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ABSTRACT

When designing math word problems, teachers must ensure the clarity and preci-
sion of the question to avoid multiple interpretations and unanswerable situations,
thereby maintaining consistent grading standards and effectiveness. We address
these issues to provide comprehensive support to teachers in creating clear, solv-
able, and formal math word problems. In this paper, we present MathError, a
dataset of real-world math word problems annotated with error types to inves-
tigate the need for question correction. Our work explores how large language
models (LLMs) can assist teachers in detecting problematic questions to support
math word problem design in scenarios with limited data, simulating real-world
conditions with minimal training samples. Preliminary results demonstrate the
models’ capabilities in detecting problematic questions and identify areas for fur-
ther research and development in educational applications.

1 INTRODUCTION

When coming up with exam questions, teachers must ensure that the questions are clear and pre-
cise. This prevents students from misunderstanding the questions, which could lead to inconsistent
grading standards and render the questions ineffective. This is particularly important for math word
problems where there should usually be only one correct answer. However, when questions are for-
mulated, there may be blind spots or minor oversights that lead to misinterpretations by students,
or a lack of crucial details, making immediate comprehension difficult. For example, “The original
price of an apple is 2 dollars. It has been discounted twice: the first discount is 10%, and the second
discount is 5%. What is the current price of the apple?” It is unclear whether the second discount
is to be applied to the original price or to the price after the first discount. Consequently, this de-
scription may cause confusion and uncertainty for students. It is therefore essential to construct a
system that assists teachers in ensuring that the questions do not have multiple interpretations or are
unanswerable.

Several studies have investigated situations where questions are unanswerable. Questions can
be unanswerable in the following scenarios: (1) The knowledge sources are incomplete, failing
to cover all the necessary facts required to answer the question (Patidar et al., 2023); (2) User-
generated questions are poorly formatted, are missing entities or predicates, or contain ungrammati-
cal phrases (Faustini et al.,|2023)); (3) The question is ambiguous and thus allows for more than one
interpretation (Min et al., 2020); (4) Details in the question are inconsistent with the facts (Yen et al.,
2021). Unlike previous studies that focus on knowledge base question answering or open-domain
questions, we address multiple interpretations and unanswerable issues in math word problems.
Specifically, we seek to detect the following conditions to support teachers in designing math word
problems.

* Questions may result in multiple or unintended solutions due to imprecise descriptions,
missing conditions or constraints, or unclear relationships between multiple values.
* Questions may be unanswerable as they contain unclear terms or noticeable omissions.

This issue could be influenced by language, as imprecise descriptions, missing conditions, and un-
clear relationships between values may manifest differently across languages. Additionally, the
complexity of error types can vary depending on the difficulty level of the math problems. In this
pilot study, we focus on elementary-level math word problems presented in Chinese.
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Sun et al.| (2024) have explored similar issues, emphasizing the importance of detecting problem-
atic math word problems by constructing a dataset of unanswerable questions with predefined error
types. This highlights the growing attention to the task of identifying and addressing challenges in
math word problem design. However, while their study focuses on error types specifically created
for their experiment, our work shifts towards detecting naturally occurring errors in real math word
problems. In addition, we investigate more nuanced issues, such as multiple interpretations or un-
intended solutions, which can be challenging for models to identify. Hence, we extend the existing
Chinese math word problem dataset—Math23K (Wang et al., |2017)—with error type annotations.
Math23K questions provide rich textual descriptions that naturally meet our requirements.

Given the remarkable capabilities of large language models (LLMs) in language understanding and
generation, recent studies use LLMs to generate test questions for student practice (Gonzalez et al.,
2023} |[Feng et al.; 2024} Song et al.| [2023)). The pedagogical ability of LLMs in mathematics educa-
tion has also been studied (Yen & Hsul 2023; Wang et al.| 2024; Daheim et al.| 2024). Some works
have investigated the role of LLMs in assisting teachers with tasks such as distractor generation for
math multiple-choice questions (Feng et al., 2024} Lee et al.,[2024; [Hunter McNichols et al.| [2024).
Liu et al.|(2023)) have shown that modeling ambiguity remains a significant challenge for LLMs, re-
inforcing the importance of developing methods to detect and address these problems. However, the
capability of LLMs to recognize errors in math word problems and disentangle potential meanings
is rarely explored. Thus, this work explores the capability of LLMs in identifying problematic math
word problems. We further investigate a self-optimizing approach that allows the model to learn
from its mistakes. By iteratively reflecting on the wrong predictions, the model refines instructions
and demonstrations within the prompt, improving performance in detecting error types.

To sum up, the contributions of our work are threefold: (1) We assist teachers in ensuring the clarity
of math word problems by detecting errors in question statements that can lead to several interpreta-
tions or render the problems unanswerable. (2) We present the MathError datasetf_-] which is designed
for detecting errors in the statements of math word problems, to facilitate the investigation of the
need for correcting problematic questions. (3) We explore a self-optimizing framework where the
model iteratively refines its instructions and demonstrations through a reflection mechanism. This
approach simulates real-world scenarios where data is scarce by utilizing only a few examples, offer-
ing a preliminary solution to the challenge of error detection in math word problems. Experimental
results show that the prompts refined by our reflection mechanism yield better performance.

2 RELATED WORK

Ambiguous and Unanswerable Questions: There are several types of ambiguity: lexical, syntac-
tic, semantic, pragmatic, and anaphoric (L1 et al.l [2024)). Numerous works address disambiguation
using methods such as syntactic and semantic parsing (Tanaka et al. 2007; |[Koller et al., [2008)) or
coreference resolution (Kocijan et al., |2019). In question-answering applications, ambiguous user
queries lead to unanswerable queries. Methods have been developed to identify question answer-
ability (Zhang et al.| 2021} [Yang et al., 2019) and generate clarification questions (Zamani et al.,
2020; |[Krasheninnikov et al., [2022) or correct unanswerable questions (Yen et al., 2021). There has
also been growing interest in addressing ambiguity in math word problems. Sun et al.| (2024)) de-
fine five different categories of unanswerable questions. Curated annotators modified answerable
questions into unanswerable ones based on the categories. By contrast, we construct a dataset by
annotating error types of real-world questions rather than modifying questions into unanswerable
forms based on specific categories, which may make it difficult for models to identify specific pat-
terns to determine whether a question contains errors. Consequently, our dataset comprises not only
unanswerable questions but also questions with multiple possible solutions.

Self-Optimization with LLMs: LLMs have made significant advancements in producing coherent
text and following given instructions (Wei et al., [2022a} |(Ouyang et al., [2022). Recently, methods
have been investigated that elicit feedback from LLMs on self-generated solutions, enabling iterative
improvement of outputs based on the feedback. Madaan et al.| (2024) propose a framework that
iteratively refines the generated output via self-evaluation. Several studies explore the use of LLMs
for optimizing prompts. |Zhou et al.|(2022) employ the LLM to create instructions, select the proper
instructions based on accuracy, and instruct the LLM to generate a semantically similar variant.

!The dataset and code will be released upon acceptance.
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Pryzant et al.|(2023)) propose an approach to guide the LLM to provide textual feedback on how to
revise an existing instruction at each step. Methods have also been developed to use natural language
feedback generated by LLMs to refine the model’s output (Chen et al., 2023} |Ganguli et al.| 2023
Shinn et al.|[2023). Inspired by these studies, we introduce a reflection mechanism to our framework
to refine the LLM’s prompts in detecting problematic questions in mathematics.

3 FRrROM MATH23K TO MATHERROR

The two conditions outlined in Section[I|lead to errors that could significantly impact the clarity and
accuracy of math word problems:

1. Multiple Interpretations (INTPN): The question allows for multiple possible interpreta-
tions, leading to more than one possible solution.

2. Informal Wording (Informal): The wording of the question is not formal or is incomplete,
such as including unnecessary words or symbols, having noticeable omissions, or contain-
ing typographical errors, making the problem statement difficult to understand.

3. Unitless (Unit): The question does not specify the required unit, which may lead to confu-
sion about what measurement is expected.

4. Unclear Relationship (Rel): The description fails to clearly indicate the relationship be-
tween the values, leading to misunderstandings about the question’s meaning.

5. Calculation Error (Calc): The problem uses imprecise words to describe a mathematical
expression, for instance, making it unclear whether to perform multiplication or division
before addition or subtraction; this can cause students to calculate in the wrong order.

If a math word problem exhibits none of the issues mentioned above, it belongs to the None type.
Note that we focus extends beyond detecting ambiguities in math word problems. We aim to address
a challenge: ensuring that problem descriptions are formal and complete for use in official exami-
nations. Our goal is to support teachers in refining the clarity and precision of problem statements,
helping to eliminate informal language and incomplete details that could lead to misinterpretations.
As math word problem error types can be highly diverse, it is difficult to immediately identify all
possible types. The error type definitions and dataset construction are in Section 4}

4 DATASET CONSTRUCTION

Error Type Definition. Math23K comprises a total of 23,162 Chinese math word problems. To
establish an initial set of error types, we randomly sampled 200 questions, referred to as the initial
set, and categorized the errors present in these questions. We conducted a preliminary annotation
of problematic descriptions, after which we consolidated these initial error types by merging similar
ones. This process resulted in the identification and definition of five distinct error types. Yet, we
are unsure whether the five error types are sufficient and whether they cover all possible errors.
Additionally, we cannot guarantee the completeness of these error definitions. Thus, we established
an iterative refinement annotation process to ensure the quality of the dataset annotation.

Iterative Refinement Annotation. We invited three annotators and split the entire dataset into four
parts, with each person responsible for the labeling of 5,815 samples)”| We labeled one of these parts
by ourselves. To ensure consistency and quality across the dataset, we conducted a quantitative
evaluation of the annotators’ labeling accuracy using our pre-annotated set of 100 samples, which
we refer to as the golden set. Of these, 23 samples contained math word problems with error state-
ments, whereas 77 samples had no errors. To evaluate the correctness of the annotators’ labels, we
divided the 100 samples from the golden set into five subsets, each containing 20 samples, ensuring
a balanced representation of error types. These golden sets were inserted into the subsets that the
annotators were to label.

The annotation process was as follows. The annotators first labeled the initial subset of 20 samples
from the golden set. These 20 samples were used to verify the annotators’ labeling correctness.
Since these samples had gold labels, we assessed the macro F-score of each annotator’s results.
Based on these results, we then provided further clarification and discussion on unclear aspects. An-
notators are allowed to revisit and modify their previously labeled data if necessary. At this stage,

2 Additional data annotation details are in Appendix
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Table 1: Annotation agreement across five stages
Stage 1  Stage2  Stage3 Stage4 Stage5 Overall
Precision  0.4546  0.7692  0.8335 09286 1.0000 0.7972
Recall 04166 04167 0.5556 0.5417 0.6000  0.5061
F-score 0.4348  0.5405 0.6667 0.6842 0.7500 0.6153
Table 2: Error types in math word problems
Error type Question Reason

Multiple Inter-
pretations

Informal
Wording

Unitless

Unclear Rela-
tionship

e

R EAN3000TT HY 23 I 56 J5 T IR, 88— IRFET10%, 55—
R FENS% . IAEX R ZE &M £ IC? (An air conditioner
originally priced at 3000 yuan was discounted twice: the first discount
was 10%, and the second discount was 5%. What is the current price of
the air conditioner?)

FEBEEE /095, PMMIET—AS, WEMEET, XA
JEANZ >TC? (A certain bookstore charges 0.95 for books purchased.
A girl bought a book and saved 6 yuan off the original price. What was
the original price of the book?)

—ARACSL, FA32AD A (] 92 T SBE,  BARTRE B BERF 7 — 1R K
Sk RTEL, FREZL/DEA? (A piece of wood is cut into 5 sections
in 32 seconds. At the same rate, how much time is needed to cut another
piece of wood into 7 sections?)

SPFERGIVE KSR AN2406 , LHEIKEZ1/5), B
BEE R IKFEZ &2 (An appliance store currently has 240 televi-
sions of various brands, which is more than refrigerators by 1/5. How
many refrigerators does the store have?)

The question does not clarify whether the second
discount applies to the new price after the first
discount, or to the original price.

The problem statement might lead one to believe
that all books in the bookstore are priced at 0.95
yuan. The intended meaning, however, is that a
5% discount is applied to the original price.

The unit for the required time is not specified.
For example, the question should ask, “How
many seconds?”

The question does not clarify the actual mean-
ing of “more by 1/5”. It should describe that the
number of televisions is 1/5 times more than the
number of refrigerators.

Calculation Er-
ror

The statement is incorrect because it does not
clearly define the operation, leading to confusion.
A more precise wording would be “6000 divided
by 59, and then subtract 35 from this result.”
The question is clear and correct.

6000/59535() 2, T ? (What is the quotient of the difference be-
tween 6000/59 and 357?)

NRXIBE, NEIR42TT, WITEIRT047T, NMEH/PIE
#8157 2 JL? (Xiaohua donated 4.2 yuan, which is 0.4 yuan more than
what Xiaoli donated. By what fraction did Xiaohua donate more than
Xiaoli?)

None

they could also provide feedback and suggest adjustments to the error type definitions. After con-
firming no immediate issues with the annotators’ task, they continued labeling the next 20 samples
from the golden set. This process was repeated using our pre-annotated gold labels to evaluate
the annotators’ performance for the 20 samples and identify discrepancies. This iterative process
continued until all data in the golden set was annotated.

Table [I] presents the annotators’ labeling correctness, evaluated using macro F-scores against the
gold labels. The five stages correspond to macro F1 scores for subsets labeled at different stages,
with increasing scores reflecting improved consistency and accuracy from iterative discussions and
revisions. The inter-annotator agreement, as measured by Fleiss’ kappa value, is 0.6038, indicating
a moderate level of agreement. To ensure that annotators fully understood the task and applied
consistent standards, we had them annotate the remaining 100 samples from the initial set, of which
21 were problematic math questions. The inter-annotator agreement for this round reached a Fleiss’
kappa of 0.8103, representing substantial agreement. After ensuring a sufficient level of consistency
in the annotation standards, we assigned the annotators to label their respective portions of the data.

Dataset Analysis. Table [2] presents the examples for each error type. This process resulted in
23,162 math word problems, with an error-type distribution of Multiple Interpretations, Informal
Wording, Unitless, Unclear Relationship, Calculation Error, and None errors of 136, 1,076, 416,
606, 67, and 20,916, respectively. Although “Multiple Interpretation,” “Informal Wording,” and
“Unclear Relationship” all stem from imprecise or incomplete problem descriptions, their effects
differ. “Multiple Interpretation” may lead to various interpretations, resulting in multiple possible
solutions. On the other hand, “Informal Wording” and “Unclear Relationship” involve cases where
the teacher’s intended question can still be inferred, but the phrasing is informal and unsuitable for
offical examinations. “Unclear Relationship” specifically refers to situations where numerical rela-
tionships are not clearly defined, affecting the clarity of the problem. As for “Calculation Error,”
it typically arises from mixed mathematical and verbal expressions. For instance, in the example
provided in the Table [2| a more precise wording would be, “6000 divided by 59, and then subtract
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Algorithm 1: Refinement via self-
optimization

Initialize M., M, Me, fe, f;

Generate s; € S for each ¢t € T using D

for number of max trials do

’
Instruction: [...] /ﬁ\ for qi € D do
Definition: [...] assifier Classification J— ).
E§a|11p]es: [.:.] (LM) Result: [...] L Yi MC(S7 d’ ql)’
Given Question: [...] \ J 7= fe (g7 y),
T U Oviimisation Process T s fort € T do
cli-Optimization Frocess - . _ .
ST Set reflection set R = {};
Refined Reflect £ t D, d
Definition: [...] GilEgior or q; € o
OV if y! # ¢! then
Judge Evaluator L R+ qZF;
Selocted ( Example ‘ B
Exc;n?pclzt:: [..] Reflector Sj = MS(St’ R)’
&) d; = Me(ds, R):
if fj (St D dt, gt (&3} dt) > Tthen
L Stop refining s; and d; in next round;
st = 8t;
dy = dy;

Figure 1: (a) Overview of Reflexion Framework. (b) Refinement via self-optimization algorithm.

35 from this result.”” We aim to detect these five types of errors to assist teachers in refining problem
descriptions, ensuring they are more comprehensive and formal, which is essential for official exam-
inations. Note that a single math world problem may contain multiple errors. Therefore, detecting
error types in math word problems is a multilabel classification task.

5 PROMPT REFINEMENT THROUGH SELF-OPTIMIZATION

Various prompting methods have been proposed to enhance LLM performance. With zero-shot or
few-shot learning (Brown et al.| 2020), LLMs can tackle a range of tasks by providing a few ex-
amples about the task. Chain-of-thought prompting (CoT) techniques (Wei et al.| 2022b; [Yasunaga
et al. |2024) successfully guide models to solve complex problems through step-by-step reasoning.
Thus, we utilize LLMs with appropriate prompts for error type detection. Most research typically
involves humans carefully designing prompts to instruct LLMs in performing tasks. We pose the
question of whether allowing the model to independently understand the task objectives and reflect
on its execution results to adjust its instructions and few-shot examples can enhance the performance
of LLMs on this task. A mechanism may be needed to generate definitions that the model can un-
derstand and to provide suitable examples for specific error types that the model struggles with. We
propose a method to iteratively reflect on incorrect classification results. By refining error type defi-
nitions based on these reflections, the model articulates task details according to its comprehension.
Furthermore, the model selects proper examples to strengthen its reasoning abilities. Figure || (a)
shows an overview of the framework for prompt refinement through self-optimization (PRO).

PRO comprises a classifier M., a definition reflector M, an example reflector M., an evaluator
fe,and a judge f;. M., M, and M. are the same LLM but with different prompts. All the prompt
templates used in this work are presented in Appendix [B] For the self-optimization process, we
partition our training set into sets D and D' for demonstration and reflection, respectively. In PRO,
instead of using human-written definitions, we employ an LLM M to generate the initial definition
s¢ of each error type t € T'. Specifically, given a set of questions ; € D that contains an error of ¢
and its corresponding corrections Q;, we obtain s, = M(Qy, Q;) To assess whether the definition
requires refinement, we consult the classification results. Given the definitions S of 7', the selected
examples d in D, and the i-th question ¢; in D', we obtain the prediction y; = M(S,d, ¢;). M, is
prompted to predict the possible error types in g;.
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After obtaining the initial classification results, we proceed to the self-optimization phase detailed
in Figure[I|(b). We set a maximum number of trials to iteratively refine S and update d through M
and M., respectively. The evaluator f. measures the classification results using the macro-averaged
F-score, allowing us to judge the model’s performance in each round. For each ¢, incorrectly pre-
dicted questions are extracted for self-reflection. Formally, if the predicted error type y! does not
match the ground truth ¢!, the question ¢! is appended to reflection set R. Subsequently, the refined
definition §; of ¢ is obtained as §; = M(s¢, R). Additionally, the demonstrations are updated by
extracting questions in R. Given R and the current demonstrations d; for ¢, we obtain the updated

demonstrations Jt = Mgy(ds, R). §; and Jt are used in the next round as s; and d;, respectively.

Finally, to determine whether the updates to s; and d, have converged, judge f; compares the dif-
ference in the reflection results between the previous and current rounds. We measure the difference
between the concatenation of s; & d; and 5; & d; using ROUGE-1 (Lin, [2004). If the ROUGE-1
score v = fj(st @ dy, §; @ dy) is greater than the threshold 7, we view it as convergence. In this
case, s; and d; are not refined in the next round. If S and D converge, self-optimization ceases. To
determine which definitions and examples to use, we measure the performance of S and d in each
round using z = f.(7,y): S and d from the highest-scoring round are used to instruct M, to detect
error types in the test set. The number of max trials and 7 are set to 10 and 0.9, respectively.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Since most questions in Math23k were of the None type, we randomly selected a subset of math
word problems from this type. This resulted in a total of 4,766 math word problems in MathError. To
simulate limited data availability, we identified patterns from sparse data and applied them to specific
tasks. Specifically, we focused on detecting error types in math word problems, despite having few
such questions with errors. The data used for demonstration and reflection consisted of 15 and 30
math word problems, respectively. The remaining 4,721 math word problems were used for testing.
The demonstration set consisted of 3 questions for each error type, providing a foundation for the
initial model for inference. The reflection set, designed to refine and validate the model, included
2 questions for each error type and an additional 20 questions without errors. In the test set, the
number of questions for INTPN, Informal, Unit, Rel, Calc, and None were 131, 1,071, 411, 601, 62,
and 2,500, respectivelyE] We utilized OpenAI’s API, in particular the gpt-3.5-turbo-0125
and gpt—-40 models. The temperature was set to O to increase reproducibility.

6.2 EXPERIMENTAL RESULTS

Table [3| shows the performance of each method on overall error types. We use the macro-averaged
F-score as the evaluation metric and report the F-scores for each error type. The top four rows show
the baseline models using LLM for direct inference on the test set with few-shot prompting and
no refinement. The baseline models are GPT-3.5 and GPT-40. We compare the impact of using
the human-written and model-generated definitions. The “Definition” column denotes whether the
initial definitions of all error types used in few-shot prompting were written by humans or generated
by LLM. We also tested human-written and model-generated examples. In Table [3] all the results
are based on human-written examples, as this is the optimal setting. The results of using human-
written and model-generated examples will be discussed in the following section. Specifically, we
employed an LLM to classify the error types of each question in the training set. Then, the LLM
was instructed to generate examples based on the questions which are classified incorrectly.

As different reasoning strategies can yield different results, we conducted an experiment to find the
most suitable strategy for detecting error types. We tested the following four strategies.

¢ Directly Classify: M. is prompted to predict the error type with any reasoning steps.
* Analyze — Classify: M, is tasked to generate an analysis of the errors present in the
question and then classify the error types.

3The sum of questions exceeds the total because some contain multiple error types.
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Table 3: Results of error type detection

Method Definition = Best strategy ~ Overall INTPN Informal Unit Rel Calc  None
Human Solve — Classify 0.2572 0.0519  0.3086 0.0616 0.3050 0.3394 0.4770
GPT-3.5 Model  Directly classify  0.2295 0.0938  0.3422 0.1850 0.2681 0.2255 0.2625
Human Solve — Classify 0.2781 0.0777 04247 0.2319 0.2525 0.0461 0.6354
GPT-4o Model Directly classify  0.3118 01256  0.4362 0.3081 0.3930 0.2269 0.3812

Human Solve — Classify 0.2493 0.0134  0.2688 0.0702 0.2706 0.3270 0.5457
PRO(GPT3.5)  Model Directly classify  0.2547 0.0426  0.2063 0.1109 0.1393 0.3800 0.6490

Human Solve — Classify 0.2697 0.0696 0.4108 0.2079 0.2747 0.0455 0.6096
PRO (GPT-40)  Model  Directly classify 03243 0.0936  0.4271 0.3109 0.4212 0.2538 0.4390

Table 4: Results of PRO (GPT-40) using different inference strategies

Method Strategy Overall INTPN Informal Unit Rel Calc  None
CoT 0.2367 0.0457 03368 0.2249 0.2097 0.0492 0.5534
Directly Classify 0.3243 0.0936  0.4271 0.3109 0.4212 0.2538 0.4390
PRO  Analyze — Classify 0.2563 0.0864 04106 0.2270 0.2878 0.0688 0.4574
(GPT-40)  Solve — Classify 0.2420 0.0980  0.3942 0.1769 0.2934 0.1188 0.3708

Solve — Classify — Correct  0.2709 0.0605  0.3187 0.1551 0.2898 0.1625 0.6385

* Solve — Classify: M., solves the math word problem before classifying the error type.
This strategy enables M, to identify informal or missing information during problem-
solving.

* Solve — Classify — Correct: after solving the problems and classifying the error types,
M also corrects the errors in the questions.

For each method, we report the results of the best-performing strategy. In PRO, the self-optimization
process refines human-written definitions and model-generated definition by M . Experimental re-
sults show that PRO based on GPT-40 with model-generated definitions outperforms other methods,
and significantly outperforms GPT-3.5 with model-generated definitions (p < 0.05). Although it
does not significantly outperform the remaining methods in Table [3 overall, PRO (GPT-40) with
model-generated definitions detects the most problematic questions. This indicates that iteratively
refining definitions and updating examples helps the model better accomplish the task.

Additionally, using model-generated definitions is more effective than using human-written ones,
even though GPT-3.5 shows a different preference. This may be because in error type detection,
reflecting on the wrong prediction and coming up with a solution to refine the definitions and select
examples that can strengthen the reasoning process requires an LLM with more powerful natural
language understanding and generation abilities. Comparing the results between GPT-40 and “PRO
(GPT-40)”, the proposed reflection mechanism enhances the ability to detect Informal, Rel, Calc,
and None types. Although the F-score for None type detection is not the highest, we may require
a more stringent model in this context, even if it entails accepting false alarms. This supports our
hypothesis that allowing the model to generate its own decision criteria leads to better task compre-
hension and enhances the reasoning ability.

In contrast, we find that GPT-40 does poorly at detecting the Calc type, especially when using
human-written definitions. Perhaps LLMs possess better language understanding capability, allow-
ing them to conjecture the most possible calculation order described in natural language. Hence, the
model perceives the descriptions as without errors. Moreover, both GPT-3.5 and GPT-4o struggle to
detect INTPN. This shows that detecting whether a math word problem has multiple interpretations
is still a challenging issue. Further error analysis is presented in Appendix

Table ] shows the results of “PRO (GPT-40)” using different strategies. In general, direct classifica-
tion is the most effective for detecting problematic questions, whereas solving the problem and then
classifying its error type is best for detecting INTPN errors. Interestingly, if the strategy involves the
LLM correcting the problematic questions, the model tends to classify questions as correct. We also
conducted a comparison using the CoT prompting method. Unexpectedly, this approach yielded
poorer performance compared to the “Direct Classify” method. Based on these results, we specu-
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Table 5: Comparison of GPT-3.5 with different prompting methods for each error type

Method Strategy Overall INTPN Informal Unitless Rel Calc  None
GPT-3.5 Zero-Shot 0.2202 0.0262  0.1620  0.2862 0.3238 0.2704 0.2524
GPT-3.5 Few-Shot Directly Classify 0.2407 0.0875  0.2729 0.2014 0.2457 0.2363 0.4001
GPT-3.5 CoT 0.2196 0.0000  0.1667 0.2382 0.0458 0.2884 0.5784

Table 6: Results of different classification methods with zero-shot prompting
Method Definition  Task  Strategy Overall INTPN Informal Unit Rel Calc None

Human  Binary 0.1447 0.0541 0.3674 0.1620 0.2586 0.0259 0.0000
GPT-3.5  Human Multilabel Directly 02202 0.0262 0.1620 0.2862 0.3238 0.2704 0.2524
Zero-shot  Model ~Multilabel Classify 0.2494 0.0309 0.1442 0.3864 0.2826 0.2607 0.3916

late that if an LLM is guided to reason, the stronger the LLM’s inferencing ability, the more it may
overlook issues in textual descriptions, leading to ineffective error detection.

7 ANALYSIS AND DISCUSSION

In this section, we formulate and discuss six research questions which we address by conducting
corresponding experiments. The results reported below are based on the “directly classify” strategy
for each method. This pilot study seeks to explore how in-context learning can be utilized to detect
problematic questions. Hence, the first research question (RQ1) arises: Which of the commonly
used prompting methods—zero-shot, few-shot, or CoT prompting—yields the best performance in
detecting errors in math word problems?

Impact of Different Prompting Methods: Table[5|presents the results of utilizing GPT-3.5 to detect
error types using different prompting methods. The results indicate that few-shot prompting based
on human-written definitions and examples outperforms the other prompting methods, although the
difference is not statistically significant. We found that CoT prompting struggles with detecting
questions that have multiple interpretations. The analysis of the model’s reasoning output indicates
that CoT prompting often leads the model to infer a fixed interpretation of the question, overlooking
alternative interpretations. In contrast, GPT-3.5 with few-shot prompting demonstrates promising
performance in detecting questions with multiple interpretations, informal wording, and unclear
relationships. These error types are critical for teachers when refining problem design, as they
significantly influence the clarity and validity of the questions posed to students.

In the experiments in Table [3} we set error type detection as multilabel classification. However, the
model can also perform binary classification for each error type by querying whether a specific math
word problem contains that particular error. This raises the second research question (RQ2): Which
method for error type detection is more suitable: multilabel classification or binary classification?

Multilabel Classification vs. Binary Classification: Table [6] shows the results when treating error
type detection as multilabel or binary classification. We used the GPT-3.5 model with zero-shot
prompting. The strategies in all settings are “Directly classify”. We find that multilabel classification
outperforms binary classification. Additionally, binary classification causes the model to tend to
view every math word problem as erroneous. A possible reason is that the prompt for multi-label
classification provides definitions of all types, which helps the model better understand the error
types compared to binary classification. However, as shown in Table[6] the performance when using
the GPT-3.5 definitions is better than that using the human-written definitions. This leads to the
third research question (RQ3): Should the definitions and examples in this task be generated by the
model itself or provided by humans?

Human-Written vs. Model-Generated Prompts: Table[7]presents the results when using GPT-3.5
with few-shot prompting with various settings to confirm which definitions and examples are bet-
ter. The overall best performance is achieved when human definitions are written and paired with
human-written examples. However, as shown in Table[7} the average performance in detecting five
error types using GPT-3.5-generated definitions is better than that using human-written definitions.
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Table 7: Model-generated vs. human-written definitions and examples
Method Definition Examples Strategy Overall INTPN Informal Unit Rel Calc  None

Human  Human 02407 0.0875 0.2729 0.2014 0.2457 0.2363 0.4001
GPT-35 Human  Model pjrecry 02031 0.0596 02004 02030 02510 0.2701 0.2345
Model ~ Human (lageify 0-2295 0.0938 03422 0.1850 0.2681 0.2255 0.2625
Model ~ Model 02267 0.0541  0.2665 0.2471 0.2307 0.2218 0.3400
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Figure 2: Refinement differences across rounds using PRO

The average F-scores of all the error types in the first and third rows are 0.2088 and 0.2229, re-
spectively. Comparing Table[6|and Table[7] “GPT-3.5 Zero-shot” using model-generated definitions
(0.2494) outperforms “GPT-3.5 Few-shot” using human-written definitions and examples (0.2407).
Nonetheless, the few-shot prompting methods are better at detecting errors in the “INTPN” and
“Informal” types. Thus, when seeking to detect error types, a combination of model-generated
definitions and human-written examples is a more suitable approach. On the other hand, although
PRO achieves better performance by refining prompts based on reflecting on wrong predictions, the
changes in prompts for each round have not been discussed. This leads to the forth research question
(RQ4): How do different initial definition approaches and LLMs impact the refinement differences
and convergence across rounds?

Effects on Refinement and Convergence: Figure [2] presents the refinement differences across
rounds using PRO. We present the results of PRO based on GPT-3.5 and GPT-40, using either
human-written or model-generated definitions, with all examples human-written. The x-axis repre-
sents the round number, and the y-axis denotes the ROUGE score difference between the current
and the previous round’s definitions and examples. Specifically, we measured the ROUGE-1 score
of definitions and examples before and after rounds of self-optimization. A higher score indicates
greater similarity between definitions and examples across rounds. With this analysis we investigate
the number of rounds required for convergence under different settings. GPT-3.5 significantly refines
descriptions, leading to considerable variation and making convergence difficult, often reaching the
maximum of 10 rounds. GPT-4o, in turn, makes slight refinements, typically adding a few details to
definitions and examples, and generally converging in around 5 rounds due to smaller refinements
and fewer classification errors.

Additionally, Figure 2] shows a significant increase in ROUGE scores during the first three rounds,
indicating substantial modifications to definitions and examples based on classification results. This
trend levels off in later rounds, suggesting the model has exhausted useful information from D' for
further refinement. Moreover, with human-written definitions, the ROUGE score increases more
sharply in the first three rounds compared to model-generated definitions, indicating a greater initial
disparity. Examples of refinement results are in Appendix [E]

In the above experiments, we evaluated only GPT-3.5 and GPT-40, two large LLMs. This leads to
the fifth research question (RQS): How do LLMs of different sizes perform on this task?

Performance of LLMs with Different Parameter Sizes: We compared the performance of differ-
ent sizes of LLaMA 3 (Al@Meta, 2024) with few-shot prompting using model-generated definitions
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Table 8: Results using different LLMs

Method Denifition Examples Strategy Overall INTPN Informal Unit Rel Calc None
LLaMA3 8B 0.1479 0.0308 0.0165 0.2272 0.2804 0.1362 0.1963
LLaMA3 70B (8 bit) Directly 0-2031 0.0181 0.2406 0.2748 0.3670 0.2253 0.0926
LLaMA3 70B Model - Model =, i 0.2210 0.0138 0.2488 0.2853 0.4066 0.2443 0.1271
GPT-3.5 175B 0.2494 0.0309 0.1442 0.3864 0.2826 0.2607 0.3916

and examples. The results are shown in Table [8| GPT-3.5 outperforms the other models in overall
performance. Although LLaMA3 70B excels at detecting errors, it struggles to identify error-free
questions. It tends to consider questions as informal or incomplete. As model size decreases, overall
performance also decreases. Therefore, effective detection of incorrect descriptions in math word
problems requires a large LLM with strong semantic understanding capabilities.

In our previous research questions, we find that model-generated definitions are most suitable for
detecting error types. We further investigate the reasons behind this finding with the sixth research
question (RQ6): Why are model-generated definitions more effective?

Impact of Model-Generated and Human-Written Prompts: Based on the results shown in Ta-
ble [§] we compared the perplexity of human-written prompts and model-generated prompts. We
speculate that model-generated prompts better align with the model’s probability distribution, en-
hancing its semantic understanding and ability to detect error types. To this end, we examine the
performance of LLaMA3 8 using human-written and model-generated definitions with examples,
with overall performances of 0.1191 and 0.1479, respectively. The results are shown in Table [I8]in
Appendix [D] These results align with the trends presented in Table [6] Furthermore, we assess the
model’s perplexity on both human-written and model-generated definitions with examples, resulting
in values of 0.7041 and 0.6499, respectively. These findings suggest that model-generated prompts
are more predictable, implying the model handles this type of narrative better. This may explain
why model-generated definitions are more suitable in this context.

8 CONCLUSION

Recent years have witnessed a surge of work on ambiguous and unanswerable questions. In contrast
to previous studies, this paper focuses on detecting issues in math word problems that can lead to
multiple solutions or render them unanswerable. These issues arise from different interpretations
and misunderstandings due to imprecise problem descriptions or missing information needed for
problem-solving. We present a task on math word problem design support and construct MathError,
the first human-annotated dataset, to explore the method of error type detection. We explore prompt
refinement through self-optimization (PRO) to instruct an LLM to adapt to the given task. We inves-
tigate whether definitions for error types and corresponding few-shot examples are more effectively
provided by humans or models. The results show that machine-generated definitions of error types,
supplemented by human-written examples, enhance effectiveness in error type detection. During
the self-optimization process, we modify the definitions based on the classification errors of the data
retained from the training set, and allow the LLM to select which examples to add. However, ac-
curately identifying the errors in a math word problem is still challenging; more advanced methods
are left as future work. We also plan to explore methods for correcting problematic questions. At
the current stage, this work has several limitations. We extend the Math23K dataset with error type
annotation. While this is the first human-annotated dataset used for detecting errors in math word
problems, our research was limited to Chinese math word problems and did not explore other lan-
guages. Additionally, our work currently relies on a single dataset comprising questions collected
from an online educational platform, predominantly at the elementary school level, which may not
offer sufficient diversity in problem types. Moreover, we define only five error types within this
dataset: these may not encompass all possible errors in math word problems. At this stage, our
primary goal is to provide teachers with identified error types in math word problems, though con-
sidering factors like students’ prior knowledge and cognitive barriers remains important for future
research.

*Because calculating probability distributions through the API is difficult, we use an LLM that runs locally.
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A  ADDITIONAL ANNOTATION DETAILS

Table [0 presents the annotation guidelines provided to the annotators. We invited native Chinese
speakers as annotators, all of whom were from universities in the same country as the authors. Before
beginning the annotation, we explained the purpose of the data and confirmed the compensation
terms with the annotators. Compensation was calculated based on the minimum wage regulations
of the authors’ country; both parties agreed to these terms.

Table 9: Annotation guidelines

Objective:

To create a dataset of Chinese math word problems with error type annotations, where some problems
contain errors that need to be annotated accordingly. The error types include misleading, unclear prob-
lem statement, etc.

Reminders:

- We will regularly track your annotated results, so any questions can be addressed immediately.

- If you find an error with a problem after reviewing it, select the appropriate category from the list
below and label it.

- Label the chosen error type with a lowercase “x” in the box following the problem.

- Multiple annotations can be applied to a single problem.

Error Type Definition:

Described in Section E]
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Table 10: Prompt template for event type detection (directly classify method).

Task Introduction:

Please analyze and identify whether the [given problem] contains any of the following errors
based on the descriptions under [error types]: multiple interpretations, informal wording, unit-
less, unclear relationship, or calculation error. If any errors are identified, respond with the correspond-
ing option(s). If the [Given Problem] does not contain any of these errors, select (F). The problem
must match the definitions of the error types to be considered erroneous; note that a single problem may
contain multiple errors.

[Error Types]

(A) Multiple Interpretations: {Definition} {Examples}.

(B) Informal Wording: {Definition} { Examples}.

(C) Unitless: {Definition} { Examples}.

(D) Unclear Relationship: {Definition} {Examples}.

(E) Calculation Error: {Definition} { Examples}.

(F) None of the above. Example: {Example}

Response Requirement:

Enter your predicted results under [classification result]. If multiple errors are present,
separate them with a semicolon “;”.

Example response:

[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?

[Classification Result] (C) Informal Wording; (E) Unclear Relationship

[Given Problem] {question}

Table 11: Prompt template for event type detection (Analyze—Classify method).

Task Introduction:

{Same as that shown in Table[10]}

Response Requirement:

Please provide an analysis of up to 150 words after [Analysis] and record your assessment results
under [Classification Result]. If multiple errors are present, separate them with a semicolon

TR

Example response:

[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?

[Analysis] The statement is unclear, rendering the meaning of “1/6”” ambiguous. This could imply
that the number of duck eggs is 1/6 that of the chicken eggs (which is logically inconsistent as it
contradicts the statement that there are more duck eggs), or that the duck eggs exceed the number of
chicken eggs by 1/6 of the chicken egg count.

[Classification Result] (C) Informal Wording; (E) Unclear Relationship

[Given Problem] {question}

B INPUT FORMATS

Tables[I0} [IT] [I2] and[I3]contain templates of the “Directly classify”, “Analyze — Classify”, “Solve
— Classify”, and “Solve — Classify — Correct” strategies, respectively. The templates for defini-
tion and example generation are shown in Tables [14] and The proposed definition and example
refinement templates are shown in Tables [16] and In the refinement prompts, we instruct the
LLM to analyze why the error was not detected. However, we find that not including the result
of the analysis is better. This may be because the LLM still struggles to complete the error type
detection tasks. The content in the generated analysis may contain incorrect information.

C ERROR ANALYSIS

Figure [3| presents the confusion matrix for error type detection results using the PRO (GPT-40)
method with model-generated definitions and human-written examplesE] Multiple Interpretations

5The total numbers in the confusion matrix differ from the actual number of error types because our task is
multilabel classification. An error type can be incorrectly identified as multiple different error types.
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Table 12: Prompt template for event type detection (Solve — Classify method).

Task Introduction:

{Same as that shown in Table[10]}

Response Requirement:

Please solve the problem and generate your calculations and reasoning within 150 words under
[Calculation Process and Rationale]. If the solution remains elusive, it is possible that
the problem includes the above errors. Based on the difficulties encountered during the calculation,
place your predicted results behind [Classification Result]. If multiple errors are identified,
separate them with a semicolon *;”.

Example response:

[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?

[Calculation Process and Rationale] The statement “duck eggs are 1/6 more” is am-
biguous: does it refer to 1/6 more than the number of duck eggs, or 1/6 more than the number of
chicken eggs? The lack of a clear referent for the ratio leads to confusion. If it means 1/6 more than the
number of duck eggs, the question lacks sufficient information to calculate the number of duck eggs.
Conversely, if it refers to 1/6 of the chicken eggs, then the number of duck eggs would be 120 + 120/6
= 140.

[Classification Result] (C) Informal Wording; (E) Unclear Relationship

[Given Problem] {question}

- 1000

INTPN

- 800

Informal  Calc

Unit

Rel

1005 1074

None

1 I
INTPN Calc  Informal  Unit Rel None

Figure 3: Confusion matrix for error type detection using “PRO (GPT-40)” method with model-
generated definitions and human-written examples

and Unitless errors are often predicted as None or Information Wording. Additionally, questions
exhibiting the Unclear Relationship error are frequently predicted as Informal Wording.

Interestingly, math word problems with no errors (belongs to None) are often predicted as Informal
Wording and Unclear Relationship. To understand this behavior, we examined the results predicted
by other methods, which similarly tended to predict None type questions as containing Informal
Wording and Unclear Relationship errors. This may be due to using Informal Wording and Unclear
Relationship errors as examples to demonstrate the response format.

To investigate the impact of the response format demonstration, we replaced the response format
demonstration with Calculation Error. Figure ] shows the confusion matrix of error type detection
results after changing the format demonstration. The model’s preference for predicting Informal
Wording and Unclear Relationship errors became less pronounced, but there was no tendency to
predict the None type as Calculation Error. From this result, we find that the model is highly
sensitive to the examples used. However, it remains unclear why the prediction trend does not
align with our original hypothesis that the model will predict the error types used in the format
demonstration after changing the example.
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Figure 4: Confusion matrix for error type detection with format example changed to Calc

Table 13: Prompt template for event type detection (Solve—Classify—Correct method).

Task Introduction:

{Same as that in Table[10}}

Response Requirement:

First, please solve the problem and document your calculation process and reasoning within 150 words
under [Calculation Process and Rationale]. If you are unable to determine an answer,
the problem likely contains the errors described above. Based on any difficulties encountered during
the calculation, record possible error types under [Classification Result]. If multiple errors
are identified, separate them with a semicolon ”;”. Afterwards, try to modify the problem and note the
revised version under [Corrected Problem]. ;.

Example response:

[Given Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the chicken
eggs. How many eggs are there in total?

[Calculation Process and Rationale] The statement “duck eggs are 1/6 more” is am-
biguous: does it refer to 1/6 more than the number of duck eggs, or 1/6 more than the number of
chicken eggs? The lack of a clear referent for the ratio leads to confusion. If it means 1/6 more than the
number of duck eggs, the question lacks sufficient information to calculate the number of duck eggs.
Conversely, if it refers to 1/6 of the chicken eggs, then the number of duck eggs would be 120 + 120/6
= 140.

[Classification Result] (C) Informal Wording; (E) Unclear Relationship

[Corrected Problem] There are 120 chicken eggs, and the duck eggs are 1/6 more than the
number of chicken eggs. How many eggs are there in total?

[Given Problem] {question}

D COMPARISON OF ERROR TYPE DETECTION RESULTS BETWEEN
HUMAN-WRITTEN DEFINITIONS AND MODEL-GENERATED PROMPTS

Table [I8]reports the comparison between using human-written and model-generated prompts under
LLaMA 3 8B.

E EXAMPLES OF PROMPT REFINEMENT RESULTS

Tables and[23]show the examples of prompt refinement results for INTPN, Informal,
Unit, Rel, and Calc, respectively. The following prompt refinement results in our study are presented
in Chinese. To facilitate reader understanding, we used GPT-4o0 to translate them into English.
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Table 14: Prompt template for generating definitions by model.

Task Introduction:
You are tasked with writing a definition for the error type based on problematic questions and their
corrected versions. Please use the following [Problematic Question] and corresponding

[Corrected Question] to formulate your definitions. Please place the generated definition be-
hind [Definition].

[Given Error Type] {errortype}

Problematic Question 11 {problematic question 1}
Corrected Question 1] {corrected question 1}
Problematic Question 21 {problematic question 2}
Corrected Question 2] {corrected question 2}

[Definition]

Table 15: Prompt template for generating examples by model.
Task Introduction:

You are tasked to provide both positive and negative examples for each error category to enhance the
precision of our classification system. Based on the definitions of error types and the classification
results of [Given Question], please supply one example that fits each error category and one that
does not. Be mindful that discrepancies between [Classification Result] and [Correct
Classification] indicate wrong prediction; analyze the reasons of these issues to generate more
challenging examples and place them behind [Examples].

[Error Types]

(A) Multiple Interpretations: {Definition} {Examples}.

(B) Informal Wording: {Definition} {Examples}.

(C) Unitless: {Definition} {Examples}.

(D) Unclear Relationship: {Definition} {Examples}.

(E) Calculation Error: {Definition} {Examples}.

(F) None of the above. Example: {Example}

[Given Question 1] {Question 1}
[Classification Result 1] {Result1}
[Correct Classification] 1 {Annotated error type 1}

[Given Question 2]{Question?2}
[Classification Result 2]{Result2}
[Correct Classification] 2 {Annotated error type 2}

[Examples]
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Table 16: Prompt template for definition refinement.

Task Introduction:

You are tasked with refining the given error type definition based on the results of erroneous classifica-
tions. The classification task involves analyzing the following [Error Types] to determine whether
[Given Problem] contain errors such as multiple interpretations, informal wording, unitless, un-
clear relationship, or calculation error. If any errors are present, select the corresponding option. If the
[Given Problem] contains no such errors, choose (F). The problem must match the definitions of
the error types to be considered erroneous, and note that a single problem may contain multiple errors.
[Error Types]

(A) Multiple Interpretations: {Definition} { Examples}.

(B) Informal Wording: {Definition} {Examples}.

(C) Unitless: {Definition} {Examples}.

(D) Unclear Relationship: {Definition} { Examples}.

(E) Calculation Error: {Definition} {Examples}.

(F) None of the above. Example: {Example}

{wrong predictions}

Please refer to both the correctly classified results and the misclassified ones under “{target type}”
error, along with the definition of this error type. Analyze why there was a wrong prediction or why
the error was not recognized. Use this analysis to refine the definition of the [Error Type] “{target
type}”.

Please output the refined definition in the following format: [Error Type Definition]: [Re-
vised Definition] [Analysis]

Table 17: Prompt template for example refinement.

Task Introduction:

{Same as that in Table[16]}

{wrong predictions}

Please refer to both the correctly classified results and the misclassified ones under “{target type}”
error, along with the definition of this error type. Analyze why there was a wrong prediction or why
the error was not recognized. Use this analysis to refine the examples of the [Error Type] “{target
type}”.

[Error Typel: {target type}

Please output the refined examples in the following format: [Error Type Example]: [Refined
Example] [Analysis]

Table 18: Effect of Human-Written vs. Model-Generated Prompts on LLaMA 8B Performance
Method Definition Overall INTPN Informal Unit Rel Calc None

Human 0.1191  0.0189 0.0037 0.2399 0.1685 0.2084 0.0751
Llama 8B Model 0.1479  0.0308 0.0165 0.2272 0.2804 0.1362 0.1963
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Table 19: Example of prompt refinement for the multiple-interpretation type

Error Type

Initial Definition and Example Generated by LLM

Multiple Interpreta-
tions

Refined By LLM in the 2nd Round

EEFEERFU T, HTH AL N7
FEBN, SECEE A LU E R f AR R, AT
BHZANARRE . XHEL T, BEASFRE
ME—ORRE, EEMENRGENE IS, IR EE
—MIEER . JWHA. ZRM K KM Z 14070 K]
IR, ET303KIE£4807C. WRFAXERIR/T, 7
LUE401E . BB T 8 =% D Je? B. —H-F17 M
AR LT R, RELSK, 64k, WMREE
MR hE, PR RER0.6 T, R"EL D
TImE? LA o9 B RIEEIX ERNF R EX
XERT, TLERETREMATEE . B REFHE
FLRE L L HTE, BT U2 - (Multiple interpretations
in problem-solving occurs when the description of a mathe-
matical problem is unclear or contains ambiguities, allowing
readers to interpret the problem from different perspectives
and arrive at multiple distinct solutions. In such cases, the
problem itself does not have a unique solution, or the condi-
tions provided are insufficient to determine a single correct
answer.For example:A. A school purchases desks at a unit
price of 140 units, buying 30 desks with an additional 480
units remaining. If this remaining amount is used to purchase
chairs, they can buy 40 chairs. What is the unit price of each
chair? B. A street advertisement board in the shape of a par-
allelogram has a base of 12.5 meters and a height of 6.4 me-
ters. If painting this board requires 0.6 kilograms of paint
per square meter, how many kilograms of paint are needed?
In the case A, since the problem does not specify that the re-
maining money can only be used to buy these chairs, there are
infinitely many possible answers.The problem of case B falls
into the error type of multiple interpretations since it does not
specify whether the paint is needed for both sides or just one
side.)

ZRETRERFUHT, \T8 A ME NI 7
FEBCL, SEORFE LN R A EEEEE, W
BHZAARMARE PR T, H RS IR EE
—HRE, SEMERSRE NI, ToUARE M —)
ERER - BARG, XA e EART LU 6L
B D RS SR, SECCETEME %,
HHFESHMARNREIER X, SREMRE,
BE P AT EMEAERNIE S SEREE N R
FEAERRIRERE - JLFIA. AR KRR BN 14070 1)
WE, K T305KL£4807C. MR XL LRHF, AT
LISE401E . SRR T ) =% D IT? B. —3R-F17 5%
TERIESLT R, R212.5K, R4k, WFRE i
XERTTER, T JORFHER0.6 T, HWEZ DT
WMEE? C. /N —FfEd M AR, WRIGRS MW
N fEfER6STE, ATEW2STC, KETRGOTT, WS
RIE—F RIRE) | BONEEZOER? HPA
R H AR IRBLX RN T AKXk T, TSR
HIREFATEE - B ARIREN MR TR I T2 B
BT . CJET A . (Multiple interpretations refer to
situations in mathematical problems where the problem de-
scription is not clear enough or contains ambiguities, leading
readers to interpret the problem from different perspectives
and arrive at multiple different solutions. In such cases, the
problem itself does not have a unique solution, or the condi-
tions provided are insufficient to determine a single correct
answer. Specifically, this may include, but is not limited to,
the following situations: the problem lacks key information
or conditions, making it impossible to determine a unique
solution; the problem allows for multiple interpretations or
understandings, leading to multiple interpretations; the prob-
lem uses vague or unclear language, resulting in different un-
derstandings by the solvers.Examples:A. A school purchases
desks at a unit price of 140 units, buying 30 desks with an
additional 480 units remaining. If this remaining amount is
used to purchase chairs, they can buy 40 chairs. What is the
unit price of each chair?B. A street advertisement board in
the shape of a parallelogram has a base of 12.5 meters and
a height of 6.4 meters. If painting this board requires 0.6
kilograms of paint per square meter, how many kilograms of
paint are needed?C. Xiaofang’s family plans to go on a trip,
with the following daily expenses: accommodation 65 units,
transportation 25 units, and food 60 units. If they plan to
travel for a week (7 days), how much money should they pre-
pare at least?In example A, the problem does not specify that
the remaining money can only be used to buy these chairs, so
there are infinitely many possible answers. In example B, it is
unclear whether the paint is needed for both sides or just one
side, making it fall into this error type. Example C also falls
into this error type.)
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Table 20: Example of prompt refinement for the informal wording type

Error Type

Initial Definition and Example Generated by LLM

Definition Refined By LLM in the 2nd Round

Informal Word-
ing

LEeA R H P D RBRBOASA S, &
BRI BT VA IE R B AR, X AR
TLEIR R [N ELER R RBAGAR | - iXFf
BRIR S RS IR AR L@ H . T
SNARRRTS RIS -

WHIA. — KB ZI8TT, B —F)5
EBMEL b B. —PMEFHNBES —4
Ry w914, X P ECF ) EL ROV 0)
He, A SRS BOA, 1EEH BT
., BTHE, EWNEE: —AKBEN
18T - TMB WHESHERK, HIEGRDH
W, FEH AR .

(When a mathematical problem lacks essential
descriptions or symbols, resulting in unclear or
incorrect interpretation. Such errors prevent
readers from accurately understanding the prob-
lem, thereby affecting the problem-solving pro-
cess and outcomes.

For example:

A. The original price of a book was __18 units.
What is the price after a 50% discount?

B. One number is 1/3 of another number’s 1/4.
The ratio of these two numbers is ((())/(())).

In example A, the lack of critical descriptions
makes the problem somewhat peculiar, falling
into this error type. The correct statement
should be: “The original price of a book is 18
units.” In example B, the parentheses indicate
the answer area and do not represent missing
information; therefore, it is not considered un-
der this error type.)

L E D RBAIBASTS, §
HUW B N B T IR IE R AR, X RS
DUHERR N [ RBA B2k e BOA | - X
BRI LR AR H . AT
FMA AR AT REANSE R « WA E L 45
BE P DL ENRIES LY, SEOLE
AT E,; B EH PR SERE AR X,
(S5 2R RL T I R S A AT A

WHIA —AKBE_ 18T, FEh—F5
EMELDr B. = MHFMBES—1
BF WA, XA ECFE B 2O 0)
C. DEFLEFII3NE1ENE, B1/NH
FaZ R % . BMEYF 2R ZEY LG
FBRWAIER, FHEANF%ERILEM
A1ERE? D.6 (2) HFERMEF240A, #HE
RN F A 1/6). MER REBDOL D
F2 HA, ASPERSEGA, 1L ERE R
5. BTHE, EWNEE. —KBEM
18T - TMB S NERK, HAEb DB
i,ﬁﬁﬁﬁﬁﬂocﬁ%%%,DE%%

(When a mathematical problem lacks critical
descriptions or symbols, making the problem
statement unclear or difficult to interpret cor-
rectly, this situation is referred to as “Informal
Wording” Such errors prevent readers from ac-
curately interpreting the problem, thus affect-
ing the problem-solving process and outcomes.
Common issues include missing necessary data
or conditions that make calculation impossi-
ble, or incomplete or ambiguous problem state-
ments that leave solvers uncertain about how to
approach the problem.

Examples:

A. The original price of a book was __18 units.
What is the price after a 50% discount?

B. One number is 1/3 of another number’s 1/4.
The ratio of these two numbers is ((())/(())).

C. There are 13 cooperative groups in the fourth
grade, each with 4 students. If the entire class
earned a total of 312 cooperation stars this
semester, how many stars did each student earn
on average?

D. Class 6(2) has 240 science books. The num-
ber of storybooks is less by (1/6). How many
fewer storybooks are there compared to science
books?

In example A, the lack of a part of the state-
ment makes the problem somewhat peculiar and
falls into this error type. The correct statement
should be: “The original price of a book is 18
units.” Example B uses parentheses to denote
the answer area and does not lack information;
therefore, it is not considered under this error
type. Examples C and D fall into this error type
due to missing or unclear descriptions.)
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Table 21: Example of prompt refinement for the unit-less type

Error Type

Initial Definition and Example Generated by LLM

Definition Refined By LLM in the 2nd Round

Unit-less

D AR —Fh AR B IR, R
JE AR A H B 5 A R D B B f
WRos . SEBOLE TC VA I R EUE I B
e AL FREOREEME, T
KK« FHRM - T, FERE
BT ER R & (R A s A R AR, B
A REG IR S IRITH -
LHIA. KTTHRERIAR - 828R
ESAR, EFKENEEZ? B. TA—K
AT LABEI0TT, TAER AR A LUBZ A2 C. 110-
10%6, 5, A 2HHAMATREIEGLTT A 97, 3L
HaR) BTHEER, EWNSE:
AR B, BAAABIE T, BFTLCA
ﬁ%ﬂwocﬁiﬁmﬁ%@a,ﬁmxﬁ
1o
(“Unit-less” is a common mathematical error,
referring to the absence of necessary unit indi-
cators in a problem or its solution, which pre-
vents the reader from accurately understand-
ing the specific meaning of the values. Units
are standards used to express quantities, such
as kilometers, meters, kilometers per hour, cur-
rency units, etc. In mathematical problems, the
absence of units can render the problem or so-
lution incomplete, potentially leading to misun-
derstandings or calculation errors.
Examples:
A. A rectangular water tank has a length of 3, a
width of 2, and a height of 5. What is the ca-
pacity of the tank?
B. A worker can earn 10 per day. How much
can they earn in five days?
C. Calculate 110 - 10 * 6.
In example A, the lack of units (e.g., cubic cen-
timeters, cubic meters) makes it fall into this
error type of error. The correct specification
should be cubic meters. In example B, the unit
of money is implicitly understood as “currency
units,” so it is not considered under this error
type. Example C is purely a mathematical ex-
pression and does not fall under this error type
either.)

“iR oD BT — R LAV BCE R IR, TR
SE AR A H B 56 AR D B B
WRos, SEBOLE TO VA A AR EUE R B A
e AL AREREERINE, T
K KL TFORME S TUEE . FERCERR,
BRI R 2 (G s A R AR, B
ARSI RS R IT R 2
H X2 A A RREUE B FR, shob B
FL 2 15X LA Z R AR R AR,
SROMIE 2R L ) VR
TWHIA. KT HEKERIAR - B2AR -
FSAR, BRKERERER? B. TA—XK
A LABRI0TE, TAERLR AT LURZE 2 C. 110
-10%6 D. EBAIE— K ARk, HF—RET &
KEI(/4), BZRE T 2KE20%, FRIL
BT36THK, XFAMALZK? Hf, A
SHEAMFRENECLTT A9, ST AR) BT
BLRER, [ERS L ST AR . B,
BRI EBAROAR TT, FTIANRAERS] . C
HERARECEEE , FIAERS . DET
g
(Unit-less is a common mathematical error, re-
ferring to the absence of necessary unit indica-
tors in a problem or its solution, which prevents
readers from accurately understanding the spe-
cific meaning of the values. Units are standards
used to express quantities, such as kilometers,
meters, kilometers per hour, currency units, etc.
In mathematical problems, the absence of units
can render the problem or solution incomplete,
potentially leading to misunderstandings or cal-
culation errors. Particularly when problems in-
volve multiple different values or ratios, miss-
ing units can obscure the relationships between
these values, thus affecting the accuracy of the
solution.
Examples:
A. A rectangular water tank is 3 long, 2 wide,
and 5 high. What is the tank’s capacity?
B. A worker can earn 10 per day. How much
can they earn in five days?
C. Calculate 110 - 10 * 6.
D. A road construction team repairs a road. On
the first day, they repaired (1/4) of the total
length, and on the second day, they repaired
20% of the total length. In two days, they re-
paired 3.6 kilometers. How long is the road?
In example A, the lack of units (e.g., cubic cen-
timeters, cubic meters) makes it fall into this
error type of error. The correct specification
should be cubic meters. In example B, the unit
of money is implicitly understood as “currency
units,” so it is not considered under this error
type. Example C is a purely mathematical prob-
lem and does not fall into this error type. Ex-
ample D lacks units for the road length and falls
into this error type.)
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Table 22: Example of prompt refinement for the unclear relationship type

Error Type

Initial Definition and Example Generated by LLM

Definition Refined By LLM in the 2nd Round

Unclear Relation-
ship

BUER AR IE R E b, BUER R AN
B EAR, SO TR TR R B AT E R A
XTI S A AR T L] R 0 BURORE E
MEER S REH IR, RO 5RIRE -

TWHIA. WEH1201, WEKIGEL(1/6), HEFIWMHE
HEILA? B. BRI BIZ —FKS40KHIKIE, H—KZ
T20%, H_RIETAR), MRIIZT ZIK? C.HJ5EE
FRVEWHUE24077 . A SER@5), SFEELEE
AT KA, A FREGE R AR 5T, B St/
AHETE TR EEIR, ERMNSE: 2o 5
K8y TC, B HEHASER@S)y AN & 7
HHEERFE—DEE, TUAEERS . fla, 25
{176, BACHI3/7, FIEfxx, B B RS H S EESE,
AR T ILEE R -

(Unclear relationship refers to instances in mathematical prob-
lems where the description of the values is not sufficiently clear
or specific, making it difficult for readers to accurately under-
stand the problem or perform correct calculations. This type
of error often occurs in problems involving ratios, multiples,
or percentages, where the relationships between values are not
clearly stated, leading to confusion.

Examples:

A. There are 120 chicken eggs, and the number of duck eggs is
more than the chicken eggs by (1/6). How many eggs are there
in total?

B. A village plans to dig a 540-meter canal. On the first day,
they dug 20%, and on the second day, they dug (1/8). How
many meters did they dig in total over the two days?

C. The store’s revenue last year was 2.4 million, which is (4/5)
of this year’s revenue. What is this year’s revenue in million
units?

In example A, the description of the quantity relationship lacks
the word “times” and thus falls into this error type of error; the
correct phrasing should be “more by (1/6) times.” In example
B, the subject of the description is missing, making it another
example of this error; the correct phrasing should be ”1/8 of
the total length.” Example C, however, clearly states that 4/5”
refers to a multiple of this year’s revenue, so it does not fall un-
der this error type. For instance, phrases like ”1/6 of the total,”
”3/7 of the length,” or ”x/x of something,” where units cannot
be fractions, are also not considered this type of error.)

hal

HER SRR IR E T, BRI
BB, S BSEE TO AR B AR A Bl AT IR A
S PRI W A CEAES I - R o LR
B, HEERX RGN, AS5RIRE -
BAREERE: BUEZ AR RN - s onZ i
EBET -~ BEUE PR AEE -

LA WEAH1207, WEILGEL(1/6), 1HHMME
HEILAN? B. B XN EIZ—FRS40KHIKE, E—KZ
T20%, FE_RIZTAR), MRMIETLZIK? C. H
JEEEREEIR240T] . AN S ER@S), SENE
WHLEZ AT ? D, — i E H2/3), RiGFEHRT
. XEEEREL DT . B —SIKENLEE
THEREE, 177 2F[ME/5), BERELAESSTAR. X
G K BLEATT ST K Hf, A #HRECE K R
B S, B B /ADRA B EIR TS T RS, IETR
5% 2O BKIAAB). TC, B HY45E
#4/sy SEEA f FHRAE T RERR— M EE, PrLl
AEAEWS - Glan, 2ER1/e6, A3/, FEIEHIx/x, B
HERMUARE LSS, BRETRER. DETI
K, ENETHE

(Unclear relationship refers to situations in mathematical
problems where the description of the values is not suffi-
ciently clear or specific, leading to difficulties in accurately
understanding the problem or performing correct calcula-
tions. This type of error often occurs in problems involving
ratios, multiples, or percentages, where the relationships be-
tween values are not clearly stated, causing confusion. Spe-
cific issues include: unclear relationships between values,
missing necessary numerical descriptions, or ambiguous de-
scriptions of values.

Examples:

A. There are 120 chicken eggs, and the number of duck eggs
is more by (1/6). How many eggs are there in total?

B. The village needs to dig a 540-meter canal. On the first
day, they dug 20%, and on the second day, they dug (1/8).
How many meters did they dig in total over the two days?

C. The store’s revenue last year was 2.4 million, which is
(4/5) of this year’s revenue. What is this year’s revenue in
millions?

D. A barrel of beer is (2/3) empty, with 12 kilograms poured
out. How much did the barrel originally weigh in kilograms?
E. A train travels from Shanghai to Tianjin, covering (3/5) of
the total distance, with 538 kilometers remaining to Tianjin.
How many kilometers has the train already traveled?

In example A, the description of the quantity relationship
lacks the word “times,” making it fall into this error type of
error; the correct phrasing should be “more by (1/6) times.” In
example B, the subject of the description is missing, making it
another example of this error; the correct phrasing should be
”1/8 of the total length.” Example C, however, clearly states
that 74/5” refers to a multiple of this year’s revenue, so it does
not fall under this error type. Similarly, phrases like ”1/6 of
the total,” ”3/7 of the length,” or ”x/x of something,” where
units cannot be fractions, are also not considered this type of
error. Examples D and E fall into this error type due to un-
clear numerical meanings.)
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Table 23: Example of prompt refinement for the calculation error type

Error Type

Initial Definition and Example Generated by LLM

Definition Refined By LLM in the 2nd Round

Calculation Er-
ror

ANHBAT S RIGHERCEB A AT A
EFEAHBOTS, SEEERNE0R
i o XPPEERE B & 08 A R TC VA IE R
R E EOR TR AR R RE A 45 5
WA OLE B AIE S . A RS
BAFS . B S UEASSE.

TWHIA. 326117, HnLs, 45R=? B.
12+1/3+1/4=2 C. 172+1/3+1/4=(( O)/(0)) E
F, A 2 H A A REPEG-2/68F+5) BT
FERERR, IEFIRISIA: 3-2/6)+5. TMB 7
IEHBCERE, AERS . C RIFESHERR
BRI, HILATERS] -

(Calculation error refer to the use of incorrect
or unclear symbols in mathematical problems,
leading to ambiguous or misunderstood prob-
lem statements. These errors can prevent the
solver from correctly understanding the prob-
lem’s requirements, thus affecting the problem-
solving process and outcomes. Common issues
include missing parentheses, incorrect use of
operators, or improper placement of symbols.
Examples:

A. The result of 3-2/6, plus 5, equals?

B. 12+ 113+ 1/4="

C. 12+ 1/3 + 1/4 = ((O)(0))

In example A, there is ambiguity due to the
placement of the symbols, potentially leading to
multiple interpretations (3 - (2/6) + 5). The cor-
rect expression should be written as 3 - (2/6) +
5. Example B is a standard mathematical prob-
lem and does not fall into this error type. Ex-
ample C uses parentheses to denote the answer
area and therefore is not considered an error in
symbol usage.)

R

R BB R R R B R T
EW - RS AR A EOTS, SRR
TR BR MR o X O & I EE T
TR H 2R, T2 0 i R A2
LR - B W H LA SRS . i H
BRI ENS . FELUEAS . 54
STEEEAT SRS -

TLHIA. 3-2/6F 7, N £S5, 45%R=? B.
172+1/3+1/4=?  C. 172+1/3+1/4=(( O)/(0))
D. (10/3)5(1/3)KIF1 LL(5/6)5 (415 I FI £ %
2 B, MO/ ] B YR 2 (6/7)/(6/5)H]
B, #E=? Ho, A &F H Al fe G-
26/ +5) BT HRFIR, IEFIIEIL: 3-
(2/6)y+5- B NIEH B8 H, AL
Gl C MBS HEHARNERK, FIEAER
5. DABTHE, EABTHE.
(Calculation error refers to the use of incorrect,
unclear, or inappropriate symbols in mathemat-
ical problems, resulting in ambiguous or misun-
derstood problem statements. These errors of-
ten prevent solvers from accurately understand-
ing the problem’s requirements, thereby affect-
ing the problem-solving process and outcomes.
Common issues include missing parentheses,
incorrect use of operators, improper placement
of symbols, incomplete symbols, or incorrect
symbol formatting.

Examples:

A. The result of 3-2/6, plus 5, equals?
B.12+13+1/4="?

C. 172 + 173 + 1/4 = ((O)/(O))

D. How much more is the sum of (10/3) and
(1/3) compared to the sum of (5/6) and (4/5)?
E. The difference when subtracting the quotient
of (6/7) divided by (6/5) from the reciprocal of
9/7) is?

In example A, there is ambiguity due to the
placement of the symbols, potentially leading to
multiple interpretations (3 - (2/6) + 5). The cor-
rect expression should be written as 3 - (2/6) +
5. Example B is a standard mathematical prob-
lem and does not fall into this error type. Ex-
ample C uses parentheses to denote the answer
area and therefore is not considered an error in
symbol usage. Examples D and E are also not
considered under this error type.)
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