
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING NONLINEAR TRANSFORMERS FOR CHAIN-
OF-THOUGHT INFERENCE: A THEORETICAL GENERAL-
IZATION ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) is an efficient prompting method that enables the rea-
soning ability of large language models by augmenting the query using multiple
examples with multiple intermediate steps. Despite the empirical success, the
theoretical understanding of how to train a Transformer to achieve the CoT ability
remains less explored. This is primarily due to the technical challenges involved in
analyzing the nonconvex optimization on nonlinear attention models. To the best
of our knowledge, this work provides the first theoretical study of training Trans-
formers with nonlinear attention to obtain the CoT generalization capability so that
the resulting model can inference on unseen tasks when the input is augmented
by examples of the new task. We first quantify the required training samples and
iterations to train a Transformer model towards CoT ability. We then prove the suc-
cess of its CoT generalization on unseen tasks with distribution-shifted testing data.
Moreover, we theoretically characterize the conditions for an accurate reasoning
output by CoT even when the provided reasoning examples contain noises and are
not always accurate. In contrast, in-context learning (ICL), which can be viewed as
one-step CoT without intermediate steps, may fail to provide an accurate output
when CoT does. These theoretical findings are justified through experiments.

1 INTRODUCTION

Transformer-based large-scale foundation models, such as GPT-3 (Brown et al., 2020), GPT-4
(OpenAI, 2023), LLaMa (Touvron et al., 2023a;b), and Sora (Liu et al., 2024), have demonstrated
remarkable success across various tasks, including natural language processing (Brown et al., 2020;
Touvron et al., 2023b), multimodal learning (OpenAI, 2023; Radford et al., 2021), and image/video
generation (OpenAI, 2023; Liu et al., 2024). What is more surprising is that large language models
(LLMs) demonstrate reasoning ability through the so-called “Chain-of-Thought” (CoT) method
(Wei et al., 2022). The objective is to let a pre-trained LLM generate K steps of reasoning given
input query xquery without any fine-tuning. To achieve that, the input xquery is augumented with l
examples {xi, {yi,j}Kj=1}li=1 of a certain K-step reasoning task, where each xi is the input with yi,j
as the j-th reasoning step, and yi,K is the final output. A pre-trained model then takes the resulting
augmented input, referred to as a prompt, and outputs the corresponding reasoning steps {zj}Kj=1
for xquery, or simply outputs zK . CoT can be viewed as an extended and more intelligent method
than the previous in-context learning (ICL) method, where only input-label pairs {xi,yi,K}li=1 are
augmented in the prompt to predict zK with the pre-trained model.

Inspired by the outstanding empirical performance of CoT in arithmetic reasoning (Wang et al.,
2023; Zhang et al., 2023b; Wang & Zhou, 2024), symbolic reasoning (Zhang et al., 2023b; Zhou
et al., 2023), and commonsense reasoning (Wang et al., 2023; Wang & Zhou, 2024), there have
been some recent works (Li et al., 2023c; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024;
Wen et al., 2024) on the theoretical understanding of CoT. These works investigate CoT from the
perspective of expressive power, i.e., they construct the Transformer architecture that is proven to
have the CoT ability. They also demonstrate empirically that supervised training on pairs of CoT
prompts and corresponding outputs can lead to models with CoT ability. However, none of these
results theoretically address the question of why a Transformer can obtain generalization-guaranteed
CoT ability by training from data with gradient-based methods. Meanwhile, another line of research

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Zhang et al., 2023a; Huang et al., 2023; Wu et al., 2023; Li et al., 2024a) aims to unveil the reasons
behind the ICL ability of Transformers through characterizing the training dynamics of a Transformer
in the supervised setting. These analyses are specifically applicable to ICL. Therefore, a theoretical
question still remains less explored, i.e.,

Why can a Transformer be trained to generalize on multi-step reasoning tasks via CoT?

1.1 MAJOR CONTRIBUTIONS

Following Li et al. (2023c); Feng et al. (2023); Li et al. (2024d); Yang et al. (2024); Wen et al. (2024),
we train the model in a supervised setting using prompt and label pairs. This paper provides the first
theoretical analysis of the training dynamics of nonlinear Transformers to achieve CoT ability. We
prove that the learned model has guaranteed CoT ability for new tasks with distribution shifts from
the training tasks, even when there exist noisy and erroneous context examples in the prompt. We
theoretically characterize the required number of training samples and iterations needed to train a
desirable model and the number of context examples required for successful CoT reasoning with a
generalization guarantee. Moreover, we provide a theoretical explanation for why CoT outperforms
ICL in some cases. Our main technical contributions are as follows:

1. A quantitative analysis of how the training can enable the CoT ability: We theoretically
analyze the training dynamics on a one-layer single-head attention-only Transformer and quantify the
required number of context examples in each training sample, the total number of training samples,
and the number of training iterations needed to acquire CoT ability. We illustrate that the CoT ability
results from the property that the attention values of the learned model are concentrated on testing
context examples with the same input patterns as the testing query during each reasoning step.

2. A quantitative analysis of how context examples affect CoT performance: We characterize
the required number of context examples in the testing prompt for successful CoT reasoning when
noise and error exist in contexts. Our quantitative bounds are consistent with the intuition that more
accurate context examples and more similar examples to the query improve CoT accuracy.

3. A theoretical characterization of why CoT outperforms ICL: We provide a quantitative analysis
of the requirements for successful ICL reasoning with our studied trained model. We show that
successful ICL requires an additional condition that the prompt has a dominant number of correct
input-label examples, while the success of CoT does not depend on this condition. This can be viewed
as one of the possible reasons why CoT outperforms ICL.

1.2 RELATED WORKS

Expressive power of CoT Li et al. (2023c) proves the existence of a Transformer that can learn
a multi-layer perceptron (MLP). They interpret CoT as first filtering important tokens and then
making predictions by ICL. They also establish the required number of context examples for a
desired prediction with the constructed Transformer. Feng et al. (2023); Li et al. (2024d); Merrill &
Sabharwal (2024) show that Transformers with CoT are more expressive than Transformers without
CoT. Yang et al. (2024); Wen et al. (2024) show the superiority of standard Transformers in some
reasoning tasks compared with recurrent neural networks and linear Transformers.

Theoretical analysis of ICL As a simplified one-step version of CoT, ICL has gained much attention
from the theoretical community. Garg et al. (2022); Akyürek et al. (2023); Bai et al. (2023); Guo et al.
(2023) demonstrate that Transformers are expressive to conduct many machine learning algorithms
in context. Akyürek et al. (2023); Von Oswald et al. (2023); Ahn et al. (2023); Cheng et al. (2023);
Ding et al. (2024) especially show the existence of Transformers to implement gradient descent
and its variants with different input prompts. Zhang et al. (2023a); Huang et al. (2023); Wu et al.
(2023); Li et al. (2024a) explore the training dynamics and generalization of ICL on single-attention
Transformers. Cui et al. (2024); Chen et al. (2024) provably show the superiority of multi-head
attention over single-head attention to achieve ICL ability.

Training and Generalization of Transformers There have been several recent works about the opti-
mization and generalization analysis of Transformers. Jelassi et al. (2022); Li et al. (2023d); Oymak
et al. (2023); Li et al. (2023a;b; 2024b); Luo (2023); Huang et al. (2024); Zhang et al. (2024) study
the generalization of one-layer Transformers by assuming spatial association, semantic/contextual
structure, or the majority voting of tokens in the data. Oymak et al. (2023); Tarzanagh et al. (2023b;a);
Tian et al. (2023a;b); Li et al. (2024c); Ildiz et al. (2024); Nichani et al. (2024); Makkuva et al. (2024b)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

investigate the training dynamics or loss landscape of Transformers for the next token prediction
by assuming infinitely long input sequences, causal structure/Markov Chain of data, or a proper
prediction head. Deora et al. (2023); Chen & Li (2024) analyze the optimization and generalization
of multi-head attention networks.

2 PROBLEM FORMULATION

We study the problem of learning and generalization of K-steps reasoning tasks. Each task f =
fK ◦ · · · f2 ◦ f1 is a composition of functions {fi}Ki=1 and outputs labels z1, z2, · · · , zK for the input
xquery. During the k-th reasoning step, k ∈ [K], the label is zk = fk(zk−1), where z0 := xquery.

2.1 TRAINING TO ACQUIRE THE CHAIN-OF-THOUGHT ABILITY

Following theoretical analysis (Feng et al., 2023; Li et al., 2024d; Wen et al., 2024) and empirical
works like process supervision (Lightman et al., 2024), we first investigate the training on a Trans-
former model to obtain the CoT ability in evaluating new data and tasks. It is a supervised learning
setting on pairs of prompts and labels. Different from the testing prompt that includes examples and
only xquery, the training prompt includes multiple K-steps reasoning examples and a (k − 1)-step
reasoning of xquery for any k in [K], and the label for this prompt is zk. Specifically,

Training Prompt and Label for CoT. For every prompt and output pair from a task f = fK ◦
· · · f2 ◦ f1, we construct a prompt P that include the query input zk−1 by prepending ltr reasoning
examples and the first k − 1 steps of the reasoning query. The prompt P of the query input zk−1 is
formulated as:

P =(E1,E2, · · · ,Eltr ,Qk) ∈ R2dX×(ltrK+k),

where Ei =

(
xi yi,1 · · · yi,K−1

yi,1 yi,2 · · · yi,K

)
, Qk =

(
z0 z1 · · · zk−2 zk−1

z1 z2 · · · zk−1 0

)
, i ∈ [ltr],

(1)

where Ei is the i-th context example, and Qk is the first k steps of the reasoning query for any
k in [K]. We have yi,k = fk(yi,k−1) and zk = fk(zk−1) for i ∈ [ltr], k ∈ [K] with a notation
yi,0 := xi. Let ps and pquery be the s-th column and the last column of P , respectively, for
s ∈ [ltrK + k − 1]. xi,yi,k, zj ∈ RdX for i ∈ [ltr] and j, k ∈ [K]. We respectively call xi and yi,k
context inputs and outputs of the k-th step of the ith context example. For simplicity of presentation,
we denote z as the label of P , which is indeed zk for (1). All the notations are summarized in Table
3 in Appendix.

The learning model is a single-head, one-layer attention-only Transformer. We consider positional
encoding {ck}Kk=1 ∈ R2dX . Following theoretical works (Jelassi et al., 2022; Huang et al., 2024; Ildiz
et al., 2024), we add the positional encoding to each pi by p̃i = pi + c(i mod K), i ∈ [K(ltr + 1)].
p̃query is also defined by adding the corresponding ck to pquery . Mathematically, given a prompt P
defined in (1) with len(P) (which is at most K(ltr + 1)) denoting the number of columns, it can be
written as

F (Ψ;P) =

len(P)−1∑
i=1

WV p̃i · softmax((WK p̃i)
⊤WQp̃query), (2)

where WQ,WK ∈ Rm×(2dX), WV ∈ RdX×(2dX) are the embedding matrices for queries, keys, and
values, respectively. Ψ := {WQ, WK ,WV } is the set of all model weights1. Typically, m > 2dX .
Here, softmax((WK p̃i)

⊤WQp̃query) = e(WK p̃i)
⊤WQp̃query/

∑len(P)−1
j=1 e(WK p̃j)

⊤WQp̃query .

The training problem to enhance the reasoning capability solves the empirical risk minimization,

min
Ψ

RN (Ψ) :=
1

N

N∑
n=1

ℓ(Ψ;P n, zn), (3)

using N prompt and label pairs {P n, zn}Nn=1. For the n-th sample, xnquery and the context input
xni are all sampled from an unknown distribution D, the training task fn is sampled from T , k is
randomly selected from 1 to K, and P n is constructed following (1). The loss function is squared
loss, i.e., ℓ(Ψ;P n, zn) = 1/2 · ∥zn − F (Ψ;P n)∥2, where F (Ψ;P n) is defined in (2).

1We focus on a one-layer single-head Transformer motivated by recent advancements and current state in
Transformer and CoT analysis. Please see Appendix B.1 for discussion.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 TRAINING ALGORITHM

For simplicity of analysis, we let W = W⊤
KWQ and WV = (0dX×dX IdX) ∈ RdX×(2dX) as

(Jelassi et al., 2022; Huang et al., 2023; Zhang et al., 2023a; Huang et al., 2024). Let {ck}Kk=1 be
a set of orthonormal vectors. The model is trained using stochastic gradient descent (SGD) with
step size η with batch size B, summarized in Algorithm 1 in Appendix C. Each entry of W (0) is
generated from N (0, ξ2) for a tiny ξ > 0. WV is fixed during the training. The fraction of prompts
with zk−1 as the query input is 1/K by uniform sampling for any k ∈ [K] in each batch.

2.3 CHAIN-OF-THOUGHT INFERENCE

We then consider another K-steps reasoning task f ∈ T ′, whose target is to predict labels {zk}Kk=1
given the input query xquery. T ′ is the set of testing tasks, and T ′ ̸= T .

Testing Prompt for CoT. The testing prompt P is composed of lts (≤ ltr) context examples of K
steps plus a query, which is constructed as

P = (E1,E2, · · · ,Elts ,pquery) ∈ R(2dX)×(ltsK+1),pquery = (x⊤
query,0

⊤)⊤, (4)

where Ei follows the form in (1) for i ∈ [lts].

We follow the CoT-I/O scheme formulated in (Li et al., 2023c; Feng et al., 2023; Li et al., 2024d;
Yang et al., 2024; Park et al., 2024) as the inference method. Specifically, for a K-step CoT with
lts examples on a certain f ∈ T ′, given the testing prompt P defined in (4), let P1 = P and P0

be the first K · lts columns of P . When we use CoT prompting for prediction in the k-th step, we
first generate the output vk, k ∈ [K] via greedy decoding by feeding the k-th step prompt Pk to the
trained model Ψ obtained from (3). The greedy decoding scheme means outputting the most probable
token from the discrete set Y of all possible outputs, as stated in (5).

vk = argmin
u∈Y

1

2
∥F (Ψ;Pk)− u∥2, (greedy decoding) (5)

Then, we use the output vk to update Pk and use vk as the query input to form the input prompt
Pk+1 for the next step, which is computed as

Pk = (Pk−1 qk) ∈ R(2dX)×(Klts+k), Pk+1 = (Pk qk+1) ∈ R(2dX)×(Klts+k+1),

where qk =
(
v⊤
k−1 v

⊤
k

)⊤
, qk+1 =

(
v⊤
k 0⊤)⊤ ,

(6)

where qk is the k-th step reasoning column for the query. The model finally outputs v1, · · · ,vK as
CoT result for query xquery by (5). The CoT process is summarized in Algorithm 2 of Appendix C.

When K ≥ 2, following (Li et al., 2023c; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024), the
CoT generalization error given the testing query xquery, the testing data distribution D′, and the
labels {zk}Kk=1 on a K-steps testing task f ∈ T ′ is defined as

R̄fCoT,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′

[
1

K

K∑
k=1

1[zk ̸= vk]

]
, (7)

which measures the average error between the output and the label of each reasoning step. A zero
CoT generalization error indicates correct generations in all K steps.

2.4 IN-CONTEXT LEARNING INFERENCE

The ICL inference on a K-steps reasoning task f ∈ T ′ only predicts the final-step label by perpending
examples of input and label pairs before the query. ICL can be viewed as a one-step CoT without
intermediate steps. Here, we evaluate the ICL performance of the trained model.

Testing Prompt for ICL. Mathematically, ICL is implemented by constructing a prompt P as below,

P = (E1, · · · ,Elts ,pquery),where pquery =

(
xquery

0

)
,Ei =

(
xi 0 · · · 0
yi,K 0 · · · 0

)
(8)

P ∈ R(2dX)×(ltsK+1), Ei ∈ R(2dX)×K for i ∈ [lts]. Note that in the ICL setting, Ei only has input
xi and the K-step output yi,K but does not include any intermediate labels. We pad zeros in Ei so
that its dimension is the same as Ei in (1) for the inference with the same model as for CoT. The ICL
output is v = argminu∈Y

1
2∥F (Ψ;P)− u∥2, following (5). The ICL generalization error is

R̄fICL,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′ [1[zK ̸= v]] , (9)

which measures the error between the one-step reasoning output and the final step label.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 THEORETICAL RESULTS

We first summarize the main theoretical insights in Section 3.1. Then, we introduce the formulation
of data and tasks in Section 3.2. Sections 3.3, 3.4, and 3.5, respectively characterize the training
analysis of the Transformer and generalization using CoT and ICL with the trained model.

3.1 MAIN THEORETICAL INSIGHTS

We consider the setup that the model is trained using samples generated from tasks in T that operate
on M orthonormal training-relevant (TRR) patterns, while both CoT and ICL are evaluated on tasks
in T ′ that operate on M ′ orthonormal testing-relevant (TSR) patterns.We consider the general setup
that the context examples in the prompt for CoT and ICL testing are both noisy, i.e., TSR patterns
with additive noise, and partially inaccurate, i.e., the reasoning in some examples contains incorrect
steps. Our main insights are as follows.

P1. Training Dynamics of Nonlinear Transformer towards CoT. We theoretically analyze the
training dynamics on a one-layer single-head attention-only Transformer to acquire the CoT general-
ization ability and characterize the required number of training samples and iterations. Theorem 1
shows that to learn a model with guaranteed CoT ability, the required number of context examples
in each training sample and the total number of training samples/iterations are linear in α−1 and
α−2, respectively, where α is the fraction of context examples with inputs that share the same TRR
patterns as the query. This is consistent with the intuition that the CoT performance is enhanced if
more context examples are similar to the query. Moreover, the attention values of the learned model
are proved to be concentrated on testing context examples that share similar input TSR patterns as
the testing query during each of the reasoning steps (Proposition 1), which is an important property
that leads to the success of the CoT generalization.

P2. Guaranteed CoT Generalization. To achieve zero CoT error on tasks in T ′ and data based
on TSR patterns that contain a non-trivial component in the span of TRR patterns with the learned
model, Theorem 2 shows that the required number of context examples, where noise and errors are
present, for task f in the testing prompt is proportional to (α′τfρf)

−2. Here, α′ is the fraction of
context examples with inputs that share the same TSR patterns as the query. τf in (0, 1) measures the
fraction of accurate context examples, and a larger constant ρf in (0, 1) reflects a higher reasoning
accuracy in each step of the examples. This result formally characterizes the intuition that more
accurate context examples and more similar examples to the query improve the CoT accuracy.

P3. CoT outperforms ICL. In Theorem 3, We theoretically show that the required number of testing
context examples for ICL to be successful has a similar form to that for CoT in Theorem 2, but with
an additional requirement (Condition 1) that the fraction of correct input-label examples in the testing
prompt must be dominant. Because not all testing cases satisfy this requirement, our result provides
one explanation for why CoT sometimes outperforms ICL.

3.2 THE FORMULATION OF DATA AND TASKS

Training data and tasks: Consider M training-relevant (TRR) patterns µ1,µ2, · · · ,µM , which form
an orthonormal set M = {µi}Mi=1. M = Θ(d),M ≤ d. (µ⊤

i , 0
⊤
dX

)⊤ ⊥ ck for i ∈ [M ′], k ∈ [K].

Every training prompt P in (1) contains the query and training examples from the same training task
f in the set of training tasks T . Specifically, each training task f is a composition of K functions
f = fK ◦ · · · ◦ f2 ◦ f1 where each function fk belongs to a function set F . The k-th step label of the
query is zk = fk(zk−1) given the k-th step input zk−1 with zk ∈ M, k ∈ [K]. Moreover, the k-th
step label of the i-th (i ∈ [ltr]) context example is yi,k = fk(yi,k−1) given the k − 1th step input
yi,k−1, k ∈ [K] with xi,yi,k ∈ M, where yi,0 := xi

2.We assume that fk(x) ̸= fk′(x
′) if and only

if either x ̸= x′ or fk ̸= fk′ .

Training prompt: Consider a training prompt P on task f ∈ T defined in (1) with the query input
zk−1, k ∈ [K]. Let α ∈ (0, 1− c] for some constant c > 03 denote the fraction of context examples
with input sharing the same TRR pattern as the query input.

2The formulation of f is motivated by recent theoretical works on model training or ICL with Transformers.
Please see Appendix B.2 for details.

3This is to prevent the trivial case that the model only learns the positional encoding but not the TRR patterns
when α becomes arbitrarily close to 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Testing task and query: Consider M ′ testing-relevant (TSR) patterns µ′
1,µ

′
2, · · · ,µ′

M , which form
an orthonormal set M′ = {µ′

i}M
′

i=1. M ′ ≤ M . We also have µ′
i ⊥ ck for i ∈ [M ′], k ∈ [K]. Let T ′

denote the set of testing tasks, which all operate on patterns in M′ rather than M in training tasks in
T . Every testing task f = fK ◦ · · · f2 ◦ f1 ∈ T ′ is a composition of K functions. The reasoning for
the testing query is considered to be noiseless and accurate. That means,

zk ∈ M′ for all k ∈ {0} ∪ [K], and zk = fk(zk−1), z0 = xquery.

Testing prompt: We consider the general setup that testing examples are noisy and erroneous. By
noisy examples, we mean all inputs and outputs of each step are noisy versions of TSR patterns, i.e.,

xi,yi,k ∈ {b ∈ Rd|b = µ′
j + δ, j ∈ [M ′], δ ⊥ M′, ∥δ∥ ≤

√
2/2}, (10)

with noise δ ̸= 0 for i ∈ [Klfts], k ∈ [K]. Denote TSR : Rd 7→ Z+ as a function that outputs the
index of the TSR pattern of the noisy input. We consider the case that at least an α′ fraction of context
examples where the TSR pattern of the input ys,1, s ∈ [lfts] is the same as xquery.

By erroneous examples, we mean that the reasoning steps in test examples may contain errors. To
formally model this, we define the step-wise transition matrices {Af

k}Kk=1 ∈ RM ′×M ′
such that

Af
k represents the reasoning probabilities of step k in test examples. Specifically, there exists some

constant ρf in (0, 1) such that for all s ∈ [lfts], k ∈ [K], the i, j-th entry of Af
k satisfies

Afk(i,j) = Pr(TSR(ys,k) = j|TSR(ys,k−1) = i),

and Afk(i,j∗) ≥ 1/(1− ρf) ·Afk(i,j),∀j ∈ [M ′], where µ′
j∗ = fk(µ

′
i),

(11)

Note that (11) characterizes a general case in inference that for any given k, in the k-th reasoning step
of the test example, the k-th step output is a noisy version of the true label with the highest probability,
which guarantees that the examples are overall informative in the k-th step. This requirement is
intuitive because otherwise, these examples would overall provide inaccurate information on the
k-th step reasoning. Moreover, (11) models the general case that, with some probability, the k-step
reasoning is inaccurate in the examples. ρf is referred to as the primacy of the step-wise transition
matrices. ρf reflects the difference in the probability of correct reasoning and incorrect reasoning in
each step, and a larger ρf indicates a larger probability of accurate reasoning.

Let Bf =
∏K
k=1 A

f
k be the K-step transition matrix. Then Bf

(i,j) is the probability that the K-th
step output is a noisy version of µ′

j , when the input is a noisy version of µ′
i in the testing example.

We similarly define ρfo in (0, 1) as the primacy of Bf , where
Bf

(i,j∗) ≥ 1/(1− ρfo) ·B
f
(i,j), ∀j ∈ [M ′], j∗ = arg max

j∈[M ′]
Bf

(i,j). (12)

Example 1. Consider a simple two-step inference example with K = 2, µ′
1, µ′

2 as the TSR pattern,
and δ = 0 in inputs and outputs of every step, as shown in Figure 1. The black solid arrows denote
the correct inference process, where f1(µ

′
1) = µ′

1, f1(µ′
2) = µ′

2, f2(µ′
1) = µ′

2, and f2(µ
′
2) = µ′

1.
Hence, µ′

1 → µ′
1 → µ′

2 and µ′
2 → µ′

2 → µ′
1 are two inference trajectories under the function f .

The testing examples contain errors and follow the transition matrices Af
1 and Af

2 (brown dashed

arrows). We let Af
1 =

(
0.6 0.4
0.4 0.6

)
, Af

2 =

(
0.4 0.6
0.8 0.2

)
, which results in Bf =

(
0.56 0.44
0.64 0.36

)
.

3.3 THE SAMPLE COMPLEXITY ANALYSIS OF THE TRAINING STAGE

Figure 1: An example of a two-step
inference

We first characterize the convergence and the testing perfor-
mance of the model during the training stage with sample
complexity analysis in Theorem 1.
Theorem 1. For any ϵ > 0, when (i) the number of context
examples in every training sample is

ltr ≥ Ω(α−1), (13)

(ii) the number of iterations satisfies

T ≥ Ω(η−1α−2K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)), (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and (iii) the training tasks and samples are selected such that every TRR pattern is equally likely in
every inference step and in each training batch4 with batch size B ≥ Ω(max{ϵ−2,M} · logM), the
step size η < 1 and N = BT samples, then with a high probability, the returned model guarantees

Exquery∈M,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (15)

Theorem 1 indicates that with long enough training prompts and a sufficient number of iterations
and samples for training, a one-layer Transformer can achieve a diminishing loss of O(ϵ) on data
following the same distribution as training examples. The results indicate that (i) the required number
of context examples is proportional to α−1; (ii) the required number of iterations and samples
increases as M and α−2 increases. As a sanity check, these bounds are consistent with the intuition
that it will make the training stage more time- and sample-consuming if the number of TRR patterns
increases or the fraction of prompt examples that share the same TRR pattern as the query decreases.

3.4 COT GENERALIZATION GUARANTEE

In this section, we first define two quantities, τf , and τfo for each testing task f ∈ T ′ based on the
formulation of testing data and tasks in Section 3.2. These two quantities are used to characterize the
CoT and ICL generalization in Theorems 2 and 3, respectively.

Definition 1. For f = fK ◦ · · · f1 ∈ T ′, we define the min-max trajectory transition probability as:

τf = min
i∈[M ′]

K∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
, where f0(µ

′
i) := µ′

i,∀ i ∈ [M ′], (16)

which measures the minimum probability, over all the initial TSR patterns, of the K-step reasoning
trajectory that has the highest probability over all K-step trajectories. We also define the min-max
input-label transition probability as

τfo = min
i∈[M ′]

max
j∈[M ′]

Bf
i,j , (17)

which measures the minimum probability, over all the initial TSR patterns, of the output that has the
highest probability over outputs.

For instance, in Example 1 after (12), τf = min{0.36, 0.48} = 0.36, τfo = min{0.56, 0.64} = 0.56.

Theorem 2 (CoT generalization). Given a trained model, the training process of which satisfies
conditions (i) to (iii) in Theorem 1, then as long as

(iv) each TSR pattern µ′
j in the orthonormal set {µ′

j}M
′

j=1 satisfies

µ′
j = λj + µ̃j (18)

where λj ⊥ span(µ1, · · · ,µM), µ̃j ∈ span(µ1, · · · ,µM), and ∥µ̃j∥ ≥ Θ((log ϵ−1)−1),
and (v) the number of testing examples for any f ∈ T ′ is

lfts ≥ Ω((α′τfρf)−2 logM), (19)

we have R̄fCoT,xquery∈M′,f∈T ′(Ψ) = 0.

Remark 1. Theorem 2 proves that a trained one-layer Transformer can generate all K-steps
reasoning correctly by CoT for a new task f in T ′ with two additional conditions. Condition (iv)
means that each TSR pattern in the task set T ′ is the summation of a component that belongs to the
span of the TRR patterns and a component that is perpendicular to the span.

Condition (v) indicates that, to achieve the desired CoT accuracy, the number of context examples
should be proportional to α′−2, ρfs

−2
, and τf

−2
, meaning it decreases as α′, ρfs , or τfs increase. It

can be interpreted as follows, if the number of context examples remains fixed, an increase in α′, ρfs ,
or τfs results in improved CoT accuracy. This aligns with intuition, because α′ represents the fraction
of examples similar to the query, and ρf and τf reflect the accuracy of the reasoning steps in the
context examples.

4Our analysis assumes that the whole set of M is achievable uniformly in each step and training batch. This
condition is to ensure a balanced gradient update among all TRR patterns, as used in (Li et al., 2024a) for ICL.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.5 ICL GENERALIZATION AND COMPARISON WITH COT
Because only input-label pairs are used as context examples for ICL, the input-label pairs in context
examples should be accurate overall to be informative about the task. We formulate this requirement
as Condition 1.
Condition 1. For the testing task f = fK ◦ · · · ◦ f1 ∈ T ′, we have that for any i ∈ [M ′],

TSR(f(µ′
i)) = arg max

j∈[M ′]
Bf

(i,j). (20)

Condition 1 requires that in a context example, if the input TSR is µ′
i, then f(µ′

i) is the output TSR
pattern with the highest probability over all TSR patterns. Note that (11) indicates that, for every k
and i, when µ′

i is the k-th step input, fk(µ′
i) is the step-k output with the highest probability over all

TSR patterns. However, (11) does not necessarily imply (20). In Example 1, given the input µ′
1,

although the inference trajectory µ′
1 → µ′

1 → µ′
2 under f has the highest probability over all 2-step

trajectories, µ′
1 has the higher probability to be the final output than the correct output µ′

2 by the
two-step transition matrix Bf , thus violating Condition 1.

Our result of the ICL generalization is stated as follows.
Theorem 3 (ICL generalization). Given a trained model, the training process of which satisfies
conditions (i) to (iii) of Theorem 1 and (18), for the testing task f ∈ T ′,

Case A. if Condition 1 does not hold, then R̄fICL,xquery∈M′,f∈T ′(Ψ) ≥ Ω(1), no matter how large

the number of training samples lfts is;

Case B. if Condition 1 holds, then R̄fICL,xquery∈M′,f∈T ′(Ψ) = 0, provided that

lfts ≥ Ω((α′τfo ρ
f
o)

−2 logM). (21)

Remark 2 (Comparison between CoT and ICL). Theorem 3(a) formally states that, Condition 1
is necessary for a successful ICL generalization. Because Condition 1 is not required for CoT
generalization, CoT performs better than ICL if Condition 1 fails5. Theorem 3(b) characterizes that
when Condition 1 holds, a desired ICL generalization needs a testing prompt length linear in α′−2,
ρfo

−2
, and τfo

−2
for the testing task f ∈ T ′. This result is the counterpart of the requirement (19)

for the CoT generalization, indicating that more context examples with the same TSR pattern as the
query and more accurate context examples improve ICL generalization.

Ref. Li et al. (2023c) also shows the advantage of CoT over ICL to learn MLP functions, but in a
different setting from ours, where our studied tasks operate on patterns. More importantly, this paper
characterizes the CoT and ICL performance theoretically when the testing task has a distribution shift
from training tasks (TRR patterns to TSR patterns), and the testing examples contain errors, while Li
et al. (2023c) only empirically evaluates the CoT and ICL performance with noisy examples.

4 THE MECHANISM OF COT AND THE PROOF SKETCH

4.1 TRANSFORMERS IMPLEMENT COT BY ATTENDING TO THE MOST SIMILAR EXAMPLES
EVERY STEP

Figure 2: Concentration of attention weights
for CoT inference.

We characterize the key mechanism of a properly trained
one-layer Transformer to implement CoT on a K-steps
reasoning task via training dynamics analysis of the atten-
tion layer, as demonstrated in Figure 2. This is different
from the mechanism study in (Li et al., 2023c; Feng et al.,
2023) by constructing a model that can conduct CoT. We
have the following proposition for the trained model.
Proposition 1. Let S∗

k denote the index set of the context
columns of the testing prompt P in (4) that (a) correspond
to the k-th step in a context example and (b) share the

5Our insight of the comparison between CoT and ICL still holds when we evaluate CoT generalization only
by the final step output. This is because a successful CoT generalization in Theorem 2 on all reasoning steps
already ensures a satisfactory CoT generalization on the final step.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

same TSR pattern in the k-th input as the k-th input vk−1 of the query, k ∈ [K]. Given a trained
model that satisfies conditions (i) to (iii) of Theorem 1 and (18) and (19) after T iterations, we have∑

i∈S∗
k

softmax(p̃⊤
i W

(T)q̃k) ≥ 1− ϵ, where p̃i = pi + c(i mod K), q̃k = qk + ck, (22)

with qk defined in (6). Moreover, for any f ∈ T ′, the k-th step output vk given xquery = µ′
i satisfies,

vk = fk ◦ · · · ◦ f1(µ′
i). (23)

Proposition 1 first illustrates that, when conducting the k-th step reasoning of the query for any
k ∈ [K ′], the trained model assigns dominant attention weights on the prompt columns that are also
the k-th step reasoning of examples and share the same TSR pattern in the k-th step input as the
query. Then, given a sufficient number of testing context examples by (19), it is ensured that the
fraction of the correct TSR pattern is the largest in the output of each step by (11). Subsequently, the
generation by greedy decoding (5) is correct in each step, leading to a successful CoT generalization.

4.2 AN OVERVIEW OF THE PROOF

The technical challenges of the proof are concentrated on Theorem 1, where the property of the
trained model is derived. The proof of Theorem 1 is built upon three Lemmas, which characterize the
two stages of the training dynamics, i.e., Transformers first attend to tokens with the same step as
the query and then, among them, further concentrate on tokens that share the same TSR pattern as the
query. Specifically, Lemmas 3 and 4 show that if a training prompt P includes the first k steps of the
reasoning query, then the attention weights on columns of P with a different step from the query
decrease to be close to zero in the first stage. Lemma 5 computes the gradient updates in the second
stage, where the attention weights on columns in P that correspond to the same step and have the
same TRR pattern as the query gradually become dominant. Theorem 1 unveils this training process
by showing the required number of training iterations and sample complexity.

To prove Theorem 2, we first compute the required number of context examples for the new task f ∈
T ′ so that by concentration inequalities, the number of context examples with accurate TSR is larger
than examples with inaccurate TSR patterns in all K reasoning steps with high probability. Then, by
the correlation between TRR and TSR patterns (18), we also show that the trained Transformer can
attend to context columns with the same TSR pattern as the query. Therefore, the model can make
the correct generation in each step. Theorem 3 follows a similar proof idea to Theorem 2, with the
difference that the trained model predicts output directly from the input query following Bf instead
of Af

k , k ∈ [K] in CoT. Therefore, Condition 1 is required for the success of ICL generalization.

5 NUMERICAL EXPERIMENTS

Data Generation and Model setup. We use synthetic data generated following Sections 2 and 3.2.
Let dX = 30, M = 20, M ′ = 10, α = 0.4. We consider 3-steps tasks for training and testing, i.e.,
K = 3. A reasoning task f is generated by first sampling a set of numbers of permutations {pi}Mi=1
with pi ∈ [M] and then let fk(µpi) = µp((i+k) mod M)

for i ∈ [M], k, j ∈ [K]. The testing noise
level is set to be 0.2 for any examples and f ∈ T ′. The learning model is a one-layer single-head
Transformer defined in (2) or a three-layer two-head Transformer. We set τf = 0.5, ρf = 0.8,
α′ = 0.8 for CoT testing if not otherwise specified.

Experiments on the generalization of CoT. We first verify the required number of context examples
for a desired CoT generalization on a one-layer Transformer. We investigate the impact of α′, τf ,
and ρf by varying one and fixing the other two. Figure 3 illustrates that more testing examples are
needed when α′, τf , or ρf is small, which verifies the trend of the lower bound of lfts in (19).

Experiments on the generalization of ICL and a comparison with CoT. We then verify the ICL
generalization with the trained model. We vary τfo and ρfo by changing τf and ρf . Figure 3 indicates
that more testing examples are required when α′, τfo , or ρfo is small, which is consistent with our
bound in (21). We then consider the case where τfo = 0.4 and ρfo = 0.1 so that the generated testing
prompt may not satisfy Condition 1 depending on the specific choices of Afk’s. Figure 5 shows that
when Condition 1 holds, the ICL testing error decreases if the number of contexts increases. However,
when Condition 1 fails, the ICL testing error remains large, irrespective of the number of contexts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(A) (B) (C)
Figure 3: CoT testing error with different (A) α′ (B) τf (C) ρf .

(A) (B) (C)
Figure 4: ICL testing error with different (A) α′ (B) τf

o (C) ρfo .

Figure 5: Comparison
between CoT and ICL
w./w.o. Condition 1

Figure 6: Training dy-
namics of Transformers
for CoT

Experiments on the training dynamics of CoT.
In Figure 6, we compute the total attention weights
on four types of testing context columns along the
training, which are contexts with the same (or dif-
ferent) TSR pattern and in the same (or different)
step as the query. The result shows that the atten-
tion weights on contexts that share the same TSR
pattern and in the same step as the query increase
along the training and converge to around 1. This
verifies the mechanism formulated in (22). Mean-
while, Figure 6 also justifies the two-stage training
dynamics proposed in Section 4.2, where we add a
black vertical dashed line to demonstrate the stage transition boundary. We observe that the attention
weights on context columns with a different step, i.e., the red and yellow curves, decrease to zero
in the first stage. Then, the attention weights on contexts with the same TSR pattern and the same
step as the query, i.e., the blue curve, increase to 1 in the second stage. We also justify the attention
mechanism of CoT on a three-layer two-head Transformer with a two-step reasoning task. Figure 7
shows that there exists at least one head in each layer of the Transformer that implements CoT as
characterized in Proposition 1. This indicates that the CoT mechanism we characterize on one-layer
Transformers can be extended to multi-layer multi-head Transformers.

(A) (B) (C)
Figure 7: Training dynamics of Transformers. (A) Layer 1, Head 2 (B) Layer 2 Head 2 (C) Layer 3 Head 2.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

This paper theoretically analyzes the training dynamics of Transformers with nonlinear attention,
together with the CoT generalization ability of the resulting model on new tasks with noisy and
partially inaccurate context examples. We quantitatively characterize and compare the required
conditions for the success of CoT and ICL. Although based on a simplified Transformer model and
reasoning tasks operating on patterns, this work deepens the theoretical understanding of the CoT
mechanism. Future directions include designing efficient prompt-generating methods for CoT and
analyzing LLM reasoning on a more complicated data model.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. arXiv preprint arXiv:2306.00297, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Sitan Chen and Yuanzhi Li. Provably learning a multi-head attention layer. arXiv preprint
arXiv:2402.04084, 2024.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. arXiv preprint
arXiv:2402.19442, 2024.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. arXiv preprint arXiv:2312.06528, 2023.

Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. Superiority of multi-head attention
in in-context linear regression. arXiv preprint arXiv:2401.17426, 2024.

Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization
and generalization of multi-head attention. arXiv preprint arXiv:2310.12680, 2023.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. CausalLM is not op-
timal for in-context learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=guRNebwZBb.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. arXiv preprint arXiv:2310.10616, 2023.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023.

Yu Huang, Zixin Wen, Yuejie Chi, and Yingbin Liang. Transformers provably learn feature-position
correlations in masked image modeling. arXiv preprint arXiv:2403.02233, 2024.

M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From self-
attention to markov models: Unveiling the dynamics of generative transformers. arXiv preprint
arXiv:2402.13512, 2024.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

11

https://openreview.net/forum?id=guRNebwZBb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision
transformers: Learning, generalization, and sample complexity. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=jClGv3Qjhb.

Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, ZAIXI ZHANG, and Pin-Yu Chen. What
improves the generalization of graph transformer? a theoretical dive into self-attention and
positional encoding. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023b. URL
https://openreview.net/forum?id=BaxFC3z9R6.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear
transformers learn and generalize in in-context learning? In Forty-first International Conference on
Machine Learning, 2024a. URL https://openreview.net/forum?id=I4HTPws9P6.

Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, and Pin-Yu Chen. Learning on transformers is
provable low-rank and sparse: A one-layer analysis. arXiv preprint arXiv:2406.17167, 2024b.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: Compositionality through in-context filtering and learning. Advances
in Neural Information Processing Systems, 36, 2023c.

Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics
of next token prediction with self-attention. In International Conference on Artificial Intelligence
and Statistics, pp. 685–693. PMLR, 2024c.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023d.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024d. URL https://openreview.net/forum?id=3EWTEy9MTM.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Yuankai Luo. Transformers for capturing multi-level graph structure using hierarchical distances.
arXiv preprint arXiv:2308.11129, 2023.

Ashok Vardhan Makkuva, Marco Bondaschi, Chanakya Ekbote, Adway Girish, Alliot Nagle, Hyeji
Kim, and Michael Gastpar. Local to global: Learning dynamics and effect of initialization for
transformers. arXiv preprint arXiv:2406.03072, 2024a.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
via markov chains. arXiv preprint arXiv:2402.04161, 2024b.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

OpenAI. Gpt-4 technical report. OpenAI, 2023.

12

https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=BaxFC3z9R6
https://openreview.net/forum?id=I4HTPws9P6
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. arXiv preprint arXiv:2306.03435, 2023.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines. arXiv preprint arXiv:2308.16898, 2023a.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. CoRR, 2023b.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. arXiv preprint arXiv:2305.16380, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Shaolei Du. Joma: Demystify-
ing multilayer transformers via joint dynamics of mlp and attention. In Conference on Parsimony
and Learning (Recent Spotlight Track), 2023b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language mod-
els. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2609–2634, 2023.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key bottleneck
on in-context retrieval. arXiv preprint arXiv:2402.18510, 2024.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? arXiv preprint
arXiv:2310.08391, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye,
Di He, and Liwei Wang. Do efficient transformers really save computation? arXiv preprint
arXiv:2402.13934, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023a.

Yihua Zhang, Hongkang Li, Yuguang Yao, Aochuan Chen, Shuai Zhang, Pin-Yu Chen, Meng Wang,
and Sijia Liu. Visual prompting reimagined: The power of activation prompts, 2024. URL
https://openreview.net/forum?id=0b328CMwn1.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023b.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023.

14

https://openreview.net/forum?id=0b328CMwn1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX
A EXPERIMENTS ON REAL-WORLD DATA

We consider a simple arithmetic task that outputs ((A1o1A2)o2A3)o3A4 given A1, A2, A3, A4 chosen
from integers from 0 to 9 as the input, where o1, o2, o3 ∈ O = {+,−,×}. The CoT output follows
the format of A1o1A2 = S1, S1o2A3 = S2, S2o3A4 = S3 and will be evaluated by whether all
the three steps are correct for the query as (7). ICL directly outputs S3, and the performance is
evaluated by the prediction accuracy of S3 as (9). In the following experimental settings, the accuracy
is computed on 50 prompts. Each prompt contains three context examples. The inference model is
GPT-4 (OpenAI, 2023).

An increasing number of erroneous examples hurts the CoT generalization. To model the errors
in the context examples in the testing prompt, we replace o3 with one operation ô3 from O\o3 in the
presentation of some of the context examples in the testing prompt. Note that the output values S3

are still correctly computed from S3 = S2o3A4. Table 1 shows that when the total number of testing
examples is fixed to be three, with the increasing number of incorrect examples, the testing accuracy
decreases. This is consistent with Remark 1 for Theorem 2.

of incorrect examples 0 1 2 3
CoT accuracy 100% 100% 56% 0%

Table 1: The accuracy with different numbers of incorrect examples for CoT. Errors in presenting o3.

CoT is more robust to erroneous examples with implementation error than ICL. In this setting,
the error in a context examples is introduced by replacing o1 with one operation ô1 randomly and
independently selected from O\o1. Hence, S1 = A1ô1A2, and the successive computation are based
on the wrongly computed S1. The results in Table 2 shows that when two incorrect examples exist,
CoT performs better than ICL, which justifies Remark 2 for Theorem 3.

of incorrect examples 0 1 2
CoT accuracy 100% 100% 100%
ICL accuracy 100% 100% 60%

Table 2: The accuracy with different numbers of incorrect examples for CoT and ICL. Errors in
implementing o1.

B ADDITIONAL DISCUSSIONS

B.1 THE MOTIVATION TO STUDY ONE-LAYER SINGLE-HEAD TRANSFORMERS

The reasons we study one-layer single-head attention-only nonlinear Transformers in this work are as
follows.

First, it is much more challenging to theoretically analyze the training dynamics and generalization of
multi-layer/head Transformers. This is because the loss landscape for multi-layer/head Transformers
is highly nonlinear and non-convex due to the interactions between multiple nonlinear functions. The
simplified data helps to characterize the gradient updates in different directions for different patterns
and steps. Non-orthogonal data make the updates less separable for different inputs, which is more
challenging to analyze.

Second, the state-of-the-art theoretical works (Li et al., 2023a; 2024a; Huang et al., 2023; Makkuva
et al., 2024a; Ildiz et al., 2024) on optimization and generalization also focus mainly on one-layer
Transformers. No existing works study the optimization and generalization of CoT even for one-layer
Transformers. Therefore, we plan to focus on the one-layer analysis to obtain more theoretical
insights. We leave the theoretical analysis of the multi-layer case as future works.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Third, although we admit the gap between theory and practice, our theory still makes contributions
under our settings. Our work is the first one to investigate the optimization and generalization of CoT
and characterize the conditions when CoT is better than ICL. We establish the required number of
context examples for a successful CoT in terms of how informative and erroneous the prompt is.

We also implement experiments on the attention mechanism for three-layer two-head Transformers on
two-step reasoning tasks. Please see Figure 7 for details. The findings of all three layers are generally
consistent with Proposition 1 for the single-layer single-head case, which indicates that the CoT
mechanism we characterize on one-layer Transformers can be extended to multi-layer multi-head
Transformers.

B.2 THE MOTIVATION OF THE DATA AND TASK FORMULATION

There are several reasons for using such data formulation.

First, our data formulation of orthogonal patterns, on which the function is based, is widely used in
the state-of-the-art theoretical study of model training or ICL on language and sequential data [(Tian
et al., 2023a; Huang et al., 2023; Li et al., 2024a; Chen et al., 2024). For example, (Huang et al.,
2023; Li et al., 2024a) study ICL on regression or classification tasks, which also use orthogonal
patterns as data. Sections 2.1 and 2.2 in (Chen et al., 2024) consider learning n-gram data in ICL by
formulating transitions between orthogonal patterns. Section 3 of (Tian et al., 2023a) also assume
orthogonal patterns in Transformer model training, and the generation comes from the orthogonal
pattern set. The data formulation we use is consistent with the existing theoretical works.

Second, based on this formulation, one can characterize the gradient updates in different directions
for different patterns and steps. This enables us to distinguish the impact of different patterns and
steps in the convergence analysis of CoT using Transformers. Non-orthogonal data make the model
updates less separable for different inputs, which is more challenging to analyze. Moreover, we would
like to mention that during the inference, the tokens in testing prompts contain noises as defined
in Equation 10. This makes the tokens of different TSR patterns not orthogonal to each other and
relaxes our orthogonality condition to some degree.

B.3 THE DISCUSSION OF POSITIONAL ENCODING

The positional encoding (PE) we use is simplified for theoretical analysis. The formulation of PE we
use is motivated by (Huang et al., 2024; Nichani et al., 2024), where each token is added with a PE
represented by orthogonal vectors. These works formulate the distribution of the PE to be related
to the structure of the data, such as patch-wise association (Huang et al., 2024), and sparse token
selection (Nichani et al., 2024). Likewise, we follow their intuition to make the PE vary in different
steps of our reasoning tasks so that the Transformer can distinguish different steps when making
inferences for the query.

Our analysis can be extended to study more general PEs with additional technical work in the future.
One possible direction is studying the family of periodic and separable PE. For example, the absolute
PE proposed by (Vaswani et al., 2017) considers PE as a sinusoid, which is periodic. Such analysis
can be made by relaxing the “orthogonality” of PE vectors to a certain “separability” between PE
vectors.

We also conduct experiments on a three-layer single-head Transformer with the standard PE proposed
in Section 3.5 of (Vaswani et al., 2017) for our problem. Figure shows that the blue curve increases
to be the largest along the training, which means the attention weights on example steps that share
the same TSR pattern and the same step as the query. This indicates that the CoT mechanism of
using standard PE is the same as the one proposed in Proposition 1 in our paper. One might note that
the scores of the blue curve are not as high as Figure 6 in our paper. We guess the reason why the
distinction in attention values is more significant in our PE may be the additional orthogonality of
our PE and the property that its period is the same as the reasoning length. Nevertheless, the strong
similarity between the results on standard PE and our used PE shows the practical significance of our
analysis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(A) (B) (C)
Figure 8: CoT mechanism with standard PE of (A) Layer 1 (B) Layer 2 (C) Layer 3.

C ALGORITHMS

We first present the training algorithm introduced in Section 2.2.

Algorithm 1 Training with Stochastic Gradient Descent (SGD)
1: Hyperparameters: The step size η, the number of iterations T , batch size B.
2: Initialization: Let W = W⊤

KWQ and WV = (0dX×dX IdX 0dX×dE). Each entry of W (0) is
generated from N (0, ξ2) for a small constant ξ > 0. WV and a are fixed during the training.

3: Training by SGD: For each iteration, we independently sample xquery ∼ D, f ∈ Ttr to form
a batch of training prompt and labels {P n, zn}n∈Bt as introduced in Section 3.2. Each TRR
pattern is sampled equally likely in each batch. For each t = 0, 1, · · · , T − 1

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Ψ(t);P n, zn). (24)

4: Output: W (T).

We then summarize the algorithm of the CoT inference introduced in Section 2.3 as follows.

Algorithm 2 Inference with Chain-of-Thought (CoT)
1: Input: z0 = v0 = xquery, P0, and P1.
2: for k = 1, · · · ,K − 1, do

Compute vk by greedy decoding in (5). Then update Pk and Pk+1 by (6). (25)

3: end for
4: Output: v1,v2, · · · ,vK−1, and vK by (5).

D PRELIMINARIES

We first summarize the notations we use in this paper in Table 3.
Lemma 1 (Multiplicative Chernoff bounds, Theorem D.4 of (Mohri et al., 2018)). Let X1, · · · , Xm

be independent random variables drawn according to some distribution D with mean p and support
included in [0, 1]. Then, for any γ ∈ [0, 1

p − 1], the following inequality holds for p̂ = 1
m

∑m
i=1 Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 , (26)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (27)
Definition 2 ((Vershynin, 2010)). We say X is a sub-Gaussian random variable with sub-Gaussian
norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted

∥X∥ψ2 , is defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .

Lemma 2 (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality). Let X1, X2, · · · , XN be
independent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2 . Then for every
a = (a1, · · · , aN) ∈ RN and every t ≥ 0, we have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Summary of Notations
Notations Annotation
xi, yi,k, xquery , zk xi is the input to the first step of a reasoning example. yi,k is the k-th

step output label of xi. xquery is the query input. zk the k-th step
output label of xquery. k ∈ [K].

P , pquery , Ei, Qk, vk P is a training or testing prompt that consists of multiple training or
testing examples and a query. The last column of P is denoted by
pnquery, which is the query of P . Ei is the i-th context example of
P . Qk is the first k steps of the reasoning query. k ∈ [K]. vk is the
k-th step generation by CoT. k ∈ [K].

ci, p̃i, p̃query ci is the positional encoding for the i-th column of the input sequence.
p̃i = pi + ci, where pi is the i-th column of P . p̃query is the pi of
the query column.

F (Ψ;P), ℓ(Ψ;P n,zn) F (Ψ;P n) is the Transformer output for P with Ψ as the parameter.
ℓ(Ψ;P n, zn) is the loss function value given P n and the correspond-
ing label zn.

µi ∈ M, µ′
i ∈ M′, TSR(·) µi is the i-th training-relevant (TRR) pattern for i ∈ [M]. µ′

i is the
i-th testing-relevant (TSR) pattern for i ∈ [M ′]. M and M′ are the
set of TRR and TSR patterns, respectively. TSR(·) is a function that
outputs the index of the TSR pattern of the noisy input.

fk, f f is the task function with f = fK◦· · · f2◦f1 for a K-steps reasoning.
fk is the k-th step task function.

T , T ′, D, D′ T is the distribution of training tasks, while T ′ is the distribution of
testing tasks. D is the training data distribution. D′ is the testing data
distribution.

α, α′ α (or α′) is the fraction of context examples with input sharing the
same TRR (or TSR) pattern as the query.

Af
k , Bf

k Af
k is the step-wise transition matrix at the k-th step for the task f ,

k ∈ [K]. Bf
k is the K-steps transition matrix of the task f .

τf , τf
o , ρf , ρfo τf is the min-max trajectory transition probability for task f . τfo

is the min-max input-label transition probability for task f . ρf and
ρfo are primacy of the step-wise transition matrices and the K-steps
transition matrix, respectively.

S∗
k The index set of context columns of the prompt that correspond to

the k-th step of the example and share the same TSR pattern in the
(k − 1)-th output as the (k − 1)-th output vk−1 of the query.

pn(t) pn(t) is the summation of attention weights on context columns that
share the same TRR/TSR pattern and in the same step as the query.

Bb Bb is the SGD batch at the b-th iteration.
ltr ltr is the universal number of training context examples.
lfts lts is the number of testing context examples of the task f .
O(), Ω(), Θ() We follow the convention that f(x) = O(g(x)) (or Ω(g(x)),

Θ(g(x)))) means that f(x) increases at most, at least, or in the order
of g(x), respectively.

≳, ≲ f(x) ≳ g(x) (or f(x) ≲ g(x)) means that f(x) ≥ Ω(g(x)) (or
f(x) ≲ O(g(x))).

where c > 0 is an absolute constant.

Definition 3. Define that for p̃i that shares the same TRR/TSR pattern and in the same step as the
query,

pn(t) =
∑
i

softmax(p̃ni
⊤
W (t)p̃nquery). (29)

Lemma 3. Given the SGD training scheme described in Section 2.2, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), we have the following results. When O(η−1α−2K3 log K

ϵ) ≥ t ≥ 1, for any p as a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K2
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(30)
For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we have

η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

1

K
pn(t)(1− pn(t))

2

· (1 + α2

K2
)).

(31)
For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we have

η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(32)
For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃, we have

η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α2

K3
)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K
).

(33)
Lemma 4. Given the SGD training scheme described in Section 2.2, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), and

t ≳ T1 := η−1α−2K3 log
K

ϵ
, (34)

we have that if pquery is in the k-th step,∑
i∈S[K]\k

softmax(p̃⊤
i W

(t)p̃query) ≤ ϵ (35)

where S[K]\k means the index set of context columns that are not in the k-th step.

Lemma 5. Given the SGD training scheme described in Section 2.2, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), we have the following results. When t ≥ T1 = η−1α−2K3 log K

ϵ , for any p as a

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃ ≤ − η

2MB

∑
n∈Bb

4pn(t)(1− pn(t))
2. (36)

For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ ηϵ. (37)

For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ η

2BM

∑
n∈Bb

pn(b)(1− pn(b))
2. (38)

For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃, we have∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣ ≤ ηϵ. (39)

E PROOF OF MAIN THEOREMS

E.1 PROOF OF THEOREM 1

Proof. By the condition in Lemma 3, we have that

B ≥ Ω(M logM). (40)

We know that there exists gradient noise caused by imbalanced TRR patterns in each batch. Then, by
Hoeffding’s inequality (28),

Pr

(∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ

)
≤e−Bϵ

2

≤ M−C ,

(41)

if B ≳ ϵ−2 logM . Therefore, we require

B ≳ max{ϵ−2,M} logM. (42)

By Lemma 5 and Definition 3, for p̃ni that share the same TRR pattern and the same positional
encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(p̃ni

⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K + (1− 1

K) · ϵ+ (1
K − α

K)e−u
, (43)

where by (161),

u ≳
η

KM

t∑
b=0

(1− pn(b))
2pn(b). (44)

For p̃ni that only share the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K eu + (1− 1

K) · ϵ+ (1
K − α

K)
. (45)

Therefore, to make the attention weights between p̃nquery and p̃ni that share the same TRR pattern and
the same positional encoding dominant, we need a large enough u. When 1− pn(b) ≥ Ω(1), we have

t ≤ T2 := η−1KMα−1. (46)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

When 1− pn(b) ≤ O(1),

pn(t+ 1) =
eu

eu +
1− α

K
α
K

≳ 1−
1− α

K
α
K

e−u, (47)

and

1− pn(t+ 1) ≥
1− α

K
α
K eu + (1− α

K)
≳

1− α
K

α
K

e−u. (48)

Then, we prove that when t is large enough, u(t) ≥ 1
2 log

η(1−α)2t
α2KM . We show it by induction. Suppose

that the conclusion holds when t = t0, then

u(t+ 1) ≥ η

KM

t0∑
b=0

(1− pn(b))
2pn(b) +

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

(K − α)2t

2α2KM
+

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

η(K − α)2(t+ 1)

α2KM
,

(49)

where the last step is by

1

2
log(1 +

1

t
) ≤ 1

2t
≤ η

KM
· (K − α

α
)2e− log

η(K−α)2t

α2KM . (50)

To make (1− pn(t))
2 < ϵ, we need

(
K − α

α
)2e−2u ≤ ϵ. (51)

Then, we get

u ≥ 1

2
log

1

ϵ
+ log

K − α

α
. (52)

Therefore, by
1

2
log

ηt

KM
+ log

K − α

α
≥ 1

2
log

1

ϵ
+ log

K − α

α
, (53)

we finally obtain
t ≥ T3 := η−1ϵ−1KM. (54)

For p̃ni that shares the same TSR pattern as the query, we have that when t = T1,

p̃ni
⊤
W (t)p̃nquery ≥ log

1

ϵ
. (55)

When t = T1 + T2 + T3,

p̃ni
⊤
W (t)p̃nquery ≥ Θ(1) · log 1

ϵ
= Θ(log

1

ϵ
). (56)

Then,
T :=T1 + T2 + T3

=Θ(η−1α−2K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)).

(57)

Therefore,
Exquery∼D,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (58)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.2 PROOF OF THEOREM 2

Proof. We know that α′ is the fraction of examples that share the same TSR pattern as the query. We
need that in each step, the number of examples that share the same TSR pattern as the current step of
the query is at least 1. Note that the probability of examples where each reasoning step produces the
most probable output is

K∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
, where f0(µ

′
i) := µ′

i,∀ i ∈ [M ′], (59)

where the input to the first step has the TSR pattern µ′
i. Define mk(i) as the TSR pattern in the k-th

step output of the i-th context example by the transition matrix defined in 11. Consider that the TSR
pattern of the k-th step label of the testing query is µ′

qk
, which is also the most probable k-th step

output of the k-th step of a certain xi with TSR(xi) = TSR(xquery) = q0. Let the TSR pattern of
another reasoning process, where for a certain first-step input xi with TSR(x) = TSR(xquery) = q0,
the k-th step output is the most probable for k ∈ [K ′]\{h}, while the h-th step output is the second
probable. Denote the TSR pattern of the k-th step output of xi following this process as µ′

uk
with

u0 = q0. By the Chernoff bound of Bernoulli distribution in Lemma 1, we can obtain

Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
qk
,∀k ∈ [K ′]] ≤ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)


≤e

−lts(ρfs)
2α′ ∏K′

k=1 A
f
k(qk−1,qk = M−C ,

(60)

and by Lemma 2,

Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)


≤Pr

 1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ α′

K′∏
k=1

Afk(uk−1,uk)
+ t0


≤e−ltst

2
0 = M−C ,

(61)

for some c ∈ (0, 1) and C > 0, where the first step is by the definition of ρfs in (11), and

t0 ≲ ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
. (62)

Hence, with a high probability,

lts ≳max{(ρfs
2
α′

K′∏
k=1

Afk(qk−1,qk)
)−1 logM, (ρfsα

′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM}

≳(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM,

(63)

such that the number of examples with the same TSR pattern as the query in each of the total K steps
is at least 1. To make the above condition hold for any TSR pattern of the intermediate step of the
query, we need

lts ≳ max
qk∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM

= max
i∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(TSR(fk−1◦···f0(µ′
i)),TSR(fk◦···f0(µ′

i)))
)−2 logM

=(ρfsα
′τfs)

−2 logM.

(64)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then, we show the CoT testing error is zero by induction. In the first step, consider xi = µj + δi
such that

p̃i =

(
µ′
j

yi,1

)
+

(
δi
0

)
+ ci mod K . (65)

Since that
(δ⊤i , 0

⊤)W (0)p̃i ≲ ξ, (66)
by that each entry of W (0) follows N (0, ξ2), and

(δ⊤i , 0
⊤)

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
p̃query = 0, (67)

we have that for p̃i that shares the same TSR pattern as the query,

p̃i
⊤W (T)p̃query

=p̃i
⊤(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query

=((µ′
j
⊤
,y⊤
i,1) + c⊤i mod K))(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query.

(68)

Since that λj is orthogonal to all the µi, i ∈ [M], we have similar conclusion for λj as δi, i.e.,

(λ⊤
j , 0

⊤)W (0)p̃i ≲ ξ, (69)
and

(λ⊤
j , 0

⊤)
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
p̃query = 0. (70)

Let µ′
j = λj + µ̃j = λj +

∑M ′

i=1 kj,iµi. Then, we have

p̃i
⊤W (T)p̃query

=((λ⊤
j +

M ′∑
i=1

kj,iµ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((λ⊤

j

+

M ′∑
i=1

kj,iµ
⊤
i ,0

⊤) + c1)
⊤

=

M ′∑
i=1

k2j,i((µ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i ,0
⊤) + c1)

⊤

+
∑
i ̸=i′

kj,ikj,i′((µ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i′ ,0
⊤) + c1)

⊤

≥C ·Θ(log
1

ϵ
)−Θ(ξ)

=Θ(log
1

ϵ
),

(71)
where the second to last step is by Theorem 1. The last step holds if C ≥ Θ(log−1(1/ϵ)).
Since the gradient updates for different TRR patterns are very close to each other, we have that∑
i ̸=i′ |kj,ikj,i′ | ≤ 1 and∑
i ̸=i′

kj,ikj,i′((µ
⊤
i ,y

⊤
i,1) + c⊤i mod K)(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i′ ,0
⊤) + c1)

⊤

≲Θ(1) · p̃s
⊤W (T)p̃query

log 1
ϵ

,

(72)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where p̃s shares the same TSR pattern and the same step as p̃query. Hence, for p̃i that shares a
different TSR pattern with p̃query,

p̃i
⊤W (T)p̃query ≲ Θ(1). (73)

Therefore, we can derive that∑
i∈S∗

1

softmax(p̃i⊤W (T)p̃query) ≥ 1− ϵ, (74)

where S∗
1 is the set of the first step of examples that share the same TSR pattern as the query. Then,

the first step leads to a correct prediction with zero testing error, since that maxj∈[M ′] Ak(q0,j) is the
largest to make the correct prediction for xquery if xquery = µ′

q0 , i.e.,

v1 = f1(µ
′
q0). (75)

Suppose that the k-th step generates a zero testing error. Then, for the k + 1-th step, we know that
there exists pj that shares the same TSR pattern as vk. Then, we can also derive that

p̃⊤
j W

(T)((v⊤
k ,0

⊤)⊤ + c⊤k)
⊤ = Θ(log

1

ϵ
), (76)

and ∑
j∈S∗

k

softmax(p̃⊤
j W

(T)((v⊤
k−1 v

⊤
k)

⊤ + c⊤k)
⊤) ≥ 1− ϵ. (77)

Hence, the k + 1-th also makes the correct prediction, i.e.,

vk+1 = fk+1 ◦ · · · f1(µ′
q0), (78)

where µ′
qk+1

is the TSR pattern of the k + 1-th step input. Therefore, we show that CoT makes the
correct prediction in each step as well as in the final prediction, such that

R̄fCoT,x∈M′,f∈T ′(Ψ) = 0. (79)

E.3 PROOF OF THEOREM 3

Proof. We know that the positional encodings are the same for the ICL inference in all examples.
Hence, similar to (74), we can derive that∑

i∈S∗
K

softmax(p̃i⊤W (T)p̃query) ≥ 1− ϵ, (80)

where S∗
K is the set of the last step output of examples that share the same TSR pattern as the

last step output of the query. For xquery = µ′
q, q ∈ [K ′], we know that the distribution of the

corresponding label y of x with TSR(x) = q follows the q-th row the K-steps transition matrix Bf .
Let F (Ψ;P) =

∑M ′

i=1 λ
P
i µ

′
i. Hence, based on the output scheme of ICL as stated in Section 2.3, we

have that
v = arg min

y∈M′

1

2
∥F (Ψ;P)− y∥2 = µargmaxi∈[M′] λ

P
i
. (81)

Note that the probability of examples with the most probable final output with µ′
q as the TSR pattern

of the input is
B(q,TSR(f(µ′

q)))
. (82)

To ensure that the number of examples with the same TSR pattern as the query that generates the
most probable output is at least 1, we compute the following,

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q1] ≤ (1− ρfo/2)α

′B(q,TSR(f(µ′
q)))

)

≤e
−ltsρfo

2
α′B(q,TSR(f(µ′

q))) = M−C ,

(83)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

for some c ∈ (0, 1) and C > 0 by the Chernoff bound of Bernoulli distribution in Lemma 1. Here,
mi is defined as the TSR pattern in the final output of the i-th context example by the K-steps
transition matrix defined in 12. The TSR pattern of the most probable output of the testing query is
µ′
q1 . Similarly, let the TSR pattern of the second most probable output of the testing query be µ′

q2 .
We also have

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2] ≥ (1− ρfo/2)α

′Bf
(q,q1)

)

≤Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2] ≥ α′B(q,q2) + c · ρfoα′Bf

(q,q1)

)
≤e−ltsρ

f
o
2
c2α′B(q,q1) = M−C ,

(84)

by Lemma 2 and (12) for some constant c > 0. Therefore, to make the number of examples with the
same TSR pattern in the output as the label of the query be at least 1 for any TSR pattern of the query
and the output be the most probable one, we need

lfts ≳max{(ρfo
2
α′ min

i∈[M ′]
B(i,TSR(f(µ′

i))
)−1 logM, (ρfoα

′ min
i∈[M ′]

B(i,TSR(f(µ′
i))
)−2 logM}

=(ρfoα
′τfo)

−2 logM}.
(85)

In addition, if Condition 1 holds such that the most probable output is the actual label, we can derive

R̄fICL,x∈M′,f∈T ′(Ψ) = 0. (86)

When (85) holds but Condition 1 does not, we know that ICL still always produces the most probable
output by the K-steps transition matrix, but such an output is not the label since Condition 1 fails.
Hence,

R̄fICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (87)

When both Condition 1 and (85) do not hold, ICL can produce multiple possible outputs with a
non-trivial probability, which is decided by the distribution of the prompt instead of the K-steps
transition matrix. This can be seen from that (83) and (84) both do not hold since (85) fails. Then,
ICL can produce both the most probable and the second most probable output with a constant
probability. Let the TSR pattern of the r-th most probable output of the testing query be µ′

r. Recall
that F (Ψ;P) =

∑M ′

i=1 λ
P
i µ

′
i, we then have that for some small ϵ > 0,

λP
r(q) =

|{i ∈ [lfts] : yi = µ′
r in P }|

lfts
± ϵ. (88)

Then, by (81), the output of the query is µargmaxr∈[M′] λr
. Since that (85) does not hold, there exists

at least a constant probability of the prompt P ′ with the same query as P such that

λP ′

r =
|{i ∈ [lfts] : yi = µ′

r in P ′}|
lfts

± ϵ ̸= λP
r , (89)

for some r ∈ [M ′]. Therefore, with a constant probability, the output for the same testing query and
the same testing task f varies. This leads to

R̄fICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (90)

E.4 PROOF OF PROPOSITION 1

Proof. This proposition is derived from the proof of Theorem 2. (22) comes from (77), while (23)
comes from (78), both by induction.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F PROOF OF LEMMAS

F.1 PROOF OF LEMMA 3

Proof.

η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W

=η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂F (Ψ;P)

∂F (Ψ;P)

∂W

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃i)p̃r)p̃
⊤
query.

(91)

When t = 0, we know that each entry of W (0) is generated from the Gaussian distribution N (0, ξ2).
Then,

|p̃i⊤W (0)p̃query| = |
∑
k,j

pi,kpquery,jW
(0)
k,j | ≲ ξ. (92)

Hence,

softmax(p̃i⊤W (0)p̃query) ≥
e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ), (93)

softmax(p̃i⊤W (0)p̃query) ≤
e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ). (94)

We can obtain

F (Ψ;P) =

l∑
i=1

e−Θ(ξ)

l
WV pi. (95)

Since that PE(·), and TRR(·) denote the positional encoding, and the TSR pattern of the input,
respectively, we have that for p,

p̃⊤p̃query = 1[TRR(p̃) = TRR(p̃query)] + 1[PE(p̃) = PE(˜̃pi)]. (96)

Given lab(·) is the label embedding of the context as the input, we have that for p,

p̃⊤p̃i = 1[TRR(p̃) = TRR(p̃i)] + 1[lab(p̃) = lab(p̃i)] + 1[PE(p̃) = PE(p̃i)], (97)

(WV p̃)
⊤WV p̃i = 1[lab(p̃) = lab(p̃i)]. (98)

When t ≥ 1, we first consider the case where p̃ shares the same TRR pattern and the positional
encoding as p̃query. If p̃ and p̃query share the same TRR pattern, label pattern, and the positional
encoding,

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− 3pn(t)− (1− pn(t)))

=4(1− pn(t)),

(99)

and

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≤ 2 · (3− 3pn(t)) = 6(1− pn(t)). (100)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

2− 6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −4pn(t). (101)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

When p̃ and p̃query share both different positional encodings and TRR patterns,

−6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r) ˜pqeury
⊤p̃ ≥ −2− 4pn(t). (102)

Then, we consider the case where p̃ only shares the same TRR pattern or the same positional encoding
as p̃i. If p̃ and p̃query share the same TRR pattern, label pattern, and the positional encoding,

3− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥1 · (3− pn(t)− (1− pn(t)))

=2.
(103)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (104)

When p̃ and p̃query only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (105)

Note that −(1 − pn(t))pn(t) + (1 − pn(t))
2α2/K2 < 0 for pn(t) ∈ [α/K,α]. Then, when

l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as p̃i,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 − 4pn(t)(1− pn(t))

2 · α2

K2

+
1

l
(
1

K
− α

K
)(−4pn(t)) +

1

l
(
1

K
− α

K
)(1− pn(t))(−2− 4pn(t))(K − 1)

=− 4pn(t)(1− pn(t))
2(1 +

α2

K2
) +

2

lK
(1− α)(−(K − 1)− (K + 1)pn(t) + 2pn(t)

2(K − 1)).

(106)
We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Note that

2

Kl
· (1− α) ·K(1− pn(t)) ≲ |(−(1− pn(t))pn(t) + (1− pn(t))

2 α
2

K2
)(1− pn(t))|, (107)

if l ≥ Ω(α−1). Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 0 · pn(t)(1− pn(t)) + (1− pn(t))
2 α

2

K2
· (+2) +

1

l
(
1

K
− α

K
)(−(K − 1))

=2(1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(108)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃i
⊤p̃

≤0− (1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−(K − 1))

=− (1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(109)

Therefore, as long as
l ≥ Ω(α−1), (110)

we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃i
⊤p̃

≤η
1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

2(K − 1)α2

K2
)

·+(
1

K
− 1

M
)(−(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(111)

We then consider the case where p̃′ shares a different positional encoding and the same TRR pattern
as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query . If p̃′ and p̃i share the
same TRR pattern, label pattern, and the positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.
(112)

When p̃′ and p̃query only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (113)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2. (114)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and p̃i share
the same TRR pattern, label pattern, and the positional encoding,

3− pn(t)) ≥p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≥1 · (3− 3pn(t)− (1− pn(t))) = 2(1− pn(t)).

(115)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2pn(t). (116)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1− 2pn(t). (117)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query . If p̃′ and p̃i
share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (118)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (119)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (120)

Then, when l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t)) +
1

l
(
1

K
− α

K
)(−2K).

(121)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then, by (107),

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 2pn(t)(1− pn(t))
2 − 2pn(t)(1− pn(t))

2 · α2

K2
+

1

l
(
1

K
− α

K
)((−1− 2pn(t))K)

=− 2pn(t)(1− pn(t))
2(1 +

α2

K2
) +

1

l
(1− α)(−1− 2pn(t)).

(122)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤pn(t)(1− pn(t))
2 + pn(t)(1− pn(t))

2 α
2

K2
+

1

l
(1− α)(−1− 2pn(t))

=pn(t)(1− pn(t))
2(1 +

α2

K2
)− 1

l
(1− α)(1 + 2pn(t)).

(123)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Therefore, as long as
l ≥ Ω(α−1), (124)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤(p̃i

−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−4− 2(K − 1)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+ (
1

K
− 1

M
)pn(t)(1− pn(t))

2(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
)),

(125)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

≥η
1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
) +

1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2).

(126)

We next consider the case where p̃′ shares a different TRR pattern and the same positional encoding
as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query . If p̃′ and p̃i share the
same TRR pattern, label pattern, and positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.
(127)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (128)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2. (129)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and p̃i share
the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (130)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (131)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (132)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query . If p̃′ and p̃i
share the same TRR pattern, label pattern, and the positional encoding,

3−pn(t) ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3−pn(t)− (1−pn(t))) = 2.

(133)
When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (134)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (135)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as
p̃query, by (107),

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤0− 2(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−2(K − 1)).

(136)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− pn(t)(1− pn(t))(−1 + pn(t)) + pn(t)(1− pn(t))
2 · α2

K2
+

1

l
(
1

K
− α

K
)K(−1 + pn(t))

=pn(t)(1− pn(t))
2(

α2

K2
+ 1) +

1

l
(1− α)(−1 + pn(t)).

(137)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− (1− pn(t))
2 α

2

K2
− 0 +

1

l
(
1

K
− α

K
)(−K + 1)

=− (1− pn(t))
2 α

2

K2
− K − 1

Kl
(1− α).

(138)

Therefore, as long as
l ≥ Ω(α−1), (139)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1)(1 +

α2

K2
)pn(t))(1− pn(t))

2 − (
1

K

− 1

M
)(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(140)
and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
)).

(141)

We next consider the case where p̃′ shares a different TRR pattern and a different positional encoding
as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query . If p̃′ and p̃i share the
same TRR pattern, label pattern, and the positional encoding,

6 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 2 ·(3−(1−pn(t))) = 4+2pn(t). (142)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 2pn(t). (143)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2 + 2pn(t). (144)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and p̃i share
the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− pn(t)− (1− pn(t))) = 2. (145)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (146)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (147)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query . If p̃′ and p̃i
share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (148)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (149)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (150)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as
p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− pn(t)(1− pn(t))(−2 + 2pn(t)) + (1− pn(t))
2 α

2

K2
· 2pn(t) +

1

l
(1− α)(−2 + 2pn(t)).

(151)
We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤0 + pn(t)(1− pn(t))
2 · α2

K2
· (−1) +

1

l
(
1

K
− α

K
)(−K)

=− pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(1− α)(−1).

(152)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− (1− pn(t))pn(t)(−1 + pn(t)) + pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−1 + pn(t))K

=(1− pn(t))
2pn(t)(1 +

α2

K2
) +

1

l
(1− α)(−1 + pn(t)).

(153)
Therefore, as long as

l ≥ Ω(α−1), (154)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−pn(t)(1− pn(t))(−2 + 2pn(t)) + (3−K)(1− pn(t))

2 α
2

K2
· pn(t))

+ (
1

K
− 1

M
)(1− pn(t))

2pn(t)(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
)

+ (1− pn(t))
2pn(t)(1 +

α2

K2
) · 1

K
),

(155)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α2

K3
).

(156)

F.2 PROOF OF LEMMA 4

Proof. We can derive that when 1− pn(t) ≥ Ω(1), p̃′⊤W (t)p̃ increases if p̃ and p̃′ share the same
positional encoding. Otherwise, p̃′⊤W (t)p̃ decreases. We know that pn(t) ≥ α

2 . Combining the

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

results in Lemma 3, we can derive that when t ≥ 1,

W (t+1) = W (t) − η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
. (157)

Then, for p̃in that share the same TRR pattern and the same positional encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(pni

⊤W (t+1)p̃nquery)

≥1

l
· 1
α
K + (K−1)α

K · e−s1 + (1
K − α

K)((K − 1)e−s2 + e−s3)
,

(158)

where

s1 ≥η

t∑
b=0

((1− pn(b))
2 α

2

K3
+

α2

K3
(1− pn(b))

2) = η

t∑
b=0

(1− pn(b))
2 2α

2

K3
, (159)

s2 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
, (160)

s3 ≥− η

KM

t∑
b=0

(1− pn(b)
2(−4pn(b)(1 +

α2

K2
) +

α2

K
(1 +

2(K − 1)

K
) +

α2

K2

− (K − 1 +
2K − 1

K2
α2)pn(b)))

≥ η

KM

t∑
b=0

(1− pn(b))
2(pn(b)(3 +

α2

K2
)(4 +

2K − 1

K2
)),

(161)

where the last step is by Kpn(b) ≥ 4α2/K2 when pn(b) ≥ α/K. For p̃in that share the same TRR
pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es1 + (K−1)α

K + (1
K − α

K)((K − 1)e−s4 + es5)
, (162)

where

s4 ≥−
t∑

b=0

η

M
((−4− (3K − 2)(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b))

− (2−K)(1 +
α2

K2
)pn(b)(1− pn(b))

2)

=

t∑
b=0

η

M
(4 + 2K(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b)),

(163)

s5 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
. (164)

When M ≥ Ω(K4α−1) and t ≥ Ω(η−1K3 logKα−2),

(K − 1)e−s4 + es5 > K. (165)

If M ≥ Ω(K4α−1) and t ≤ O(η−1K3 logKα−2), we cannot ensure

(K − 1)e−s4 + es5 > K. (166)

For p̃ni that share a different TRR pattern and the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es3 + α

K · e−s4 + (1
K − α

K)(1 + (K − 1)e−s6)
, (167)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where

s6 ≥ η

t∑
b=0

2α2

K3
(1− pn(b))

2. (168)

For p̃ni that share a different TRR pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es2 + (1

K − α
K)(K − 1 + es6) + α

K es4
. (169)

Note that when t ≲ η−1α−2K3, for pnquery in the k-th step, we have∑
i∈S[K]\{k}

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥ Ω(1), (170)

for p̃ni that share a different positional encoding from p̃nquery. To make the total softmax values on
contexts that share a different positional encoding and a different TRR pattern from the query smaller
than ϵ, we need

s1, s2, s6 ≳ log
K

ϵ
. (171)

When t further increases to be larger than Ω(η−1α−2K3 log K
ϵ), we also have that the total softmax

values on contexts that share a different positional encoding and the same TRR pattern from the query
smaller than ϵ. Therefore,

t ≳ T1 := η−1α−2K3 log
K

ϵ
. (172)

F.3 PROOF OF LEMMA 5

Proof. We consider the case when t ≥ T1 given Lemma 4. When l ≥ Ω(α−1), and when p̃ shares
the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 + ϵ

≲− 4pn(t)(1− pn(t))
2.

(173)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲− 0 · pn(t)(1− pn(t)) + ϵ

≲ϵ.

(174)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(175)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Therefore,

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲η
1

B

∑
n∈Bb

(
1

2M
(−4pn(t)(1− pn(t))

2) + (
1

2
− 1

M
) · ϵ

=− η · 1

2M
· 1

B

∑
n∈Bb

4pn(t)(1− pn(t))
2.

(176)

We then discuss if p̃ and p̃′ only share the same TRR pattern. When l ≥ Ω(α−1), and when p̃ shares
the same TRR pattern and the positional encoding as p̃query, we can obtain

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− 2(1− pn(t))
2pn(t).

(177)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− (1− pn(t))(1− pn(t))pn(t).

(178)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,∣∣∣(l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≲ϵ.

(179)

Therefore, ∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≤ηϵ.

(180)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

We next discuss when p̃ only shares the same positional encoding as p̃′. When l ≥ Ω(α−1), and
when p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(181)

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲− pn(t)(1− pn(t))(−1 + pn(t)) +
1

M

≲pn(t)(1− pn(t))
2.

(182)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(183)

Therefore,

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲η
1

B

∑
n∈Bb

1

2M
· pn(b)(1− pn(b))

2.

(184)

We then consider if p̃ shares a different TRR pattern and a different positional encoding as p̃′. When
l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳ϵ.

(185)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

We next consider the case where p̃ shares the same TRR pattern and the different positional encoding
as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− (1− pn(t))pn(t).

(186)

We next consider the case where p̃ shares the same positional encoding and the different TRR pattern
as p̃query. Then,∣∣∣(l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≲ϵ.

(187)

Therefore, ∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P)− zn)⊤
l∑
i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)pr)p̃
⊤
queryp̃

∣∣∣
≲ηϵ.

(188)

39

	Introduction
	Major Contributions
	Related works

	Problem Formulation
	Training to acquire the Chain-of-Thought ability
	Training Algorithm
	Chain-of-Thought Inference
	In-Context Learning Inference

	Theoretical Results
	Main Theoretical Insights
	The Formulation of Data and Tasks
	The Sample Complexity Analysis of the Training Stage
	CoT generalization guarantee
	ICL Generalization and Comparison with CoT

	The Mechanism of CoT and the Proof Sketch
	Transformers implement CoT by Attending to the Most Similar Examples Every Step
	An Overview of the Proof

	Numerical Experiments
	Conclusion, Limitations, and Future Works
	Experiments on Real-World Data
	Additional Discussions
	The motivation to study one-layer single-head Transformers
	The motivation of the data and task formulation
	The discussion of positional encoding

	Algorithms
	Preliminaries
	Proof of Main Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 1

	Proof of Lemmas
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5

