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Abstract001

Text watermarking, which modify tokens to002
embed watermark, has proven effective in de-003
tecting machine-generated texts. Yet its appli-004
cation to low-entropy texts like code and math-005
ematics presents significant challenges. A fair006
number of tokens in these texts are hardly mod-007
ifiable without changing the intended meaning,008
causing statistical measures to falsely indicate009
the absence of a watermark. Existing research010
addresses this issue by rely mainly on a lim-011
ited number of high-entropy tokens, which are012
considered flexible for modification, and accu-013
rately reflecting watermarks. However, their014
detection accuracy remains suboptimal, as they015
neglect strong watermark evidences embedded016
in low entropy tokens modified through water-017
marking. To overcome this limitation, we in-018
troduce Bayesian Inference-based Watermark019
Detector (BIWD), which thoroughly exploit020
watermark information from every token, by021
leveraging the posterior probability of water-022
mark’s presence. We theoretically prove the023
optimality of our method in terms of detection024
accuracy, and demonstrate its superiority across025
various datasets, models, and watermark injec-026
tion strategies. Notably, our method achieves027
up to 50% and 70% relative improvements028
in detection accuracy over the best baselines029
in code generation and math problem-solving030
tasks, respectively.031

1 Introduction032

Text watermarking is an effective technique for dif-033

ferentiating machine-generated text from human-034

written content that subtly injects an invisible035

marker, i.e. watermark, into text. It serves as a036

safeguard against unauthorized or malicious use037

of large language models, such as creating fake038

news (Augenstein et al., 2023) and election manip-039

ulating (Alvarez et al., 2023).040

Generative watermark, which integrates water-041

mark during LLM’s generation process, generally042
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Figure 1: Comparison of entropy-based detector and
ours. It demonstrates the misalignment between entropy
and informativeness for watermark detection, where
low-entropy positions with critical information are over-
looked, and high-entropy positions are overestimated.

exhibits superior detectability and robustness. A 043

generative watermarking method injects a water- 044

mark through perturbing tokens’ output distribu- 045

tion during text generation, and subsequently com- 046

putes a score indicating its presence for detection. 047

For instance, the KGW method (Kirchenbauer 048

et al., 2023) partitions the model’s vocabulary into 049

green and red tokens at each generation step, and 050

increases the output probability of green tokens, 051

resulting in higher proportion of green tokens in 052

a watermarked text. Subsequent detection is per- 053

formed by computing the z-score of green token 054

occurrences in the text. 055

However, text watermarking exhibits subopti- 056

mal performance in low-entropy scenarios, such as 057

code generation or mathematical problem solving, 058

where a fair number of tokens are unmodifiable 059

without compromising output quality. Statistics, 060

such as the z-score computed for these tokens, sug- 061

gest the absence of a watermark, providing con- 062

trary evidence of its presence and thus diminishing 063

the effectiveness of the watermark detector. This 064

limitation poses a substantial barrier to detecting 065

malicious or unauthorized activities in software de- 066

velopment1, academic exams (Susnjak, 2022), and 067

1https://www.recordedfuture.com/research/i-c
hatbot
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job interviews (Canagasuriam and Lukacik, 2024),068

raising concerns about social equality and ethical069

use of technology. Subsequent works (Lee et al.,070

2024; Lu et al., 2024) attempt to enhance detec-071

tion accuracy by prioritizing high-entropy tokens,072

which are considered more adjustable to watermark073

perturbations, thus more indicative of watermark’s074

presence. In contrast, low-entropy tokens receive075

little weight during detection. Nevertheless, their076

detection accuracy remains suboptimal, as they fail077

to leverage the substantial information in highly078

indicative low-entropy tokens, which are actually079

modified through watermarking.080

We identified a misalignment between the081

entropy-based mechanism and the goal of detec-082

tion: Entropy inadequately captures the modifia-083

bility of a token, nor does it account for the actual084

modification introduced by watermarking. To il-085

lustrate the misalignment, consider a low-entropy086

position where the probability is concentrated on087

a red token but presents a green one. It serves as a088

strong evidence of the watermark’s presence. How-089

ever, entropy-based detectors would assign a small090

weight to this position and neglect this evidence.091

To address this misalignment, we propose092

Bayesian Inference-based Watermark Dector093

(BIWD), which quantifies the impact of watermark094

injection on every token. We calculate the poste-095

rior likelihood of every token altered by watermark096

injection with Bayesian inference, then aggregate it097

into a total score. A token that deviates more from098

its original distribution and consequently shows099

stronger evidence of watermark injection has a100

greater impact on the score. In this way, we ex-101

tract more information from every token, especially102

highly indicative and low-entropy tokens, instead103

of neglect them.104

We prove that BIWD achieves optimal true posi-105

tive rate (TPR), given any false positive rate (FPR)106

limit. Our method is compatible with various water-107

mark injection techniques. Extensive experiments108

across multiple language models, generative tasks109

and watermark injection schemes demonstrate the110

superior performance of our approach. In partic-111

ular, under a 1% FPR constraint in mathematical112

contexts, BIWD boosts the TPR from below 60%113

to over 90%. Furthermore, BIWD demonstrates114

adaptability to general high-entropy texts and ex-115

hibits robustness against removal attacks and sce-116

narios involving unknown prompts.117

In summary, our main contributions are:118

• We propose a watermark detection approach 119

called BIWD, which significantly improves 120

watermark detection accuracy in low-entropy 121

scenarios. 122

• We provide theoretical analysis on the opti- 123

mality of BIWD under any constraint on false 124

positive rate. 125

• We conduct experiments with various water- 126

marking methods in low-entropy scenarios 127

and empirically verify BIWD’s superiority. 128

2 Related Works 129

Text watermarking emerges as a promising so- 130

lution to identifying machine-generated contents. 131

They can be categorized into two types (Liu et al., 132

2024b): generative watermarking methods and wa- 133

termarking applied to existing text. 134

Generative Watermarking Methods. Genera- 135

tive watermarking methods inject watermarks dur- 136

ing the LLM generation phase through modifying 137

model output logits or meticulously designed sam- 138

pling process. 139

KGW (Kirchenbauer et al., 2023) is a semi- 140

nal approach within logits-modifying type, and 141

its proposed green-red list paradigm has been 142

widely adopted by subsequent studies. Observing 143

its impact on the quality of generated text, sev- 144

eral studies (Huo et al., 2024; Chen et al., 2024) 145

have proposed improvements. For instance, TS- 146

watermark (Huo et al., 2024) dynamically adjusts 147

the watermark strength for each token based on 148

the preceding token. Some other works enhance 149

the robustness of KGW through using fixed green 150

list (Zhao et al., 2023) or determining the green list 151

by semantics (Liu et al., 2024a; Liu and Bu, 2024). 152

Additionally, some studies (Fernandez et al., 2023; 153

Wang et al., 2024; Yoo et al., 2024) focused on 154

injecting watermark with more information (multi- 155

bit watermark). Research also explored the adapt- 156

ability of watermarking methods to low-entropy 157

scenarios (Lee et al., 2024; Lu et al., 2024), such as 158

programming tasks. Logits-modifying watermark- 159

ing methods typically adopt z-score based detector. 160

To improve detectability in low-entropy scenarios, 161

Lu et al. (2024) introduced EWD detector based on 162

token entropy. 163

Sampling-based watermarking methods typi- 164

cally introduce pseudo-randomness accessible dur- 165

ing detection to influence the sampling process 166

while maintaining the token distribution on average. 167
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For example, Kuditipudi et al. (2023) employed a168

long random number sequence to modify sampling169

and used edit distance for detection to enhance170

robustness. Dathathri et al. (2024) introduced tour-171

nament sampling, achieving a balance between text172

quality, detectability, and efficiency.173

Watermarking for Existing Texts. This type174

of watermarking methods inject hidden features175

into existing texts and detect them afterwards. One176

way to achieve this is using end-to-end models (Ab-177

delnabi and Fritz, 2021; Zhang et al., 2024). For178

instance, AWT proposed by (Abdelnabi and Fritz,179

2021) employs a transformer network to inject wa-180

termarks and another transformer network to detect181

them. Some other methods attempt to watermark182

existing texts through synonym substitutions. The183

techniques they adopt for synonym selection in-184

clude consulting an electronic dictionary (Topkara185

et al., 2006) and utilizing pre-trained models (Yang186

et al., 2023; Yoo et al., 2023). The quality of wa-187

termarked text generated by such methods is con-188

strained by the synonym database or model used.189

3 Preliminaries190

As we focus on generative watermarking due to191

its superior detectability and robustness, the term192

"watermarking" will henceforth refer to generative193

watermarking. In this section, we present the pre-194

liminaries of watermark injection and detection.195

Notations used throughout the paper are provided196

in Appendix A.197

3.1 Watermark Injection198

Watermark injection is typically achieved by per-199

turbing the output distribution of large language200

model. Specifically, when generating the t-th token,201

the language model M computes a logits vector lt202

from preceding context, which is then normalized203

via softmax to produce a distribution over can-204

didate tokens. Watermarking methods introduce205

perturbations to this distribution by modifying the206

logits or sampling process.207

In this study, we select two representative water-208

marking approaches as research objects: the clas-209

sical KGW (Kirchenbauer et al., 2023) method210

and SWEET (Lee et al., 2024), the state-of-the-art211

method for watermarking in low-entropy scenarios.212

At generation step t, KGW adds a bias δ to the213

logits of a subset of tokens in vocabulary V , namely214

green list, denoted by Vg. It is determined by the215

hash of preceding tokens and the proportion of Vg216
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Figure 2: Reward and penalty with respect to total prob-
ablity of tokens being green. Statistics from 500 texts
in MBPP dataset.

in V is γ. The remaining tokens in V are called 217

"red-list", denoted by Vr. This logits perturbation 218

increases the probability of green tokens, resulting 219

in a generated text with more green tokens. 220

The SWEET method follows the same procedure 221

but restricts perturbations to high-entropy positions 222

only. In SWEET method, the entropy at position t 223

is Ht = −
∑

v∈V pvt log p
v
t where pvt is the proba- 224

bility of candidate token v given by M at position 225

t. A threshold is manually set to determine high- 226

entropy positions. 227

3.2 Watermark Detection 228

We present a watermark detection framework en- 229

compassing detectors used by KGW and SWEET. 230

Let x = {x0, x1, . . . , xT−1} denote the text to be 231

detected. Within this framework, the detector as- 232

signs a score to every token xt in x. These scores 233

are then summed and (optionally) normalized by 234

norm(·, ·) to produce a total score. A higher score 235

indicates a greater likelihood that the text has been 236

watermarked. Specifically, the score given to x is: 237

S(x) = norm(

T−1∑
t=0

s(x, t),x) 238

where s is the score given to token at each posi- 239

tion. In practice, a threshold is defined and any text 240

scored higher than it is identified as watermarked. 241

4 Method 242

In this section, we first illustrate our motivation 243

by examining the limitations of current watermark 244

detection methods. Subsequently, we present our 245

detection approach. 246

4.1 Motivation 247

Although EWD and SWEET detectors achieve bet- 248

ter accuracy in low-entropy scenarios, their im- 249

provement stems from attaching more importance 250
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to those high entropy tokens, which are more ad-251

justable to watermark perturbation. However, the252

goal of watermark detection is to measure the in-253

fluence of watermark perturbation. We explain this254

misalignment from a token scoring perspective.255

The EWD detector assigns a positive score as256

a reward, if xt ∈ Vg, and a negative score, whose257

absolute value is a penalty if xt ∈ Vr. As for258

token-level reward or penalty, we have the follow-259

ing intuition: if a position was likely to output a260

red token according to its original distribution with-261

out watermark but a green token appears here. It262

indicates the influence of watermark and should263

receive a significant reward. Inversely, a position264

with high probability of green tokens but appears a265

red one strongly suggests that watermark is absent,266

thus should receive a significant penalty.267

However, EWD does not fully exploit these evi-268

dences that are critical for determining the presence269

of the watermark. Figure 2a illustrates the relation-270

ship between the reward and penalty assigned by271

the EWD detector (γ = 0.25) and the probability of272

token being green. It can be observed that both re-273

ward and penalty exhibit a bell-shaped curve trend.274

The reward is lower when the probability of a to-275

ken being green is relatively low, and the penalty276

is lower when this probability is relatively high,277

which contradicts our previous intuition. Other278

entropy-based methods like SWEET have the same279

misalignment problem.280

To further analyze the impact of this misalign-281

ment on token scores, we define a watermark infor-282

mation score (WIS). For the t-th token xt in a text283

x, its WIS is formulated as follows:284

WIS(x, t) = 1Vg(xt)
∑
v∈Vr

pvt + 1Vr(xt)
∑
v∈Vg

pvt285

This score quantifies the amount of information a286

token carries about the watermark. Specifically, for287

a green token, its WIS equals the total probability288

of red tokens. A higher value indicates a greater289

likelihood of the watermark’s presence, as the po-290

sition would otherwise likely contain a red token.291

For a red token, its WIS equals the total probability292

of green tokens. A higher value suggests a lower293

likelihood of the watermark’s presence.294

We plotted a scatter diagram of the entropy and295

WIS of tokens in watermarked codes. In Figure 3,296

the green tokens within the black rectangle exhibit297

both high WIS and low entropy. This indicates that298

entropy-based detectors like EWD, assign these to-299

kens relatively low importance, thereby impairing300
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Figure 3: Watermark information score (WIS) and en-
tropy of tokens in watermarked codes. Statistics from
500 watermarked codes generated using MBPP dataset
and StarCoder2-7B model.

detection performance. This observation further 301

supports our hypothesis regarding the misalign- 302

ment in entropy-based detectors. 303

To address this issue, we devise a detection 304

method based on Bayesian inference that aims at 305

measuring watermark influence. We treat the target 306

text x, as the value of a random variable, and infer 307

the likelihood of the watermark’s presence from it. 308

4.2 Bayesian Inference Detection 309

Let w denote the presence of a watermark (0/1 bi- 310

nary) and Pw represent the distribution of w. Sup- 311

pose the distribution of all natural language (wa- 312

termarked and non-watermarked text) is P and the 313

distribution given by model M is PM . Given a text 314

x to be detected and its corresponding prompt a, 315

we derive the following using Bayes’ theorem: 316

Pw(w = 1|a;x) = P (x|a;w = 1)Pw(w = 1)∑
i=0,1 P (x|a;w)Pw(w = i)

(1) 317

Dividing both the numerator and the denomina- 318

tor of the above equation by P (x|a;w = 0), we 319

obtain (1) equals: 320

A(x,a)Pw(w = 1)

Pw(w = 0) +A(x,a)Pw(w = 1)
(2) 321

where 322

A(x,a) =
P (x|a;w = 1)

P (x|a;w = 0)
(3) 323

Pw(w = 0) and Pw(w = 1) are constant across 324

different x as they are the probability of text being 325

watermarked in the whole corpus. Therefore, the 326

posterior likelihood (2) increases monotonically 327

with A(x,a), So we can use A(x,a) to represent 328
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the likelihood of the watermark’s presence. The329

numerator in (3) is the output probablity of model330

M with watermark injection, which is identical to331

PM (x|a;w = 1). The denominator is the condi-332

tional probability of human written texts. As large333

language models are pretrained on large amount of334

human written text, this probability can be approx-335

imated by PM (x|a;w = 0). Consequently, our336

focus reduces to computing:337

Â(x,a) =
PM (x|a;w = 1)

PM (x|a;w = 0)
(4)338

Applying the chain-rule PM (x|a;w) =339 ∏
PM (xt|a, x:t;w) (x:0 denotes empty sequence)340

and taking the log-transform, we have:341

Â(x,a) =
T−1∑
t=0

(
logPM (xt|a, x:t;w = 1)−

logPM (xt|a, x:t;w = 0)
) (5)342

For the KGW and SWEET (assume t is a high-343

entropy position) injection method, given the origi-344

nal logit of token v at position t, lvt , the perturbed345

logit is l̃vt = lvt + δ · 1Vg(v). For the model346

output distribution, we have PM (·|a, x:t;w =347

1) = softmax(l̃t) and PM (·|a, x:t;w = 0) =348

softmax(lt). By substituting these equations of349

PM and l̃t into (5), we obtain:350

Â(x,a) =
T−1∑
t=0

(
δ ·1Vg(xt)−log

eδGt +Rt

Gt +Rt

)
(6)351

where Gt =
∑

v∈Vg
el

v
t and Rt =

∑
v∈Vr

el
v
t are352

the unnormalized total probability of green, red353

tokens, respectively.354

Similar to the discussion on EWD, we can in-355

terpret the score of green token as a reward, and356

the absolute value of score given to a red token as357

a penalty. Figure 2b demonstrates that the reward358

given by BIWD decreases monotonically, while359

the penalty increases monotonically with the prob-360

ability of token being green, consistent with the361

intuitive analysis in 4.1.362

We also present the text-level score distributions363

of EWD and BIWD. Figures 4a and 4b show that364

BIWD exhibits stronger discriminative ability.365

4.3 Theoretical Analysis366

We theoretically prove that BIWD has optimal true367

positive rate within any false positive rate con-368

straint, given a prompt a and model M . In order to369

formalize this conclusion, we need the following370

notations and definitions.371
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Figure 4: Distribution of scores given by EWD and
BIWD. We use MBPP dataset, StarCoder2 model and
KGW watermark injection method for this experiment.
The size of the dashed area represents the TPR at 5%
FPR. It can be observed that BIWD significantly outper-
forms EWD on this metric.

• Let Ω denote the set of all possible output 372

token sequence x. Conditional probabilities 373

PM (·|a;w = 0), PM (·|a;w = 1) given by 374

M and its watermarked counterpart both en- 375

dow Ω with a probability measure. 376

• For any watermark detection method ϕ which 377

functions as a binary classifier on Ω, its effect 378

is equivalent to a split of Ω: 379

Ω = Kϕ ∪ Kc
ϕ 380

where Kϕ means the subset of sequences iden- 381

tified as watermarked by ϕ. Therefore, Kϕ 382

fully expresses the effect of detection ϕ on Ω. 383

For our method, ϕ=BIWD, and the detection 384

effect is expressed by KBIWD. 385

Definition 4.1. For a detection method ϕ, its false 386

positive rate αϕ on Ω(PM (·|a)) is defined as: 387∫
Ω
1Kϕ

(x)PM (x|a;w = 0) dx 388

Definition 4.2. For a detection method ϕ, its true 389

positive rate βϕ on Ω(PM (·|a;w = 1)) is defined 390

as: 391∫
Ω
1Kϕ

(x)PM (x|a;w = 1) dx 392

Definition 4.3. For a threshold η > 0, the BIWD 393
detector with this threshold, denoted as BIWD(η), 394

classify any sequence x with score Â(x,a) > η as 395
watermarked. Therefore, its positive sample subset 396
is: 397

KBIWD(η) = {x ∈ Ω|Â(x,a) > η} 398

Theorem 4.1. For any limit on false positive rate 399

σ > 0, if there exists a threshold η > 0 such that 400

αBIWD(η) = σ, then for any detection method ϕ 401

s.t. αϕ ≤ σ, its true positive rate is no greater than 402

that of BIWD(η) 403

βϕ ≤ βBIWD(η) 404
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A proof is available in appendix B.405

5 Experiments406

We conduct experiments across different low-407

entropy datasets, language models and watermark408

injection methods.409

Tasks and Datasets. We select two tasks: code410

generation and math problem solving. For code411

generation, we use HumanEval (Chen et al., 2021)412

and MBPP (Austin et al., 2021) datasets which con-413

tain python programming problems and reference414

answers following the setups in Lee et al. (2024)415

and Lu et al. (2024). For math problem solving,416

we select 500 samples from GSM8K (Cobbe et al.,417

2021), which contains mathematical problems in418

English. In all experiments, we use texts longer419

than 15 tokens for detection.420

Models. For code generation, we employ421

StarCoder2-7B (Lozhkov et al., 2024), a model422

specializes in programming, following prior re-423

search (Lee et al., 2024; Lu et al., 2024). For math-424

ematical problem solving, we use DeepSeekMath-425

7B-Instruct (Shao et al., 2024), which is optimized426

for mathematical reasoning. To assess the general-427

izability of our method, we also utilize the versatile428

Llama2-7B model (Touvron et al., 2023), apply-429

ing it to both code generation and math problem-430

solving tasks.431

Watermark injection Methods. We utilize two432

injection methods, KGW and SWEET. KGW acts433

as a classic baseline in this field, while SWEET is434

specifically optimized for low-entropy scenarios.435

Detailed configurations are provided in Appendix436

C. To differentiate watermark injection schemes437

from their detectors, we denote KGW’s injection438

and detection methods as KGWI and KGWD, and439

SWEET’s as SWEETI and SWEETD.440

Baselines and Metrics. To detect watermarks in-441

jected by KGWI and SWEETI, we employ their cor-442

responding detectors as baselines. We also apply443

EWD as a detector for both, as it is optimized for444

low-entropy scenarios. Additionally, we employ445

the detection method proposed by DIPMark (Wu446

et al., 2024) as another baseline, as it does not rely447

on the classical z-score framework and is adaptable448

to other injection methods. This detector is denoted449

as DIPD. Following Lee et al. (2024) and Lu et al.450

(2024), we use true positive rates at 1% and 5%451

false positive rates(TPR@1%FPR, TPR@5%FPR),452

along with the corresponding F1-score, as our eval-453

uation metrics. True positive rate (TPR) and false454

positive rate (FPR) represent the proportion of wa- 455

termarked text successfully detected and the pro- 456

portion of human-written text mistakenly classified 457

as AI-generated, respectively. Best F1 scores are 458

also reported to show the overall performance of 459

detectors. All metrics are measured in a single run. 460

6 Results 461

Table 1 and 2 (all metrics are shown in percent- 462

age) demonstrate that our method exhibits substan- 463

tial advantages in detection accuracy for code and 464

mathematical text compared to baselines, and it 465

is applicable to different models and watermark 466

injection methods. 467

For code generation task with StarCoder2 model 468

and KGWI injection method, the average improve- 469

ments of BIWD over the best baseline, on two 470

datasets are 14% in TPR@1%FPR and 24% in 471

TPR@%5FPR. For the same task and model with 472

SWEETI injection method, the avergae improve- 473

ments of the two metrics are 23% and 27%, re- 474

spectively. For mathematical problem solving task 475

with DeepSeek model, the improvements of the two 476

metrics are 38%, 19% while using KGWI injection 477

method and 35%, 24% while using SWEETI injec- 478

tion method. Notably, for this model, our method 479

improves the TPR@1%FPR from below 60% to 480

over 90%. 481

For Llama2 model, our detection method also 482

outperforms all baselines. Specifically, it achieves 483

an improvement of 34% in TPR@1%FPR on 484

MBPP dataset while using SWEETI injection 485

method. Although our method shows relatively 486

small advantages in certain settings, the baselines 487

have already achieved high accuracy in these set- 488

tings, leaving limited room for improvement. 489

7 Analysis 490

7.1 Performance without Original Prompts 491

In applications like detecting cheating in job inter- 492

views, prompts are usually accessible, specifically 493

the question text. However, for code copyright pro- 494

tection, the original prompt is often unavailable. 495

Therefore, we also conduct experiments with a gen- 496

eral prompt following previous studies (Lee et al., 497

2024; Lu et al., 2024). The details about this setting 498

are in Appendix C.2. Table 3 and Table 4 show 499

that our method still outperforms all baselines. For 500

the code generation task and KGWI watermark in- 501

jection method, BIWD achieves average improve- 502

ments of 8.49% and 16.28% in TPR@1%FPR and 503
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Model Injection Detection

HUMANEVAL MBPP

1%FPR 5%FPR BEST 1%FPR 5%FPR BEST

TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

StarCoder2

KGWI

KGWD 10.92 19.55 29.41 44.03 73.87 8.02 14.74 24.30 37.58 74.05
DIPD 17.65 29.79 29.41 44.03 73.22 19.09 31.83 35.57 50.62 73.81
EWD 44.54 61.27 60.50 73.47 84.13 35.14 51.67 66.38 77.47 88.28
BIWD 63.87 77.55 83.19 88.79 93.98 43.60 60.36 91.32 93.04 94.25

SWEETI

SWEETD 32.23 48.45 49.59 64.52 80.74 37.09 53.77 54.66 68.57 84.84
DIPD 9.09 16.54 32.23 47.27 82.96 35.36 51.91 67.68 78.39 86.71
EWD 38.84 55.62 54.55 68.39 83.97 32.75 49.03 62.69 74.77 88.21
BIWD 58.68 73.58 83.47 88.60 92.37 59.00 73.81 88.29 91.36 93.97

Llama2

KGWI

KGWD 58.78 73.73 74.32 83.02 84.93 28.43 43.99 61.09 73.63 84.17
DIPD 21.62 35.36 62.16 74.49 80.23 34.68 51.19 61.29 73.79 83.01
EWD 96.62 97.95 98.65 97.01 97.95 50.81 67.02 79.64 86.34 91.07
BIWD 97.97 98.64 100 97.69 99.00 66.33 79.37 98.59 96.93 97.11

SWEETI

SWEETD 84.67 91.37 90.67 92.83 94.77 49.09 65.50 77.17 84.79 88.62
DIPD 77.37 86.89 86.67 90.59 93.46 60.81 75.25 88.08 91.31 90.25
EWD 85.33 91.76 90.67 92.83 94.53 50.10 66.40 84.04 88.98 90.84
BIWD 92.00 95.50 96.00 95.68 96.75 83.64 90.69 97.98 96.61 97.19

Table 1: Detection accuracy on HumanEval, MBPP datasets using StarCoder2-7B, Llama2-7B models and KGWI,
SWEETI injection methods.

Model Injection Detection

GSM8K

1%FPR 5%FPR BEST

TPR F1 TPR F1 F1

DeepSeek

KGWI

KGWD 8.00 14.68 24.20 37.46 67.73
DIPD 1.80 3.47 7.40 13.17 67.71
EWD 52.60 68.49 78.20 85.37 87.86
BIWD 91.00 94.79 97.60 96.35 96.83

SWEETI

SWEETD 57.60 72.64 75.40 83.59 88.21
DIPD 31.20 47.20 69.40 79.86 87.23
EWD 40.40 57.14 70.40 80.27 85.47
BIWD 92.80 95.77 99.80 97.46 97.65

Llama2

KGWI

KGWD 73.35 84.23 81.16 87.28 88.35
DIPD 59.32 74.09 71.34 81.00 82.80
EWD 90.38 94.55 94.79 94.98 95.93
BIWD 90.98 94.88 95.99 95.61 95.96

SWEETI

SWEETD 84.77 91.36 93.39 94.24 94.27
DIPD 88.38 93.43 94.79 95.36 94.83
EWD 89.58 94.11 95.39 95.30 95.94
BIWD 95.99 97.56 97.60 96.44 97.57

Table 2: Detection accuracy on GSM8K dataset using
DeepSeek-math-7B-instruct, Llama2-7B models and
KGWI, SWEETI watermark injection methods.

TPR@5%FPR over the best baseline, respectively.504

For the same task and SWEETI watermark injec-505

tion method, BIWD demonstrates average improve-506

ments of 6.61% and 16.45% in TPR@1%FPR and507

TPR@5%FPR, respectively. For the task of solv-508

ing mathematical problems and KGWI watermark509

injection method, BIWD achieves improvements510

of 15.68% and 11.81% for the two metrics, re-511

spectively. For this task with SWEETI watermark512

injection method, BIWD results in improvements513

of 4.48% and 6.31% for the same metrics. We also514

find that as text length increases, the absence of 515

the original prompts has a diminishing impact on 516

detection accuracy. 517

7.2 Adaptability to High-Entropy Texts 518

To evaluate the applicability of our detection 519

method in general high-entropy scenario, we con- 520

duct experiments using 500 samples from C4 (Raf- 521

fel et al., 2023) English news dataset and the 522

Llama2-7B model. Detailed settings are in Ap- 523

pendix D. Table 5 shows that our detection method 524

outperforms the baselines. 525

7.3 Robustness against Removal Attack 526

Since malicious users tend to modify the content 527

generated by LLMs to escape detection, we need 528

to assess the robustness of our detector against re- 529

moval attacks. Following Lee et al. (2024), we use 530

variable name substitution as our attack method. 531

We replace 50% of the variables in each function 532

with random strings of 2 to 5 characters. The water- 533

mark injection method used is KGWI with δ = 2 534

and γ = 0.5. All methods show a significant de- 535

crease in accuracy after the attack, but our method 536

remains the best overall. Exploring how to enhance 537

the robustness of low-entropy text watermarking 538

could be a direction for further research. 539
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Injection Detection

HUMANEVAL MBPP

1%FPR 5%FPR BEST 1%FPR 5%FPR BEST

TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

KGWI

KGWD 9.65 17.46 28.95 43.42 73.57 8.03 14.74 24.30 37.58 74.05
DIPD 12.28 21.71 28.07 42.38 73.57 19.09 31.83 35.57 50.62 73.81
EWD 24.56 39.16 42.11 57.49 80.65 17.14 29.04 36.88 51.99 77.77
BIWD 29.82 45.64 44.74 60.00 87.10 28.85 44.48 66.81 77.78 86.76

SWEETI

SWEETD 19.83 32.86 37.93 53.33 77.65 9.33 16.93 32.54 47.32 77.32
DIPD 6.03 11.29 33.62 48.75 77.78 20.17 33.33 35.57 51.01 76.25
EWD 23.28 37.50 40.52 55.95 79.70 14.75 25.52 36.88 51.99 78.25
BIWD 25.86 40.82 50.00 64.80 84.43 25.38 40.21 60.30 72.97 86.33

Table 3: Detection accuracy on HumanEval, MBPP datasets using StarCoder2-7B model and KGWI, SWEETI
injection methods without original prompts.

Injection Detection

GSM8K

1%FPR 5%FPR BEST

TPR F1 TPR F1 F1

KGWI

KGWD 7.13 13.21 23.83 37.03 67.65
DIPD 1.8 3.47 7.40 13.17 67.71
EWD 11.61 20.65 40.53 55.74 78.32
BIWD 27.29 42.61 52.34 66.58 78.80

SWEETI

SWEETD 8.35 15.30 28.92 43.23 73.74
DIPD 7.20 13.31 22.40 35.16 73.63
EWD 7.13 13.21 30.96 45.58 75.05
BIWD 12.83 22.58 37.27 52.44 74.14

Table 4: Detection accuracy on GSM8K dataset us-
ing DeepSeek-math-7B-instruct model and KGWI,
SWEETI injection methods without original prompts.

8 Conclusion540

In this study, we identify the misalignment issue541

in entropy-based watermark detection methods and542

propose a detection approach that addresses this543

problem. Our detector utilizes Bayesian inference544

to fully leverage the distribution given by language545

model. We provide theoretical analysis on its op-546

timality and empirically verify its superiority in547

low-entropy scenario. Notably, compared to the548

best baseline, our method achieves up to 1.5 times549

detection accuracy on the code datasets and up550

to 1.7 times detection accuracy on the mathemat-551

ics dataset. Additionally, experiments demonstrate552

that our watermark detection method outperforms553

the baselines in terms of accuracy in high-entropy554

scenarios, detection accuracy without prompts, and555

robustness against removal attacks.556

Injection Detection 1%FPR 5%FPR Best

TPR F1 TPR F1 F1

KGWI

KGWD 99.59 99.39 99.59 97.42 99.39
DIPD 98.99 99.09 99.59 97.42 98.59
EWD 99.59 99.39 100 97.62 99.70
BIWD 100 99.60 100 97.62 100

SWEETI

SWEETD 99.80 99.50 99.80 97.53 99.70
DIPD 100 99.60 100 97.63 99.90
EWD 99.80 99.50 100 97.63 99.70
BIWD 100 99.60 100 97.63 100

Table 5: Detection performance on C4 dataset using
Llama2-7B model and KGWI, SWEETI watermark in-
jection methods.

Injection 1%FPR 5%FPR Best

TPR F1 TPR F1 F1

KGWD 5.51 10.35 13.62 22.98 70.60
DIPD 10.43 18.75 15.94 26.38 68.84
EWD 15.94 27.30 29.86 44.30 76.38
BIWD 14.78 25.56 46.96 61.83 79.83

Table 6: Detection performance on MBPP dataset after
variable substitution attack. The model and watermark
injection method used are StarCoder2-7B and KGWI

9 Limitations 557

Our detection method has two main limitations. 558

First, the generation tasks and datasets tested are 559

limited. We employ two code datasets and one 560

mathematics dataset for evaluation. we plan to test 561

our method on a broader range of low-entropy tasks 562

with more diverse datasets. Second, we only test 563

two watermark injection methods in this study. Our 564

approach is applicable to a variety of generative 565

watermark injection methods based on distribution 566

perturbation. We plan to implement and evaluate 567

our method with other watermark injection tech- 568

8



niques in future work.569
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A Notations774

Symbol Description
M Language model used for generation.
V Vocabulary of M .
Vg Green list.
Vr Red list.
v Token in V .
w Whether watermark exists. (0/1)
PM Distribution given by M .
P Distribution of all natural language.
Pw Distribution of w.
a Prompt used for generation.
x Text generated by M .
xt The t-th token in x.
t Generation step.
lt Model logits at the t-th step.
lvt Model logit of token v at the t-th step.
pt Distribution given by M at step t.
pvt Probability of v given by M at step t.
Ht Information entropy at step t.
S(x) Watermark detection score of x.
s(x, t) Watermark detection score given to xt.
norm Normalizer for watermark detection.
T Length of x.
γ Green-list ratio in KGW and SWEET.
δ δ in KGW and SWEET.

Table 7: Notations used throughout the paper.

B Proof of Theorem775

From definition 4.3, we have the following in-776

equality (simply consider x ∈ KBIWD(η) and777

x /∈ KBIWD(η) respectively):778

[1KBIWD(η)
(x)− 1Kϕ

(x)]·
[PM (x|a, w = 1)− ηPM (x|a, w = 0)] ≥ 0

779

Then we integrate the above inequality over Ω780

and simplify the integral with definition 4.1 and781

4.2. The result is as follows:782

βBIWD(η) − βϕ ≥ η(αBIWD(η) − αϕ)783

According to our assumptions in 4.1, αBIWD(η) ≥784

αϕ. Therefore, we have βBIWD(η) ≥ βϕ. □785

C Detailed Experiment Configurations786

C.1 Generation Settings787

The sampling strategy we use in main experiments788

is top-p sampling with top-p=0.95. We set temper-789

ature=0.2 during generation. For the HumanEval790

dataset, we feed the original prompts in it to lan- 791

guage models. For the MBPP data set, we use 792

three-shot prompts following Fried et al. (2023). 793

For the GSM8K dataset, we add a chain-of-thought 794

instruction to each question to construct our prompt. 795

The instruction we use is "Please reason step by 796

step, and put your final answer within \boxed{}.". 797

Regarding the watermark injecting methods, we 798

set γ = 0.5 and δ = 2 for the KGW and SWEET 799

methods. As for the entropy-threshold in SWEET 800

method, we set it to 0.65 for experiments with 801

Llama model and 0.6 in all other cases. 802

C.2 General Prompts 803

For Python function completion tasks in Hu- 804

manEval dataset, we used the general prompt "def 805

solution(*args):\n ”’Generate a solution”’\n". For 806

programming tasks in MBPP dataset, we used the 807

general prompt "Write a python function to imple- 808

ment a specific requirement.\n". For math prob- 809

lem solving tasks in GSM8K dataset, the general 810

prompt we used is "Solve a math problem, please 811

think step by step.\n". 812

D High-Entropy Dataset 813

The watermark injection schemes we used are 814

KGW and SWEET. For both injection schemes, 815

we set γ = 0.5 and δ = 2. For SWEET injection, 816

we set the entropy threshold at 0.65. The tempera- 817

ture we used for generation is 0.7, and the sampling 818

strategy adopted is top-p sampling with top-p=0.95. 819

The generated texts are truncated to 200 tokens, 820

and the minimum length for detection is 15 tokens. 821

11
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