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ABSTRACT

Chain-of-Thought (CoT) is an efficient prompting method that enables the rea-
soning ability of large language models by augmenting the query using multiple
examples with multiple intermediate steps. Despite the empirical success, the
theoretical understanding of how to train a Transformer to achieve the CoT ability
remains less explored. This is primarily due to the technical challenges involved in
analyzing the nonconvex optimization on nonlinear attention models. To the best
of our knowledge, this work provides the first theoretical study of training Trans-
formers with nonlinear attention to obtain the CoT generalization capability so that
the resulting model can inference on unseen tasks when the input is augmented
by examples of the new task. We first quantify the required training samples and
iterations to train a Transformer model towards CoT ability. We then prove the suc-
cess of its CoT generalization on unseen tasks with distribution-shifted testing data.
Moreover, we theoretically characterize the conditions for an accurate reasoning
output by CoT even when the provided reasoning examples contain noises and are
not always accurate. In contrast, in-context learning (ICL), which can be viewed as
one-step CoT without intermediate steps, may fail to provide an accurate output
when CoT does. These theoretical findings are justified through experiments.

1 INTRODUCTION

Transformer-based large-scale foundation models, such as GPT-3 (Brown et al., 2020), GPT-4
(OpenAI, 2023), LLaMa (Touvron et al., 2023a;b), and Sora (Liu et al., 2024), have demonstrated
remarkable success across various tasks, including natural language processing (Brown et al., 2020;
Touvron et al., 2023b), multimodal learning (OpenAI, 2023; Radford et al., 2021), and image/video
generation (OpenAI, 2023; Liu et al., 2024). What is more surprising is that large language models
(LLMs) demonstrate reasoning ability through the so-called “Chain-of-Thought” (CoT) method
(Wei et al., 2022). The objective is to let a pre-trained LLM generate K steps of reasoning given
input query xquery without any fine-tuning. To achieve that, the input xquery is augumented with l
examples {xi, {yi,j}Kj=1}li=1 of a certain K-step reasoning task, where each xi is the input with yi,j
as the j-th reasoning step, and yi,K is the final output. A pre-trained model then takes the resulting
augmented input, referred to as a prompt, and outputs the corresponding reasoning steps {zj}Kj=1
for xquery, or simply outputs zK . CoT can be viewed as an extended and more intelligent method
than the previous in-context learning (ICL) method, where only input-label pairs {xi,yi,K}li=1 are
augmented in the prompt to predict zK with the pre-trained model.

Inspired by the outstanding empirical performance of CoT in arithmetic reasoning (Wang et al.,
2023; Zhang et al., 2023b; Wang & Zhou, 2024), symbolic reasoning (Zhang et al., 2023b; Zhou
et al., 2023), and commonsense reasoning (Wang et al., 2023; Wang & Zhou, 2024), there have
been some recent works (Li et al., 2023c; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024;
Wen et al., 2024) on the theoretical understanding of CoT. These works investigate CoT from the
perspective of expressive power, i.e., they construct the Transformer architecture that is proven to
have the CoT ability. They also demonstrate empirically that supervised training on pairs of CoT
prompts and corresponding outputs can lead to models with CoT ability. However, none of these
results theoretically address the question of why a Transformer can obtain generalization-guaranteed
CoT ability by training from data with gradient-based methods. Meanwhile, another line of research
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(Zhang et al., 2023a; Huang et al., 2023; Wu et al., 2023; Li et al., 2024a) aims to unveil the reasons
behind the ICL ability of Transformers through characterizing the training dynamics of a Transformer
in the supervised setting. These analyses are specifically applicable to ICL. Therefore, a theoretical
question still remains less explored, i.e.,

Why can a Transformer be trained to generalize on multi-step reasoning tasks via CoT?

1.1 MAJOR CONTRIBUTIONS

Following Li et al. (2023c); Feng et al. (2023); Li et al. (2024d); Yang et al. (2024); Wen et al. (2024),
we train the model in a supervised setting using prompt and label pairs. This paper provides the first
theoretical analysis of the training dynamics of nonlinear Transformers to achieve CoT ability. We
prove that the learned model has guaranteed CoT ability for new tasks with distribution shifts from
the training tasks, even when there exist noisy and erroneous context examples in the prompt. We
theoretically characterize the required number of training samples and iterations needed to train a
desirable model and the number of context examples required for successful CoT reasoning with a
generalization guarantee. Moreover, we provide a theoretical explanation for why CoT outperforms
ICL in some cases. Our main technical contributions are as follows:

1. A quantitative analysis of how the training can enable the CoT ability: We theoretically
analyze the training dynamics on a one-layer single-head attention-only Transformer and quantify the
required number of context examples in each training sample, the total number of training samples,
and the number of training iterations needed to acquire CoT ability. We illustrate that the CoT ability
results from the property that the attention values of the learned model are concentrated on testing
context examples with the same input patterns as the testing query during each reasoning step.

2. A quantitative analysis of how context examples affect CoT performance: We characterize
the required number of context examples in the testing prompt for successful CoT reasoning when
noise and error exist in contexts. Our quantitative bounds are consistent with the intuition that more
accurate context examples and more similar examples to the query improve CoT accuracy.

3. A theoretical characterization of why CoT outperforms ICL: We provide a quantitative analysis
of the requirements for successful ICL reasoning with our studied trained model. We show that
successful ICL requires an additional condition that the prompt has a dominant number of correct
input-label examples, while the success of CoT does not depend on this condition. This can be viewed
as one of the possible reasons why CoT outperforms ICL.

1.2 RELATED WORKS

Expressive power of CoT Li et al. (2023c) proves the existence of a Transformer that can learn
a multi-layer perceptron (MLP). They interpret CoT as first filtering important tokens and then
making predictions by ICL. They also establish the required number of context examples for a
desired prediction with the constructed Transformer. Feng et al. (2023); Li et al. (2024d); Merrill &
Sabharwal (2024) show that Transformers with CoT are more expressive than Transformers without
CoT. Yang et al. (2024); Wen et al. (2024) show the superiority of standard Transformers in some
reasoning tasks compared with recurrent neural networks and linear Transformers.

Theoretical analysis of ICL As a simplified one-step version of CoT, ICL has gained much attention
from the theoretical community. Garg et al. (2022); Akyürek et al. (2023); Bai et al. (2023); Guo et al.
(2023) demonstrate that Transformers are expressive to conduct many machine learning algorithms
in context. Akyürek et al. (2023); Von Oswald et al. (2023); Ahn et al. (2023); Cheng et al. (2023);
Ding et al. (2024) especially show the existence of Transformers to implement gradient descent
and its variants with different input prompts. Zhang et al. (2023a); Huang et al. (2023); Wu et al.
(2023); Li et al. (2024a) explore the training dynamics and generalization of ICL on single-attention
Transformers. Cui et al. (2024); Chen et al. (2024) provably show the superiority of multi-head
attention over single-head attention to achieve ICL ability.

Training and Generalization of Transformers There have been several recent works about the opti-
mization and generalization analysis of Transformers. Jelassi et al. (2022); Li et al. (2023d); Oymak
et al. (2023); Li et al. (2023a;b; 2024b); Luo (2023); Huang et al. (2024); Zhang et al. (2024) study
the generalization of one-layer Transformers by assuming spatial association, semantic/contextual
structure, or the majority voting of tokens in the data. Oymak et al. (2023); Tarzanagh et al. (2023b;a);
Tian et al. (2023a;b); Li et al. (2024c); Ildiz et al. (2024); Nichani et al. (2024); Makkuva et al. (2024b)
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investigate the training dynamics or loss landscape of Transformers for the next token prediction
by assuming infinitely long input sequences, causal structure/Markov Chain of data, or a proper
prediction head. Deora et al. (2023); Chen & Li (2024) analyze the optimization and generalization
of multi-head attention networks.

2 PROBLEM FORMULATION

We study the problem of learning and generalization of K-steps reasoning tasks. Each task f =
fK ◦ · · · f2 ◦ f1 is a composition of functions {fi}Ki=1 and outputs labels z1, z2, · · · , zK for the input
xquery. During the k-th reasoning step, k ∈ [K], the label is zk = fk(zk−1), where z0 := xquery.

2.1 TRAINING TO ACQUIRE THE CHAIN-OF-THOUGHT ABILITY

Following theoretical analysis (Feng et al., 2023; Li et al., 2024d; Wen et al., 2024) and empirical
works like process supervision (Lightman et al., 2024), we first investigate the training on a Trans-
former model to obtain the CoT ability in evaluating new data and tasks. It is a supervised learning
setting on pairs of prompts and labels. Different from the testing prompt that includes examples and
only xquery, the training prompt includes multiple K-steps reasoning examples and a (k − 1)-step
reasoning of xquery for any k in [K], and the label for this prompt is zk. Specifically,

Training Prompt and Label for CoT. For every prompt and output pair from a task f = fK ◦
· · · f2 ◦ f1, we construct a prompt P that include the query input zk−1 by prepending ltr reasoning
examples and the first k − 1 steps of the reasoning query. The prompt P of the query input zk−1 is
formulated as:

P =(E1,E2, · · · ,Eltr ,Qk) ∈ R2dX×(ltrK+k),

where Ei =

(
xi yi,1 · · · yi,K−1

yi,1 yi,2 · · · yi,K

)
, Qk =

(
z0 z1 · · · zk−2 zk−1

z1 z2 · · · zk−1 0

)
, i ∈ [ltr],

(1)

where Ei is the i-th context example, and Qk is the first k steps of the reasoning query for any
k in [K]. We have yi,k = fk(yi,k−1) and zk = fk(zk−1) for i ∈ [ltr], k ∈ [K] with a notation
yi,0 := xi. Let ps and pquery be the s-th column and the last column of P , respectively, for
s ∈ [ltrK + k − 1]. xi,yi,k, zj ∈ RdX for i ∈ [ltr] and j, k ∈ [K]. We respectively call xi and yi,k
context inputs and outputs of the k-th step of the ith context example. For simplicity of presentation,
we denote z as the label of P , which is indeed zk for (1). All the notations are summarized in Table
3 in Appendix.

The learning model is a single-head, one-layer attention-only Transformer. We consider positional
encoding {ck}Kk=1 ∈ R2dX . Following theoretical works (Jelassi et al., 2022; Huang et al., 2024; Ildiz
et al., 2024), we add the positional encoding to each pi by p̃i = pi + c(i mod K), i ∈ [K(ltr + 1)].
p̃query is also defined by adding the corresponding ck to pquery . Mathematically, given a prompt P
defined in (1) with len(P ) (which is at most K(ltr + 1)) denoting the number of columns, it can be
written as

F (Ψ;P ) =

len(P )−1∑
i=1

WV p̃i · softmax((WK p̃i)
⊤WQp̃query), (2)

where WQ,WK ∈ Rm×(2dX ), WV ∈ RdX×(2dX ) are the embedding matrices for queries, keys, and
values, respectively. Ψ := {WQ, WK ,WV } is the set of all model weights1. Typically, m > 2dX .
Here, softmax((WK p̃i)

⊤WQp̃query) = e(WK p̃i)
⊤WQp̃query/

∑len(P )−1
j=1 e(WK p̃j)

⊤WQp̃query .

The training problem to enhance the reasoning capability solves the empirical risk minimization,

min
Ψ

RN (Ψ) :=
1

N

N∑
n=1

ℓ(Ψ;P n, zn), (3)

using N prompt and label pairs {P n, zn}Nn=1. For the n-th sample, xnquery and the context input
xni are all sampled from an unknown distribution D, the training task fn is sampled from T , k is
randomly selected from 1 to K, and P n is constructed following (1). The loss function is squared
loss, i.e., ℓ(Ψ;P n, zn) = 1/2 · ∥zn − F (Ψ;P n)∥2, where F (Ψ;P n) is defined in (2).

1We focus on a one-layer single-head Transformer motivated by recent advancements and current state in
Transformer and CoT analysis. Please see Appendix B.1 for discussion.
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2.2 TRAINING ALGORITHM

For simplicity of analysis, we let W = W⊤
KWQ and WV = (0dX×dX IdX ) ∈ RdX×(2dX ) as

(Jelassi et al., 2022; Huang et al., 2023; Zhang et al., 2023a; Huang et al., 2024). Let {ck}Kk=1 be
a set of orthonormal vectors. The model is trained using stochastic gradient descent (SGD) with
step size η with batch size B, summarized in Algorithm 1 in Appendix C. Each entry of W (0) is
generated from N (0, ξ2) for a tiny ξ > 0. WV is fixed during the training. The fraction of prompts
with zk−1 as the query input is 1/K by uniform sampling for any k ∈ [K] in each batch.

2.3 CHAIN-OF-THOUGHT INFERENCE

We then consider another K-steps reasoning task f ∈ T ′, whose target is to predict labels {zk}Kk=1
given the input query xquery. T ′ is the set of testing tasks, and T ′ ̸= T .

Testing Prompt for CoT. The testing prompt P is composed of lts (≤ ltr) context examples of K
steps plus a query, which is constructed as

P = (E1,E2, · · · ,Elts ,pquery) ∈ R(2dX )×(ltsK+1),pquery = (x⊤
query,0

⊤)⊤, (4)

where Ei follows the form in (1) for i ∈ [lts].

We follow the CoT-I/O scheme formulated in (Li et al., 2023c; Feng et al., 2023; Li et al., 2024d;
Yang et al., 2024; Park et al., 2024) as the inference method. Specifically, for a K-step CoT with
lts examples on a certain f ∈ T ′, given the testing prompt P defined in (4), let P1 = P and P0

be the first K · lts columns of P . When we use CoT prompting for prediction in the k-th step, we
first generate the output vk, k ∈ [K] via greedy decoding by feeding the k-th step prompt Pk to the
trained model Ψ obtained from (3). The greedy decoding scheme means outputting the most probable
token from the discrete set Y of all possible outputs, as stated in (5).

vk = argmin
u∈Y

1

2
∥F (Ψ;Pk)− u∥2, (greedy decoding) (5)

Then, we use the output vk to update Pk and use vk as the query input to form the input prompt
Pk+1 for the next step, which is computed as

Pk = (Pk−1 qk) ∈ R(2dX )×(Klts+k), Pk+1 = (Pk qk+1) ∈ R(2dX )×(Klts+k+1),

where qk =
(
v⊤
k−1 v

⊤
k

)⊤
, qk+1 =

(
v⊤
k 0⊤)⊤ ,

(6)

where qk is the k-th step reasoning column for the query. The model finally outputs v1, · · · ,vK as
CoT result for query xquery by (5). The CoT process is summarized in Algorithm 2 of Appendix C.

When K ≥ 2, following (Li et al., 2023c; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024), the
CoT generalization error given the testing query xquery, the testing data distribution D′, and the
labels {zk}Kk=1 on a K-steps testing task f ∈ T ′ is defined as

R̄fCoT,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′

[
1

K

K∑
k=1

1[zk ̸= vk]

]
, (7)

which measures the average error between the output and the label of each reasoning step. A zero
CoT generalization error indicates correct generations in all K steps.

2.4 IN-CONTEXT LEARNING INFERENCE

The ICL inference on a K-steps reasoning task f ∈ T ′ only predicts the final-step label by perpending
examples of input and label pairs before the query. ICL can be viewed as a one-step CoT without
intermediate steps. Here, we evaluate the ICL performance of the trained model.

Testing Prompt for ICL. Mathematically, ICL is implemented by constructing a prompt P as below,

P = (E1, · · · ,Elts ,pquery),where pquery =

(
xquery

0

)
,Ei =

(
xi 0 · · · 0
yi,K 0 · · · 0

)
(8)

P ∈ R(2dX )×(ltsK+1), Ei ∈ R(2dX )×K for i ∈ [lts]. Note that in the ICL setting, Ei only has input
xi and the K-step output yi,K but does not include any intermediate labels. We pad zeros in Ei so
that its dimension is the same as Ei in (1) for the inference with the same model as for CoT. The ICL
output is v = argminu∈Y

1
2∥F (Ψ;P )− u∥2, following (5). The ICL generalization error is

R̄fICL,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′ [1[zK ̸= v]] , (9)

which measures the error between the one-step reasoning output and the final step label.
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3 THEORETICAL RESULTS

We first summarize the main theoretical insights in Section 3.1. Then, we introduce the formulation
of data and tasks in Section 3.2. Sections 3.3, 3.4, and 3.5, respectively characterize the training
analysis of the Transformer and generalization using CoT and ICL with the trained model.

3.1 MAIN THEORETICAL INSIGHTS

We consider the setup that the model is trained using samples generated from tasks in T that operate
on M orthonormal training-relevant (TRR) patterns, while both CoT and ICL are evaluated on tasks
in T ′ that operate on M ′ orthonormal testing-relevant (TSR) patterns.We consider the general setup
that the context examples in the prompt for CoT and ICL testing are both noisy, i.e., TSR patterns
with additive noise, and partially inaccurate, i.e., the reasoning in some examples contains incorrect
steps. Our main insights are as follows.

P1. Training Dynamics of Nonlinear Transformer towards CoT. We theoretically analyze the
training dynamics on a one-layer single-head attention-only Transformer to acquire the CoT general-
ization ability and characterize the required number of training samples and iterations. Theorem 1
shows that to learn a model with guaranteed CoT ability, the required number of context examples
in each training sample and the total number of training samples/iterations are linear in α−1 and
α−2, respectively, where α is the fraction of context examples with inputs that share the same TRR
patterns as the query. This is consistent with the intuition that the CoT performance is enhanced if
more context examples are similar to the query. Moreover, the attention values of the learned model
are proved to be concentrated on testing context examples that share similar input TSR patterns as
the testing query during each of the reasoning steps (Proposition 1), which is an important property
that leads to the success of the CoT generalization.

P2. Guaranteed CoT Generalization. To achieve zero CoT error on tasks in T ′ and data based
on TSR patterns that contain a non-trivial component in the span of TRR patterns with the learned
model, Theorem 2 shows that the required number of context examples, where noise and errors are
present, for task f in the testing prompt is proportional to (α′τfρf )

−2. Here, α′ is the fraction of
context examples with inputs that share the same TSR patterns as the query. τf in (0, 1) measures the
fraction of accurate context examples, and a larger constant ρf in (0, 1) reflects a higher reasoning
accuracy in each step of the examples. This result formally characterizes the intuition that more
accurate context examples and more similar examples to the query improve the CoT accuracy.

P3. CoT outperforms ICL. In Theorem 3, We theoretically show that the required number of testing
context examples for ICL to be successful has a similar form to that for CoT in Theorem 2, but with
an additional requirement (Condition 1) that the fraction of correct input-label examples in the testing
prompt must be dominant. Because not all testing cases satisfy this requirement, our result provides
one explanation for why CoT sometimes outperforms ICL.

3.2 THE FORMULATION OF DATA AND TASKS

Training data and tasks: Consider M training-relevant (TRR) patterns µ1,µ2, · · · ,µM , which form
an orthonormal set M = {µi}Mi=1. M = Θ(d),M ≤ d. (µ⊤

i , 0
⊤
dX

)⊤ ⊥ ck for i ∈ [M ′], k ∈ [K].

Every training prompt P in (1) contains the query and training examples from the same training task
f in the set of training tasks T . Specifically, each training task f is a composition of K functions
f = fK ◦ · · · ◦ f2 ◦ f1 where each function fk belongs to a function set F . The k-th step label of the
query is zk = fk(zk−1) given the k-th step input zk−1 with zk ∈ M, k ∈ [K]. Moreover, the k-th
step label of the i-th (i ∈ [ltr]) context example is yi,k = fk(yi,k−1) given the k − 1th step input
yi,k−1, k ∈ [K] with xi,yi,k ∈ M, where yi,0 := xi

2.We assume that fk(x) ̸= fk′(x
′) if and only

if either x ̸= x′ or fk ̸= fk′ .

Training prompt: Consider a training prompt P on task f ∈ T defined in (1) with the query input
zk−1, k ∈ [K]. Let α ∈ (0, 1− c] for some constant c > 03 denote the fraction of context examples
with input sharing the same TRR pattern as the query input.

2The formulation of f is motivated by recent theoretical works on model training or ICL with Transformers.
Please see Appendix B.2 for details.

3This is to prevent the trivial case that the model only learns the positional encoding but not the TRR patterns
when α becomes arbitrarily close to 1.
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Testing task and query: Consider M ′ testing-relevant (TSR) patterns µ′
1,µ

′
2, · · · ,µ′

M , which form
an orthonormal set M′ = {µ′

i}M
′

i=1. M ′ ≤ M . We also have µ′
i ⊥ ck for i ∈ [M ′], k ∈ [K]. Let T ′

denote the set of testing tasks, which all operate on patterns in M′ rather than M in training tasks in
T . Every testing task f = fK ◦ · · · f2 ◦ f1 ∈ T ′ is a composition of K functions. The reasoning for
the testing query is considered to be noiseless and accurate. That means,

zk ∈ M′ for all k ∈ {0} ∪ [K], and zk = fk(zk−1), z0 = xquery.

Testing prompt: We consider the general setup that testing examples are noisy and erroneous. By
noisy examples, we mean all inputs and outputs of each step are noisy versions of TSR patterns, i.e.,

xi,yi,k ∈ {b ∈ Rd|b = µ′
j + δ, j ∈ [M ′], δ ⊥ M′, ∥δ∥ ≤

√
2/2}, (10)

with noise δ ̸= 0 for i ∈ [Klfts], k ∈ [K]. Denote TSR : Rd 7→ Z+ as a function that outputs the
index of the TSR pattern of the noisy input. We consider the case that at least an α′ fraction of context
examples where the TSR pattern of the input ys,1, s ∈ [lfts] is the same as xquery.

By erroneous examples, we mean that the reasoning steps in test examples may contain errors. To
formally model this, we define the step-wise transition matrices {Af

k}Kk=1 ∈ RM ′×M ′
such that

Af
k represents the reasoning probabilities of step k in test examples. Specifically, there exists some

constant ρf in (0, 1) such that for all s ∈ [lfts], k ∈ [K], the i, j-th entry of Af
k satisfies

Afk(i,j) = Pr(TSR(ys,k) = j|TSR(ys,k−1) = i),

and Afk(i,j∗) ≥ 1/(1− ρf ) ·Afk(i,j),∀j ∈ [M ′], where µ′
j∗ = fk(µ

′
i),

(11)

Note that (11) characterizes a general case in inference that for any given k, in the k-th reasoning step
of the test example, the k-th step output is a noisy version of the true label with the highest probability,
which guarantees that the examples are overall informative in the k-th step. This requirement is
intuitive because otherwise, these examples would overall provide inaccurate information on the
k-th step reasoning. Moreover, (11) models the general case that, with some probability, the k-step
reasoning is inaccurate in the examples. ρf is referred to as the primacy of the step-wise transition
matrices. ρf reflects the difference in the probability of correct reasoning and incorrect reasoning in
each step, and a larger ρf indicates a larger probability of accurate reasoning.

Let Bf =
∏K
k=1 A

f
k be the K-step transition matrix. Then Bf

(i,j) is the probability that the K-th
step output is a noisy version of µ′

j , when the input is a noisy version of µ′
i in the testing example.

We similarly define ρfo in (0, 1) as the primacy of Bf , where
Bf

(i,j∗) ≥ 1/(1− ρfo ) ·B
f
(i,j), ∀j ∈ [M ′], j∗ = arg max

j∈[M ′]
Bf

(i,j). (12)

Example 1. Consider a simple two-step inference example with K = 2, µ′
1, µ′

2 as the TSR pattern,
and δ = 0 in inputs and outputs of every step, as shown in Figure 1. The black solid arrows denote
the correct inference process, where f1(µ

′
1) = µ′

1, f1(µ′
2) = µ′

2, f2(µ′
1) = µ′

2, and f2(µ
′
2) = µ′

1.
Hence, µ′

1 → µ′
1 → µ′

2 and µ′
2 → µ′

2 → µ′
1 are two inference trajectories under the function f .

The testing examples contain errors and follow the transition matrices Af
1 and Af

2 (brown dashed

arrows). We let Af
1 =

(
0.6 0.4
0.4 0.6

)
, Af

2 =

(
0.4 0.6
0.8 0.2

)
, which results in Bf =

(
0.56 0.44
0.64 0.36

)
.

3.3 THE SAMPLE COMPLEXITY ANALYSIS OF THE TRAINING STAGE

Figure 1: An example of a two-step
inference

We first characterize the convergence and the testing perfor-
mance of the model during the training stage with sample
complexity analysis in Theorem 1.
Theorem 1. For any ϵ > 0, when (i) the number of context
examples in every training sample is

ltr ≥ Ω(α−1), (13)

(ii) the number of iterations satisfies

T ≥ Ω(η−1α−2K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)), (14)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and (iii) the training tasks and samples are selected such that every TRR pattern is equally likely in
every inference step and in each training batch4 with batch size B ≥ Ω(max{ϵ−2,M} · logM), the
step size η < 1 and N = BT samples, then with a high probability, the returned model guarantees

Exquery∈M,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (15)

Theorem 1 indicates that with long enough training prompts and a sufficient number of iterations
and samples for training, a one-layer Transformer can achieve a diminishing loss of O(ϵ) on data
following the same distribution as training examples. The results indicate that (i) the required number
of context examples is proportional to α−1; (ii) the required number of iterations and samples
increases as M and α−2 increases. As a sanity check, these bounds are consistent with the intuition
that it will make the training stage more time- and sample-consuming if the number of TRR patterns
increases or the fraction of prompt examples that share the same TRR pattern as the query decreases.

3.4 COT GENERALIZATION GUARANTEE

In this section, we first define two quantities, τf , and τfo for each testing task f ∈ T ′ based on the
formulation of testing data and tasks in Section 3.2. These two quantities are used to characterize the
CoT and ICL generalization in Theorems 2 and 3, respectively.

Definition 1. For f = fK ◦ · · · f1 ∈ T ′, we define the min-max trajectory transition probability as:

τf = min
i∈[M ′]

K∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
, where f0(µ

′
i) := µ′

i,∀ i ∈ [M ′], (16)

which measures the minimum probability, over all the initial TSR patterns, of the K-step reasoning
trajectory that has the highest probability over all K-step trajectories. We also define the min-max
input-label transition probability as

τfo = min
i∈[M ′]

max
j∈[M ′]

Bf
i,j , (17)

which measures the minimum probability, over all the initial TSR patterns, of the output that has the
highest probability over outputs.

For instance, in Example 1 after (12), τf = min{0.36, 0.48} = 0.36, τfo = min{0.56, 0.64} = 0.56.

Theorem 2 (CoT generalization). Given a trained model, the training process of which satisfies
conditions (i) to (iii) in Theorem 1, then as long as

(iv) each TSR pattern µ′
j in the orthonormal set {µ′

j}M
′

j=1 satisfies

µ′
j = λj + µ̃j (18)

where λj ⊥ span(µ1, · · · ,µM ), µ̃j ∈ span(µ1, · · · ,µM ), and ∥µ̃j∥ ≥ Θ((log ϵ−1)−1),
and (v) the number of testing examples for any f ∈ T ′ is

lfts ≥ Ω((α′τfρf )−2 logM), (19)

we have R̄fCoT,xquery∈M′,f∈T ′(Ψ) = 0.

Remark 1. Theorem 2 proves that a trained one-layer Transformer can generate all K-steps
reasoning correctly by CoT for a new task f in T ′ with two additional conditions. Condition (iv)
means that each TSR pattern in the task set T ′ is the summation of a component that belongs to the
span of the TRR patterns and a component that is perpendicular to the span.

Condition (v) indicates that, to achieve the desired CoT accuracy, the number of context examples
should be proportional to α′−2, ρfs

−2
, and τf

−2
, meaning it decreases as α′, ρfs , or τfs increase. It

can be interpreted as follows, if the number of context examples remains fixed, an increase in α′, ρfs ,
or τfs results in improved CoT accuracy. This aligns with intuition, because α′ represents the fraction
of examples similar to the query, and ρf and τf reflect the accuracy of the reasoning steps in the
context examples.

4Our analysis assumes that the whole set of M is achievable uniformly in each step and training batch. This
condition is to ensure a balanced gradient update among all TRR patterns, as used in (Li et al., 2024a) for ICL.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.5 ICL GENERALIZATION AND COMPARISON WITH COT
Because only input-label pairs are used as context examples for ICL, the input-label pairs in context
examples should be accurate overall to be informative about the task. We formulate this requirement
as Condition 1.
Condition 1. For the testing task f = fK ◦ · · · ◦ f1 ∈ T ′, we have that for any i ∈ [M ′],

TSR(f(µ′
i)) = arg max

j∈[M ′]
Bf

(i,j). (20)

Condition 1 requires that in a context example, if the input TSR is µ′
i, then f(µ′

i) is the output TSR
pattern with the highest probability over all TSR patterns. Note that (11) indicates that, for every k
and i, when µ′

i is the k-th step input, fk(µ′
i) is the step-k output with the highest probability over all

TSR patterns. However, (11) does not necessarily imply (20). In Example 1, given the input µ′
1,

although the inference trajectory µ′
1 → µ′

1 → µ′
2 under f has the highest probability over all 2-step

trajectories, µ′
1 has the higher probability to be the final output than the correct output µ′

2 by the
two-step transition matrix Bf , thus violating Condition 1.

Our result of the ICL generalization is stated as follows.
Theorem 3 (ICL generalization). Given a trained model, the training process of which satisfies
conditions (i) to (iii) of Theorem 1 and (18), for the testing task f ∈ T ′,

Case A. if Condition 1 does not hold, then R̄fICL,xquery∈M′,f∈T ′(Ψ) ≥ Ω(1), no matter how large

the number of training samples lfts is;

Case B. if Condition 1 holds, then R̄fICL,xquery∈M′,f∈T ′(Ψ) = 0, provided that

lfts ≥ Ω((α′τfo ρ
f
o )

−2 logM). (21)

Remark 2 (Comparison between CoT and ICL). Theorem 3(a) formally states that, Condition 1
is necessary for a successful ICL generalization. Because Condition 1 is not required for CoT
generalization, CoT performs better than ICL if Condition 1 fails5. Theorem 3(b) characterizes that
when Condition 1 holds, a desired ICL generalization needs a testing prompt length linear in α′−2,
ρfo

−2
, and τfo

−2
for the testing task f ∈ T ′. This result is the counterpart of the requirement (19)

for the CoT generalization, indicating that more context examples with the same TSR pattern as the
query and more accurate context examples improve ICL generalization.

Ref. Li et al. (2023c) also shows the advantage of CoT over ICL to learn MLP functions, but in a
different setting from ours, where our studied tasks operate on patterns. More importantly, this paper
characterizes the CoT and ICL performance theoretically when the testing task has a distribution shift
from training tasks (TRR patterns to TSR patterns), and the testing examples contain errors, while Li
et al. (2023c) only empirically evaluates the CoT and ICL performance with noisy examples.

4 THE MECHANISM OF COT AND THE PROOF SKETCH

4.1 TRANSFORMERS IMPLEMENT COT BY ATTENDING TO THE MOST SIMILAR EXAMPLES
EVERY STEP

Figure 2: Concentration of attention weights
for CoT inference.

We characterize the key mechanism of a properly trained
one-layer Transformer to implement CoT on a K-steps
reasoning task via training dynamics analysis of the atten-
tion layer, as demonstrated in Figure 2. This is different
from the mechanism study in (Li et al., 2023c; Feng et al.,
2023) by constructing a model that can conduct CoT. We
have the following proposition for the trained model.
Proposition 1. Let S∗

k denote the index set of the context
columns of the testing prompt P in (4) that (a) correspond
to the k-th step in a context example and (b) share the

5Our insight of the comparison between CoT and ICL still holds when we evaluate CoT generalization only
by the final step output. This is because a successful CoT generalization in Theorem 2 on all reasoning steps
already ensures a satisfactory CoT generalization on the final step.
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same TSR pattern in the k-th input as the k-th input vk−1 of the query, k ∈ [K]. Given a trained
model that satisfies conditions (i) to (iii) of Theorem 1 and (18) and (19) after T iterations, we have∑

i∈S∗
k

softmax(p̃⊤
i W

(T )q̃k) ≥ 1− ϵ, where p̃i = pi + c(i mod K), q̃k = qk + ck, (22)

with qk defined in (6). Moreover, for any f ∈ T ′, the k-th step output vk given xquery = µ′
i satisfies,

vk = fk ◦ · · · ◦ f1(µ′
i). (23)

Proposition 1 first illustrates that, when conducting the k-th step reasoning of the query for any
k ∈ [K ′], the trained model assigns dominant attention weights on the prompt columns that are also
the k-th step reasoning of examples and share the same TSR pattern in the k-th step input as the
query. Then, given a sufficient number of testing context examples by (19), it is ensured that the
fraction of the correct TSR pattern is the largest in the output of each step by (11). Subsequently, the
generation by greedy decoding (5) is correct in each step, leading to a successful CoT generalization.

4.2 AN OVERVIEW OF THE PROOF

The technical challenges of the proof are concentrated on Theorem 1, where the property of the
trained model is derived. The proof of Theorem 1 is built upon three Lemmas, which characterize the
two stages of the training dynamics, i.e., Transformers first attend to tokens with the same step as
the query and then, among them, further concentrate on tokens that share the same TSR pattern as the
query. Specifically, Lemmas 3 and 4 show that if a training prompt P includes the first k steps of the
reasoning query, then the attention weights on columns of P with a different step from the query
decrease to be close to zero in the first stage. Lemma 5 computes the gradient updates in the second
stage, where the attention weights on columns in P that correspond to the same step and have the
same TRR pattern as the query gradually become dominant. Theorem 1 unveils this training process
by showing the required number of training iterations and sample complexity.

To prove Theorem 2, we first compute the required number of context examples for the new task f ∈
T ′ so that by concentration inequalities, the number of context examples with accurate TSR is larger
than examples with inaccurate TSR patterns in all K reasoning steps with high probability. Then, by
the correlation between TRR and TSR patterns (18), we also show that the trained Transformer can
attend to context columns with the same TSR pattern as the query. Therefore, the model can make
the correct generation in each step. Theorem 3 follows a similar proof idea to Theorem 2, with the
difference that the trained model predicts output directly from the input query following Bf instead
of Af

k , k ∈ [K] in CoT. Therefore, Condition 1 is required for the success of ICL generalization.

5 NUMERICAL EXPERIMENTS

Data Generation and Model setup. We use synthetic data generated following Sections 2 and 3.2.
Let dX = 30, M = 20, M ′ = 10, α = 0.4. We consider 3-steps tasks for training and testing, i.e.,
K = 3. A reasoning task f is generated by first sampling a set of numbers of permutations {pi}Mi=1
with pi ∈ [M ] and then let fk(µpi) = µp((i+k) mod M)

for i ∈ [M ], k, j ∈ [K]. The testing noise
level is set to be 0.2 for any examples and f ∈ T ′. The learning model is a one-layer single-head
Transformer defined in (2) or a three-layer two-head Transformer. We set τf = 0.5, ρf = 0.8,
α′ = 0.8 for CoT testing if not otherwise specified.

Experiments on the generalization of CoT. We first verify the required number of context examples
for a desired CoT generalization on a one-layer Transformer. We investigate the impact of α′, τf ,
and ρf by varying one and fixing the other two. Figure 3 illustrates that more testing examples are
needed when α′, τf , or ρf is small, which verifies the trend of the lower bound of lfts in (19).

Experiments on the generalization of ICL and a comparison with CoT. We then verify the ICL
generalization with the trained model. We vary τfo and ρfo by changing τf and ρf . Figure 3 indicates
that more testing examples are required when α′, τfo , or ρfo is small, which is consistent with our
bound in (21). We then consider the case where τfo = 0.4 and ρfo = 0.1 so that the generated testing
prompt may not satisfy Condition 1 depending on the specific choices of Afk’s. Figure 5 shows that
when Condition 1 holds, the ICL testing error decreases if the number of contexts increases. However,
when Condition 1 fails, the ICL testing error remains large, irrespective of the number of contexts.
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(A) (B) (C)
Figure 3: CoT testing error with different (A) α′ (B) τf (C) ρf .

(A) (B) (C)
Figure 4: ICL testing error with different (A) α′ (B) τf

o (C) ρfo .

Figure 5: Comparison
between CoT and ICL
w./w.o. Condition 1

Figure 6: Training dy-
namics of Transformers
for CoT

Experiments on the training dynamics of CoT.
In Figure 6, we compute the total attention weights
on four types of testing context columns along the
training, which are contexts with the same (or dif-
ferent) TSR pattern and in the same (or different)
step as the query. The result shows that the atten-
tion weights on contexts that share the same TSR
pattern and in the same step as the query increase
along the training and converge to around 1. This
verifies the mechanism formulated in (22). Mean-
while, Figure 6 also justifies the two-stage training
dynamics proposed in Section 4.2, where we add a
black vertical dashed line to demonstrate the stage transition boundary. We observe that the attention
weights on context columns with a different step, i.e., the red and yellow curves, decrease to zero
in the first stage. Then, the attention weights on contexts with the same TSR pattern and the same
step as the query, i.e., the blue curve, increase to 1 in the second stage. We also justify the attention
mechanism of CoT on a three-layer two-head Transformer with a two-step reasoning task. Figure 7
shows that there exists at least one head in each layer of the Transformer that implements CoT as
characterized in Proposition 1. This indicates that the CoT mechanism we characterize on one-layer
Transformers can be extended to multi-layer multi-head Transformers.

(A) (B) (C)
Figure 7: Training dynamics of Transformers. (A) Layer 1, Head 2 (B) Layer 2 Head 2 (C) Layer 3 Head 2.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

This paper theoretically analyzes the training dynamics of Transformers with nonlinear attention,
together with the CoT generalization ability of the resulting model on new tasks with noisy and
partially inaccurate context examples. We quantitatively characterize and compare the required
conditions for the success of CoT and ICL. Although based on a simplified Transformer model and
reasoning tasks operating on patterns, this work deepens the theoretical understanding of the CoT
mechanism. Future directions include designing efficient prompt-generating methods for CoT and
analyzing LLM reasoning on a more complicated data model.
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APPENDIX
A EXPERIMENTS ON REAL-WORLD DATA

We consider a simple arithmetic task that outputs ((A1o1A2)o2A3)o3A4 given A1, A2, A3, A4 chosen
from integers from 0 to 9 as the input, where o1, o2, o3 ∈ O = {+,−,×}. The CoT output follows
the format of A1o1A2 = S1, S1o2A3 = S2, S2o3A4 = S3 and will be evaluated by whether all
the three steps are correct for the query as (7). ICL directly outputs S3, and the performance is
evaluated by the prediction accuracy of S3 as (9). In the following experimental settings, the accuracy
is computed on 50 prompts. Each prompt contains three context examples. The inference model is
GPT-4 (OpenAI, 2023).

An increasing number of erroneous examples hurts the CoT generalization. To model the errors
in the context examples in the testing prompt, we replace o3 with one operation ô3 from O\o3 in the
presentation of some of the context examples in the testing prompt. Note that the output values S3

are still correctly computed from S3 = S2o3A4. Table 1 shows that when the total number of testing
examples is fixed to be three, with the increasing number of incorrect examples, the testing accuracy
decreases. This is consistent with Remark 1 for Theorem 2.

# of incorrect examples 0 1 2 3
CoT accuracy 100% 100% 56% 0%

Table 1: The accuracy with different numbers of incorrect examples for CoT. Errors in presenting o3.

CoT is more robust to erroneous examples with implementation error than ICL. In this setting,
the error in a context examples is introduced by replacing o1 with one operation ô1 randomly and
independently selected from O\o1. Hence, S1 = A1ô1A2, and the successive computation are based
on the wrongly computed S1. The results in Table 2 shows that when two incorrect examples exist,
CoT performs better than ICL, which justifies Remark 2 for Theorem 3.

# of incorrect examples 0 1 2
CoT accuracy 100% 100% 100%
ICL accuracy 100% 100% 60%

Table 2: The accuracy with different numbers of incorrect examples for CoT and ICL. Errors in
implementing o1.

B ADDITIONAL DISCUSSIONS

B.1 THE MOTIVATION TO STUDY ONE-LAYER SINGLE-HEAD TRANSFORMERS

The reasons we study one-layer single-head attention-only nonlinear Transformers in this work are as
follows.

First, it is much more challenging to theoretically analyze the training dynamics and generalization of
multi-layer/head Transformers. This is because the loss landscape for multi-layer/head Transformers
is highly nonlinear and non-convex due to the interactions between multiple nonlinear functions. The
simplified data helps to characterize the gradient updates in different directions for different patterns
and steps. Non-orthogonal data make the updates less separable for different inputs, which is more
challenging to analyze.

Second, the state-of-the-art theoretical works (Li et al., 2023a; 2024a; Huang et al., 2023; Makkuva
et al., 2024a; Ildiz et al., 2024) on optimization and generalization also focus mainly on one-layer
Transformers. No existing works study the optimization and generalization of CoT even for one-layer
Transformers. Therefore, we plan to focus on the one-layer analysis to obtain more theoretical
insights. We leave the theoretical analysis of the multi-layer case as future works.
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Third, although we admit the gap between theory and practice, our theory still makes contributions
under our settings. Our work is the first one to investigate the optimization and generalization of CoT
and characterize the conditions when CoT is better than ICL. We establish the required number of
context examples for a successful CoT in terms of how informative and erroneous the prompt is.

We also implement experiments on the attention mechanism for three-layer two-head Transformers on
two-step reasoning tasks. Please see Figure 7 for details. The findings of all three layers are generally
consistent with Proposition 1 for the single-layer single-head case, which indicates that the CoT
mechanism we characterize on one-layer Transformers can be extended to multi-layer multi-head
Transformers.

B.2 THE MOTIVATION OF THE DATA AND TASK FORMULATION

There are several reasons for using such data formulation.

First, our data formulation of orthogonal patterns, on which the function is based, is widely used in
the state-of-the-art theoretical study of model training or ICL on language and sequential data [(Tian
et al., 2023a; Huang et al., 2023; Li et al., 2024a; Chen et al., 2024). For example, (Huang et al.,
2023; Li et al., 2024a) study ICL on regression or classification tasks, which also use orthogonal
patterns as data. Sections 2.1 and 2.2 in (Chen et al., 2024) consider learning n-gram data in ICL by
formulating transitions between orthogonal patterns. Section 3 of (Tian et al., 2023a) also assume
orthogonal patterns in Transformer model training, and the generation comes from the orthogonal
pattern set. The data formulation we use is consistent with the existing theoretical works.

Second, based on this formulation, one can characterize the gradient updates in different directions
for different patterns and steps. This enables us to distinguish the impact of different patterns and
steps in the convergence analysis of CoT using Transformers. Non-orthogonal data make the model
updates less separable for different inputs, which is more challenging to analyze. Moreover, we would
like to mention that during the inference, the tokens in testing prompts contain noises as defined
in Equation 10. This makes the tokens of different TSR patterns not orthogonal to each other and
relaxes our orthogonality condition to some degree.

B.3 THE DISCUSSION OF POSITIONAL ENCODING

The positional encoding (PE) we use is simplified for theoretical analysis. The formulation of PE we
use is motivated by (Huang et al., 2024; Nichani et al., 2024), where each token is added with a PE
represented by orthogonal vectors. These works formulate the distribution of the PE to be related
to the structure of the data, such as patch-wise association (Huang et al., 2024), and sparse token
selection (Nichani et al., 2024). Likewise, we follow their intuition to make the PE vary in different
steps of our reasoning tasks so that the Transformer can distinguish different steps when making
inferences for the query.

Our analysis can be extended to study more general PEs with additional technical work in the future.
One possible direction is studying the family of periodic and separable PE. For example, the absolute
PE proposed by (Vaswani et al., 2017) considers PE as a sinusoid, which is periodic. Such analysis
can be made by relaxing the “orthogonality” of PE vectors to a certain “separability” between PE
vectors.

We also conduct experiments on a three-layer single-head Transformer with the standard PE proposed
in Section 3.5 of (Vaswani et al., 2017) for our problem. Figure shows that the blue curve increases
to be the largest along the training, which means the attention weights on example steps that share
the same TSR pattern and the same step as the query. This indicates that the CoT mechanism of
using standard PE is the same as the one proposed in Proposition 1 in our paper. One might note that
the scores of the blue curve are not as high as Figure 6 in our paper. We guess the reason why the
distinction in attention values is more significant in our PE may be the additional orthogonality of
our PE and the property that its period is the same as the reasoning length. Nevertheless, the strong
similarity between the results on standard PE and our used PE shows the practical significance of our
analysis.
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(A) (B) (C)
Figure 8: CoT mechanism with standard PE of (A) Layer 1 (B) Layer 2 (C) Layer 3.

C ALGORITHMS

We first present the training algorithm introduced in Section 2.2.

Algorithm 1 Training with Stochastic Gradient Descent (SGD)
1: Hyperparameters: The step size η, the number of iterations T , batch size B.
2: Initialization: Let W = W⊤

KWQ and WV = (0dX×dX IdX 0dX×dE ). Each entry of W (0) is
generated from N (0, ξ2) for a small constant ξ > 0. WV and a are fixed during the training.

3: Training by SGD: For each iteration, we independently sample xquery ∼ D, f ∈ Ttr to form
a batch of training prompt and labels {P n, zn}n∈Bt as introduced in Section 3.2. Each TRR
pattern is sampled equally likely in each batch. For each t = 0, 1, · · · , T − 1

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Ψ(t);P n, zn). (24)

4: Output: W (T ).

We then summarize the algorithm of the CoT inference introduced in Section 2.3 as follows.

Algorithm 2 Inference with Chain-of-Thought (CoT)
1: Input: z0 = v0 = xquery, P0, and P1.
2: for k = 1, · · · ,K − 1, do

Compute vk by greedy decoding in (5). Then update Pk and Pk+1 by (6). (25)

3: end for
4: Output: v1,v2, · · · ,vK−1, and vK by (5).

D PRELIMINARIES

We first summarize the notations we use in this paper in Table 3.
Lemma 1 (Multiplicative Chernoff bounds, Theorem D.4 of (Mohri et al., 2018)). Let X1, · · · , Xm

be independent random variables drawn according to some distribution D with mean p and support
included in [0, 1]. Then, for any γ ∈ [0, 1

p − 1], the following inequality holds for p̂ = 1
m

∑m
i=1 Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 , (26)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (27)
Definition 2 ((Vershynin, 2010)). We say X is a sub-Gaussian random variable with sub-Gaussian
norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted

∥X∥ψ2 , is defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .

Lemma 2 (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality). Let X1, X2, · · · , XN be
independent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2 . Then for every
a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (28)
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Table 3: Summary of Notations
Notations Annotation
xi, yi,k, xquery , zk xi is the input to the first step of a reasoning example. yi,k is the k-th

step output label of xi. xquery is the query input. zk the k-th step
output label of xquery. k ∈ [K].

P , pquery , Ei, Qk, vk P is a training or testing prompt that consists of multiple training or
testing examples and a query. The last column of P is denoted by
pnquery, which is the query of P . Ei is the i-th context example of
P . Qk is the first k steps of the reasoning query. k ∈ [K]. vk is the
k-th step generation by CoT. k ∈ [K].

ci, p̃i, p̃query ci is the positional encoding for the i-th column of the input sequence.
p̃i = pi + ci, where pi is the i-th column of P . p̃query is the pi of
the query column.

F (Ψ;P ), ℓ(Ψ;P n,zn) F (Ψ;P n) is the Transformer output for P with Ψ as the parameter.
ℓ(Ψ;P n, zn) is the loss function value given P n and the correspond-
ing label zn.

µi ∈ M, µ′
i ∈ M′, TSR(·) µi is the i-th training-relevant (TRR) pattern for i ∈ [M ]. µ′

i is the
i-th testing-relevant (TSR) pattern for i ∈ [M ′]. M and M′ are the
set of TRR and TSR patterns, respectively. TSR(·) is a function that
outputs the index of the TSR pattern of the noisy input.

fk, f f is the task function with f = fK◦· · · f2◦f1 for a K-steps reasoning.
fk is the k-th step task function.

T , T ′, D, D′ T is the distribution of training tasks, while T ′ is the distribution of
testing tasks. D is the training data distribution. D′ is the testing data
distribution.

α, α′ α (or α′) is the fraction of context examples with input sharing the
same TRR (or TSR) pattern as the query.

Af
k , Bf

k Af
k is the step-wise transition matrix at the k-th step for the task f ,

k ∈ [K]. Bf
k is the K-steps transition matrix of the task f .

τf , τf
o , ρf , ρfo τf is the min-max trajectory transition probability for task f . τfo

is the min-max input-label transition probability for task f . ρf and
ρfo are primacy of the step-wise transition matrices and the K-steps
transition matrix, respectively.

S∗
k The index set of context columns of the prompt that correspond to

the k-th step of the example and share the same TSR pattern in the
(k − 1)-th output as the (k − 1)-th output vk−1 of the query.

pn(t) pn(t) is the summation of attention weights on context columns that
share the same TRR/TSR pattern and in the same step as the query.

Bb Bb is the SGD batch at the b-th iteration.
ltr ltr is the universal number of training context examples.
lfts lts is the number of testing context examples of the task f .
O(), Ω(), Θ() We follow the convention that f(x) = O(g(x)) (or Ω(g(x)),

Θ(g(x)))) means that f(x) increases at most, at least, or in the order
of g(x), respectively.

≳, ≲ f(x) ≳ g(x) (or f(x) ≲ g(x) ) means that f(x) ≥ Ω(g(x)) (or
f(x) ≲ O(g(x))).

where c > 0 is an absolute constant.

Definition 3. Define that for p̃i that shares the same TRR/TSR pattern and in the same step as the
query,

pn(t) =
∑
i

softmax(p̃ni
⊤
W (t)p̃nquery). (29)

Lemma 3. Given the SGD training scheme described in Section 2.2, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), we have the following results. When O(η−1α−2K3 log K

ϵ ) ≥ t ≥ 1, for any p as a
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column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K2
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(30)
For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we have

η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

1

K
pn(t)(1− pn(t))

2

· (1 + α2

K2
)).

(31)
For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we have

η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(32)
For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃, we have

η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α2

K3
)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K
).

(33)
Lemma 4. Given the SGD training scheme described in Section 2.2, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), and

t ≳ T1 := η−1α−2K3 log
K

ϵ
, (34)

we have that if pquery is in the k-th step,∑
i∈S[K]\k

softmax(p̃⊤
i W

(t)p̃query) ≤ ϵ (35)

where S[K]\k means the index set of context columns that are not in the k-th step.

Lemma 5. Given the SGD training scheme described in Section 2.2, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), we have the following results. When t ≥ T1 = η−1α−2K3 log K

ϵ , for any p as a
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column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃ ≤ − η

2MB

∑
n∈Bb

4pn(t)(1− pn(t))
2. (36)

For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ ηϵ. (37)

For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ η

2BM

∑
n∈Bb

pn(b)(1− pn(b))
2. (38)

For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ ηϵ. (39)

E PROOF OF MAIN THEOREMS

E.1 PROOF OF THEOREM 1

Proof. By the condition in Lemma 3, we have that

B ≥ Ω(M logM). (40)

We know that there exists gradient noise caused by imbalanced TRR patterns in each batch. Then, by
Hoeffding’s inequality (28),

Pr

(∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ

)
≤e−Bϵ

2

≤ M−C ,

(41)

if B ≳ ϵ−2 logM . Therefore, we require

B ≳ max{ϵ−2,M} logM. (42)

By Lemma 5 and Definition 3, for p̃ni that share the same TRR pattern and the same positional
encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(p̃ni

⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K + (1− 1

K ) · ϵ+ ( 1
K − α

K )e−u
, (43)

where by (161),

u ≳
η

KM

t∑
b=0

(1− pn(b))
2pn(b). (44)

For p̃ni that only share the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K eu + (1− 1

K ) · ϵ+ ( 1
K − α

K )
. (45)

Therefore, to make the attention weights between p̃nquery and p̃ni that share the same TRR pattern and
the same positional encoding dominant, we need a large enough u. When 1− pn(b) ≥ Ω(1), we have

t ≤ T2 := η−1KMα−1. (46)
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When 1− pn(b) ≤ O(1),

pn(t+ 1) =
eu

eu +
1− α

K
α
K

≳ 1−
1− α

K
α
K

e−u, (47)

and

1− pn(t+ 1) ≥
1− α

K
α
K eu + (1− α

K )
≳

1− α
K

α
K

e−u. (48)

Then, we prove that when t is large enough, u(t) ≥ 1
2 log

η(1−α)2t
α2KM . We show it by induction. Suppose

that the conclusion holds when t = t0, then

u(t+ 1) ≥ η

KM

t0∑
b=0

(1− pn(b))
2pn(b) +

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

(K − α)2t

2α2KM
+

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

η(K − α)2(t+ 1)

α2KM
,

(49)

where the last step is by

1

2
log(1 +

1

t
) ≤ 1

2t
≤ η

KM
· (K − α

α
)2e− log

η(K−α)2t

α2KM . (50)

To make (1− pn(t))
2 < ϵ, we need

(
K − α

α
)2e−2u ≤ ϵ. (51)

Then, we get

u ≥ 1

2
log

1

ϵ
+ log

K − α

α
. (52)

Therefore, by
1

2
log

ηt

KM
+ log

K − α

α
≥ 1

2
log

1

ϵ
+ log

K − α

α
, (53)

we finally obtain
t ≥ T3 := η−1ϵ−1KM. (54)

For p̃ni that shares the same TSR pattern as the query, we have that when t = T1,

p̃ni
⊤
W (t)p̃nquery ≥ log

1

ϵ
. (55)

When t = T1 + T2 + T3,

p̃ni
⊤
W (t)p̃nquery ≥ Θ(1) · log 1

ϵ
= Θ(log

1

ϵ
). (56)

Then,
T :=T1 + T2 + T3

=Θ(η−1α−2K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)).

(57)

Therefore,
Exquery∼D,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (58)
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E.2 PROOF OF THEOREM 2

Proof. We know that α′ is the fraction of examples that share the same TSR pattern as the query. We
need that in each step, the number of examples that share the same TSR pattern as the current step of
the query is at least 1. Note that the probability of examples where each reasoning step produces the
most probable output is

K∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
, where f0(µ

′
i) := µ′

i,∀ i ∈ [M ′], (59)

where the input to the first step has the TSR pattern µ′
i. Define mk(i) as the TSR pattern in the k-th

step output of the i-th context example by the transition matrix defined in 11. Consider that the TSR
pattern of the k-th step label of the testing query is µ′

qk
, which is also the most probable k-th step

output of the k-th step of a certain xi with TSR(xi) = TSR(xquery) = q0. Let the TSR pattern of
another reasoning process, where for a certain first-step input xi with TSR(x) = TSR(xquery) = q0,
the k-th step output is the most probable for k ∈ [K ′]\{h}, while the h-th step output is the second
probable. Denote the TSR pattern of the k-th step output of xi following this process as µ′

uk
with

u0 = q0. By the Chernoff bound of Bernoulli distribution in Lemma 1, we can obtain

Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
qk
,∀k ∈ [K ′]] ≤ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)


≤e

−lts(ρfs )
2α′ ∏K′

k=1 A
f
k(qk−1,qk = M−C ,

(60)

and by Lemma 2,

Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)


≤Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ α′

K′∏
k=1

Afk(uk−1,uk)
+ t0


≤e−ltst

2
0 = M−C ,

(61)

for some c ∈ (0, 1) and C > 0, where the first step is by the definition of ρfs in (11), and

t0 ≲ ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
. (62)

Hence, with a high probability,

lts ≳max{(ρfs
2
α′

K′∏
k=1

Afk(qk−1,qk)
)−1 logM, (ρfsα

′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM}

≳(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM,

(63)

such that the number of examples with the same TSR pattern as the query in each of the total K steps
is at least 1. To make the above condition hold for any TSR pattern of the intermediate step of the
query, we need

lts ≳ max
qk∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM

= max
i∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
)−2 logM

=(ρfsα
′τfs )

−2 logM.

(64)
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Then, we show the CoT testing error is zero by induction. In the first step, consider xi = µj + δi
such that

p̃i =

(
µ′
j

yi,1

)
+

(
δi
0

)
+ ci mod K . (65)

Since that
(δ⊤i , 0

⊤)W (0)p̃i ≲ ξ, (66)
by that each entry of W (0) follows N (0, ξ2), and

(δ⊤i , 0
⊤)

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
p̃query = 0, (67)

we have that for p̃i that shares the same TSR pattern as the query,

p̃i
⊤W (T )p̃query

=p̃i
⊤(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query

=((µ′
j
⊤
,y⊤
i,1) + c⊤i mod K))(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query.

(68)

Since that λj is orthogonal to all the µi, i ∈ [M ], we have similar conclusion for λj as δi, i.e.,

(λ⊤
j , 0

⊤)W (0)p̃i ≲ ξ, (69)
and

(λ⊤
j , 0

⊤)
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
p̃query = 0. (70)

Let µ′
j = λj + µ̃j = λj +

∑M ′

i=1 kj,iµi. Then, we have

p̃i
⊤W (T )p̃query

=((λ⊤
j +

M ′∑
i=1

kj,iµ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((λ⊤

j

+

M ′∑
i=1

kj,iµ
⊤
i ,0

⊤) + c1)
⊤

=

M ′∑
i=1

k2j,i((µ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i ,0
⊤) + c1)

⊤

+
∑
i ̸=i′

kj,ikj,i′((µ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i′ ,0
⊤) + c1)

⊤

≥C ·Θ(log
1

ϵ
)−Θ(ξ)

=Θ(log
1

ϵ
),

(71)
where the second to last step is by Theorem 1. The last step holds if C ≥ Θ(log−1(1/ϵ)).
Since the gradient updates for different TRR patterns are very close to each other, we have that∑
i ̸=i′ |kj,ikj,i′ | ≤ 1 and∑
i ̸=i′

kj,ikj,i′((µ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i′ ,0
⊤) + c1)

⊤

≲Θ(1) · p̃s
⊤W (T )p̃query

log 1
ϵ

,

(72)
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where p̃s shares the same TSR pattern and the same step as p̃query. Hence, for p̃i that shares a
different TSR pattern with p̃query,

p̃i
⊤W (T )p̃query ≲ Θ(1). (73)

Therefore, we can derive that∑
i∈S∗

1

softmax(p̃i⊤W (T )p̃query) ≥ 1− ϵ, (74)

where S∗
1 is the set of the first step of examples that share the same TSR pattern as the query. Then,

the first step leads to a correct prediction with zero testing error, since that maxj∈[M ′] Ak(q0,j) is the
largest to make the correct prediction for xquery if xquery = µ′

q0 , i.e.,

v1 = f1(µ
′
q0). (75)

Suppose that the k-th step generates a zero testing error. Then, for the k + 1-th step, we know that
there exists pj that shares the same TSR pattern as vk. Then, we can also derive that

p̃⊤
j W

(T )((v⊤
k ,0

⊤)⊤ + c⊤k )
⊤ = Θ(log

1

ϵ
), (76)

and ∑
j∈S∗

k

softmax(p̃⊤
j W

(T )((v⊤
k−1 v

⊤
k )

⊤ + c⊤k )
⊤) ≥ 1− ϵ. (77)

Hence, the k + 1-th also makes the correct prediction, i.e.,

vk+1 = fk+1 ◦ · · · f1(µ′
q0), (78)

where µ′
qk+1

is the TSR pattern of the k + 1-th step input. Therefore, we show that CoT makes the
correct prediction in each step as well as in the final prediction, such that

R̄fCoT,x∈M′,f∈T ′(Ψ) = 0. (79)

E.3 PROOF OF THEOREM 3

Proof. We know that the positional encodings are the same for the ICL inference in all examples.
Hence, similar to (74), we can derive that∑

i∈S∗
K

softmax(p̃i⊤W (T )p̃query) ≥ 1− ϵ, (80)

where S∗
K is the set of the last step output of examples that share the same TSR pattern as the

last step output of the query. For xquery = µ′
q, q ∈ [K ′], we know that the distribution of the

corresponding label y of x with TSR(x) = q follows the q-th row the K-steps transition matrix Bf .
Let F (Ψ;P ) =

∑M ′

i=1 λ
P
i µ

′
i. Hence, based on the output scheme of ICL as stated in Section 2.3, we

have that
v = arg min

y∈M′

1

2
∥F (Ψ;P )− y∥2 = µargmaxi∈[M′] λ

P
i
. (81)

Note that the probability of examples with the most probable final output with µ′
q as the TSR pattern

of the input is
B(q,TSR(f(µ′

q)))
. (82)

To ensure that the number of examples with the same TSR pattern as the query that generates the
most probable output is at least 1, we compute the following,

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q1 ] ≤ (1− ρfo/2)α

′B(q,TSR(f(µ′
q)))

)

≤e
−ltsρfo

2
α′B(q,TSR(f(µ′

q))) = M−C ,

(83)
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for some c ∈ (0, 1) and C > 0 by the Chernoff bound of Bernoulli distribution in Lemma 1. Here,
mi is defined as the TSR pattern in the final output of the i-th context example by the K-steps
transition matrix defined in 12. The TSR pattern of the most probable output of the testing query is
µ′
q1 . Similarly, let the TSR pattern of the second most probable output of the testing query be µ′

q2 .
We also have

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2 ] ≥ (1− ρfo/2)α

′Bf
(q,q1)

)

≤Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2 ] ≥ α′B(q,q2) + c · ρfoα′Bf

(q,q1)

)
≤e−ltsρ

f
o
2
c2α′B(q,q1) = M−C ,

(84)

by Lemma 2 and (12) for some constant c > 0. Therefore, to make the number of examples with the
same TSR pattern in the output as the label of the query be at least 1 for any TSR pattern of the query
and the output be the most probable one, we need

lfts ≳max{(ρfo
2
α′ min

i∈[M ′]
B(i,TSR(f(µ′

i))
)−1 logM, (ρfoα

′ min
i∈[M ′]

B(i,TSR(f(µ′
i))
)−2 logM}

=(ρfoα
′τfo )

−2 logM}.
(85)

In addition, if Condition 1 holds such that the most probable output is the actual label, we can derive

R̄fICL,x∈M′,f∈T ′(Ψ) = 0. (86)

When (85) holds but Condition 1 does not, we know that ICL still always produces the most probable
output by the K-steps transition matrix, but such an output is not the label since Condition 1 fails.
Hence,

R̄fICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (87)

When both Condition 1 and (85) do not hold, ICL can produce multiple possible outputs with a
non-trivial probability, which is decided by the distribution of the prompt instead of the K-steps
transition matrix. This can be seen from that (83) and (84) both do not hold since (85) fails. Then,
ICL can produce both the most probable and the second most probable output with a constant
probability. Let the TSR pattern of the r-th most probable output of the testing query be µ′

r. Recall
that F (Ψ;P ) =

∑M ′

i=1 λ
P
i µ

′
i, we then have that for some small ϵ > 0,

λP
r(q) =

|{i ∈ [lfts] : yi = µ′
r in P }|

lfts
± ϵ. (88)

Then, by (81), the output of the query is µargmaxr∈[M′] λr
. Since that (85) does not hold, there exists

at least a constant probability of the prompt P ′ with the same query as P such that

λP ′

r =
|{i ∈ [lfts] : yi = µ′

r in P ′}|
lfts

± ϵ ̸= λP
r , (89)

for some r ∈ [M ′]. Therefore, with a constant probability, the output for the same testing query and
the same testing task f varies. This leads to

R̄fICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (90)

E.4 PROOF OF PROPOSITION 1

Proof. This proposition is derived from the proof of Theorem 2. (22) comes from (77), while (23)
comes from (78), both by induction.
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F PROOF OF LEMMAS

F.1 PROOF OF LEMMA 3

Proof.

η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W

=η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂F (Ψ;P )

∂F (Ψ;P )

∂W

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃i)p̃r)p̃
⊤
query.

(91)

When t = 0, we know that each entry of W (0) is generated from the Gaussian distribution N (0, ξ2).
Then,

|p̃i⊤W (0)p̃query| = |
∑
k,j

pi,kpquery,jW
(0)
k,j | ≲ ξ. (92)

Hence,

softmax(p̃i⊤W (0)p̃query) ≥
e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ), (93)

softmax(p̃i⊤W (0)p̃query) ≤
e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ). (94)

We can obtain

F (Ψ;P ) =

l∑
i=1

e−Θ(ξ)

l
WV pi. (95)

Since that PE(·), and TRR(·) denote the positional encoding, and the TSR pattern of the input,
respectively, we have that for p,

p̃⊤p̃query = 1[TRR(p̃) = TRR(p̃query)] + 1[PE(p̃) = PE( ˜̃pi)]. (96)

Given lab(·) is the label embedding of the context as the input, we have that for p,

p̃⊤p̃i = 1[TRR(p̃) = TRR(p̃i)] + 1[lab(p̃) = lab(p̃i)] + 1[PE(p̃) = PE(p̃i)], (97)

(WV p̃)
⊤WV p̃i = 1[lab(p̃) = lab(p̃i)]. (98)

When t ≥ 1, we first consider the case where p̃ shares the same TRR pattern and the positional
encoding as p̃query. If p̃ and p̃query share the same TRR pattern, label pattern, and the positional
encoding,

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− 3pn(t)− (1− pn(t)))

=4(1− pn(t)),

(99)

and

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≤ 2 · (3− 3pn(t)) = 6(1− pn(t)). (100)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

2− 6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −4pn(t). (101)
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When p̃ and p̃query share both different positional encodings and TRR patterns,

−6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r) ˜pqeury
⊤p̃ ≥ −2− 4pn(t). (102)

Then, we consider the case where p̃ only shares the same TRR pattern or the same positional encoding
as p̃i. If p̃ and p̃query share the same TRR pattern, label pattern, and the positional encoding,

3− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥1 · (3− pn(t)− (1− pn(t)))

=2.
(103)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (104)

When p̃ and p̃query only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (105)

Note that −(1 − pn(t))pn(t) + (1 − pn(t))
2α2/K2 < 0 for pn(t) ∈ [α/K,α]. Then, when

l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as p̃i,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 − 4pn(t)(1− pn(t))

2 · α2

K2

+
1

l
(
1

K
− α

K
)(−4pn(t)) +

1

l
(
1

K
− α

K
)(1− pn(t))(−2− 4pn(t))(K − 1)

=− 4pn(t)(1− pn(t))
2(1 +

α2

K2
) +

2

lK
(1− α)(−(K − 1)− (K + 1)pn(t) + 2pn(t)

2(K − 1)).

(106)
We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Note that

2

Kl
· (1− α) ·K(1− pn(t)) ≲ |(−(1− pn(t))pn(t) + (1− pn(t))

2 α
2

K2
)(1− pn(t))|, (107)

if l ≥ Ω(α−1). Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 0 · pn(t)(1− pn(t)) + (1− pn(t))
2 α

2

K2
· (+2) +

1

l
(
1

K
− α

K
)(−(K − 1))

=2(1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(108)
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We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃i
⊤p̃

≤0− (1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−(K − 1))

=− (1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(109)

Therefore, as long as
l ≥ Ω(α−1), (110)

we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃i
⊤p̃

≤η
1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

2(K − 1)α2

K2
)

·+(
1

K
− 1

M
)(−(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(111)

We then consider the case where p̃′ shares a different positional encoding and the same TRR pattern
as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query . If p̃′ and p̃i share the
same TRR pattern, label pattern, and the positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.
(112)

When p̃′ and p̃query only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (113)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2. (114)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and p̃i share
the same TRR pattern, label pattern, and the positional encoding,

3− pn(t)) ≥p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≥1 · (3− 3pn(t)− (1− pn(t))) = 2(1− pn(t)).

(115)
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When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2pn(t). (116)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1− 2pn(t). (117)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query . If p̃′ and p̃i
share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (118)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (119)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (120)

Then, when l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t)) +
1

l
(
1

K
− α

K
)(−2K).

(121)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then, by (107),

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 2pn(t)(1− pn(t))
2 − 2pn(t)(1− pn(t))

2 · α2

K2
+

1

l
(
1

K
− α

K
)((−1− 2pn(t))K)

=− 2pn(t)(1− pn(t))
2(1 +

α2

K2
) +

1

l
(1− α)(−1− 2pn(t)).

(122)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤pn(t)(1− pn(t))
2 + pn(t)(1− pn(t))

2 α
2

K2
+

1

l
(1− α)(−1− 2pn(t))

=pn(t)(1− pn(t))
2(1 +

α2

K2
)− 1

l
(1− α)(1 + 2pn(t)).

(123)
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Therefore, as long as
l ≥ Ω(α−1), (124)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤(p̃i

−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−4− 2(K − 1)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+ (
1

K
− 1

M
)pn(t)(1− pn(t))

2(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
)),

(125)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

≥η
1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
) +

1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2).

(126)

We next consider the case where p̃′ shares a different TRR pattern and the same positional encoding
as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query . If p̃′ and p̃i share the
same TRR pattern, label pattern, and positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.
(127)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (128)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2. (129)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and p̃i share
the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (130)
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When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (131)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (132)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query . If p̃′ and p̃i
share the same TRR pattern, label pattern, and the positional encoding,

3−pn(t) ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3−pn(t)− (1−pn(t))) = 2.

(133)
When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (134)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (135)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as
p̃query, by (107),

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤0− 2(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−2(K − 1)).

(136)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− pn(t)(1− pn(t))(−1 + pn(t)) + pn(t)(1− pn(t))
2 · α2

K2
+

1

l
(
1

K
− α

K
)K(−1 + pn(t))

=pn(t)(1− pn(t))
2(

α2

K2
+ 1) +

1

l
(1− α)(−1 + pn(t)).

(137)
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We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− (1− pn(t))
2 α

2

K2
− 0 +

1

l
(
1

K
− α

K
)(−K + 1)

=− (1− pn(t))
2 α

2

K2
− K − 1

Kl
(1− α).

(138)

Therefore, as long as
l ≥ Ω(α−1), (139)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1)(1 +

α2

K2
)pn(t))(1− pn(t))

2 − (
1

K

− 1

M
)(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(140)
and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
)).

(141)

We next consider the case where p̃′ shares a different TRR pattern and a different positional encoding
as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query . If p̃′ and p̃i share the
same TRR pattern, label pattern, and the positional encoding,

6 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 2 ·(3−(1−pn(t))) = 4+2pn(t). (142)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 2pn(t). (143)
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When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2 + 2pn(t). (144)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and p̃i share
the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− pn(t)− (1− pn(t))) = 2. (145)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (146)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (147)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query . If p̃′ and p̃i
share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (148)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (149)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (150)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as
p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− pn(t)(1− pn(t))(−2 + 2pn(t)) + (1− pn(t))
2 α

2

K2
· 2pn(t) +

1

l
(1− α)(−2 + 2pn(t)).

(151)
We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤0 + pn(t)(1− pn(t))
2 · α2

K2
· (−1) +

1

l
(
1

K
− α

K
)(−K)

=− pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(1− α)(−1).

(152)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− (1− pn(t))pn(t)(−1 + pn(t)) + pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−1 + pn(t))K

=(1− pn(t))
2pn(t)(1 +

α2

K2
) +

1

l
(1− α)(−1 + pn(t)).

(153)
Therefore, as long as

l ≥ Ω(α−1), (154)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−pn(t)(1− pn(t))(−2 + 2pn(t)) + (3−K)(1− pn(t))

2 α
2

K2
· pn(t))

+ (
1

K
− 1

M
)(1− pn(t))

2pn(t)(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
)

+ (1− pn(t))
2pn(t)(1 +

α2

K2
) · 1

K
),

(155)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α2

K3
).

(156)

F.2 PROOF OF LEMMA 4

Proof. We can derive that when 1− pn(t) ≥ Ω(1), p̃′⊤W (t)p̃ increases if p̃ and p̃′ share the same
positional encoding. Otherwise, p̃′⊤W (t)p̃ decreases. We know that pn(t) ≥ α

2 . Combining the
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results in Lemma 3, we can derive that when t ≥ 1,

W (t+1) = W (t) − η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
. (157)

Then, for p̃in that share the same TRR pattern and the same positional encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(pni

⊤W (t+1)p̃nquery)

≥1

l
· 1
α
K + (K−1)α

K · e−s1 + ( 1
K − α

K )((K − 1)e−s2 + e−s3)
,

(158)

where

s1 ≥η

t∑
b=0

((1− pn(b))
2 α

2

K3
+

α2

K3
(1− pn(b))

2) = η

t∑
b=0

(1− pn(b))
2 2α

2

K3
, (159)

s2 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
, (160)

s3 ≥− η

KM

t∑
b=0

(1− pn(b)
2(−4pn(b)(1 +

α2

K2
) +

α2

K
(1 +

2(K − 1)

K
) +

α2

K2

− (K − 1 +
2K − 1

K2
α2)pn(b)))

≥ η

KM

t∑
b=0

(1− pn(b))
2(pn(b)(3 +

α2

K2
)(4 +

2K − 1

K2
)),

(161)

where the last step is by Kpn(b) ≥ 4α2/K2 when pn(b) ≥ α/K. For p̃in that share the same TRR
pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es1 + (K−1)α

K + ( 1
K − α

K )((K − 1)e−s4 + es5)
, (162)

where

s4 ≥−
t∑

b=0

η

M
((−4− (3K − 2)(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b))

− (2−K)(1 +
α2

K2
)pn(b)(1− pn(b))

2)

=

t∑
b=0

η

M
(4 + 2K(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b)),

(163)

s5 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
. (164)

When M ≥ Ω(K4α−1) and t ≥ Ω(η−1K3 logKα−2),

(K − 1)e−s4 + es5 > K. (165)

If M ≥ Ω(K4α−1) and t ≤ O(η−1K3 logKα−2), we cannot ensure

(K − 1)e−s4 + es5 > K. (166)

For p̃ni that share a different TRR pattern and the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es3 + α

K · e−s4 + ( 1
K − α

K )(1 + (K − 1)e−s6)
, (167)
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where

s6 ≥ η

t∑
b=0

2α2

K3
(1− pn(b))

2. (168)

For p̃ni that share a different TRR pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es2 + ( 1

K − α
K )(K − 1 + es6) + α

K es4
. (169)

Note that when t ≲ η−1α−2K3, for pnquery in the k-th step, we have∑
i∈S[K]\{k}

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥ Ω(1), (170)

for p̃ni that share a different positional encoding from p̃nquery. To make the total softmax values on
contexts that share a different positional encoding and a different TRR pattern from the query smaller
than ϵ, we need

s1, s2, s6 ≳ log
K

ϵ
. (171)

When t further increases to be larger than Ω(η−1α−2K3 log K
ϵ ), we also have that the total softmax

values on contexts that share a different positional encoding and the same TRR pattern from the query
smaller than ϵ. Therefore,

t ≳ T1 := η−1α−2K3 log
K

ϵ
. (172)

F.3 PROOF OF LEMMA 5

Proof. We consider the case when t ≥ T1 given Lemma 4. When l ≥ Ω(α−1), and when p̃ shares
the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 + ϵ

≲− 4pn(t)(1− pn(t))
2.

(173)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲− 0 · pn(t)(1− pn(t)) + ϵ

≲ϵ.

(174)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(175)
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Therefore,

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲η
1

B

∑
n∈Bb

(
1

2M
(−4pn(t)(1− pn(t))

2) + (
1

2
− 1

M
) · ϵ

=− η · 1

2M
· 1

B

∑
n∈Bb

4pn(t)(1− pn(t))
2.

(176)

We then discuss if p̃ and p̃′ only share the same TRR pattern. When l ≥ Ω(α−1), and when p̃ shares
the same TRR pattern and the positional encoding as p̃query, we can obtain

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− 2(1− pn(t))
2pn(t).

(177)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− (1− pn(t))(1− pn(t))pn(t).

(178)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,∣∣∣( l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≲ϵ.

(179)

Therefore, ∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≤ηϵ.

(180)
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We next discuss when p̃ only shares the same positional encoding as p̃′. When l ≥ Ω(α−1), and
when p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(181)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲− pn(t)(1− pn(t))(−1 + pn(t)) +
1

M

≲pn(t)(1− pn(t))
2.

(182)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(183)

Therefore,

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲η
1

B

∑
n∈Bb

1

2M
· pn(b)(1− pn(b))

2.

(184)

We then consider if p̃ shares a different TRR pattern and a different positional encoding as p̃′. When
l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳ϵ.

(185)
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We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− (1− pn(t))pn(t).

(186)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,∣∣∣( l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≲ϵ.

(187)

Therefore, ∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)pr)p̃
⊤
queryp̃

∣∣∣
≲ηϵ.

(188)
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