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Abstract

Text watermarking, which modify tokens to
embed watermark, has proven effective in de-
tecting machine-generated texts. Yet its appli-
cation to low-entropy texts like code and math-
ematics presents significant challenges. A fair
number of tokens in these texts are hardly mod-
ifiable without changing the intended meaning,
causing statistical measures to falsely indicate
the absence of a watermark. Existing research
addresses this issue by rely mainly on a lim-
ited number of high-entropy tokens, which are
considered flexible for modification, and accu-
rately reflecting watermarks. However, their
detection accuracy remains suboptimal, as they
neglect strong watermark evidences embedded
in low entropy tokens modified through water-
marking. To overcome this limitation, we in-
troduce Bayesian Inference-based Watermark
Detector (BIWD), which thoroughly exploit
watermark information from every token, by
leveraging the posterior probability of water-
mark’s presence. We theoretically prove the
optimality of our method in terms of detection
accuracy, and demonstrate its superiority across
various datasets, models, and watermark injec-
tion strategies. Notably, our method achieves
up to 50% and 70% relative improvements
in detection accuracy over the best baselines
in code generation and math problem-solving
tasks, respectively.

1 Introduction

Text watermarking is an effective technique for dif-
ferentiating machine-generated text from human-
written content that subtly injects an invisible
marker, i.e. watermark, into text. It serves as a
safeguard against unauthorized or malicious use
of large language models, such as creating fake
news (Augenstein et al., 2023) and election manip-
ulating (Alvarez et al., 2023).

Generative watermark, which integrates water-
mark during LLM’s generation process, generally
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Figure 1: Comparison of entropy-based detector and
ours. It demonstrates the misalignment between entropy
and informativeness for watermark detection, where
low-entropy positions with critical information are over-
looked, and high-entropy positions are overestimated.

exhibits superior detectability and robustness. A
generative watermarking method injects a water-
mark through perturbing tokens’ output distribu-
tion during text generation, and subsequently com-
putes a score indicating its presence for detection.
For instance, the KGW method (Kirchenbauer
et al., 2023) partitions the model’s vocabulary into
green and red tokens at each generation step, and
increases the output probability of green tokens,
resulting in higher proportion of green tokens in
a watermarked text. Subsequent detection is per-
formed by computing the z-score of green token
occurrences in the text.

However, text watermarking exhibits subopti-
mal performance in low-entropy scenarios, such as
code generation or mathematical problem solving,
where a fair number of tokens are unmodifiable
without compromising output quality. Statistics,
such as the z-score computed for these tokens, sug-
gest the absence of a watermark, providing con-
trary evidence of its presence and thus diminishing
the effectiveness of the watermark detector. This
limitation poses a substantial barrier to detecting
malicious or unauthorized activities in software de-
Velopmentl, academic exams (Susnjak, 2022), and
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job interviews (Canagasuriam and Lukacik, 2024),
raising concerns about social equality and ethical
use of technology. Subsequent works (Lee et al.,
2024; Lu et al., 2024) attempt to enhance detec-
tion accuracy by prioritizing high-entropy tokens,
which are considered more adjustable to watermark
perturbations, thus more indicative of watermark’s
presence. In contrast, low-entropy tokens receive
little weight during detection. Nevertheless, their
detection accuracy remains suboptimal, as they fail
to leverage the substantial information in highly
indicative low-entropy tokens, which are actually
modified through watermarking.

We identified a misalignment between the
entropy-based mechanism and the goal of detec-
tion: Entropy inadequately captures the modifia-
bility of a token, nor does it account for the actual
modification introduced by watermarking. To il-
lustrate the misalignment, consider a low-entropy
position where the probability is concentrated on
ared token but presents a green one. It serves as a
strong evidence of the watermark’s presence. How-
ever, entropy-based detectors would assign a small
weight to this position and neglect this evidence.

To address this misalignment, we propose
Bayesian Inference-based Watermark Dector
(BIWD), which quantifies the impact of watermark
injection on every token. We calculate the poste-
rior likelihood of every token altered by watermark
injection with Bayesian inference, then aggregate it
into a total score. A token that deviates more from
its original distribution and consequently shows
stronger evidence of watermark injection has a
greater impact on the score. In this way, we ex-
tract more information from every token, especially
highly indicative and low-entropy tokens, instead
of neglect them.

We prove that BIWD achieves optimal true posi-
tive rate (TPR), given any false positive rate (FPR)
limit. Our method is compatible with various water-
mark injection techniques. Extensive experiments
across multiple language models, generative tasks
and watermark injection schemes demonstrate the
superior performance of our approach. In partic-
ular, under a 1% FPR constraint in mathematical
contexts, BIWD boosts the TPR from below 60%
to over 90%. Furthermore, BIWD demonstrates
adaptability to general high-entropy texts and ex-
hibits robustness against removal attacks and sce-
narios involving unknown prompts.

In summary, our main contributions are:

* We propose a watermark detection approach
called BIWD, which significantly improves
watermark detection accuracy in low-entropy
scenarios.

* We provide theoretical analysis on the opti-
mality of BIWD under any constraint on false
positive rate.

* We conduct experiments with various water-
marking methods in low-entropy scenarios
and empirically verify BIWD’s superiority.

2 Related Works

Text watermarking emerges as a promising so-
lution to identifying machine-generated contents.
They can be categorized into two types (Liu et al.,
2024b): generative watermarking methods and wa-
termarking applied to existing text.

Generative Watermarking Methods. Genera-
tive watermarking methods inject watermarks dur-
ing the LLLM generation phase through modifying
model output logits or meticulously designed sam-
pling process.

KGW (Kirchenbauer et al., 2023) is a semi-
nal approach within logits-modifying type, and
its proposed green-red list paradigm has been
widely adopted by subsequent studies. Observing
its impact on the quality of generated text, sev-
eral studies (Huo et al., 2024; Chen et al., 2024)
have proposed improvements. For instance, TS-
watermark (Huo et al., 2024) dynamically adjusts
the watermark strength for each token based on
the preceding token. Some other works enhance
the robustness of KGW through using fixed green
list (Zhao et al., 2023) or determining the green list
by semantics (Liu et al., 2024a; Liu and Bu, 2024).
Additionally, some studies (Fernandez et al., 2023;
Wang et al., 2024; Yoo et al., 2024) focused on
injecting watermark with more information (multi-
bit watermark). Research also explored the adapt-
ability of watermarking methods to low-entropy
scenarios (Lee et al., 2024; Lu et al., 2024), such as
programming tasks. Logits-modifying watermark-
ing methods typically adopt z-score based detector.
To improve detectability in low-entropy scenarios,
Lu et al. (2024) introduced EWD detector based on
token entropy.

Sampling-based watermarking methods typi-
cally introduce pseudo-randomness accessible dur-
ing detection to influence the sampling process
while maintaining the token distribution on average.



For example, Kuditipudi et al. (2023) employed a
long random number sequence to modify sampling
and used edit distance for detection to enhance
robustness. Dathathri et al. (2024) introduced tour-
nament sampling, achieving a balance between text
quality, detectability, and efficiency.
Watermarking for Existing Texts. This type
of watermarking methods inject hidden features
into existing texts and detect them afterwards. One
way to achieve this is using end-to-end models (Ab-
delnabi and Fritz, 2021; Zhang et al., 2024). For
instance, AWT proposed by (Abdelnabi and Fritz,
2021) employs a transformer network to inject wa-
termarks and another transformer network to detect
them. Some other methods attempt to watermark
existing texts through synonym substitutions. The
techniques they adopt for synonym selection in-
clude consulting an electronic dictionary (Topkara
et al., 2006) and utilizing pre-trained models (Yang
et al., 2023; Yoo et al., 2023). The quality of wa-
termarked text generated by such methods is con-
strained by the synonym database or model used.

3 Preliminaries

As we focus on generative watermarking due to
its superior detectability and robustness, the term
"watermarking" will henceforth refer to generative
watermarking. In this section, we present the pre-
liminaries of watermark injection and detection.
Notations used throughout the paper are provided
in Appendix A.

3.1 Watermark Injection

Watermark injection is typically achieved by per-
turbing the output distribution of large language
model. Specifically, when generating the ¢-th token,
the language model M computes a logits vector l;
from preceding context, which is then normalized
via softmax to produce a distribution over can-
didate tokens. Watermarking methods introduce
perturbations to this distribution by modifying the
logits or sampling process.

In this study, we select two representative water-
marking approaches as research objects: the clas-
sical KGW (Kirchenbauer et al., 2023) method
and SWEET (Lee et al., 2024), the state-of-the-art
method for watermarking in low-entropy scenarios.

At generation step £, KGW adds a bias d to the
logits of a subset of tokens in vocabulary V, namely
green list, denoted by V. It is determined by the
hash of preceding tokens and the proportion of V,
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Figure 2: Reward and penalty with respect to total prob-
ablity of tokens being green. Statistics from 500 texts
in MBPP dataset.

in V is . The remaining tokens in V' are called
"red-list", denoted by V,. This logits perturbation
increases the probability of green tokens, resulting
in a generated text with more green tokens.

The SWEET method follows the same procedure
but restricts perturbations to high-entropy positions
only. In SWEET method, the entropy at position ¢
is Hy = — ),y pf log p{ where py is the proba-
bility of candidate token v given by M at position
t. A threshold is manually set to determine high-
entropy positions.

3.2 Watermark Detection

We present a watermark detection framework en-
compassing detectors used by KGW and SWEET.
Let x = {x,1,...,27—1} denote the text to be
detected. Within this framework, the detector as-
signs a score to every token x; in . These scores
are then summed and (optionally) normalized by
normy(+, -) to produce a total score. A higher score
indicates a greater likelihood that the text has been
watermarked. Specifically, the score given to x is:

T-1
S(x) = norm(z s(x,t), )
t=0
where s is the score given to token at each posi-
tion. In practice, a threshold is defined and any text
scored higher than it is identified as watermarked.

4 Method

In this section, we first illustrate our motivation
by examining the limitations of current watermark
detection methods. Subsequently, we present our
detection approach.

4.1 Motivation

Although EWD and SWEET detectors achieve bet-
ter accuracy in low-entropy scenarios, their im-
provement stems from attaching more importance



to those high entropy tokens, which are more ad-
justable to watermark perturbation. However, the
goal of watermark detection is to measure the in-
fluence of watermark perturbation. We explain this
misalignment from a token scoring perspective.

The EWD detector assigns a positive score as
areward, if z; € V,, and a negative score, whose
absolute value is a penalty if z; € V,. As for
token-level reward or penalty, we have the follow-
ing intuition: if a position was likely to output a
red token according to its original distribution with-
out watermark but a green token appears here. It
indicates the influence of watermark and should
receive a significant reward. Inversely, a position
with high probability of green tokens but appears a
red one strongly suggests that watermark is absent,
thus should receive a significant penalty.

However, EWD does not fully exploit these evi-
dences that are critical for determining the presence
of the watermark. Figure 2a illustrates the relation-
ship between the reward and penalty assigned by
the EWD detector (v = 0.25) and the probability of
token being green. It can be observed that both re-
ward and penalty exhibit a bell-shaped curve trend.
The reward is lower when the probability of a to-
ken being green is relatively low, and the penalty
is lower when this probability is relatively high,
which contradicts our previous intuition. Other
entropy-based methods like SWEET have the same
misalignment problem.

To further analyze the impact of this misalign-
ment on token scores, we define a watermark infor-
mation score (WIS). For the ¢-th token x; in a text
x, its WIS is formulated as follows:

WIS(, t) = 1y, (z1) > o + Ly, (z0) > p}

vEVy vE€Vy

This score quantifies the amount of information a
token carries about the watermark. Specifically, for
a green token, its WIS equals the total probability
of red tokens. A higher value indicates a greater
likelihood of the watermark’s presence, as the po-
sition would otherwise likely contain a red token.
For a red token, its WIS equals the total probability
of green tokens. A higher value suggests a lower
likelihood of the watermark’s presence.

We plotted a scatter diagram of the entropy and
WIS of tokens in watermarked codes. In Figure 3,
the green tokens within the black rectangle exhibit
both high WIS and low entropy. This indicates that
entropy-based detectors like EWD, assign these to-
kens relatively low importance, thereby impairing
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x high V\{IS but low-entropy
» .

information entropy of tokens
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Figure 3: Watermark information score (WIS) and en-
tropy of tokens in watermarked codes. Statistics from
500 watermarked codes generated using MBPP dataset
and StarCoder2-7B model.

detection performance. This observation further
supports our hypothesis regarding the misalign-
ment in entropy-based detectors.

To address this issue, we devise a detection
method based on Bayesian inference that aims at
measuring watermark influence. We treat the target
text x, as the value of a random variable, and infer
the likelihood of the watermark’s presence from it.

4.2 Bayesian Inference Detection

Let w denote the presence of a watermark (0/1 bi-
nary) and P, represent the distribution of w. Sup-
pose the distribution of all natural language (wa-
termarked and non-watermarked text) is P and the
distribution given by model M is Pps. Given a text
x to be detected and its corresponding prompt a,
we derive the following using Bayes’ theorem:

P(z|a;w = 1)Py(w = 1)
Zi:o,l P(x|a; w)Py(w = i)

Py(w=1la;z) = M

Dividing both the numerator and the denomina-
tor of the above equation by P(x|a;w = 0), we
obtain (1) equals:

A(x,a)P,(w =1)

P,y(w=0)+ A(z,a)P,(w =1) @)
where Ple| D
z|la;w =
Alw,a) = P(z|a;w = 0) ©

P,(w = 0) and P,(w = 1) are constant across
different x as they are the probability of text being
watermarked in the whole corpus. Therefore, the
posterior likelihood (2) increases monotonically
with A(x, a), So we can use A(x, a) to represent



the likelihood of the watermark’s presence. The
numerator in (3) is the output probablity of model
M with watermark injection, which is identical to
Pyr(x|a;w = 1). The denominator is the condi-
tional probability of human written texts. As large
language models are pretrained on large amount of
human written text, this probability can be approx-
imated by Py/(x|a;w = 0). Consequently, our
focus reduces to computing:

. P, jw =1

A(w,a): M(w’avw )

Py(z|a;w = 0)

Applying the chain-rule Py (x|a;w) =

[ Py (x¢|la, z4;w) (2.0 denotes empty sequence)
and taking the log-transform, we have:

“4)

T-1
Az, a) = Z(logPM(xt\a,x;t;w =1)— s
=0 )
log Py (z¢|a, x4;w = 0))

For the KGW and SWEET (assume ¢ is a high-
entropy position) injection method, given the origi-
nal logit of token v at position ¢, [}, the perturbed
logit is [V = IV + 6 - 1y,(v). For the model
output distribution, we have Py/(:|la,z;w =
1) = softmax(ly) and Py(:|a, z.;w = 0) =
softmax(l;). By substituting these equations of

Py and l; into (5), we obtain:

T—1 5
~ & Gt + Rt
A(m,a) = ;(5-1];9 (:L“t)—log 7Gt n Rt ) (6)

where G; = Zvevg eli and Ry = > ey, el are
the unnormalized total probability of green, red
tokens, respectively.

Similar to the discussion on EWD, we can in-
terpret the score of green token as a reward, and
the absolute value of score given to a red token as
a penalty. Figure 2b demonstrates that the reward
given by BIWD decreases monotonically, while
the penalty increases monotonically with the prob-
ability of token being green, consistent with the
intuitive analysis in 4.1.

We also present the text-level score distributions
of EWD and BIWD. Figures 4a and 4b show that
BIWD exhibits stronger discriminative ability.

4.3 Theoretical Analysis

We theoretically prove that BIWD has optimal true
positive rate within any false positive rate con-
straint, given a prompt a and model M. In order to
formalize this conclusion, we need the following
notations and definitions.

probability density
probability density

o o 5 To %
scores given by BIWD detector

(b) BIWD detector
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scores given by EWD detector
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Figure 4: Distribution of scores given by EWD and
BIWD. We use MBPP dataset, StarCoder2 model and
KGW watermark injection method for this experiment.
The size of the dashed area represents the TPR at 5%
FPR. It can be observed that BIWD significantly outper-
forms EWD on this metric.

* Let 2 denote the set of all possible output
token sequence x. Conditional probabilities
Py(-|la;w = 0), Py(-la;w = 1) given by
M and its watermarked counterpart both en-
dow (2 with a probability measure.

* For any watermark detection method ¢ which
functions as a binary classifier on §2, its effect
is equivalent to a split of ):

QZ’C¢UK§5

where K4 means the subset of sequences iden-
tified as watermarked by ¢. Therefore, Ky
fully expresses the effect of detection ¢ on €.
For our method, p=BIWD, and the detection
effect is expressed by prwp.-

Definition 4.1. For a detection method ¢, its false
positive rate a on (Py(-|a)) is defined as:

/ 1x, (z) Py (x|a;w = 0) dx
Q

Definition 4.2. For a detection method ¢, its true
positive rate S on Q(P(-|a; w = 1)) is defined
as:

/ 1, () Pu(zla;w = 1) dz
Q

Definition 4.3. For a threshold 1 > 0, the BIWD
detector with this threshold, denoted as BIWD(7),

classify any sequence x with score A(x, a) > 7 as
watermarked. Therefore, its positive sample subset
is:

]CBIWD(n) = {ilt < Q|A(az,a) > 77}
Theorem 4.1. For any limit on false positive rate
o > 0, if there exists a threshold n > 0 such that
QBIWD(y) = O, then for any detection method ¢
s.t. oy < 0, its true positive rate is no greater than
that of BIWD(n)

By < BBIWD(n)



A proof is available in appendix B.

5 Experiments

We conduct experiments across different low-
entropy datasets, language models and watermark
injection methods.

Tasks and Datasets. We select two tasks: code
generation and math problem solving. For code
generation, we use HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) datasets which con-
tain python programming problems and reference
answers following the setups in Lee et al. (2024)
and Lu et al. (2024). For math problem solving,
we select 500 samples from GSMS8K (Cobbe et al.,
2021), which contains mathematical problems in
English. In all experiments, we use texts longer
than 15 tokens for detection.

Models. For code generation, we employ
StarCoder2-7B (Lozhkov et al., 2024), a model
specializes in programming, following prior re-
search (Lee et al., 2024; Lu et al., 2024). For math-
ematical problem solving, we use DeepSeekMath-
7B-Instruct (Shao et al., 2024), which is optimized
for mathematical reasoning. To assess the general-
izability of our method, we also utilize the versatile
Llama2-7B model (Touvron et al., 2023), apply-
ing it to both code generation and math problem-
solving tasks.

Watermark injection Methods. We utilize two
injection methods, KGW and SWEET. KGW acts
as a classic baseline in this field, while SWEET is
specifically optimized for low-entropy scenarios.
Detailed configurations are provided in Appendix
C. To differentiate watermark injection schemes
from their detectors, we denote KGW’s injection
and detection methods as KGW; and KGWp, and
SWEET’s as SWEET| and SWEETD.

Baselines and Metrics. To detect watermarks in-
jected by KGWy and SWEET], we employ their cor-
responding detectors as baselines. We also apply
EWD as a detector for both, as it is optimized for
low-entropy scenarios. Additionally, we employ
the detection method proposed by DIPMark (Wu
et al., 2024) as another baseline, as it does not rely
on the classical z-score framework and is adaptable
to other injection methods. This detector is denoted
as DIPp. Following Lee et al. (2024) and Lu et al.
(2024), we use true positive rates at 1% and 5%
false positive rates(TPR @ 1%FPR, TPR@5%FPR),
along with the corresponding F1-score, as our eval-
uation metrics. True positive rate (TPR) and false

positive rate (FPR) represent the proportion of wa-
termarked text successfully detected and the pro-
portion of human-written text mistakenly classified
as Al-generated, respectively. Best F1 scores are
also reported to show the overall performance of
detectors. All metrics are measured in a single run.

6 Results

Table 1 and 2 (all metrics are shown in percent-
age) demonstrate that our method exhibits substan-
tial advantages in detection accuracy for code and
mathematical text compared to baselines, and it
is applicable to different models and watermark
injection methods.

For code generation task with StarCoder2 model
and KGW| injection method, the average improve-
ments of BIWD over the best baseline, on two
datasets are 14% in TPR@1%FPR and 24% in
TPR @ %5FPR. For the same task and model with
SWEET] injection method, the avergae improve-
ments of the two metrics are 23% and 27%, re-
spectively. For mathematical problem solving task
with DeepSeek model, the improvements of the two
metrics are 38%, 19% while using KGWj injection
method and 35%, 24% while using SWEET] injec-
tion method. Notably, for this model, our method
improves the TPR@ 1%FPR from below 60% to
over 90%.

For Llama2 model, our detection method also
outperforms all baselines. Specifically, it achieves
an improvement of 34% in TPR@1%FPR on
MBPP dataset while using SWEET] injection
method. Although our method shows relatively
small advantages in certain settings, the baselines
have already achieved high accuracy in these set-
tings, leaving limited room for improvement.

7 Analysis

7.1 Performance without Original Prompts

In applications like detecting cheating in job inter-
views, prompts are usually accessible, specifically
the question text. However, for code copyright pro-
tection, the original prompt is often unavailable.
Therefore, we also conduct experiments with a gen-
eral prompt following previous studies (Lee et al.,
2024; Lu et al., 2024). The details about this setting
are in Appendix C.2. Table 3 and Table 4 show
that our method still outperforms all baselines. For
the code generation task and KGW| watermark in-
jection method, BIWD achieves average improve-
ments of 8.49% and 16.28% in TPR@1%FPR and



HUMANEVAL MBPP
Model Injection Detection 1%FPR 5%FPR BEST 1%FPR 5%FPR BEST
TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

KGWp 10.92 19.55 2941 44.03 73.87 8.02 1474 2430 37.58 74.05
KGW DIPp 17.65 29.79 2941 4403 7322 19.09 31.83 3557 50.62 73.81
! EWD 4454 61.27 6050 7347 84.13 35.14 51.67 6638 77.47 88.28
BIWD 63.87 77.55 83.19 88.79 9398 43.60 60.36 91.32 93.04 94.25

StarCoder2
SWEETp 32.23 4845 49.59 64.52 80.74 37.09 53.77 54.66 6857 84.84
SWEET DIPp 9.09 1654 3223 4727 8296 3536 5191 67.68 7839 86.71
' EwD 38.84 55.62 5455 6839 8397 3275 49.03 62.69 7477 88.21
BIWD 58.68 73.58 83.47 88.60 92.37 59.00 73.81 88.29 91.36 93.97
KGWp 58.78 73.73 7432 83.02 8493 2843 4399 61.09 73.63 84.17
KGW DIPp 21.62 3536 62.16 7449 8023 34.68 51.19 61.29 73.79 83.01
! EWD 96.62 97.95 98.65 97.01 9795 50.81 67.02 79.64 86.34 91.07
BIWD 9797 98.64 100 97.69 99.00 66.33 79.37 98.59 96.93 97.11

Llama2

SWEETp 84.67 91.37 90.67 92.83 9477 49.09 6550 77.17 84.79 88.62
SWEET DIPp 77.37 86.89 86.67 90.59 9346 60.81 75.25 88.08 91.31 90.25
I EwWD 85.33 91.76 90.67 92.83 9453 50.10 66.40 84.04 88.98 90.84
BIWD 92.00 95.50 96.00 95.68 96.75 83.64 90.69 9798 96.61 97.19

Table 1: Detection accuracy on HumanEval, MBPP datasets using StarCoder2-7B, Llama2-7B models and KGWj,

SWEET] injection methods.

GSMSK
Model Injection Detection 1%FPR 5%FPR BEST
TPR F1 TPR Fl1 F1
KGWp 8.00 14.68 2420 37.46 67.73
DIPp 1.80 347 740 13.17 6771
KGW;
EWD 52.60 68.49 7820 8537 87.86
BIWD 91.00 94.79 97.60 96.35 96.83
DeepSeek
SWEETp 57.60 72.64 7540 8359 88.21
DIPp 31.20 4720 6940 79.86 87.23
SWEET; EWD 40.40 57.14 7040 80.27 85.47
BIWD 92.80 95.77 99.80 97.46 97.65
KGWp 73.35 84.23 81.16 87.28 88.35
KGW DIPp 59.32 74.09 7134 81.00 82.80
! EWD 90.38 94.55 9479 9498 9593
BIWD 90.98 94.88 95.99 95.61 95.96
Llama2
SWEETp 84.77 91.36 9339 9424 94.27
DIPp 88.38 9343 9479 9536 94.83
SWEET; EWD 89.58 94.11 9539 9530 95.94
BIWD 95.99 97.56 97.60 96.44 97.57

Table 2: Detection accuracy on GSM8K dataset using
DeepSeek-math-7B-instruct, Llama2-7B models and
KGW, SWEET] watermark injection methods.

TPR@5%FPR over the best baseline, respectively.
For the same task and SWEET] watermark injec-
tion method, BIWD demonstrates average improve-
ments of 6.61% and 16.45% in TPR@1%FPR and
TPR@5%FPR, respectively. For the task of solv-
ing mathematical problems and KGW| watermark
injection method, BIWD achieves improvements
of 15.68% and 11.81% for the two metrics, re-
spectively. For this task with SWEET| watermark
injection method, BIWD results in improvements
of 4.48% and 6.31% for the same metrics. We also

find that as text length increases, the absence of
the original prompts has a diminishing impact on
detection accuracy.

7.2 Adaptability to High-Entropy Texts

To evaluate the applicability of our detection
method in general high-entropy scenario, we con-
duct experiments using 500 samples from C4 (Raf-
fel et al., 2023) English news dataset and the
Llama2-7B model. Detailed settings are in Ap-
pendix D. Table 5 shows that our detection method
outperforms the baselines.

7.3 Robustness against Removal Attack

Since malicious users tend to modify the content
generated by LLMs to escape detection, we need
to assess the robustness of our detector against re-
moval attacks. Following Lee et al. (2024), we use
variable name substitution as our attack method.
We replace 50% of the variables in each function
with random strings of 2 to 5 characters. The water-
mark injection method used is KGWy with § = 2
and v = 0.5. All methods show a significant de-
crease in accuracy after the attack, but our method
remains the best overall. Exploring how to enhance
the robustness of low-entropy text watermarking
could be a direction for further research.



HUMANEVAL MBPP
Injection Detection 1%FPR 5%FPR BEST 1%FPR 5%FPR BEST
TPR  Fl1 TPR F1 F1 TPR  Fl1 TPR F1 F1
KGWp 9.65 17.46 2895 4342 7357 803 14.74 2430 37.58 74.05
KGW DIPp 1228 21.71 28.07 4238 73.57 19.09 31.83 35.57 50.62 73.81
! EWD 2456 39.16 42.11 5749 80.65 17.14 29.04 36.88 5199 77.77
BIWD 29.82 45.64 44.74 60.00 87.10 28.85 4448 66.81 77.78 86.76
SWEETp 19.83 32.86 3793 5333 77.65 933 1693 3254 4732 7732
SWEET DIPp 6.03 11.29 33.62 48.75 77.78 20.17 33.33 3557 5101 76.25
' EwD 2328 37.50 40.52 5595 79.70 1475 2552 36.88 51.99 78.25
BIWD 2586 40.82 50.00 64.80 84.43 2538 40.21 60.30 72.97 86.33

Table 3: Detection accuracy on HumanEval, MBPP datasets using StarCoder2-7B model and KGW;, SWEET;

injection methods without original prompts.

GSMSK
Injection Detection 1%FPR 5%FPR BEST
TPR F1 TPR F1 F1
KGWp 7.13 1321 23.83 37.03 67.65
DIPp 1.8 347 740 13.17 67.71
KGW, EWD 11.61 20.65 40.53 5574 78.32
BIWD 27.29 42.61 5234 66.58 78.80
SWEETp 835 1530 2892 4323 7374
DIPp 7.20 1331 2240 35.16 73.63
SWEET EWD 7.13 1321 3096 45.58 75.05
BIWD 12.83 22.58 37.27 5244 74.14

Table 4: Detection accuracy on GSMS8K dataset us-
ing DeepSeek-math-7B-instruct model and KGWj,
SWEET] injection methods without original prompts.

8 Conclusion

In this study, we identify the misalignment issue
in entropy-based watermark detection methods and
propose a detection approach that addresses this
problem. Our detector utilizes Bayesian inference
to fully leverage the distribution given by language
model. We provide theoretical analysis on its op-
timality and empirically verify its superiority in
low-entropy scenario. Notably, compared to the
best baseline, our method achieves up to 1.5 times
detection accuracy on the code datasets and up
to 1.7 times detection accuracy on the mathemat-
ics dataset. Additionally, experiments demonstrate
that our watermark detection method outperforms
the baselines in terms of accuracy in high-entropy
scenarios, detection accuracy without prompts, and
robustness against removal attacks.

Injection Detection 1%FPR S%FFR Best
TPR FI TPR Fl  FI

KGWp 9959 9939 9959 9742 9939

«Gw.  DIPo 9899 99.09 99.59 97.42 98.59

' EWD 9959 9939 100 97.62 99.70
BIWD 100 9960 100 97.62 100

SWEET, 99.80 9950 99.80 9753 99.70

DIPy 100 9960 100 97.63 99.90

SWEET:  pywp 99.80 99.50 100 97.63 99.70
BIWD 100 9960 100 97.63 100

Table 5: Detection performance on C4 dataset using
Llama2-7B model and KGW;, SWEET] watermark in-
jection methods.

s 1%FPR 5%FPR Best
Injection
TPR Fl1 TPR Fl1 Fl1
KGWp 551 1035 13.62 2298 70.60
DIPp 1043 1875 1594 26.38 68.84
EWD 1594 2730 29.86 4430 76.38
BIWD 1478 2556 4696 61.83 79.83

Table 6: Detection performance on MBPP dataset after
variable substitution attack. The model and watermark
injection method used are StarCoder2-7B and KGWj

9 Limitations

Our detection method has two main limitations.
First, the generation tasks and datasets tested are
limited. We employ two code datasets and one
mathematics dataset for evaluation. we plan to test
our method on a broader range of low-entropy tasks
with more diverse datasets. Second, we only test
two watermark injection methods in this study. Our
approach is applicable to a variety of generative
watermark injection methods based on distribution
perturbation. We plan to implement and evaluate
our method with other watermark injection tech-



niques in future work.
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A Notations

Symbol Description

M Language model used for generation.
1% Vocabulary of M.

Vy Green list.

Ve Red list.

v Token in V.

w Whether watermark exists. (0/1)

Py Distribution given by M.

P Distribution of all natural language.
P, Distribution of w.

a Prompt used for generation.

T Text generated by M.

Ty The t-th token in x.

t Generation step.

l Model logits at the ¢-th step.

ly Model logit of token v at the t-th step.
Dt Distribution given by M at step .

o4 Probability of v given by M at step .
H, Information entropy at step .

S(x) Watermark detection score of x.
s(x,t)  Watermark detection score given to x;.
norm Normalizer for watermark detection.
T Length of x.

vy Green-list ratio in KGW and SWEET.
) 0 in KGW and SWEET.

Table 7: Notations used throughout the paper.

B Proof of Theorem

From definition 4.3, we have the following in-
equality (simply consider € Kgrwp(, and

x ¢ Kprwp(y) respectively):

[1’CBIWD(77) (:C) - 1/C¢ (CL')]
[Py (z|a,w =1) —nPy(x|la,w =0)] >0
Then we integrate the above inequality over {2

and simplify the integral with definition 4.1 and
4.2. The result is as follows:

Berwp(n) — Be = n(aBrwp(n) — @)
According to our assumptions in 4.1, agrwp(y) >
. Therefore, we have Sgrwp(,;) > Bg. U
C Detailed Experiment Configurations

C.1 Generation Settings

The sampling strategy we use in main experiments
is top-p sampling with top-p=0.95. We set temper-
ature=0.2 during generation. For the HumanEval
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dataset, we feed the original prompts in it to lan-
guage models. For the MBPP data set, we use
three-shot prompts following Fried et al. (2023).
For the GSMS8K dataset, we add a chain-of-thought
instruction to each question to construct our prompt.
The instruction we use is "Please reason step by
step, and put your final answer within \boxed{ }.".
Regarding the watermark injecting methods, we
set v = 0.5 and § = 2 for the KGW and SWEET
methods. As for the entropy-threshold in SWEET
method, we set it to 0.65 for experiments with
Llama model and 0.6 in all other cases.

C.2 General Prompts

For Python function completion tasks in Hu-
manEval dataset, we used the general prompt "def
solution(*args):\n ’Generate a solution””\n". For
programming tasks in MBPP dataset, we used the
general prompt "Write a python function to imple-
ment a specific requirement.\n". For math prob-
lem solving tasks in GSM8K dataset, the general
prompt we used is "Solve a math problem, please
think step by step.\n".

D High-Entropy Dataset

The watermark injection schemes we used are
KGW and SWEET. For both injection schemes,
we set v = 0.5 and 9 = 2. For SWEET injection,
we set the entropy threshold at 0.65. The tempera-
ture we used for generation is 0.7, and the sampling
strategy adopted is top-p sampling with top-p=0.95.
The generated texts are truncated to 200 tokens,
and the minimum length for detection is 15 tokens.
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