAFFOLD
considers gradient difference as client drifts. Despite the theoretical success of these methods, these
two methods usually have minor improvements on deep models (Tang et al., 2022; Li et al., 2021;
Yoon et al., 2021a; Chen & Chao, 2021; Luo et al., 2021). 2) Though MOON is a crucial first step
that minimizes the distance between global and local features, its performance gain is still limited
due to the improper methodology design (cf. Table 1).

4 FEDDEBIAS: REDUCING LEARNING BIAS IN FL BY PSEUDO-DATA

Addressing the local learning bias is crucial to improving FL on heterogeneous data, due to the
bias discussed in Definition 3.3. To this end, we propose FedDebias as shown in Figure 4, a novel
framework that leverages the globally shared pseudo-data with two key components to reduce the
local training bias, namely 1) reducing the local classifier’s bias by balancing the output distribution
of classifiers (component 1), and 2) an adversary contrastive scheme to learn unbiased local features
(component 2).

4.1 OVERVIEW OF THE FEDDEBIAS

The learning procedure of FedDebias on each client i involves the construction of a global pseudo-data
(c.f. Section 4.2), followed by applying two key debias steps in a min-max approach to jointly form
two components (c.f. Section 4.3 and 4.4) to reduce the bias in the classifier and feature, respectively.
The min-max procedure of FedDebias can be interpreted as first projecting features onto spaces that
can distinguish global and local feature best, then 1) minimizing the distance between the global and
local features of pseudo-data and maximizing distance between local features of pseudo-data and
local data; 2) minimize classification loss of both local data and pseudo-data:
Max Step:

max
θ

Ladv(Dp, Di) = Exp∼Dp,x∼Di

[
Lcon(xp,x,ϕg,ϕi,θ)

]
. (2)

Min Step:
min
ϕi,ω

Lgen(Dp, Di) = E(x,y)∼Di
[Lcls(x,y,ϕi,ω)] + λExp∼Dp [Lcls(xp, ỹp,ϕi,ω)]

+µExp∼Dp,x∼Di

[
Lcon(xp,x,ϕg,ϕi,θ)

]
. (3)

Lcls and Lcon represent the cross-entropy loss and a contrastive loss (will be detailed in Section 4.4),
respectively. Di denotes the distribution of local dataset at client i. Dp is that of shared pseudo-
dataset, where ỹp is the pseudo-label of pseudo-data. The model is composed of a feature extractor
ϕ and a classifier ω, where the omitted subscript i and g correspond to the local client i and global
parameters, respectively (e.g., ϕg denotes the feature extractors received from the server at the
beginning of each communication round). We additionally use a projection layer θ for the max step
to project features onto spaces where global and local features have the largest dissimilarity.
Apart from the standard classification loss of local data in Equation (3), the second term aims to
overcome the biased local classifier while the local feature is debiased by the third term.
The proposed FedDebias is summarized in Algorithm 1. The global communication part is the same
as FedAvg, and the choice of synchronizing the new pseudo-data to clients in each round is optional3.

4.2 CONSTRUCTION OF THE PSEUDO-DATA

The choice of the pseudo-data in our FedDebias framework is arbitrary. For ease of presentation and
taking the communication cost into account, we showcase two construction approaches below and
detail their performance gain over all other existing baselines in Section 5:
• Random Sample Mean (RSM). Similar to the treatment in FedMix (Yoon et al., 2021b), one

RSM sample of the pseudo-data is estimated through a weighted combination of a random subset
of local samples, and the pseudo-label is set4 to ỹp = 1

C · 1. Details can be found in Algorithm 2
of Appendix B.
3As shown in Figure 5(b), the communication-efficient variant of FedDebias—i.e., only transferring pseudo-

data at the beginning of the FL training—is on par with the choice of frequent pseudo-data synchronization.
4We assume an uniform distribution for label and pseudo-data does not belong to any particular classes.

5



Under review as a conference paper at ICLR 2023

Require: Local datasets D1, . . . , DN , pseudo dataset Dp

where |Dp| = B, and B is the batch size, number of
local iterations K, number of communication rounds T ,
number of clients chosen in each round M , weights used
in designed loss λ, µ, local learning rate η.

Ensure: Trained model ωT , θT , ϕT .
1: Initialize ω0,θ0,ϕ0.
2: for t = 0, . . . , T − 1 do
3: Send ωt,θt,ϕt, Dp (optional) to all clients.
4: for chosen client i = 1, . . . ,M do
5: ω0

i = ωt,θ
0
i = θt,ϕ

0
i = ϕt,ϕg = ϕt

6: for k = 1, . . . ,K do
7: # Max Step
8: θk

i = θk−1
i + η∇θLadv .

9: # Min Step
10: ωk

i = ωk−1
i − η∇ωLk.

11: ϕk
i = ϕk−1

i − η∇ϕLgen.

12: Send ωK
i ,θK

i ,ϕK
i to server.

13: ωt+1 = 1
M

∑M
i=1 ω

K
i .

14: θt+1 = 1
M

∑M
i=1 θ

K
i .

15: ϕt+1 = 1
M

∑M
i=1 ϕ

K
i .

Algorithm 1: Algorithm Framework of FedDebias

Figure 4: Overview of FedDebias. We
illustrate how to calculate the three terms
in Equation (2) and (3). We calculate the
cross-entropy loss of local data (x,y), and
pseudo-data (xp, ỹp), and use the local
feature ϕi(x),ϕi(xp), and global feature
ϕg(xp) for contrastive loss.

• Mixture of local samples and the RSM of a proxy dataset (Mixture). This strategy relies
on applying the procedure of RSM to an irrelevant and globally shared proxy data (refer to
Algorithm 3). To guard the distribution distance between the pseudo-data and local data, one
sample of the pseudo-data at each client is constructed by

x̃p = 1
K+1

(
xp +

∑K
k=1 xk

)
, ỹp = 1

K+1

(
1
C · 1+

∑K
k=1 yk

)
, (4)

where xp is one RSM sample of the global proxy dataset, and xk and yk correspond to the data
and label of one local sample (vary depending on the client). K is a constant that controls the
closeness between the distribution of pseudo-data and local data. As we will show in Section 5,
setting K = 1 is data efficient yet sufficient to achieve good results.

4.3 COMPONENT 1: REDUCING BIAS IN LOCAL CLASSIFIERS

Due to the issue of label distribution skew or the absence of some samples for the majority/minority
classes, the trained local model classifier tends to overfit the locally presented classes, and may
further hinder the quality of feature extractor (as justified in Figure 3 and Definition 3.3).
As a remedy, here we implicitly mimic the global data distribution—by using the pseudo-data
constructed in Section 4.2—to regularize the outputs and thus debias the classifier:

λExp∼Di
[Lcls(xp, ỹp,ϕi,ω)] .

Note that the Component 1 is appeared to be the second term of Equation (3).

4.4 COMPONENT 2: REDUCING BIAS IN LOCAL FEATURES

In addition to alleviating the biased local classifier in Section 4.3, here we introduce a crucial
adversary strategy to learn unbiased local features.

Intuition of constructing an adversarial problem. As discussed in Definition 3.3, effective
federated learning on heterogeneous data requires learning debiased local feature extractors that
1) can extract local features that are close to global features of the same input data; 2) can extract
different local features for input samples from different distributions. However, existing methods
that directly minimize the distance between global features and local features (Li et al., 2018b; 2021)
have limited performance gain (c.f. Table 1) due to the diminishing optimization objective caused
by the indistinguishability between the global and local features of the same input. To this end, we
propose to extend the idea of adversarial training to our FL scenarios:
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1. We construct a projection layer as the critical step to distinguish features extracted by the global
and local feature extractor: such layer ensures that the projected features extracted by local
feature extractor will be close to each other (even for distinct local data distributions), but the
difference between features extracted by the global and local feature extractor after projection will
be considerable (even for the same input samples).

2. We can find that constructing such a projection layer can be achieved by maximizing the local
feature bias discussed in Definition 3.3. More precisely, it can be achieved by maximizing the
distance between global and local features of pseudo-data and simultaneously minimizing the
distance between local features of pseudo-data and local data.

3. We then minimize the local feature biases (discussed in Definition 3.3) under the trained projection
space, so as to enforce the learned local features of pseudo-data to be closer to the global features
of pseudo-data but far away from the local features of real local data.

On the importance of utilizing the projection layer to construct the adversary problem. To
construct the aforementioned adversarial training strategy, we consider using an additional projection
layer to map features onto the projection space5. In contrast to the existing works that similarly
add a projection layer (Li et al., 2021), we show that 1) simply adding a projection layer as part
of the feature extractor has trivial performance gain (c.f. Figure 5(a)); 2) our design is the key step
to reducing the feature bias and boosting the federated learning on heterogeneous data (c.f. Table 3).

Objective function design. We extend the idea of Li et al. (2021) and improve the contrastive loss
initially proposed in simCLR (Chen et al., 2020) to our challenging scenario. Different from previous
works, we use the projected features (global and local) on pseudo-data as the positive pairs and rely
on the projected local feature of both pseudo-data and local data as the negative pairs:

Lcon(xp,x,ϕg,ϕi,θ) = − log

 exp

(
sim(P (ϕi(xp)),P (ϕg(xp)))

τ1

)
exp

(
sim(P (ϕi(xp)),P (ϕg(xp))

τ1

)
+exp

(
sim(P (ϕi(xp)),P (ϕi(x)))

τ2

)
 , (5)

where P is the projection layer parameterized by θ, τ1 and τ2 are temperature parameters, and sim
is the cos-similarity function. Our implementation uses a tied value for τ1 and τ2 for the sake of
simplicity, but an improved performance may be observed by tuning these two.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

We elaborate the detailed experiment settings in Appendix A.

Baseline algorithms. We compare FedDebias with both FL baselines and commonly used domain
generalization (DG) baselines that can be adapted to FL scenarios. Note that we do not consider
domain generalization scenarios and include DG baselines to check if DG methods can benefit FL
on non-iid clients. For FL baselines, we choose FedAvg (McMahan et al., 2016), Moon (Li et al.,
2021), FedProx (Li et al., 2018b), VHL (Tang et al., 2022), and FedMix (Yoon et al., 2021b), which
are most relevant to our proposed algorithms. For DG baselines, we choose GroupDRO (Sagawa
et al., 2019), Mixup (Yan et al., 2020), and DANN (Ganin et al., 2015). Unless specially mentioned,
all algorithms use FedAvg as the backbone algorithm.

Models and datasets. We examine all algorithms on RotatedMNIST, CIFAR10, and CIFAR100
datasets. We use a four-layer CNN for RotatedMNIST, VGG11 for CIFAR10, and Compact
Convolutional Transformer (CCT (Hassani et al., 2021)) for CIFAR100. We split the datasets
following the idea introduced in Yurochkin et al. (2019); Hsu et al. (2019); Reddi et al. (2021), where
we leverage the Latent Dirichlet Allocation (LDA) to control the distribution drift with parameter
α. The pseudo-data is chosen as RSM by default, and we also provide results on other types of
pseudo-data (c.f. Figure 5(c)). By default, we generate one batch of pseudo-data (64 for MNIST and
32 for other datasets) in each round, and we also investigate only generating one batch of pseudo-data
at the beginning of training to reduce the communication cost (c.f. Figure 5(b), Figure 5(c)). We use
SGD optimizer (with momentum=0.9 for CCT), and set the learning rate to 0.001 for RotatedMNIST,
and 0.01 for other datasets. The local batch size is set to 64 for RotatedMNIST, and 32 for other
datasets (following the default setting in DomainBed (Gulrajani & Lopez-Paz, 2020)). Additional

5Such a projection layer is not part of the feature extractor or used for classification, as shown in Figure 4.
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Table 1: Performance of algorithms. We split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients with
α = 0.1, and ran 1000 communication rounds on RotatedMNIST and CIFAR10 for each algorithm, 800
communication rounds CIFAR100. We report the mean of maximum (over rounds) 5 test accuracies and the
number of communication rounds to reach the threshold accuracy.

Algorithm RotatedMNIST (CNN) CIFAR10 (VGG11) CIFAR100 (CCT)

Acc (%) Rounds for 80% Acc (%) Rounds for 55% Acc (%) Rounds for 43%

FedAvg 82.47 828 (1.0X) 58.99 736 (1.0X) 44.00 550 (1.0X)
FedProx 82.32 824 (1.0X) 59.14 738 (1.0X) 43.09 756 (0.7X)
Moon 82.68 864 (0.9X) 58.23 820 (0.9X) 42.87 766 (0.7X)
DANN 84.83 743 (1.1X) 58.29 782 (0.9X) 41.83 -
GroupDRO 80.23 910 (0.9X) 56.57 835 (0.9X) 44.34 444 (1.2X)
FedDebias (Ours) 86.58 628 (1.3X) 64.65 496 (1.5X) 45.14 352 (1.5X)

FedAvg + Mixup 82.56 840 (1.0X) 58.57 826 (0.9X) 46.37 358 (1.6X)
FedMix 81.33 902 (0.9X) 57.37 872 (0.8X) 42.69 -
FedDebias + Mixup (Ours) 83.42 736 (1.1X) 65.32 392 (1.9X) 47.75 294 (1.9X)

Table 2: Comparison with VHL. We split CIFAR10 and CIFAR100 to 10 clients with α = 0.1, and run 1000
communication rounds on CIFAR10 for each algorithm and 800 communication rounds on CIFAR100. We report
the mean of maximum (over rounds) 5 test accuracies and the number of communication rounds to reach the
threshold accuracy. We set different numbers of virtual data to check the performance of VHL, and pseudo-data
only transfer once in FedDebias (32 pseudo-data). For CIFAR100, we choose Mixup as the backbone.

Algorithm CIFAR10 (VGG11) CIFAR100 (CCT)

Acc (%) Rounds for 60% Acc (%) Rounds for 46%

VHL (2000 virtual data) 61.23 886 (1.0X) 46.80 630 (1.0X)
VHL (20000 virtual data) 59.65 998 (0.9X) 46.51 714 (0.9X)
FedDebias (32 pseudo-data) 64.61 530 (1.8X) 47.67 554 (1.1X)

Table 3: Ablation studies of FedDebias on the effects of two components. We show the performance of
two components, and remove the max step (Line 8 in Algorithm 1) of component 2. We split RotatedMNIST,
CIFAR10, and CIFAR100 to 10 clients with α = 0.1. We run 1000 communication rounds on RotatedMNIST
and CIFAR10 for each algorithm and 800 communication rounds on CIFAR100. We report the mean of
maximum (over rounds) 5 test accuracies and the number of communication rounds to reach the target accuracy.

Algorithm RotatedMNIST (CNN) CIFAR10 (VGG11) CIFAR100 (CCT)

Acc (%) Rounds for 80% Acc (%) Rounds for 55% Acc (%) Rounds for 43%

FedAvg 82.47 828 (1.0X) 58.99 736 (1.0X) 46.37 358 (1.0X)

Component 1 84.40 770 (1.1X) 64.32 442 (1.7X) 47.22 330 (1.1X)
Component 2 86.25 648 (1.3X) 63.44 483 (1.5X) 47.78 308 (1.2X)
+ w/o max step 81.24 926 (0.9X) 58.84 584 (1.3X) 43.50 512 (0.7X)

FedDebias 86.58 628 (1.3X) 64.65 496 (1.5X) 47.75 294 (1.2X)

results regarding the impact of hyper-parameter choices and performance gain of FedDebias on other
datasets/settings/evaluation metrics can be found in Appendix C.

5.2 NUMERICAL RESULTS

The superior performance of FedDebias over existing FL and DG algorithms.6 In Table 1, we
show the results of baseline methods as well as our proposed FedDebias algorithm. When comparing
different FL and DG algorithms, we discovered that: 1) FedDebias performs best in all settings; 2)
DG baselines only slightly outperform ERM, and some are even worse; 3) Regularizing local models
to global models from prior rounds, such as Moon and Fedprox, does not result in positive outcomes.

Comparison with VHL. We vary the size of virtual data in VHL and compare it with our
FedDebias in Table 2: our communication-efficient FedDebias only uses 32 pseudo-data and transfers
pseudo-data once, while the communication-intensive VHL (Tang et al., 2022) requires the size of
virtual data to be proportional to the number of classes and uses at least 2,000 virtual data (the authors
suggest 2,000 for CIFAR10 and 20,000 for CIFAR100 respectively in the released official code, and
we use the default value of hyper-parameters and implementation provided by the authors). We can
find that 1) FedDebias always outperforms VHL. 2) FedDebias overcomes several shortcomings
of VHL, e.g., the need for labeled virtual data and the large size of the virtual dataset.

6We give the results of CIFAR10 with ResNet18 in Table 6 of Appendix C.
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Figure 5: Ablation studies of FedDebias, regarding the impact of projection layer, the communication strategy
of pseudo-data, and the choices of pseudo-data. In Figure 5(a), we show the performance of algorithms
with/without the additional projection layer on CIFAR10 dataset with the VGG11 model. In Figure 5(b), we show
the performance of FedDebias on RotatedMNIST, CIFAR10, and CIFAR100 datasets when only transferring
pseudo-data once (at the beginning of training) or generating new pseudo-data each round. In Figure 5(c), we
show the performance of FedDebias using different types of pseudo-data (all transfer once at the beginning of
training). We split each dataset into 10 clients with α = 0.1 and used CNN for RotatedMNIST dataset, VGG11
for CIFAR10, and CCT for CIFAR100. We run 1000 communication rounds on RotatedMNIST and CIFAR10 for
each algorithm and 800 communication rounds on CIFAR100. We report the mean of maximum 5 test accuracies.

Table 4: Performance of FedDebias on CIFAR10 with different number of clients. We split CIFAR10 dataset
into 10, 30, and 100 clients with α = 0.1. We run 1000 communication rounds for each algorithm on the VGG11
model, and report the mean of maximum 5 accuracies (over rounds) during training on test datasets.

Methods Acc (%) with 10 clients Acc (%) with 30 clients Acc (%) with 100 clients

FedAvg 58.99 44.83 38.20
FedDebias 64.65 50.28 41.59

5.3 ABLATION STUDIES

Effectiveness of the different components in FedDebias. In Table 3, we show the improvements
brought by different components of FedDebias. In order to highlight the importance of our two
components, especially the max-step (c.f. Line 8 in Algorithm 1) in component 2, we first consider
two components of FedDebias individually, followed by removing the max-step. We find that: 1) Two
components of FedDebias have individual improvements compared with FedAvg, but the combined
solution FedDebias consistently achieves the best performance. 2) The projection layer is crucial.
After removing projection layers, the component 2 of FedDebias performs even worse than FedAvg;
such insights may also explain the limitations of Moon (Li et al., 2021).

Performance of FedDebias on CIFAR10 with different number of clients. In Table 4, we vary
the number of clients among {10, 30, 100}. For each setting, 10 clients are randomly chosen in each
communication round. FedDebias outperforms FedAvg by a significant margin in all settings.

Reducing the communication cost of FedDebias. To reduce the communication overhead, we
reduce the size of pseudo-data, and only transmit one mini-batch of pseudo-data (64 for MNIST
and 32 for others) once at the beginning of training. In Figure 5(b), we show the performance of
FedDebias when pseudo-data only transfer to clients at the beginning of the training (64 pseudo-data
for RotatedMNIST, and 32 for CIFAR10 and CIFAR100). Results show that only transferring pseudo-
data once can achieve comparable performance gain compared with transferring pseudo-data in each
round. This indicates that the performance of FedDebias will not drop even we give a small number
of pseudo-data.

Regarding privacy issues caused by RSM. Because RSM may have some privacy issues, we
consider using Mixture to protect privacy. In Figure 5(c), we show the performance of FedDebias
with different types of pseudo-data (pseudo-data only transfer once at the beginning of training as
in Figure 5(b)). Results show that: 1) FedDebias consistently outperforms FedAvg on all types of
pseudo-data. 2) When using Mixture as pseudo-data and setting K = 0 (Equation (4)), FedDebias
still have a performance gain compared with FedAvg, and a more significant performance gain can
be observed by setting K = 1.
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Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=LkFG3lB13U5.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated
learning: The case of affine distribution shifts, 2020.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization,
2019. URL https://arxiv.org/abs/1911.08731.

11

https://arxiv.org/abs/1710.03463
http://openaccess.thecvf.com/content_cvpr_2018/html/Li_Domain_Generalization_With_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Li_Domain_Generalization_With_CVPR_2018_paper.html
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://proceedings.neurips.cc/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=B1eyO1BFPr
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1911.02054
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://arxiv.org/abs/1911.08731


Under review as a conference paper at ICLR 2023

Yan Shen, Jian Du, Han Zhao, Benyu Zhang, Zhanghexuan Ji, and Mingchen Gao. Fedmm: Saddle
point optimization for federated adversarial domain adaptation. arXiv preprint arXiv:2110.08477,
2021.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning, 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation, 2016.
URL https://arxiv.org/abs/1607.01719.

Yuwei Sun, Ng Chong, and Ochiai Hideya. Multi-source domain adaptation based on federated
knowledge alignment. arXiv preprint arXiv:2203.11635, 2022.

Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He, Bo Han, and Xiaowen Chu. Virtual
homogeneity learning: Defending against data heterogeneity in federated learning. arXiv preprint
arXiv:2206.02465, 2022.

Tiffany Tuor, Shiqiang Wang, Bong Jun Ko, Changchang Liu, and Kin K Leung. Overcoming
noisy and irrelevant data in federated learning. In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 5020–5027. IEEE, 2021.

Bin Wang, Gang Li, Chao Wu, WeiShan Zhang, Jiehan Zhou, and Ye Wei. A framework for self-
supervised federated domain adaptation. EURASIP Journal on Wireless Communications and
Networking, 2022(1):1–17, 2022.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. arXiv preprint arXiv:2007.07481,
2020.

Jiahao Xie, Chao Zhang, Zebang Shen, Weijie Liu, and Hui Qian. Efficient cross-device federated
learning algorithms for minimax problems, 2021.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training, 2020. URL https://arxiv.org/abs/2001.00677.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual
learning with weighted inter-client transfer. In International Conference on Machine Learning, pp.
12073–12086. PMLR, 2021a.

Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. Fedmix: Approximation of mixup
under mean augmented federated learning, 2021b.

Naoya Yoshida, Takayuki Nishio, Masahiro Morikura, Koji Yamamoto, and Ryo Yonetani. Hybrid-
fl: Cooperative learning mechanism using non-iid data in wireless networks. arXiv preprint
arXiv:1905.07210, 2019.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In International
Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.

12

https://arxiv.org/abs/1607.01719
https://arxiv.org/abs/2001.00677


Under review as a conference paper at ICLR 2023

A EXPERIMENT DETAILS

Framework and baseline algorithms. In addition to traditional FL methods, we aim to see if
domain generalization (DG) methods can help increase model performance during FL training.
Thus, we use the DomainBed benchmark (Gulrajani & Lopez-Paz, 2020), which contains a series of
regularly used DG algorithms and datasets. The algorithms in DomainBed can be divided into three
categories:
• Infeasible methods: Some algorithms can’t be applied in FL scenarios due to the privacy concerns,

for example, MLDG (Li et al., 2017), MMD (Li et al., 2018a), CORAL (Sun & Saenko, 2016),
VREx (Krueger et al., 2020) that need features or data from each domain in each iteration.

• Feasible methods (with limitations): Some algorithms can be applied in FL scenarios with some
limitations. For example, DANN (Ganin et al., 2015), CDANN (Li et al., 2018c) require knowing
the number of domains/clients, which is impractical in the cross-device setting.

• Feasible methods ( without limitations): Some algorithms can be directly applied in FL settings.
For example, ERM, GroupDRO (Sagawa et al., 2019), Mixup (Yan et al., 2020), and IRM
(Arjovsky et al., 2019).

We choose several common used DG algorithms that can easily be applied in Fl scenarios, including
ERM, GroupDRO (Sagawa et al., 2019), Mixup (Yan et al., 2020), and DANN (Ganin et al., 2015).
For FL baselines, we choose FedAvg (McMahan et al., 2016) (equal to ERM), Moon (Li et al., 2021),
FedProx (Li et al., 2018b), SCAFFOLD (Karimireddy et al., 2019) and FedMix (Yoon et al., 2021b)
which are most related to our proposed algorithms.
Notice that some existing works consider combining FL and domain generalization. For example,
combining DRO with FL (Mohri et al., 2019; Deng et al., 2021), and combine MMD or DANN with
FL (Peng et al., 2019; Wang et al., 2022; Shen et al., 2021). The natural idea of the former two
DRO-based approaches is the same as our GroupDRO implementations, with some minor weight
updates differences; the target of the later series of works that combine MMD or DANN is to train
models to work well on unseen distributions, which is orthogonal with our consideration (overcome
the local heterogeneity).To check the performance of this series of works, we choose to integrate FL
and DANN into our environments.
Notice that we carefully tune all the baseline methods. The implementation detail of each algorithm
is listed below:
• GroupDRO: The weight of each client is updated by ωt+1

i = ωt
i exp(0.01l

t
i), where lti is the loss

value of client i at round t.
• Mixup: Local data is mixed by x̃ = λxi + (1− λ)xj , and λ is sampled by Beta(0.2, 0.2).
• DANN: Use a three-layer MLP as domain discriminator, where the width of MLP is 256. The

weight of domain discriminate loss is tuned in {0.01, 0.1, 1}.
• FedProx: The weight of proximal term is tuned in {0.001, 0.01, 0.1}.
• Moon: The projection layer is a two-layer MLP, the MLP width is setting to 256, and the output

dimension is 128. We tuned the weight of contrastive loss in {0.01, 0.1, 1, 10}.
• FedMix: The mixup weight λ used in FedMix is tuned in {0.01, 0.1, 0.2}, we construct 64

augmentation data in each local step for RotatedMNIST, and 32 samples for CIFAR10 and
CIFAR100..

• VHL: We use the same setting as in the original paper, with the weight of augmentation classifica-
tion loss α = 1.0, and use the "proxy_align_loss" provided by the authors for feature alignment.
Virtual data is generated by untrained style-GAN-v2, and we sample 2000 virtual data for CI-
FAR10 and RotatedMNIST; 20000 virtual data for CIFAR100 follow the default setting of the
original work. To make a fair comparison, we sample 32 virtual samples in each local step for
CIFAR10 and CIFAR100.

• FedDebias: We use a three-layer MLP as the projection layer, the MLP width is set to 256, and the
output dimension is 128. By default, we set τ1 = τ2 = 2.0, the weight of contrastive loss µ = 0.5,
and the weight of AugMean λ = 1.0 on MNIST and CIFAR100, λ = 0.1 on CIFAR10 and PACS.
We sample 64 pseudo-data in each local step for RotatedMNIST and 32 samples for CIFAR10 and
CIFAR100.

Feature correction when using proxy datasets to construct pseudo-data. When using proxy
datasets to construct the pseudo-data, we additionally mix up local data with pseudo-data to make
the pseudo-data not too far from the local distribution. However, the pseudo-data will have a large
overlap with local data after the mixup. Then the exp

(
sim(P (ϕi(xp)),P (ϕi(x)))

τ2

)
term in Equation (5),

13



Under review as a conference paper at ICLR 2023

which is used to maximize the distance between local features of local data and pseudo-data, will be
meaningless. To address this issue, we change this term to

exp

(
sim (P (ϕi(xp)− ⟨ỹp,y⟩ · ϕi(x)), P (ϕi(x)))

τ2

)
, (6)

where ỹp is the pseudo-label of xp, and y is the one-hot label of local data x. Then we can minimize
the relationship between x and xp caused by the mixup with local data.

Datasets and Models. For datasets, we choose RotatedMNIST, CIFAR10, CIFAR100, and PACS.
For RotatedMNIST, CIFAR10, and CIFAR100, we split the datasets following the idea introduced
in Yurochkin et al. (2019); Hsu et al. (2019); Reddi et al. (2021), where we leverage the Latent
Dirichlet Allocation (LDA) to control the distribution drift with parameter α. Larger α indicates
smaller non-iidness. We divided each environment into two clients for PACS, with the first client
containing data from classes 0-3, and the second client containing data from classes 4-6.
Unless specially mentioned, we split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients and set
α = 0.1. For PACS, we have 8 clients instead. Notice that for each client of CIFAR10, we utilize a
special transformation, i.e., rotation to the local data, to simulate the natural shift. In detail:
• RotatedMNIST: We first split MNIST by LDA using parameter α = 0.1 to 10 clients, then for

each client, we rotate the local data by {0, 15, 30, 45, 60, 75, 90, 105, 120, 135}.
• CIFAR10: We first split CIFAR10 by LDA using parameter α = 0.1 to N clients. Then for each

client, we sample q ∈ R10 from Dir(1.0). For each image in local data, we sample an angle in
{0, 15, 30, 45, 60, 75, 90, 105, 120, 135} by probability q, and rotate the image by the angle.

• Clean CIFAR10: Unlike the previous setting, we do not rotate the samples in CIFAR10 (no
inner-class non-iidness).

• CIFAR100: We split the CIFAR100 by LDA using parameter α = 0.1, and transform the train
data using RandomCrop, RandomHorizontalFlip, and normalization.

Each communication round includes 50 local iterations, with 1000 communication rounds for
RotatedMNIST and CIFAR10, 800 communication rounds for CIFAR100, and 400 communication
rounds for PACS. Notice that the number of communication rounds is carefully chosen, and the
accuracy of all algorithms does not significantly improve after the given communication rounds.
The public data is chosen as RSM (Yoon et al., 2021b) by default, and we also provide results on
other proxy datasets. We utilize a four-layer CNN for MNIST, VGG11 for CIFAR10 and PACS,
and CCT (Hassani et al., 2021) (Compact Convolutional Transformer, cct_7_3x1_32_c100) for
CIFAR100.
For each algorithm and dataset, we employ SGD as the optimizer, and set learning rate lr = 0.001
for MNIST, and lr = 0.01 for CIFAR10 , CIFAR100, and PACS. When using CCT and ResNet, we
set momentum as 0.9. We set the same random seeds for all algorithms. We set local batch size to 64
for RotatedMNIST, and 32 for CIFAR10, CIFAR100, and PACS.

B DETAILS OF AUGMENTATION DATA

We use the data augmentation framework the same as FedMix, as shown in Algorithm 2. For each
local dataset, we upload the mean of each M samples to the server. The constructed augmentation data
is close to random noise. As shown in Figure 6, we randomly choose one sample in the augmentation
dataset of CIFAR10 dataset.

Algorithm 2 Construct Augmentation Data
Require: local Datasets D1, . . . , DN , number of augmentation data for each client K, number of samples to

construct one augmentation sample M .
Ensure: Augmentation Dataset Dp.
1: Initialize Dp = ∅.
2: for i = 1, . . . , N do
3: for k = 1, . . . ,K do
4: Randomly sample x1, . . . , xM from Di.
5: x̄ = 1

M

∑M
m=1 xM .

6: Dp = Dp ∪ {x̄}
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Algorithm 3 Construct Augmentation Data by Proxy Data
Require: Proxy Datasets Dprox, number of augmentation data K, number of samples to construct one augmen-

tation sample M .
Ensure: Augmentation Dataset Dp.
1: Initialize Dp = ∅.
2: for k = 1, . . . ,K do
3: Randomly sample x1, . . . , xM from Dprox.
4: x̄ = 1

M

∑M
m=1 xM .

5: Dp = Dp ∪ {x̄}

Figure 6: We show 20 augmentation data of CIFAR10 dataset here. Notice that the augmentation data is close to
random noise and can not be classified as any class.

(a) Convergence curve on Rotat-
edMNIST

(b) Convergence curve on CIFAR10 (c) Convergence curve on CI-
FAR100

Figure 7: Convergence curve of algorithms on different datasets.
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C ADDITIONAL RESULTS

C.1 RESULTS WITH ERROR BAR

In this section, we report the performance of our method FedAug and other baselines with an error
bar to verify the performance gain of our proposed method.

Table 5: Performance of algorithms with error bar. All examined algorithms use FedAvg as the backbone.
We run 1000 communication rounds on RotatedMNIST and CIFAR10 for each algorithm. For each algorithm,
we run three different trials with different random seeds. For each trial, we report the mean of maximum 5
accuracies for test datasets and the number of communication rounds to reach the threshold accuracy.

Algorithm RotatedMNIST CIFAR10

Acc (%) Rounds for 80% Acc (%) Rounds for 55%

ERM (FedAvg) 82.78± 0.38 821 (1.0X) 58.97± 0.30 742 (1.0X)
DANN 84.67± 0.46 754 (1.1X) 58.98± 0.61 747 (1.0X)
Mixup 82.38± 0.07 853 (1.0X) 58.32± 0.33 822 (0.9X)
GroupDRO 80.65± 0.53 929 (0.9X) 56.72± 0.26 840 (0.9X)

FedDebias (Ours) 87.05 ± 0.44 637 (1.3X) 64.62 ± 0.32 374 (2.0X)

Table 6: Performance of algorithms on CIFAR10. We split CIFAR10 dataset to 10 clients with α = 0.1,
without additional rotation. For each algorithm, we run 1000 communication rounds on ResNet18 (with group
normalization), and set local steps to 50. Note that we set momentum to 0.9 for ResNet18.

FedAvg FedProx Moon VHL FedDebias (ours)

Accuracy (ResNet18) 45.91 46.28 43.85 43.7 47.29

C.2 ABLATION STUDY OF FEDDEBIAS

Values of τ1 and τ2 in Componennt 2. In this paragraph, we investigate how the value of τ1 and
τ2 affect the performance of the second component of FedDebias. In table 7, we show the results
on Rotated-MNIST dataset with different weights τ1 and τ2. Results show that: 1) Setting τ2 = 0
, which only minimizes the distance of global and local features, has significant performance gain
compare with ERM. However, adding τ2 can further improve the performance. 2) The best weight on
Rotated-MNIST dataset is τ1 = 2.0 and τ2 = 0.5.

Table 7: Performance of Component 2 of FedDebias under different values of τ1, τ2. We run 1000
communication rounds on RotatedMNIST dataset. For each setting, we run three different trials with different
random seeds. For each trial, we report the mean of maximum 5 accuracies for test datasets and the number of
communication rounds to reach the threshold accuracy.

τ1 τ2 Acc (%) Rounds for 80% Rounds for 85%

2.0 0.0 86.11± 0.77 746 933
2.0 0.1 86.22± 0.33 753 920
2.0 0.5 87.24± 0.50 647 851
2.0 1.0 86.25± 0.87 705 922
2.0 2.0 86.01± 0.33 680 932

Weights of the first component of FedDebias. In this paragraph, we investigate how the weights
of the first component of FedDebias affect the performance of models in table 9.

Domain robustness of FL and DG algorithms. We also hope that our method can increase the
model’s robustness because it expects to train client invariant features. Therefore, we calculate
the worst accuracy on test datasets of all clients/domains and report the mean of each algorithm’s
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Table 8: Performance of FedDebias under different values of τ1, τ2. We run 1000 communication rounds on
the CIFAR10 dataset. For each setting, we run three different trials with different random seeds. For each trial,
we report the mean of maximum 5 accuracies for test datasets and the number of communication rounds to reach
the threshold accuracy.

τ1 τ2 Acc (%) Rounds for 55% Rounds for 60%

2.0 0.0 64.05± 0.27 390 563
2.0 0.5 64.26± 0.47 382 585
2.0 1.0 64.77± 0.24 374 533
2.0 2.0 64.62± 0.32 374 541

Table 9: Performance of component 1 under different weights. We run 1000 communication rounds on the
CIFAR10 dataset. For each setting, we run three different trials with different random seeds. For each trial, we
report the mean of maximum 5 accuracies for test datasets and the number of communication rounds to reach
the threshold accuracy. We use λ as the weight of the first component of FedDebias.

λ Acc (%) Rounds for 55% Rounds for 60%

0.1 64.12± 0.27 442 591
0.5 64.92± 0.46 385 536
1.0 64.50± 0.34 379 565

top 5 worst accuracies in Table 11 to show the domain robustness of algorithms. We have the
following findings: 1) FedDebias significantly outperforms other approaches, and the improvements
of FedDebias over FedAvg become more significant than the mean accuracy in Table 1. FedDebias
has a role in learning a domain-invariant feature and improving robustness, as evidenced by this
finding. 2) Under these settings, DG baselines outperform FedAvg. This finding demonstrates that
the DG algorithms help to enhance domain robustness.

Table 10: Performance of algorithms. All examined algorithms use FedAvg as the backbone. We run
1000 communication rounds on RotatedMNIST and CIFAR10 for each algorithm, 800 communication rounds
CIFAR100 and 400 communication rounds for PACS. We report the mean of maximum 5 accuracies for test
datasets and the number of communication rounds to reach the final accuracy of ERM .

Algorithm RotatedMNIST CIFAR10 PACS

Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up)

ERM (FedAvg) 82.47 828 (1.0X) 58.99 736 (1.0X) 64.03 168 (1.0X)
FedProx 82.32 824 (1.0X) 59.14 738 (1.0X) 65.10 168 (1.0X)
SCAFFOLD 82.49 814 (1.0X) 59.00 738 (1.0X) 64.49 168 (1.0X)
FedMix 81.33 902 (0.9X) 57.37 872 (0.8X) 62.14 228 (0.7X)
Moon 82.68 864 (0.9X) 58.23 820 (0.9X) 64.86 122 (1.4X)
DANN 84.83 743 (1.1X) 58.29 782 (0.9X) 64.97 109 (1.5X)
Mixup 82.56 840 (1.0X) 58.57 826 (0.9X) 64.36 210 (0.8X)
GroupDRO 80.23 910 (0.9X) 56.57 835 (0.9X) 64.40 170 (1.0X)

FedAug (Ours) 86.58 628 (1.3X) 64.65 496 (1.5X) 65.63 100 (1.7X)

C.3 T-SNE AND CLASSCIFIER OUTPUT

As the setting in Figure 2 and Figure 3, we investigate if the two components of FedDebias will help
for mitigating the proposed bias on feature and classifier. Figure 8 show the features after the second
component of FedDebias, which implies this component can significantly mitigate the proposed
feature bias: 1) on the seen datasets, local features are close to global features. 2) on the unseen
datasets, the local feature is far away from that of seen datasets. Figure 9 shows the output of the
local classifier after the first component of FedDebias on unseen classes. Notice that compared with
Figure 3, the output is more balanced.
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(a) Global feature of X1, Fg(X1) (b) Local feature of X1, F1(X1) (c) Local feature of X2, F1(X2)

Figure 8: Features after the second component of FedDebias.

Figure 9: Classifier output after the first component of FedDebias on unseen classes.

(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1,
F1(X1)

(c) Fine-tuned Local feature of X2,
F1(X2)

Figure 10: Fine-tuned local features after 10 local epochs.

(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1,
F1(X1)

(c) Fine-tuned Local feature of X2,
F1(X2)

Figure 11: Fine-tuned local features after 20 local epochs.

18



Under review as a conference paper at ICLR 2023

Table 11: Worst Case Performance of algorithms. All examined algorithms use FedAvg as the backbone. We
run 1000 communication rounds on RotatedMNIST and CIFAR10 for each algorithm, 800 rounds for CIFAR100,
and 400 communication rounds for PACS. We calculate the worst accuracy for all clients in each round and
report the mean of the top 5 worst accuracies for each method. Besides, we report the number of communication
rounds to reach the final worst accuracy of FedAvg.

Algorithm RotatedMNIST CIFAR10 PACS

Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up)

ERM (FedAvg) 66.60 816 (1.0X) 41.30 846 (1.0X) 42.79 170 (1.0X)
FedProx 65.88 780 (1.0X) 41.84 840 (1.0X) 42.82 170 (1.0X)
SCAFFOLD 66.72 804 (1.0X) 40.88 840 (1.0X) 41.63 170 (1.0X)
FedMix 60.52 910 (0.9X) 28.44 - 38.00 -
Moon 66.18 866 (0.9X) 40.34 908 (0.9X) 41.59 66 (2.6X)
DANN 67.85 753 (1.1X) 43.38 747 (1.1X) 40.51 59 (2.9X)
Mixup 66.25 836 (1.0X) 40.32 984 (0.9X) 41.89 252 (0.7X)
GroupDRO 68.53 568 (1.4X) 46.90 656 (1.3X) 43.18 246 (0.7X)

FedDebias (Ours) 77.13 630 (1.3X) 48.94 632 (1.3X) 43.99 58 (2.9X)

(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1,
F1(X1)

(c) Fine-tuned Local feature of X2,
F1(X2)

Figure 12: First train global model on the whole dataset for 1 epoch, then report local features after 10 local
epochs.

In Figure 10 and Figure 11, we show the local learning bias when local model has better feature
initialization. We copy the feature extractor of global model to local models, and randomly initialize
local classifiers. Results show that: 1) The drifts between global and local features are still significant
even has a good feature initialization. 2) The local features of unseen data are less relevant to the
local features of seen data compare with training from scratch. This indicates that such a problem will
be mitigated after enough training rounds. 3) The drifts between global and local features increase as
the number of local epochs increases.
We also investigate if our observation remains for different stages of global models. In this experiment,
we use CIFAR10 dataset, and train global model for 1, 3, 10 epochs on the whole dataset to obtain
29.74%, 38.65%, 49.28% global accuracy, then we directly copy global models to clients (including
classifier). We fine-tune the global models for 10 local epochs, results are shown in Figure 12,
Figure 13 and Figure 14. Results show that: For not well-trained global models, difference between
global features on the same input and similarity between local features of different inputs are both
significant.

(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1,
F1(X1)

(c) Fine-tuned Local feature of X2,
F1(X2)

Figure 13: First train global model on the whole dataset for 3 epochs, then report local features after 10 local
epochs.
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(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1,
F1(X1)

(c) Fine-tuned Local feature of X2,
F1(X2)

Figure 14: First train global model on the whole dataset for 10 epochs, then report local features after 10 local
epochs.

Figure 15: Illustration of the min-max process. In the left side of the figure, we show that the projection layer
maximizes the distance between biased and unbiased features. In the right side of the figure, we show that the
unbiased local feature is trained by forcing projected features closer to unbiased features.

C.4 ILLUSTRATION OF MIN-MAX PROBLEM

In Figure 15, we illustrate the intuition to use the proposed min-max process. The projection layer is
used to distinguish biased and unbiased features that can not be distinguished well on the original
feature space, and the min step is to learn unbiased local features that close to unbiased features on
the projected spaces.
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