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ABSTRACT

When designing math word problems, teachers must ensure the clarity and preci-
sion of the question to avoid multiple interpretations and unanswerable situations,
thereby maintaining consistent grading standards and effectiveness. We address
these issues to provide comprehensive support to teachers in creating clear, solv-
able, and formal math word problems. In this paper, we present MathError, a
dataset of real-world math word problems annotated with error types to inves-
tigate the need for question correction. Our work explores how large language
models (LLMs) can assist teachers in detecting problematic questions to support
math word problem design in scenarios with limited data, simulating real-world
conditions with minimal training samples. Preliminary results demonstrate the
models’ capabilities in detecting problematic questions and identify areas for fur-
ther research and development in educational applications.

1 INTRODUCTION

When coming up with exam questions, teachers must ensure that the questions are clear and pre-
cise. This prevents students from misunderstanding the questions, which could lead to inconsistent
grading standards and render the questions ineffective. This is particularly important for math word
problems where there should usually be only one correct answer. However, when questions are for-
mulated, there may be blind spots or minor oversights that lead to misinterpretations by students,
or a lack of crucial details, making immediate comprehension difficult. For example, “The original
price of an apple is 2 dollars. It has been discounted twice: the first discount is 10%, and the second
discount is 5%. What is the current price of the apple?” It is unclear whether the second discount
is to be applied to the original price or to the price after the first discount. Consequently, this de-
scription may cause confusion and uncertainty for students. It is therefore essential to construct a
system that assists teachers in ensuring that the questions do not have multiple interpretations or are
unanswerable.

Several studies have investigated situations where questions are unanswerable. Questions can
be unanswerable in the following scenarios: (1) The knowledge sources are incomplete, failing
to cover all the necessary facts required to answer the question (Patidar et al., 2023); (2) User-
generated questions are poorly formatted, are missing entities or predicates, or contain ungrammati-
cal phrases (Faustini et al., 2023); (3) The question is ambiguous and thus allows for more than one
interpretation (Min et al., 2020); (4) Details in the question are inconsistent with the facts (Yen et al.,
2021). Unlike previous studies that focus on knowledge base question answering or open-domain
questions, we address multiple interpretations and unanswerable issues in math word problems.
Specifically, we seek to detect the following conditions to support teachers in designing math word
problems.

• Questions may result in multiple or unintended solutions due to imprecise descriptions,
missing conditions or constraints, or unclear relationships between multiple values.

• Questions may be unanswerable as they contain unclear terms or noticeable omissions.

This issue could be influenced by language, as imprecise descriptions, missing conditions, and un-
clear relationships between values may manifest differently across languages. Additionally, the
complexity of error types can vary depending on the difficulty level of the math problems. In this
pilot study, we focus on elementary-level math word problems presented in Chinese.
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Sun et al. (2024) have explored similar issues, emphasizing the importance of detecting problem-
atic math word problems by constructing a dataset of unanswerable questions with predefined error
types. This highlights the growing attention to the task of identifying and addressing challenges in
math word problem design. However, while their study focuses on error types specifically created
for their experiment, our work shifts towards detecting naturally occurring errors in real math word
problems. In addition, we investigate more nuanced issues, such as multiple interpretations or un-
intended solutions, which can be challenging for models to identify. Hence, we extend the existing
Chinese math word problem dataset—Math23K (Wang et al., 2017)—with error type annotations.
Math23K questions provide rich textual descriptions that naturally meet our requirements.

Given the remarkable capabilities of large language models (LLMs) in language understanding and
generation, recent studies use LLMs to generate test questions for student practice (Gonzalez et al.,
2023; Feng et al., 2024; Song et al., 2023). The pedagogical ability of LLMs in mathematics educa-
tion has also been studied (Yen & Hsu, 2023; Wang et al., 2024; Daheim et al., 2024). Some works
have investigated the role of LLMs in assisting teachers with tasks such as distractor generation for
math multiple-choice questions (Feng et al., 2024; Lee et al., 2024; Hunter McNichols et al., 2024).
Liu et al. (2023) have shown that modeling ambiguity remains a significant challenge for LLMs, re-
inforcing the importance of developing methods to detect and address these problems. However, the
capability of LLMs to recognize errors in math word problems and disentangle potential meanings
is rarely explored. Thus, this work explores the capability of LLMs in identifying problematic math
word problems. We further investigate a self-optimizing approach that allows the model to learn
from its mistakes. By iteratively reflecting on the wrong predictions, the model refines instructions
and demonstrations within the prompt, improving performance in detecting error types.

To sum up, the contributions of our work are threefold: (1) We assist teachers in ensuring the clarity
of math word problems by detecting errors in question statements that can lead to several interpreta-
tions or render the problems unanswerable. (2) We present the MathError dataset,1 which is designed
for detecting errors in the statements of math word problems, to facilitate the investigation of the
need for correcting problematic questions. (3) We explore a self-optimizing framework where the
model iteratively refines its instructions and demonstrations through a reflection mechanism. This
approach simulates real-world scenarios where data is scarce by utilizing only a few examples, offer-
ing a preliminary solution to the challenge of error detection in math word problems. Experimental
results show that the prompts refined by our reflection mechanism yield better performance.

2 RELATED WORK

Ambiguous and Unanswerable Questions: There are several types of ambiguity: lexical, syntac-
tic, semantic, pragmatic, and anaphoric (Li et al., 2024). Numerous works address disambiguation
using methods such as syntactic and semantic parsing (Tanaka et al., 2007; Koller et al., 2008) or
coreference resolution (Kocijan et al., 2019). In question-answering applications, ambiguous user
queries lead to unanswerable queries. Methods have been developed to identify question answer-
ability (Zhang et al., 2021; Yang et al., 2019) and generate clarification questions (Zamani et al.,
2020; Krasheninnikov et al., 2022) or correct unanswerable questions (Yen et al., 2021). There has
also been growing interest in addressing ambiguity in math word problems. Sun et al. (2024) de-
fine five different categories of unanswerable questions. Curated annotators modified answerable
questions into unanswerable ones based on the categories. By contrast, we construct a dataset by
annotating error types of real-world questions rather than modifying questions into unanswerable
forms based on specific categories, which may make it difficult for models to identify specific pat-
terns to determine whether a question contains errors. Consequently, our dataset comprises not only
unanswerable questions but also questions with multiple possible solutions.

Self-Optimization with LLMs: LLMs have made significant advancements in producing coherent
text and following given instructions (Wei et al., 2022a; Ouyang et al., 2022). Recently, methods
have been investigated that elicit feedback from LLMs on self-generated solutions, enabling iterative
improvement of outputs based on the feedback. Madaan et al. (2024) propose a framework that
iteratively refines the generated output via self-evaluation. Several studies explore the use of LLMs
for optimizing prompts. Zhou et al. (2022) employ the LLM to create instructions, select the proper
instructions based on accuracy, and instruct the LLM to generate a semantically similar variant.

1The dataset and code will be released upon acceptance.
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Pryzant et al. (2023) propose an approach to guide the LLM to provide textual feedback on how to
revise an existing instruction at each step. Methods have also been developed to use natural language
feedback generated by LLMs to refine the model’s output (Chen et al., 2023; Ganguli et al., 2023;
Shinn et al., 2023). Inspired by these studies, we introduce a reflection mechanism to our framework
to refine the LLM’s prompts in detecting problematic questions in mathematics.

3 FROM MATH23K TO MATHERROR

The two conditions outlined in Section 1 lead to errors that could significantly impact the clarity and
accuracy of math word problems:

1. Multiple Interpretations (INTPN): The question allows for multiple possible interpreta-
tions, leading to more than one possible solution.

2. Informal Wording (Informal): The wording of the question is not formal or is incomplete,
such as including unnecessary words or symbols, having noticeable omissions, or contain-
ing typographical errors, making the problem statement difficult to understand.

3. Unitless (Unit): The question does not specify the required unit, which may lead to confu-
sion about what measurement is expected.

4. Unclear Relationship (Rel): The description fails to clearly indicate the relationship be-
tween the values, leading to misunderstandings about the question’s meaning.

5. Calculation Error (Calc): The problem uses imprecise words to describe a mathematical
expression, for instance, making it unclear whether to perform multiplication or division
before addition or subtraction; this can cause students to calculate in the wrong order.

If a math word problem exhibits none of the issues mentioned above, it belongs to the None type.
Note that we focus extends beyond detecting ambiguities in math word problems. We aim to address
a challenge: ensuring that problem descriptions are formal and complete for use in official exami-
nations. Our goal is to support teachers in refining the clarity and precision of problem statements,
helping to eliminate informal language and incomplete details that could lead to misinterpretations.
As math word problem error types can be highly diverse, it is difficult to immediately identify all
possible types. The error type definitions and dataset construction are in Section 4.

4 DATASET CONSTRUCTION

Error Type Definition. Math23K comprises a total of 23,162 Chinese math word problems. To
establish an initial set of error types, we randomly sampled 200 questions, referred to as the initial
set, and categorized the errors present in these questions. We conducted a preliminary annotation
of problematic descriptions, after which we consolidated these initial error types by merging similar
ones. This process resulted in the identification and definition of five distinct error types. Yet, we
are unsure whether the five error types are sufficient and whether they cover all possible errors.
Additionally, we cannot guarantee the completeness of these error definitions. Thus, we established
an iterative refinement annotation process to ensure the quality of the dataset annotation.

Iterative Refinement Annotation. We invited three annotators and split the entire dataset into four
parts, with each person responsible for the labeling of 5,815 samples.2 We labeled one of these parts
by ourselves. To ensure consistency and quality across the dataset, we conducted a quantitative
evaluation of the annotators’ labeling accuracy using our pre-annotated set of 100 samples, which
we refer to as the golden set. Of these, 23 samples contained math word problems with error state-
ments, whereas 77 samples had no errors. To evaluate the correctness of the annotators’ labels, we
divided the 100 samples from the golden set into five subsets, each containing 20 samples, ensuring
a balanced representation of error types. These golden sets were inserted into the subsets that the
annotators were to label.

The annotation process was as follows. The annotators first labeled the initial subset of 20 samples
from the golden set. These 20 samples were used to verify the annotators’ labeling correctness.
Since these samples had gold labels, we assessed the macro F-score of each annotator’s results.
Based on these results, we then provided further clarification and discussion on unclear aspects. An-
notators are allowed to revisit and modify their previously labeled data if necessary. At this stage,

2Additional data annotation details are in Appendix A.
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Table 1: Annotation agreement across five stages
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Overall

Precision 0.4546 0.7692 0.8335 0.9286 1.0000 0.7972
Recall 0.4166 0.4167 0.5556 0.5417 0.6000 0.5061
F-score 0.4348 0.5405 0.6667 0.6842 0.7500 0.6153

Table 2: Error types in math word problems
Error type Question Reason

Multiple Inter-
pretations

一款原价3000元的空调先后两次降价，第一次降价10%，第二
次又降价5%．现在这款空调的售价多少元？(An air conditioner
originally priced at 3000 yuan was discounted twice: the first discount
was 10%, and the second discount was 5%. What is the current price of
the air conditioner?)

The question does not clarify whether the second
discount applies to the new price after the first
discount, or to the original price.

Informal
Wording

某书店购书一律0.95，小红买了一本书，比原价便宜6元，这本书
原价多少元？(A certain bookstore charges 0.95 for books purchased.
A girl bought a book and saved 6 yuan off the original price. What was
the original price of the book?)

The problem statement might lead one to believe
that all books in the bookstore are priced at 0.95
yuan. The intended meaning, however, is that a
5% discount is applied to the original price.

Unitless 一根木头，用32秒的时间分成了5段，以同样的速度将另一根木
头分成7段，需要多少时间？(A piece of wood is cut into 5 sections
in 32 seconds. At the same rate, how much time is needed to cut another
piece of wood into 7 sections?)

The unit for the required time is not specified.
For example, the question should ask, “How
many seconds?”

Unclear Rela-
tionship

4平家电商场现有各种品牌的电视机240台，比电冰箱多(1/5)，商
场现有电冰箱多少台？(An appliance store currently has 240 televi-
sions of various brands, which is more than refrigerators by 1/5. How
many refrigerators does the store have?)

The question does not clarify the actual mean-
ing of “more by 1/5”. It should describe that the
number of televisions is 1/5 times more than the
number of refrigerators.

Calculation Er-
ror

6000/59与35的差，商？(What is the quotient of the difference be-
tween 6000/59 and 35?)

The statement is incorrect because it does not
clearly define the operation, leading to confusion.
A more precise wording would be “6000 divided
by 59, and then subtract 35 from this result.”

None 为灾区捐款，小华捐4.2元，比小丽多捐了0.4元，小华比小丽多
捐几分之几？(Xiaohua donated 4.2 yuan, which is 0.4 yuan more than
what Xiaoli donated. By what fraction did Xiaohua donate more than
Xiaoli?)

The question is clear and correct.

they could also provide feedback and suggest adjustments to the error type definitions. After con-
firming no immediate issues with the annotators’ task, they continued labeling the next 20 samples
from the golden set. This process was repeated using our pre-annotated gold labels to evaluate
the annotators’ performance for the 20 samples and identify discrepancies. This iterative process
continued until all data in the golden set was annotated.

Table 1 presents the annotators’ labeling correctness, evaluated using macro F-scores against the
gold labels. The five stages correspond to macro F1 scores for subsets labeled at different stages,
with increasing scores reflecting improved consistency and accuracy from iterative discussions and
revisions. The inter-annotator agreement, as measured by Fleiss’ kappa value, is 0.6038, indicating
a moderate level of agreement. To ensure that annotators fully understood the task and applied
consistent standards, we had them annotate the remaining 100 samples from the initial set, of which
21 were problematic math questions. The inter-annotator agreement for this round reached a Fleiss’
kappa of 0.8103, representing substantial agreement. After ensuring a sufficient level of consistency
in the annotation standards, we assigned the annotators to label their respective portions of the data.

Dataset Analysis. Table 2 presents the examples for each error type. This process resulted in
23,162 math word problems, with an error-type distribution of Multiple Interpretations, Informal
Wording, Unitless, Unclear Relationship, Calculation Error, and None errors of 136, 1,076, 416,
606, 67, and 20,916, respectively. Although “Multiple Interpretation,” “Informal Wording,” and
“Unclear Relationship” all stem from imprecise or incomplete problem descriptions, their effects
differ. “Multiple Interpretation” may lead to various interpretations, resulting in multiple possible
solutions. On the other hand, “Informal Wording” and “Unclear Relationship” involve cases where
the teacher’s intended question can still be inferred, but the phrasing is informal and unsuitable for
offical examinations. “Unclear Relationship” specifically refers to situations where numerical rela-
tionships are not clearly defined, affecting the clarity of the problem. As for “Calculation Error,”
it typically arises from mixed mathematical and verbal expressions. For instance, in the example
provided in the Table 2, a more precise wording would be, “6000 divided by 59, and then subtract
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(LM)
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(LM)

Classification
Result:  [...]

Instruction: [...]
Definition: [...]
Examples: [...]
Given Question: [...]

Self-Optimization Process

Refined
Definition:  [...]

Selected
Examples:  [...]

Judge

Algorithm 1: Refinement via self-
optimization
InitializeMc,Ms,Me, fe, fj
Generate st ∈ S for each t ∈ T using D
for number of max trials do

for qi ∈ D
′

do
yi =Mc(S, d, qi);

z = fe(ŷ, y);
for t ∈ T do

Set reflection set R = {};
for qti ∈ D

′
do

if yt
i ̸= ŷt

i then
R← qti ;

s̃t =Ms(st, R);
d̃t =Me(dt, R);
if fj(st ⊕ dt, s̃t ⊕ d̃t) > T then

Stop refining st and dt in next round;

st = s̃t;
dt = d̃t;

Figure 1: (a) Overview of Reflexion Framework. (b) Refinement via self-optimization algorithm.

35 from this result.” We aim to detect these five types of errors to assist teachers in refining problem
descriptions, ensuring they are more comprehensive and formal, which is essential for official exam-
inations. Note that a single math world problem may contain multiple errors. Therefore, detecting
error types in math word problems is a multilabel classification task.

5 PROMPT REFINEMENT THROUGH SELF-OPTIMIZATION

Various prompting methods have been proposed to enhance LLM performance. With zero-shot or
few-shot learning (Brown et al., 2020), LLMs can tackle a range of tasks by providing a few ex-
amples about the task. Chain-of-thought prompting (CoT) techniques (Wei et al., 2022b; Yasunaga
et al., 2024) successfully guide models to solve complex problems through step-by-step reasoning.
Thus, we utilize LLMs with appropriate prompts for error type detection. Most research typically
involves humans carefully designing prompts to instruct LLMs in performing tasks. We pose the
question of whether allowing the model to independently understand the task objectives and reflect
on its execution results to adjust its instructions and few-shot examples can enhance the performance
of LLMs on this task. A mechanism may be needed to generate definitions that the model can un-
derstand and to provide suitable examples for specific error types that the model struggles with. We
propose a method to iteratively reflect on incorrect classification results. By refining error type defi-
nitions based on these reflections, the model articulates task details according to its comprehension.
Furthermore, the model selects proper examples to strengthen its reasoning abilities. Figure 1 (a)
shows an overview of the framework for prompt refinement through self-optimization (PRO).

PRO comprises a classifier Mc, a definition reflector Ms, an example reflector Me, an evaluator
fe, and a judge fj . Mc, Ms, and Me are the same LLM but with different prompts. All the prompt
templates used in this work are presented in Appendix B. For the self-optimization process, we
partition our training set into sets D and D

′
for demonstration and reflection, respectively. In PRO,

instead of using human-written definitions, we employ an LLM M to generate the initial definition
st of each error type t ∈ T . Specifically, given a set of questions Qt ∈ D that contains an error of t
and its corresponding corrections Q

′

t, we obtain st = M(Qt, Q
′

t). To assess whether the definition
requires refinement, we consult the classification results. Given the definitions S of T , the selected
examples d in D, and the i-th question qi in D

′
, we obtain the prediction yi = Mc(S, d, qi). Mc is

prompted to predict the possible error types in qi.
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After obtaining the initial classification results, we proceed to the self-optimization phase detailed
in Figure 1 (b). We set a maximum number of trials to iteratively refine S and update d through Ms

and Me, respectively. The evaluator fe measures the classification results using the macro-averaged
F-score, allowing us to judge the model’s performance in each round. For each t, incorrectly pre-
dicted questions are extracted for self-reflection. Formally, if the predicted error type yti does not
match the ground truth ŷti , the question qti is appended to reflection set R. Subsequently, the refined
definition s̃t of t is obtained as s̃t = Ms(st, R). Additionally, the demonstrations are updated by
extracting questions in R. Given R and the current demonstrations dt for t, we obtain the updated
demonstrations d̃t = Md(dt, R). s̃t and d̃t are used in the next round as st and dt, respectively.

Finally, to determine whether the updates to st and dt have converged, judge fj compares the dif-
ference in the reflection results between the previous and current rounds. We measure the difference
between the concatenation of st ⊕ dt and s̃t ⊕ d̃t using ROUGE-1 (Lin, 2004). If the ROUGE-1
score r = fj(st ⊕ dt, s̃t ⊕ d̃t) is greater than the threshold T , we view it as convergence. In this
case, st and dt are not refined in the next round. If S and D converge, self-optimization ceases. To
determine which definitions and examples to use, we measure the performance of S and d in each
round using z = fe(ŷ, y): S and d from the highest-scoring round are used to instruct Mc to detect
error types in the test set. The number of max trials and T are set to 10 and 0.9, respectively.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Since most questions in Math23k were of the None type, we randomly selected a subset of math
word problems from this type. This resulted in a total of 4,766 math word problems in MathError. To
simulate limited data availability, we identified patterns from sparse data and applied them to specific
tasks. Specifically, we focused on detecting error types in math word problems, despite having few
such questions with errors. The data used for demonstration and reflection consisted of 15 and 30
math word problems, respectively. The remaining 4,721 math word problems were used for testing.
The demonstration set consisted of 3 questions for each error type, providing a foundation for the
initial model for inference. The reflection set, designed to refine and validate the model, included
2 questions for each error type and an additional 20 questions without errors. In the test set, the
number of questions for INTPN, Informal, Unit, Rel, Calc, and None were 131, 1,071, 411, 601, 62,
and 2,500, respectively.3 We utilized OpenAI’s API, in particular the gpt-3.5-turbo-0125
and gpt-4o models. The temperature was set to 0 to increase reproducibility.

6.2 EXPERIMENTAL RESULTS

Table 3 shows the performance of each method on overall error types. We use the macro-averaged
F-score as the evaluation metric and report the F-scores for each error type. The top four rows show
the baseline models using LLM for direct inference on the test set with few-shot prompting and
no refinement. The baseline models are GPT-3.5 and GPT-4o. We compare the impact of using
the human-written and model-generated definitions. The “Definition” column denotes whether the
initial definitions of all error types used in few-shot prompting were written by humans or generated
by LLM. We also tested human-written and model-generated examples. In Table 3, all the results
are based on human-written examples, as this is the optimal setting. The results of using human-
written and model-generated examples will be discussed in the following section. Specifically, we
employed an LLM to classify the error types of each question in the training set. Then, the LLM
was instructed to generate examples based on the questions which are classified incorrectly.

As different reasoning strategies can yield different results, we conducted an experiment to find the
most suitable strategy for detecting error types. We tested the following four strategies.

• Directly Classify: Mc is prompted to predict the error type with any reasoning steps.
• Analyze → Classify: Mc is tasked to generate an analysis of the errors present in the

question and then classify the error types.

3The sum of questions exceeds the total because some contain multiple error types.
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Table 3: Results of error type detection
Method Definition Best strategy Overall INTPN Informal Unit Rel Calc None

GPT-3.5
Human Solve→ Classify 0.2572 0.0519 0.3086 0.0616 0.3050 0.3394 0.4770
Model Directly classify 0.2295 0.0938 0.3422 0.1850 0.2681 0.2255 0.2625

GPT-4o
Human Solve→ Classify 0.2781 0.0777 0.4247 0.2319 0.2525 0.0461 0.6354
Model Directly classify 0.3118 0.1256 0.4362 0.3081 0.3930 0.2269 0.3812

PRO (GPT-3.5)
Human Solve→ Classify 0.2493 0.0134 0.2688 0.0702 0.2706 0.3270 0.5457
Model Directly classify 0.2547 0.0426 0.2063 0.1109 0.1393 0.3800 0.6490

PRO (GPT-4o)
Human Solve→ Classify 0.2697 0.0696 0.4108 0.2079 0.2747 0.0455 0.6096
Model Directly classify 0.3243 0.0936 0.4271 0.3109 0.4212 0.2538 0.4390

Table 4: Results of PRO (GPT-4o) using different inference strategies
Method Strategy Overall INTPN Informal Unit Rel Calc None

PRO
(GPT-4o)

CoT 0.2367 0.0457 0.3368 0.2249 0.2097 0.0492 0.5534
Directly Classify 0.3243 0.0936 0.4271 0.3109 0.4212 0.2538 0.4390
Analyze→ Classify 0.2563 0.0864 0.4106 0.2270 0.2878 0.0688 0.4574
Solve→ Classify 0.2420 0.0980 0.3942 0.1769 0.2934 0.1188 0.3708
Solve→ Classify→ Correct 0.2709 0.0605 0.3187 0.1551 0.2898 0.1625 0.6385

• Solve → Classify: Mc solves the math word problem before classifying the error type.
This strategy enables Mc to identify informal or missing information during problem-
solving.

• Solve → Classify → Correct: after solving the problems and classifying the error types,
Mc also corrects the errors in the questions.

For each method, we report the results of the best-performing strategy. In PRO, the self-optimization
process refines human-written definitions and model-generated definition by Ms. Experimental re-
sults show that PRO based on GPT-4o with model-generated definitions outperforms other methods,
and significantly outperforms GPT-3.5 with model-generated definitions (p < 0.05). Although it
does not significantly outperform the remaining methods in Table 3, overall, PRO (GPT-4o) with
model-generated definitions detects the most problematic questions. This indicates that iteratively
refining definitions and updating examples helps the model better accomplish the task.

Additionally, using model-generated definitions is more effective than using human-written ones,
even though GPT-3.5 shows a different preference. This may be because in error type detection,
reflecting on the wrong prediction and coming up with a solution to refine the definitions and select
examples that can strengthen the reasoning process requires an LLM with more powerful natural
language understanding and generation abilities. Comparing the results between GPT-4o and “PRO
(GPT-4o)”, the proposed reflection mechanism enhances the ability to detect Informal, Rel, Calc,
and None types. Although the F-score for None type detection is not the highest, we may require
a more stringent model in this context, even if it entails accepting false alarms. This supports our
hypothesis that allowing the model to generate its own decision criteria leads to better task compre-
hension and enhances the reasoning ability.

In contrast, we find that GPT-4o does poorly at detecting the Calc type, especially when using
human-written definitions. Perhaps LLMs possess better language understanding capability, allow-
ing them to conjecture the most possible calculation order described in natural language. Hence, the
model perceives the descriptions as without errors. Moreover, both GPT-3.5 and GPT-4o struggle to
detect INTPN. This shows that detecting whether a math word problem has multiple interpretations
is still a challenging issue. Further error analysis is presented in Appendix C.

Table 4 shows the results of “PRO (GPT-4o)” using different strategies. In general, direct classifica-
tion is the most effective for detecting problematic questions, whereas solving the problem and then
classifying its error type is best for detecting INTPN errors. Interestingly, if the strategy involves the
LLM correcting the problematic questions, the model tends to classify questions as correct. We also
conducted a comparison using the CoT prompting method. Unexpectedly, this approach yielded
poorer performance compared to the “Direct Classify” method. Based on these results, we specu-
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Table 5: Comparison of GPT-3.5 with different prompting methods for each error type
Method Strategy Overall INTPN Informal Unitless Rel Calc None

GPT-3.5 Zero-Shot
Directly Classify

0.2202 0.0262 0.1620 0.2862 0.3238 0.2704 0.2524
GPT-3.5 Few-Shot 0.2407 0.0875 0.2729 0.2014 0.2457 0.2363 0.4001
GPT-3.5 CoT 0.2196 0.0000 0.1667 0.2382 0.0458 0.2884 0.5784

Table 6: Results of different classification methods with zero-shot prompting
Method Definition Task Strategy Overall INTPN Informal Unit Rel Calc None

GPT-3.5
Zero-shot

Human Binary
Directly
Classify

0.1447 0.0541 0.3674 0.1620 0.2586 0.0259 0.0000
Human Multilabel 0.2202 0.0262 0.1620 0.2862 0.3238 0.2704 0.2524
Model Multilabel 0.2494 0.0309 0.1442 0.3864 0.2826 0.2607 0.3916

late that if an LLM is guided to reason, the stronger the LLM’s inferencing ability, the more it may
overlook issues in textual descriptions, leading to ineffective error detection.

7 ANALYSIS AND DISCUSSION

In this section, we formulate and discuss six research questions which we address by conducting
corresponding experiments. The results reported below are based on the “directly classify” strategy
for each method. This pilot study seeks to explore how in-context learning can be utilized to detect
problematic questions. Hence, the first research question (RQ1) arises: Which of the commonly
used prompting methods—zero-shot, few-shot, or CoT prompting—yields the best performance in
detecting errors in math word problems?

Impact of Different Prompting Methods: Table 5 presents the results of utilizing GPT-3.5 to detect
error types using different prompting methods. The results indicate that few-shot prompting based
on human-written definitions and examples outperforms the other prompting methods, although the
difference is not statistically significant. We found that CoT prompting struggles with detecting
questions that have multiple interpretations. The analysis of the model’s reasoning output indicates
that CoT prompting often leads the model to infer a fixed interpretation of the question, overlooking
alternative interpretations. In contrast, GPT-3.5 with few-shot prompting demonstrates promising
performance in detecting questions with multiple interpretations, informal wording, and unclear
relationships. These error types are critical for teachers when refining problem design, as they
significantly influence the clarity and validity of the questions posed to students.

In the experiments in Table 3, we set error type detection as multilabel classification. However, the
model can also perform binary classification for each error type by querying whether a specific math
word problem contains that particular error. This raises the second research question (RQ2): Which
method for error type detection is more suitable: multilabel classification or binary classification?

Multilabel Classification vs. Binary Classification: Table 6 shows the results when treating error
type detection as multilabel or binary classification. We used the GPT-3.5 model with zero-shot
prompting. The strategies in all settings are “Directly classify”. We find that multilabel classification
outperforms binary classification. Additionally, binary classification causes the model to tend to
view every math word problem as erroneous. A possible reason is that the prompt for multi-label
classification provides definitions of all types, which helps the model better understand the error
types compared to binary classification. However, as shown in Table 6, the performance when using
the GPT-3.5 definitions is better than that using the human-written definitions. This leads to the
third research question (RQ3): Should the definitions and examples in this task be generated by the
model itself or provided by humans?

Human-Written vs. Model-Generated Prompts: Table 7 presents the results when using GPT-3.5
with few-shot prompting with various settings to confirm which definitions and examples are bet-
ter. The overall best performance is achieved when human definitions are written and paired with
human-written examples. However, as shown in Table 7, the average performance in detecting five
error types using GPT-3.5-generated definitions is better than that using human-written definitions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Model-generated vs. human-written definitions and examples
Method Definition Examples Strategy Overall INTPN Informal Unit Rel Calc None

GPT-3.5
Few-shot

Human Human
Directly
Classify

0.2407 0.0875 0.2729 0.2014 0.2457 0.2363 0.4001
Human Model 0.2031 0.0596 0.2004 0.2030 0.2510 0.2701 0.2345
Model Human 0.2295 0.0938 0.3422 0.1850 0.2681 0.2255 0.2625
Model Model 0.2267 0.0541 0.2665 0.2471 0.2307 0.2218 0.3400

Figure 2: Refinement differences across rounds using PRO

The average F-scores of all the error types in the first and third rows are 0.2088 and 0.2229, re-
spectively. Comparing Table 6 and Table 7, “GPT-3.5 Zero-shot” using model-generated definitions
(0.2494) outperforms “GPT-3.5 Few-shot” using human-written definitions and examples (0.2407).
Nonetheless, the few-shot prompting methods are better at detecting errors in the “INTPN” and
“Informal” types. Thus, when seeking to detect error types, a combination of model-generated
definitions and human-written examples is a more suitable approach. On the other hand, although
PRO achieves better performance by refining prompts based on reflecting on wrong predictions, the
changes in prompts for each round have not been discussed. This leads to the forth research question
(RQ4): How do different initial definition approaches and LLMs impact the refinement differences
and convergence across rounds?

Effects on Refinement and Convergence: Figure 2 presents the refinement differences across
rounds using PRO. We present the results of PRO based on GPT-3.5 and GPT-4o, using either
human-written or model-generated definitions, with all examples human-written. The x-axis repre-
sents the round number, and the y-axis denotes the ROUGE score difference between the current
and the previous round’s definitions and examples. Specifically, we measured the ROUGE-1 score
of definitions and examples before and after rounds of self-optimization. A higher score indicates
greater similarity between definitions and examples across rounds. With this analysis we investigate
the number of rounds required for convergence under different settings. GPT-3.5 significantly refines
descriptions, leading to considerable variation and making convergence difficult, often reaching the
maximum of 10 rounds. GPT-4o, in turn, makes slight refinements, typically adding a few details to
definitions and examples, and generally converging in around 5 rounds due to smaller refinements
and fewer classification errors.

Additionally, Figure 2 shows a significant increase in ROUGE scores during the first three rounds,
indicating substantial modifications to definitions and examples based on classification results. This
trend levels off in later rounds, suggesting the model has exhausted useful information from D

′
for

further refinement. Moreover, with human-written definitions, the ROUGE score increases more
sharply in the first three rounds compared to model-generated definitions, indicating a greater initial
disparity. Examples of refinement results are in Appendix E.

In the above experiments, we evaluated only GPT-3.5 and GPT-4o, two large LLMs. This leads to
the fifth research question (RQ5): How do LLMs of different sizes perform on this task?

Performance of LLMs with Different Parameter Sizes: We compared the performance of differ-
ent sizes of LLaMA 3 (AI@Meta, 2024) with few-shot prompting using model-generated definitions

9
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Table 8: Results using different LLMs
Method Denifition Examples Strategy Overall INTPN Informal Unit Rel Calc None

LLaMA3 8B

Model Model Directly
Classify

0.1479 0.0308 0.0165 0.2272 0.2804 0.1362 0.1963
LLaMA3 70B (8 bit) 0.2031 0.0181 0.2406 0.2748 0.3670 0.2253 0.0926
LLaMA3 70B 0.2210 0.0138 0.2488 0.2853 0.4066 0.2443 0.1271
GPT-3.5 175B 0.2494 0.0309 0.1442 0.3864 0.2826 0.2607 0.3916

and examples. The results are shown in Table 8. GPT-3.5 outperforms the other models in overall
performance. Although LLaMA3 70B excels at detecting errors, it struggles to identify error-free
questions. It tends to consider questions as informal or incomplete. As model size decreases, overall
performance also decreases. Therefore, effective detection of incorrect descriptions in math word
problems requires a large LLM with strong semantic understanding capabilities.

In our previous research questions, we find that model-generated definitions are most suitable for
detecting error types. We further investigate the reasons behind this finding with the sixth research
question (RQ6): Why are model-generated definitions more effective?

Impact of Model-Generated and Human-Written Prompts: Based on the results shown in Ta-
ble 8, we compared the perplexity of human-written prompts and model-generated prompts. We
speculate that model-generated prompts better align with the model’s probability distribution, en-
hancing its semantic understanding and ability to detect error types. To this end, we examine the
performance of LLaMA3 8B4 using human-written and model-generated definitions with examples,
with overall performances of 0.1191 and 0.1479, respectively. The results are shown in Table 18 in
Appendix D. These results align with the trends presented in Table 6. Furthermore, we assess the
model’s perplexity on both human-written and model-generated definitions with examples, resulting
in values of 0.7041 and 0.6499, respectively. These findings suggest that model-generated prompts
are more predictable, implying the model handles this type of narrative better. This may explain
why model-generated definitions are more suitable in this context.

8 CONCLUSION

Recent years have witnessed a surge of work on ambiguous and unanswerable questions. In contrast
to previous studies, this paper focuses on detecting issues in math word problems that can lead to
multiple solutions or render them unanswerable. These issues arise from different interpretations
and misunderstandings due to imprecise problem descriptions or missing information needed for
problem-solving. We present a task on math word problem design support and construct MathError,
the first human-annotated dataset, to explore the method of error type detection. We explore prompt
refinement through self-optimization (PRO) to instruct an LLM to adapt to the given task. We inves-
tigate whether definitions for error types and corresponding few-shot examples are more effectively
provided by humans or models. The results show that machine-generated definitions of error types,
supplemented by human-written examples, enhance effectiveness in error type detection. During
the self-optimization process, we modify the definitions based on the classification errors of the data
retained from the training set, and allow the LLM to select which examples to add. However, ac-
curately identifying the errors in a math word problem is still challenging; more advanced methods
are left as future work. We also plan to explore methods for correcting problematic questions. At
the current stage, this work has several limitations. We extend the Math23K dataset with error type
annotation. While this is the first human-annotated dataset used for detecting errors in math word
problems, our research was limited to Chinese math word problems and did not explore other lan-
guages. Additionally, our work currently relies on a single dataset comprising questions collected
from an online educational platform, predominantly at the elementary school level, which may not
offer sufficient diversity in problem types. Moreover, we define only five error types within this
dataset: these may not encompass all possible errors in math word problems. At this stage, our
primary goal is to provide teachers with identified error types in math word problems, though con-
sidering factors like students’ prior knowledge and cognitive barriers remains important for future
research.

4Because calculating probability distributions through the API is difficult, we use an LLM that runs locally.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and Denny Zhou. Teaching large language models
to self-debug. In The 61st Annual Meeting of The Association for Computational Linguistics,
2023.

Nico Daheim, Jakub Macina, Manu Kapur, Iryna Gurevych, and Mrinmaya Sachan. Stepwise ver-
ification and remediation of student reasoning errors with large language model tutors. arXiv
preprint arXiv:2407.09136, 2024.

Pedro Faustini, Zhiyu Chen, Besnik Fetahu, Oleg Rokhlenko, and Shervin Malmasi. Answering
unanswered questions through semantic reformulations in spoken QA. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track), pp.
729–743, 2023.

Wanyong Feng, Jaewook Lee, Hunter McNichols, Alexander Scarlatos, Digory Smith, Simon Wood-
head, Nancy Ornelas, and Andrew Lan. Exploring automated distractor generation for math
multiple-choice questions via large language models. In Findings of the Association for Compu-
tational Linguistics: NAACL 2024, pp. 3067–3082, 2024.

Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas I Liao, Kamilė Lukošiūtė, Anna Chen,
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A ADDITIONAL ANNOTATION DETAILS

Table 9 presents the annotation guidelines provided to the annotators. We invited native Chinese
speakers as annotators, all of whom were from universities in the same country as the authors. Before
beginning the annotation, we explained the purpose of the data and confirmed the compensation
terms with the annotators. Compensation was calculated based on the minimum wage regulations
of the authors’ country; both parties agreed to these terms.

Table 9: Annotation guidelines
Objective:
To create a dataset of Chinese math word problems with error type annotations, where some problems
contain errors that need to be annotated accordingly. The error types include misleading, unclear prob-
lem statement, etc.
Reminders:
- We will regularly track your annotated results, so any questions can be addressed immediately.
- If you find an error with a problem after reviewing it, select the appropriate category from the list
below and label it.
- Label the chosen error type with a lowercase “x” in the box following the problem.
- Multiple annotations can be applied to a single problem.
Error Type Definition:
Described in Section 3
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Table 10: Prompt template for event type detection (directly classify method).
Task Introduction:
Please analyze and identify whether the [given problem] contains any of the following errors
based on the descriptions under [error types]: multiple interpretations, informal wording, unit-
less, unclear relationship, or calculation error. If any errors are identified, respond with the correspond-
ing option(s). If the [Given Problem] does not contain any of these errors, select (F). The problem
must match the definitions of the error types to be considered erroneous; note that a single problem may
contain multiple errors.
[Error Types]
(A) Multiple Interpretations: {Definition} {Examples}.
(B) Informal Wording: {Definition} {Examples}.
(C) Unitless: {Definition} {Examples}.
(D) Unclear Relationship: {Definition} {Examples}.
(E) Calculation Error: {Definition} {Examples}.
(F) None of the above. Example: {Example}
Response Requirement:
Enter your predicted results under [classification result]. If multiple errors are present,
separate them with a semicolon “;”.
Example response:
[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?
[Classification Result] (C) Informal Wording; (E) Unclear Relationship
[Given Problem] {question}

Table 11: Prompt template for event type detection (Analyze→Classify method).
Task Introduction:
{Same as that shown in Table 10}
Response Requirement:
Please provide an analysis of up to 150 words after [Analysis] and record your assessment results
under [Classification Result]. If multiple errors are present, separate them with a semicolon
“;”.
Example response:
[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?
[Analysis] The statement is unclear, rendering the meaning of “1/6” ambiguous. This could imply
that the number of duck eggs is 1/6 that of the chicken eggs (which is logically inconsistent as it
contradicts the statement that there are more duck eggs), or that the duck eggs exceed the number of
chicken eggs by 1/6 of the chicken egg count.
[Classification Result] (C) Informal Wording; (E) Unclear Relationship
[Given Problem] {question}

B INPUT FORMATS

Tables 10, 11, 12, and 13 contain templates of the “Directly classify”, “Analyze → Classify”, “Solve
→ Classify”, and “Solve → Classify → Correct” strategies, respectively. The templates for defini-
tion and example generation are shown in Tables 14 and 15. The proposed definition and example
refinement templates are shown in Tables 16 and 17. In the refinement prompts, we instruct the
LLM to analyze why the error was not detected. However, we find that not including the result
of the analysis is better. This may be because the LLM still struggles to complete the error type
detection tasks. The content in the generated analysis may contain incorrect information.

C ERROR ANALYSIS

Figure 3 presents the confusion matrix for error type detection results using the PRO (GPT-4o)
method with model-generated definitions and human-written examples.5 Multiple Interpretations

5The total numbers in the confusion matrix differ from the actual number of error types because our task is
multilabel classification. An error type can be incorrectly identified as multiple different error types.
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Table 12: Prompt template for event type detection (Solve → Classify method).
Task Introduction:
{Same as that shown in Table 10}
Response Requirement:
Please solve the problem and generate your calculations and reasoning within 150 words under
[Calculation Process and Rationale]. If the solution remains elusive, it is possible that
the problem includes the above errors. Based on the difficulties encountered during the calculation,
place your predicted results behind [Classification Result]. If multiple errors are identified,
separate them with a semicolon “;”.
Example response:
[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?
[Calculation Process and Rationale] The statement “duck eggs are 1/6 more” is am-
biguous: does it refer to 1/6 more than the number of duck eggs, or 1/6 more than the number of
chicken eggs? The lack of a clear referent for the ratio leads to confusion. If it means 1/6 more than the
number of duck eggs, the question lacks sufficient information to calculate the number of duck eggs.
Conversely, if it refers to 1/6 of the chicken eggs, then the number of duck eggs would be 120 + 120/6
= 140.
[Classification Result] (C) Informal Wording; (E) Unclear Relationship
[Given Problem] {question}

Figure 3: Confusion matrix for error type detection using “PRO (GPT-4o)” method with model-
generated definitions and human-written examples

and Unitless errors are often predicted as None or Information Wording. Additionally, questions
exhibiting the Unclear Relationship error are frequently predicted as Informal Wording.

Interestingly, math word problems with no errors (belongs to None) are often predicted as Informal
Wording and Unclear Relationship. To understand this behavior, we examined the results predicted
by other methods, which similarly tended to predict None type questions as containing Informal
Wording and Unclear Relationship errors. This may be due to using Informal Wording and Unclear
Relationship errors as examples to demonstrate the response format.

To investigate the impact of the response format demonstration, we replaced the response format
demonstration with Calculation Error. Figure 4 shows the confusion matrix of error type detection
results after changing the format demonstration. The model’s preference for predicting Informal
Wording and Unclear Relationship errors became less pronounced, but there was no tendency to
predict the None type as Calculation Error. From this result, we find that the model is highly
sensitive to the examples used. However, it remains unclear why the prediction trend does not
align with our original hypothesis that the model will predict the error types used in the format
demonstration after changing the example.
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Figure 4: Confusion matrix for error type detection with format example changed to Calc

Table 13: Prompt template for event type detection (Solve→Classify→Correct method).
Task Introduction:
{Same as that in Table 10}
Response Requirement:
First, please solve the problem and document your calculation process and reasoning within 150 words
under [Calculation Process and Rationale]. If you are unable to determine an answer,
the problem likely contains the errors described above. Based on any difficulties encountered during
the calculation, record possible error types under [Classification Result]. If multiple errors
are identified, separate them with a semicolon ”;”. Afterwards, try to modify the problem and note the
revised version under [Corrected Problem]. “;”.
Example response:
[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?
[Calculation Process and Rationale] The statement “duck eggs are 1/6 more” is am-
biguous: does it refer to 1/6 more than the number of duck eggs, or 1/6 more than the number of
chicken eggs? The lack of a clear referent for the ratio leads to confusion. If it means 1/6 more than the
number of duck eggs, the question lacks sufficient information to calculate the number of duck eggs.
Conversely, if it refers to 1/6 of the chicken eggs, then the number of duck eggs would be 120 + 120/6
= 140.
[Classification Result] (C) Informal Wording; (E) Unclear Relationship
[Corrected Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the
number of chicken eggs. How many eggs are there in total?
[Given Problem] {question}

D COMPARISON OF ERROR TYPE DETECTION RESULTS BETWEEN
HUMAN-WRITTEN DEFINITIONS AND MODEL-GENERATED PROMPTS

Table 18 reports the comparison between using human-written and model-generated prompts under
LLaMA 3 8B.

E EXAMPLES OF PROMPT REFINEMENT RESULTS

Tables 19, 20, 21, 22, and 23 show the examples of prompt refinement results for INTPN, Informal,
Unit, Rel, and Calc, respectively. The following prompt refinement results in our study are presented
in Chinese. To facilitate reader understanding, we used GPT-4o to translate them into English.
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Table 14: Prompt template for generating definitions by model.
Task Introduction:
You are tasked with writing a definition for the error type based on problematic questions and their
corrected versions. Please use the following [Problematic Question] and corresponding
[Corrected Question] to formulate your definitions. Please place the generated definition be-
hind [Definition].
[Given Error Type] {error type}
[Problematic Question 1] {problematic question 1}
[Corrected Question 1] {corrected question 1}
[Problematic Question 2] {problematic question 2}
[Corrected Question 2] {corrected question 2}
...
[Definition]

Table 15: Prompt template for generating examples by model.
Task Introduction:
You are tasked to provide both positive and negative examples for each error category to enhance the
precision of our classification system. Based on the definitions of error types and the classification
results of [Given Question], please supply one example that fits each error category and one that
does not. Be mindful that discrepancies between [Classification Result] and [Correct
Classification] indicate wrong prediction; analyze the reasons of these issues to generate more
challenging examples and place them behind [Examples].
[Error Types]
(A) Multiple Interpretations: {Definition} {Examples}.
(B) Informal Wording: {Definition} {Examples}.
(C) Unitless: {Definition} {Examples}.
(D) Unclear Relationship: {Definition} {Examples}.
(E) Calculation Error: {Definition} {Examples}.
(F) None of the above. Example: {Example}

[Given Question 1] {Question 1}
[Classification Result 1] {Result 1}
[Correct Classification] 1 {Annotated error type 1}

[Given Question 2]{Question 2}
[Classification Result 2]{Result 2}
[Correct Classification] 2 {Annotated error type 2}

...
[Examples]
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Table 16: Prompt template for definition refinement.
Task Introduction:
You are tasked with refining the given error type definition based on the results of erroneous classifica-
tions. The classification task involves analyzing the following [Error Types] to determine whether
[Given Problem] contain errors such as multiple interpretations, informal wording, unitless, un-
clear relationship, or calculation error. If any errors are present, select the corresponding option. If the
[Given Problem] contains no such errors, choose (F). The problem must match the definitions of
the error types to be considered erroneous, and note that a single problem may contain multiple errors.
[Error Types]
(A) Multiple Interpretations: {Definition} {Examples}.
(B) Informal Wording: {Definition} {Examples}.
(C) Unitless: {Definition} {Examples}.
(D) Unclear Relationship: {Definition} {Examples}.
(E) Calculation Error: {Definition} {Examples}.
(F) None of the above. Example: {Example}
{wrong predictions}
Please refer to both the correctly classified results and the misclassified ones under “{target type}”
error, along with the definition of this error type. Analyze why there was a wrong prediction or why
the error was not recognized. Use this analysis to refine the definition of the [Error Type] “{target
type}”.
Please output the refined definition in the following format: [Error Type Definition]: [Re-
vised Definition] [Analysis]

Table 17: Prompt template for example refinement.
Task Introduction:
{Same as that in Table 16}
{wrong predictions}
Please refer to both the correctly classified results and the misclassified ones under “{target type}”
error, along with the definition of this error type. Analyze why there was a wrong prediction or why
the error was not recognized. Use this analysis to refine the examples of the [Error Type] “{target
type}”.
[Error Type]: {target type}
Please output the refined examples in the following format: [Error Type Example]: [Refined
Example] [Analysis]

Table 18: Effect of Human-Written vs. Model-Generated Prompts on LLaMA 8B Performance
Method Definition Overall INTPN Informal Unit Rel Calc None

Llama 8B
Human 0.1191 0.0189 0.0037 0.2399 0.1685 0.2084 0.0751
Model 0.1479 0.0308 0.0165 0.2272 0.2804 0.1362 0.1963
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Table 19: Example of prompt refinement for the multiple-interpretation type
Error Type Initial Definition and Example Generated by LLM Refined By LLM in the 2nd Round
Multiple Interpreta-
tions

多解是指在数学题目中，由于题目描述不够明确或存
在歧义，导致读者可以从不同的角度理解题意，从而
得出多个不同的解答。这种情况下，题目本身并没有
唯一的解答，或者解答的条件不够充分，无法确定唯
一的正确答案。范例A. 学校购买每张单价是140元的
课桌，买了30张还多480元．如果用这笔钱买椅子，可
以买40把．每把椅子的单价=多少元? B. 一块平行四
边形的街头广告牌，底是12.5米，高是6.4米．如果要
油饰这块广告牌，每平方米用油漆0.6千克，需要多少
千克油漆？其中A 因为题目未提到这笔钱刚好只能买
这些椅子，所以答案有无限多种可能。B 未提到油漆
要涂双面还是单面，属于此类。(Multiple interpretations
in problem-solving occurs when the description of a mathe-
matical problem is unclear or contains ambiguities, allowing
readers to interpret the problem from different perspectives
and arrive at multiple distinct solutions. In such cases, the
problem itself does not have a unique solution, or the condi-
tions provided are insufficient to determine a single correct
answer.For example:A. A school purchases desks at a unit
price of 140 units, buying 30 desks with an additional 480
units remaining. If this remaining amount is used to purchase
chairs, they can buy 40 chairs. What is the unit price of each
chair? B. A street advertisement board in the shape of a par-
allelogram has a base of 12.5 meters and a height of 6.4 me-
ters. If painting this board requires 0.6 kilograms of paint
per square meter, how many kilograms of paint are needed?
In the case A, since the problem does not specify that the re-
maining money can only be used to buy these chairs, there are
infinitely many possible answers.The problem of case B falls
into the error type of multiple interpretations since it does not
specify whether the paint is needed for both sides or just one
side.)

多解是指在数学题目中，由于题目描述不够明确或存
在歧义，导致读者可以从不同的角度理解题意，从而
得出多个不同的解答。这种情况下，题目本身并没有唯
一的解答，或者解答的条件不够充分，无法确定唯一的
正确答案。具体来说，这可能包括但不限于以下情况：
题目中缺少关键信息或条件，导致无法确定唯一解；题
目中存在多种可能的解释或理解方式，导致多个解答；
题目中使用了模糊或不明确的语言，导致解答者对题意
产生不同的理解。范例A. 学校购买每张单价是140元的
课桌，买了30张还多480元．如果用这笔钱买椅子，可
以买40把．每把椅子的单价=多少元? B. 一块平行四边
形的街头广告牌，底是12.5米，高是6.4米．如果要油饰
这块广告牌，每平方米用油漆0.6千克，需要多少千克
油漆？C. 小芳一家准备出去旅游，计划每天的支出如
下：住宿费65元，交通费25元，伙食费60元，如果外出
旅游一周（按7天算），至少应准备多少钱？其中A 因
为题目未提到这笔钱刚好只能买这些椅子，所以答案
有无限多种可能。B 未提到油漆要涂双面还是单面，
属于此类。C 属于此类。(Multiple interpretations refer to
situations in mathematical problems where the problem de-
scription is not clear enough or contains ambiguities, leading
readers to interpret the problem from different perspectives
and arrive at multiple different solutions. In such cases, the
problem itself does not have a unique solution, or the condi-
tions provided are insufficient to determine a single correct
answer. Specifically, this may include, but is not limited to,
the following situations: the problem lacks key information
or conditions, making it impossible to determine a unique
solution; the problem allows for multiple interpretations or
understandings, leading to multiple interpretations; the prob-
lem uses vague or unclear language, resulting in different un-
derstandings by the solvers.Examples:A. A school purchases
desks at a unit price of 140 units, buying 30 desks with an
additional 480 units remaining. If this remaining amount is
used to purchase chairs, they can buy 40 chairs. What is the
unit price of each chair?B. A street advertisement board in
the shape of a parallelogram has a base of 12.5 meters and
a height of 6.4 meters. If painting this board requires 0.6
kilograms of paint per square meter, how many kilograms of
paint are needed?C. Xiaofang’s family plans to go on a trip,
with the following daily expenses: accommodation 65 units,
transportation 25 units, and food 60 units. If they plan to
travel for a week (7 days), how much money should they pre-
pare at least?In example A, the problem does not specify that
the remaining money can only be used to buy these chairs, so
there are infinitely many possible answers. In example B, it is
unclear whether the paint is needed for both sides or just one
side, making it fall into this error type. Example C also falls
into this error type.)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 20: Example of prompt refinement for the informal wording type
Error Type Initial Definition and Example Generated by LLM Definition Refined By LLM in the 2nd Round

Informal Word-
ing

当数学题目中缺少关键的叙述或符号，导
致题意不明确或无法正确理解时，这种情
况被称为「不明或缺失关键叙述」。这种
错误会使读者无法准确地解读题目，从而
影响解题过程和结果。
范例A. 一本书原＿是18元，降价一半后
售价是多少? B. 一个数字的1/3是另一个
数字的1/4，这两个数字的比是((())/( ()))
其中，A 缺少部分叙述，让题目略显怪
异，属于此类，正确的写法：一本书原价
是18元。而B的括号为答案区，并非缺少资
讯，因此不在此列。
(When a mathematical problem lacks essential
descriptions or symbols, resulting in unclear or
incorrect interpretation. Such errors prevent
readers from accurately understanding the prob-
lem, thereby affecting the problem-solving pro-
cess and outcomes.
For example:
A. The original price of a book was＿18 units.
What is the price after a 50% discount?
B. One number is 1/3 of another number’s 1/4.
The ratio of these two numbers is ((())/(())).
In example A, the lack of critical descriptions
makes the problem somewhat peculiar, falling
into this error type. The correct statement
should be: ”The original price of a book is 18
units.” In example B, the parentheses indicate
the answer area and do not represent missing
information; therefore, it is not considered un-
der this error type.)

当数学题目中缺少关键的叙述或符号，导
致题意不明确或无法正确理解时，这种情
况被称为「不明或缺失关键叙述」。这种
错误会使读者无法准确地解读题目，从而
影响解题过程和结果。常见的情况包括：
题目中缺少必要的数据或条件，导致无法
进行计算；题目叙述不完整或存在歧义，
使得解题者无法确定应该如何解答。
范例A. 一本书原＿是18元，降价一半后
售价是多少? B. 一个数字的1/3是另一个
数字的1/4，这两个数字的比是((())/( ()))
C. 四年级共有13个合作小组，每个小组
有4名同学．已知全班同学本学期共得
到312颗合作星，平均每个同学得到几颗
合作星？D. 6（2）班有科技书240本，故事
比科技书少(1/6)．故事书比科技书少多少
书？其中，A缺少部分叙述，让题目略显怪
异，属于此类，正确的写法：一本书原价
是18元。而B的括号为答案区，并非缺少资
讯，因此不在此列。C属于此类，D属于此
类。
(When a mathematical problem lacks critical
descriptions or symbols, making the problem
statement unclear or difficult to interpret cor-
rectly, this situation is referred to as “Informal
Wording” Such errors prevent readers from ac-
curately interpreting the problem, thus affect-
ing the problem-solving process and outcomes.
Common issues include missing necessary data
or conditions that make calculation impossi-
ble, or incomplete or ambiguous problem state-
ments that leave solvers uncertain about how to
approach the problem.
Examples:
A. The original price of a book was＿18 units.
What is the price after a 50% discount?
B. One number is 1/3 of another number’s 1/4.
The ratio of these two numbers is ((())/(())).
C. There are 13 cooperative groups in the fourth
grade, each with 4 students. If the entire class
earned a total of 312 cooperation stars this
semester, how many stars did each student earn
on average?
D. Class 6(2) has 240 science books. The num-
ber of storybooks is less by (1/6). How many
fewer storybooks are there compared to science
books?
In example A, the lack of a part of the state-
ment makes the problem somewhat peculiar and
falls into this error type. The correct statement
should be: ”The original price of a book is 18
units.” Example B uses parentheses to denote
the answer area and does not lack information;
therefore, it is not considered under this error
type. Examples C and D fall into this error type
due to missing or unclear descriptions.)
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Table 21: Example of prompt refinement for the unit-less type
Error Type Initial Definition and Example Generated by LLM Definition Refined By LLM in the 2nd Round

Unit-less 缺少单位’是一种常见的数学错误，指的
是在数学题目或答案中缺少必要的单位
标示，导致读者无法准确理解数值的具体
含义。单位是用来表示数量的标准，如千
米、米、千米/时、元等。在数学问题中，
单位的缺失会使得问题或答案不完整，甚
至可能引起误解或错误计算。
范例A. 长方体水槽长3公尺、宽2公尺、
高5公尺，请问水槽的容量是? B.工人一天
可以赚10元，工作五天可以赚多少? C. 110-
10*6,其中，A会有其他可能性(立方公分,立
方公尺) 属于此类错误，正确的写法：立方
公尺。而B，钱的单位默认是’元’，所以不
算在此列。C为单纯的数学题目，因此不在
此列。
(“Unit-less” is a common mathematical error,
referring to the absence of necessary unit indi-
cators in a problem or its solution, which pre-
vents the reader from accurately understand-
ing the specific meaning of the values. Units
are standards used to express quantities, such
as kilometers, meters, kilometers per hour, cur-
rency units, etc. In mathematical problems, the
absence of units can render the problem or so-
lution incomplete, potentially leading to misun-
derstandings or calculation errors.
Examples:
A. A rectangular water tank has a length of 3, a
width of 2, and a height of 5. What is the ca-
pacity of the tank?
B. A worker can earn 10 per day. How much
can they earn in five days?
C. Calculate 110 - 10 * 6.
In example A, the lack of units (e.g., cubic cen-
timeters, cubic meters) makes it fall into this
error type of error. The correct specification
should be cubic meters. In example B, the unit
of money is implicitly understood as ”currency
units,” so it is not considered under this error
type. Example C is purely a mathematical ex-
pression and does not fall under this error type
either.)

“缺少单位”是一种常见的数学错误，指的
是在数学题目或答案中缺少必要的单位
标示，导致读者无法准确理解数值的具体
含义。单位是用来表示数量的标准，如千
米、米、千米/时、元等。在数学问题中，
单位的缺失会使得问题或答案不完整，甚
至可能引起误解或错误计算。特别是当题
目涉及多个不同的数值或比例时，缺少单
位会使得这些数值之间的关系不明确，从
而影响解题的准确性。
范例A. 长方体水槽长3公尺、宽2公尺、
高5公尺，请问水槽的容量是? B.工人一天
可以赚10元，工作五天可以赚多少? C. 110
-10*6 D.修路队修一条公路，第一天修了全
长的(1/4)，第二天修了全长的20%，两天共
修了3.6千米，这条公路有多长？其中，A
会有其他可能性(立方公分, 立方公尺) 属于
此类错误，正确的写法：立方公尺。而B，
钱的单位默认是’元’，所以不算在此列。C
为单纯的数学题目，因此不在此列。D属于
此类。
(Unit-less is a common mathematical error, re-
ferring to the absence of necessary unit indica-
tors in a problem or its solution, which prevents
readers from accurately understanding the spe-
cific meaning of the values. Units are standards
used to express quantities, such as kilometers,
meters, kilometers per hour, currency units, etc.
In mathematical problems, the absence of units
can render the problem or solution incomplete,
potentially leading to misunderstandings or cal-
culation errors. Particularly when problems in-
volve multiple different values or ratios, miss-
ing units can obscure the relationships between
these values, thus affecting the accuracy of the
solution.
Examples:
A. A rectangular water tank is 3 long, 2 wide,
and 5 high. What is the tank’s capacity?
B. A worker can earn 10 per day. How much
can they earn in five days?
C. Calculate 110 - 10 * 6.
D. A road construction team repairs a road. On
the first day, they repaired (1/4) of the total
length, and on the second day, they repaired
20% of the total length. In two days, they re-
paired 3.6 kilometers. How long is the road?
In example A, the lack of units (e.g., cubic cen-
timeters, cubic meters) makes it fall into this
error type of error. The correct specification
should be cubic meters. In example B, the unit
of money is implicitly understood as “currency
units,” so it is not considered under this error
type. Example C is a purely mathematical prob-
lem and does not fall into this error type. Ex-
ample D lacks units for the road length and falls
into this error type.)
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Table 22: Example of prompt refinement for the unclear relationship type
Error Type Initial Definition and Example Generated by LLM Definition Refined By LLM in the 2nd Round

Unclear Relation-
ship

数值意义不明确是指在数学题目中，数值的描述不够清晰
或具体，导致读者无法准确理解题意或进行正确的计算。
这种错误通常发生在涉及比例、倍数或百分比的题目中，
当数值的关系没有明确说明时，容易引起混淆。
范例A. 鸡蛋有120个，鸭蛋比鸡蛋多(1/6)，请问两种蛋
共有几个？B. 百家村要挖一条540米的水渠，第一天挖
了20%，第二天挖了(1/8)，两天共挖了多少米？C.商店去
年的营业额是240万．相当今年的(4/5)，今年的营业额是
多少万？其中，A 描述数量关系时缺少’倍’字, B 缺少描
述的主词而属于此类错误，正确的写法：多(1/6)倍、总
长的(1/8)。而C，因为’相当今年的(4/5)’就算不用’倍’字也
知道它代表是一个倍数，所以不算在此列。例如，全部
的1/6,总长的3/7,某某的x/x,题目单位不会有分数..等等，
也不属于此错误。
(Unclear relationship refers to instances in mathematical prob-
lems where the description of the values is not sufficiently clear
or specific, making it difficult for readers to accurately under-
stand the problem or perform correct calculations. This type
of error often occurs in problems involving ratios, multiples,
or percentages, where the relationships between values are not
clearly stated, leading to confusion.
Examples:
A. There are 120 chicken eggs, and the number of duck eggs is
more than the chicken eggs by (1/6). How many eggs are there
in total?
B. A village plans to dig a 540-meter canal. On the first day,
they dug 20%, and on the second day, they dug (1/8). How
many meters did they dig in total over the two days?
C. The store’s revenue last year was 2.4 million, which is (4/5)
of this year’s revenue. What is this year’s revenue in million
units?
In example A, the description of the quantity relationship lacks
the word ”times” and thus falls into this error type of error; the
correct phrasing should be ”more by (1/6) times.” In example
B, the subject of the description is missing, making it another
example of this error; the correct phrasing should be ”1/8 of
the total length.” Example C, however, clearly states that ”4/5”
refers to a multiple of this year’s revenue, so it does not fall un-
der this error type. For instance, phrases like ”1/6 of the total,”
”3/7 of the length,” or ”x/x of something,” where units cannot
be fractions, are also not considered this type of error.)

数值意义不明确是指在数学题目中，数值的描述不够清
晰或具体，导致读者无法准确理解题意或进行正确的计
算。这种错误通常发生在涉及比例、倍数或百分比的题
目中，当数值的关系没有明确说明时，容易引起混淆。
具体情况包括：数值之间的关系不明确、缺少必要的数
值说明、或数值的描述存在歧义。
范例A. 鸡蛋有120个，鸭蛋比鸡蛋多(1/6)，请问两种蛋
共有几个？B. 百家村要挖一条540米的水渠，第一天挖
了20%，第二天挖了(1/8)，两天共挖了多少米？C. 商
店去年的营业额是240万．相当今年的(4/5)，今年的营
业额是多少万？D. 一桶啤酒倒出(2/3)，刚好倒出12千
克．这桶啤酒原来重多少千克．E. 一列火车从上海
开往天津，行了全程的(3/5)，距天津还有538千米．这
列火车已经行了多少千米？其中，A 描述数量关系时
缺少’倍’字, B 缺少描述的主词而属于此类错误，正确
的写法：多(1/6)倍、总长的(1/8)。而C，因为’相当今年
的(4/5)’就算不用’倍’字也知道它代表是一个倍数，所以
不算在此列。例如，全部的1/6,总长的3/7,某某的x/x,题
目单位不会有分数..等等，也不属于此错误。D 属于此
类，E不属于此类
(Unclear relationship refers to situations in mathematical
problems where the description of the values is not suffi-
ciently clear or specific, leading to difficulties in accurately
understanding the problem or performing correct calcula-
tions. This type of error often occurs in problems involving
ratios, multiples, or percentages, where the relationships be-
tween values are not clearly stated, causing confusion. Spe-
cific issues include: unclear relationships between values,
missing necessary numerical descriptions, or ambiguous de-
scriptions of values.
Examples:
A. There are 120 chicken eggs, and the number of duck eggs
is more by (1/6). How many eggs are there in total?
B. The village needs to dig a 540-meter canal. On the first
day, they dug 20%, and on the second day, they dug (1/8).
How many meters did they dig in total over the two days?
C. The store’s revenue last year was 2.4 million, which is
(4/5) of this year’s revenue. What is this year’s revenue in
millions?
D. A barrel of beer is (2/3) empty, with 12 kilograms poured
out. How much did the barrel originally weigh in kilograms?
E. A train travels from Shanghai to Tianjin, covering (3/5) of
the total distance, with 538 kilometers remaining to Tianjin.
How many kilometers has the train already traveled?
In example A, the description of the quantity relationship
lacks the word ”times,” making it fall into this error type of
error; the correct phrasing should be ”more by (1/6) times.” In
example B, the subject of the description is missing, making it
another example of this error; the correct phrasing should be
”1/8 of the total length.” Example C, however, clearly states
that ”4/5” refers to a multiple of this year’s revenue, so it does
not fall under this error type. Similarly, phrases like ”1/6 of
the total,” ”3/7 of the length,” or ”x/x of something,” where
units cannot be fractions, are also not considered this type of
error. Examples D and E fall into this error type due to un-
clear numerical meanings.)
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Table 23: Example of prompt refinement for the calculation error type
Error Type Initial Definition and Example Generated by LLM Definition Refined By LLM in the 2nd Round

Calculation Er-
ror

不当数学符号是指在数学题目中使用了不
正确或不明确的符号，导致题意模糊或误
解。这种错误通常会使解题者无法正确理
解题目要求，从而影响解题过程和结果。
常见的情况包括缺少括号、使用错误的运
算符号、或符号位置不当等。
范例A. 3-2/6的商，再加上5，结果=? B.
1/2+1/3+1/4=? C. 1/2+1/3+1/4=(( ())/(())) 其
中，A 会有其他可能性(3-2/6的商+5) 属于
此类错误，正确的写法：3-(2/6)+5。而B为
正常数学题目，不在此列。C的括号使用为
答案区，因此不在此列。
(Calculation error refer to the use of incorrect
or unclear symbols in mathematical problems,
leading to ambiguous or misunderstood prob-
lem statements. These errors can prevent the
solver from correctly understanding the prob-
lem’s requirements, thus affecting the problem-
solving process and outcomes. Common issues
include missing parentheses, incorrect use of
operators, or improper placement of symbols.
Examples:
A. The result of 3-2/6, plus 5, equals?
B. 1/2 + 1/3 + 1/4 = ?
C. 1/2 + 1/3 + 1/4 = ((())/(()))
In example A, there is ambiguity due to the
placement of the symbols, potentially leading to
multiple interpretations (3 - (2/6) + 5). The cor-
rect expression should be written as 3 - (2/6) +
5. Example B is a standard mathematical prob-
lem and does not fall into this error type. Ex-
ample C uses parentheses to denote the answer
area and therefore is not considered an error in
symbol usage.)

不当数学符号是指在数学题目中使用了不
正确、不明确或不合适的符号，导致题意
模糊或误解。这种错误通常会使解题者无
法正确理解题目要求，从而影响解题过程
和结果。常见的情况包括缺少括号、使用
错误的运算符号、符号位置不当、符号不
完整或符号格式错误等。
范例A. 3-2/6的商，再加上5，结果=? B.
1/2+1/3+1/4=? C. 1/2+1/3+1/4=(( ())/(()))
D. (10/3)与(1/3)的和比(5/6)与(4/5)的和多多
少？E. 从(9/7)的倒数里减去(6/7)/(6/5)的
商，差=? 其中，A 会有其他可能性(3-
2/6的商+5)属于此类错误，正确的写法：3-
(2/6)+5。而B 为正常数学题目，不在此
列。C 的括号使用为答案区，因此不在此
列。D不属于此类，E不属于此类。
(Calculation error refers to the use of incorrect,
unclear, or inappropriate symbols in mathemat-
ical problems, resulting in ambiguous or misun-
derstood problem statements. These errors of-
ten prevent solvers from accurately understand-
ing the problem’s requirements, thereby affect-
ing the problem-solving process and outcomes.
Common issues include missing parentheses,
incorrect use of operators, improper placement
of symbols, incomplete symbols, or incorrect
symbol formatting.
Examples:
A. The result of 3-2/6, plus 5, equals?
B. 1/2 + 1/3 + 1/4 = ?
C. 1/2 + 1/3 + 1/4 = ((())/(()))
D. How much more is the sum of (10/3) and
(1/3) compared to the sum of (5/6) and (4/5)?
E. The difference when subtracting the quotient
of (6/7) divided by (6/5) from the reciprocal of
(9/7) is?
In example A, there is ambiguity due to the
placement of the symbols, potentially leading to
multiple interpretations (3 - (2/6) + 5). The cor-
rect expression should be written as 3 - (2/6) +
5. Example B is a standard mathematical prob-
lem and does not fall into this error type. Ex-
ample C uses parentheses to denote the answer
area and therefore is not considered an error in
symbol usage. Examples D and E are also not
considered under this error type.)
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