
HYPERmotion: Learning Hybrid Behavior Planning
for Autonomous Loco-manipulation

Jin Wang1 2 †, Rui Dai1 2 †, Weijie Wang1 2 †, Luca Rossini1, Francesco Ruscelli1, Nikos Tsagarakis1

1Istituto Italiano di Tecnologia 2Universita di Genova † Equal Contribution

Abstract: Enabling robots to autonomously perform hybrid motions in diverse
environments can be beneficial for long-horizon tasks such as material handling,
household chores, and work assistance. This requires extensive exploitation of in-
trinsic motion capabilities, extraction of affordances from rich environmental in-
formation, and planning of physical interaction behaviors. Despite recent progress
has demonstrated impressive humanoid whole-body control abilities, they strug-
gle to achieve versatility and adaptability for new tasks. In this work, we propose
HYPERmotion, a framework that learns, selects and plans behaviors based on
tasks in different scenarios. We combine reinforcement learning with whole-body
optimization to generate motion for 38 actuated joints and create a motion library
to store the learned skills. We apply the planning and reasoning features of the
large language models (LLMs) to complex loco-manipulation tasks, constructing
a hierarchical task graph that comprises a series of primitive behaviors to bridge
lower-level execution with higher-level planning. By leveraging the interaction
of distilled spatial geometry and 2D observation with a visual language model
(VLM) to ground knowledge into a robotic morphology selector to choose appro-
priate actions in single- or dual-arm, legged or wheeled locomotion. Experiments
in simulation and real-world show that learned motions can efficiently adapt to
new tasks, demonstrating high autonomy from free-text commands in unstruc-
tured scenes. Videos and website: hy-motion.github.io/

Figure 1: HYPERmotion enables the humanoid robot to learn, plan, and select behaviors to
complete long-horizon tasks. Steps 1-5 illustrate how the robot, guided by foundation models, au-
tonomously performs locomotion and manipulation after interpreting verbal instruction and chooses
motion modes for different scenarios independently.
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1 Introduction
Humanoid robots with behavioral autonomy have consistently been regarded as ideal collaborators
in our daily lives and promising representations of embodied intelligence. Compared to fixed-base
robotic arms, humanoid robots, due to their configuration characteristics, offer a larger operational
space while significantly increasing the difficulty of control and planning. Despite the rapid progress
towards general-purpose humanoid robots [1, 2], most studies remain focused on locomotion with
few investigations into learning whole-body coordination, which results in simplistic control designs
that struggle to adapt to new tasks and environments, thus limiting the potential to demonstrate long-
horizon tasks under open-ended instructions. One major challenge is how to explore actionability
of humanoid robots and diversify their behaviors, while learning to infer affordances and spatial
geometric constraints, thus making plans for various tasks with learned skills like humans.

Recently, vibrant advances in robotics learning have made it a promising avenue for manipulation
and locomotion [3, 4, 5, 6]. Learning-based methods, such as reinforcement learning (RL), have
become effective tools for task-oriented action generation [7, 8, 9] while facilitating generalization
across diverse scenarios. However, extending learning algorithms to humanoid robots remains a
challenge stemming from the exponential increase in training costs induced by high degrees of free-
dom (DoF) and the difficulty of deployment on real robots under dynamic constraints. Meanwhile,
the rise of large language models (LLMs) and their remarkable capabilities in robotic planning
[10, 11, 12] have made it possible to perform logical reasoning and construct hierarchical action
sequences for complex tasks. By integrating observations from different modalities, those models
can be used for extracting features of objects and environments for robot perception and decision-
making. Nevertheless, limitations to the utilization of LLM in humanoid robots exist, particularly in
complex whole-body motion control and precise coordination between body parts.

To address these issues, we first recognized that directly outputting whole-body trajectories for a
real-world multi-joint system through simulation training is inefficient and impractical. Therefore,
we adopt a decomposed training strategy that modularly selects the actuation components related to
given tasks, and project lower-dimensional space trajectory on the whole-body space with a unified
motion generator. The trained actions are stored as skill units in the motion library. We utilize
the LLM’s ability to decompose complex semantic instructions consisting of multiple sub-tasks and
design a modular user interface as model’s input. The LLM selects skills from the motion library and
arranges a sequence of actions, referred to as task graphs. Furthermore, the 3D features extracted
from captured 2D images and depth data can be integrated with the visual language model (VLM)
and robotic intrinsic characteristics, acting as a robotic motion morphology selector.

We refer to this study as HYPERmotion, a framework that tackles behavior planning for humanoid
robot autonomous loco-manipulation using language models. By leveraging the interaction of dis-
tilled spatial geometry and 2D observation with VLM, it grounds knowledge to guide morphology
selection combining robotic affordance. And bridge the gap between semantic space, robotic per-
ception and action. We demonstrate a learning-based whole-body control to generate humanoid
motion that adapts to new tasks and performs long-horizon tasks with primitive skills. We further
illustrate through experiments how HYPERmotion can be learned and deployed on a high-DoF,
hybrid wheeled-leg robot, performing zero-shot online planning under human instructions.

2 Related Work
Planning and Reasoning via Language Model Grounding pre-trained language models has be-
come a promising avenue for robotic studies. Extensive prior works [13, 14, 15, 16] focus on plan-
ning and reasoning of robotic tasks with LLM, using it as a tool for code generation [10, 17], reward
design [18, 19, 20], and interactive robotic learning [21, 22, 11, 23]. Several transformer-based
architectural planners [24, 25, 26] showcase the potential for embodied usage of generating robot
action. And with the integration of multi modalities such as visual and auditory [27, 28, 29, 30, 31],
perception and behavior can be directly bridged with semantic commands. Further research involves
creating a customized skill library[32, 33, 12] to link robot execution and high-level planning. A
related line of works [34, 35, 36, 37] has also explored grounding affordances with foundation mod-
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els to enable spatial reasoning and guide manipulation. However, most efforts focus on employment
of fixed robotic arms, with few attempts made to extend language modes to humanoid robots, due
to their complex dynamics and precise coordination between different components. [2] presents an
end-to-end humanoid manipulation towards speech reasoning but lacks the cooperation of mobil-
ity. [38][39] use LLMs for decision making and learning, while demonstrating solely in simulation
scenes. In contrast, we realize language model based online planning and humanoid motion boot-
strapping, distilling spatial knowledge for robotic morphology selection using only onboard sensing.

Task-orient Humanoid Control As the practical value of general-purpose humanoid robots be-
comes evident, a substantial amount of research has focused on the hardware of humanoid robots
[40, 41, 42], as well as gait generation and balance control [43, 44, 45, 46]. Methods based on learn-
ing and model predictive control (MPC) have significantly enhanced the mobility of such robots
[47, 48, 49, 50, 51, 52, 53]. Some demonstrate motion generation through teleportation [54] and im-
itation learning [55], while these often lack autonomy and struggle to organize learned short-horizon
skills. Recent works on long-horizon tasks [56, 57] and bimanual coordination [58, 59] show dex-
terity and stabilization, but these are often limited to specific tasks to utilize their characteristics.
Our approach enables the robot to perform composite tasks involving locomotion and manipulation
in unstructured environments, engaging in rich physical interactions with various objects. Our work
can also decompose tasks into sub-modules based on verbal instructions and autonomously perform
tasks using pre-trained motions.

Learning-based Whole-body Motion Recent research has demonstrated significant advancements
in robust walking [60, 61], trotting [62, 63, 64], and parkour [7, 8, 9] for legged robots using end-to-
end RL. The combination of learning-based locomotion policy with model-based manipulation of
attached arm shows feasible whole-body motion on rough terrain [5]. However, most learning-based
controllers are implemented on quadruped robots with few DoFs, while highly redundant humanoids
are rarely addressed. For the latter, optimization-based control is still necessary to ensure the safety
and adherence to constraints due to limited reactive frequencies. Nowadays, learning-based MPC
demonstrates capabilities in system dynamics identification [65, 66], closed loop performance [67,
68, 69] and safety assurance [70, 71, 72]. [73] shows a whole-body MPC on legged manipulators,
but the tasks are limited by manually defined trajectories. In this work, we leverage RL to enable
a wide range of motion skills without relying on predefined trajectories and employ a low-level
optimization-based controller to ensure the feasibility of whole-body motion.

3 Methodology
In this section, we illustrate how the HYPERmotion framework enables the humanoid robot to au-
tonomously perform loco-manipulation guided by semantic instructions (Sec. 3.1). We then provide
the method for task-orient whole-body motion learning policy and how we build the humanoid mo-
tion skills library (Sec. 3.2). We further describe how to achieve robotic morphology selection based
on spatial reasoning by integrating multi-modality language models, and map the long-horizon task
to hierarchical behavior structure using learned motions (Sec. 3.3).

3.1 Autonomous Loco-manipulation via HYPERmotion
To address the autonomous loco-manipulation challenge for complex robotic platforms such as hu-
manoid robots. This work proposes a method to perform language-guided behavior planning, motion
generation and selection towards different scenarios. As shown in Fig 2, we divide the pipeline into
four interrelated sectors that are learned and deployed sim-to-real manner. The motion generation
sector selects RL training configurations for specific tasks and conducts training in parallel. The
trajectory obtained from the training is provided as a reference to the optimizer, which ultimately
generates whole-body motion skills and the skills will be stored in the motion library. The user
input sector contains a user interface as well as pre-defined basic prompts, function options, and
motion library, all of which together constitute the textual material fed to the LLM. After receiving a
command, the task planning sector first generates a hierarchical task graph that includes task logic,
condition determinations, and actions using the LLM. Once the task graph is loaded, it is interpreted
as a Behavior Tree to guide the robot and to pass actions to lower-level execution. When a task
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Figure 2: Overview of HYPERmotion.We decompose the framework into four sectors: Motion
generation is assigned for learning and training whole-body motion skills for new tasks and storing
them in the motion library. User input includes received task instructions and initialization prompt
sets. Task planning generates a task graph that guides the robot’s behavior through reasoning and
planning features of LLM and passes action commands to the real robot. Morphology Selector is
used for action determination in specific sub-tasks, selecting the appropriate morphology for loco-
motion and manipulation based on grounded spatial knowledge and robot intrinsic features.

requires selecting the robot’s morphology, depth-sensing information is invoked and distilled into
2D images and geometric features. These data, along with the task state and prompts, are fed to
the VLM, which then selects the morphology capable of achieving the goal. Through the coordi-
nation of these sectors, HYPERmotion facilitates semantic command understanding and zero-shot
behavioral planning and action execution for humanoid robots, as shown in Fig 1.

3.2 Learning Whole-body Motion Generation
Tasks Learning with RL In this section, we show the details of learning whole-body motion gen-
eration based on different tasks, as shown in Fig. 3. To reduce the action space, we separate the
robot’s upper body from its legs. To guarantee feasibility, the floating base motion is heuristically
limited to avoid generating unfeasible motions for the legs once projecting the trajectory on the
whole-body space of the robot. For single-arm tasks, the action space A1 ⊆ R14 consists of the
6-DoF right arm joint angles, 6-DoF floating base translation distances and Euler angles, one torso
yaw, and one gripper joint angle. The left arm is fixed during these tasks. For the dual-arm picking
task, the action space A2 ⊆ R19 appends the 6-DOF left joint angles, with the gripper joint closed
in this case. The observations include the states of the corresponding targets and the joint states of
the robot’s upper body, detailed in the Appendix along with the policy settings. All tasks utilize
proximal policy optimization (PPO) [2] because of its efficiency. The output in the RL layer is a
joint position trajectory q∗ ∈ R20 of the upper body. We train all skill policies separately using a
general reward formulation:

r = α1rlreach
+ α2rrreach

+ α3rrot + α4rfinger + α5rtask + α6rpenalty (1)

where rlreach
= ( 1

1+d2
l
)2 and rrreach

= ( 1
1+d2

r
)2 with dl and dr representing the distance of the

operational target to the left and right end effectors, respectively. The term rrot = sign(dx) ∗ d2x +
sign(dz) ∗ d2z is the reward for aligning the gripper’s orientation with the task’s object (e.g. drawer
handle, door handle, drill). Here dx and dz are the dot products of the gripper’s forward and up axes
with the object’s inward and up axes, respectively. The term rfinger = β− (dt+db) encourages the
gripper to grasp the objects, where β a fine-tuning parameter related to the size of the operational
object, and dt and db are the distances from the top and bottom links of the gripper to the task’s
object, respectively. rpenalty = −∥a∥2 penalizes excessive actions a to ensure smooth operation.
Finally, rtask denotes the specific reward for task completion, which will be detailed in the Appendix
along with the specific settings of the parameters α1 to α6 and the axes for different tasks.
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Figure 3: Whole-body tasks learning illustration in training, simulation and real-world settings.

Whole-body Motion Generation The reduced robot space from RL should be mapped into the
whole body joint space to generated feasible trajectory. To fit the gap between the upper body
trajectory and the whole body action, we solve an optimal control problem to merge them enforcing
the whole-body dynamics of the robot to guarantee the feasibility of the resulting motion. In this
case, we choose a unified whole-body trajectory generator[75], specifically, we use the framework
presented in [75] to solve the following non-linear problem:

minx(.),u(.)
∫ T

0
L(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t)
g1(x(t),u(t), t) = 0
g2(x(t),u(t), t) ≤ 0

(2)

where x(t) = [q,v] ∈ Rnx , nx = 93 is the state number,u(t) = [v̇, fc] ∈ Rnu , nu = 58 are vectors
of state and input variables, q,v are the generalized coordinates and generalized velocities, fc is foot
force. L(x,u, t) = ∥qu − q∗∥2 + ∥u∥2 is intermediate cost, qu is the upper body joint variables.
As for constraints, ẋ(t) = f(x(t),u(t), t) is the whole body dynamics, g1 represents the set of
equality constraints, g2 the set of inequality constraints consisting of joint limits, velocity limits,
and unilaterality of the contact forces. Finally, we could get the whole body motion combining
upper body reference trajectory and whole body dynamic feasibility to complete the given tasks.

Motion Library After learning task-orient motion skills, we constructed a motion library to host
these primitives, which consists of attribute and functional descriptions of these actions, and the
corresponding learning-based whole-body policies. Then, the LLM can reason the attribute-function
descriptions to create sequences of actions to be executed based on different tasks and generate a
task graph to invoke the execution of each node without additional training or demonstration.

3.3 Humanoid Robot Task Planning with grounded language models
Migrating foundation models from a fixed robotic arm to a humanoid robot with a floating base
presents numerous issues and challenges. The addition of robotic components not only imposes
complex dynamic constraints, making it difficult to coordinate and control various parts. It also
requires addressing the potential for different manipulation modes inherent in human-like structures,
as well as the increased DoF for spatial mobility by the addition of wheels and legs. Due to the
construction of our motion library, the usage of the LLM for planning no longer requires additional
considerations for constraints such as self-collision or self-posture balance maintenance. This allows
more focus on the decomposition of given tasks, and the selection of the robot’s morphology.

Humanoid Motion Morphology Selection Humans utilize common sense and learned experiences
to extract the affordances of objects they manipulate and select appropriate movement based on
the estimation of geometric constraints of the environment. Inspired by this, we leverage VLM to
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implement similar functionalities in robots. First, we include descriptions of the robot’s structure
and functions, and the robot’s achievable range of motion in the prompts pV . While determining
the morphology for a manipulation task Tm, the robot utilizes 2D and depth images from its head
camera. Object detection and pose estimation algorithms [76, 77] are invoked to acquire the position
and orientation of the target object vc ∈ R6, which is then transformed into the robot’s coordinate
system vR ∈ R6. The VLM V , based on the current task state s, the scene’s 2D images Ihscene,
and the target object’s 6D pose vR, generates the robot’s manipulation morphology xm for the task
scenario. For locomotion tasks, the robot uses the depth information from its pelvis depth camera
to generate the point cloud Pc, which is down-sampled to create a voxel grid Vg . This spatial
information containing the current moving path together with the 2D image Ipscene and the task state
are finally fused to select the robot’s locomotion morphology xl using the VLM V .

xm = V(s, Ihscene,vR,pV ) (3)

xl = V(s, Ipscenep ,Vg,pV ) (4)

Figure 4: Robotic Morphology Selector extracts spatial geometric data and 2D observations from
the physical environment upon receiving the language-conditioned task state and interacts with the
VLM incorporating the grounded robot’s affordances, so as to provide the optimal motion morphol-
ogy that meets the requirements of given task scenario during manipulation and locomotion process.

Zero-Shot Robot Behavior Planning To obtain the desired response from LLM, it is necessary
to impose constraints on the input. In the user interface, we define three types of constraints. The
basic prompt provides a description of task background and characteristics of the robot, as well as
interpretation of the user command and the output format. The motion library offers a catalog of
learned skills and their description. Function option module offers specifications of the added func-
tions developed for humanoid robot and determines whether these predefined functions are invoked
during planning. Such as, if the morphology selection is chosen, the LLM will incorporate the mor-
phology selector based on the task scenario; otherwise, this function will not be considered (See the
Appendix). This approach allows for systematic construction of prompts and modular addition of
constraints, thereby enhancing the flexibility of planning. We utilize BehaviorTree (BT) [78] as an
intermediate bridge to convert high-level instructions into executable low-level skill sequences. BT
provides a hierarchical structure for guiding actions and making decisions for the robot, which is
composed of nodes with different effects. With a pre-defined motion library, LLM can generate a
task graph consisting of learned motions and BT nodes, build it in an XML file, which constructs the
complete BT. Thus realizing the robot’s behavior planning with LLM by giving verbal instruction.

4 Experiment

We demonstrate HYPERmotion’s ability to learn, plan, and select behaviors for different tasks in
both simulation and real-world experiments using objects that can be commonly found in daily life.
Our robot is a centaur-like humanoid robot, supported by four legs with wheels. The robot has two
arms with one claw gripper on its right arm. There are two depth cameras, one is on the head and
another is in the pelvis position. We use Xbot [79] to achieve real-time communication between the
underlying actuators and the control commands. We use Isaac Gym [80] as a training environment
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Figure 5: End effector position trajectory when executing different tasks in various environments

and validate the planned whole-body motion using Gazebo [81]. We access the gpt-4o model as
the LLM planner and the gpt-4v model as the VLM from OpenAI API [82].

We trained individual motion primitives based on everyday tasks, deploying these skills on the robot
to verify their feasibility (Sec. 4.1). We tested the adaptability and versatility of morphology selector
in various task scenarios (Sec. 4.2) and conducted further study to validate the behavioral planning
capability and performance of our framework in response to open-ended instructions (Sec. 4.3).

4.1 Whole-body Trajectory Learning
We pick two representative motions and compare the trajectories in Isaac Gym, Gazebo and the real
world, respectively, as illustrated in Fig. 5, using the end effector position trajectories as an example.
In the drawer opening task, the end effector first approaches the drawer handle and then pulls it out,
demonstrating an initial increase followed by a decrease in the x-axis distance. In the door opening
task, the end effector reaches the door handle and pushes it down. Self-collision is not considered
during the training period because we still need to account for collisions between the upper body
and legs, causing the arm to reach the target point at a faster speed. Instead, the whole-body planner
projects the trajectories within constraints to avoid self-collision of the entire body. The trajectories
from training are effectively tracked, with smoother results achieved after applying the whole-body
controller as a filter. This indicates the successful deployment of our methods on the real robot.

4.2 Morphology Selection Towards Different Scenarios

Figure 6: Success rate of the
morphology selector for dif-
ferent scenarios. ”2D” and
”SD” are image and Spatial
Data inputs.

We investigated whether a VLM can zero-shot determine robot’s
morphology based on task scenarios. We picked ten scenarios each
for manipulation and locomotion in both simulation and real-world
environments (See the Appendix). We compared the success rate of
the VLM’s morphology selection using 2D image input only versus
image combined with spatial geometric as input. Each scenario was
tested 10 times under both inputs, as shown in Fig. 6. We found the
morphology selector effectively chooses the optimal mode for ev-
eryday object manipulation and mobile environment with a high av-
erage success rate. Compared to solely image input, adding spatial
information improves the selector’s accuracy, particularly in deter-
mining locomotion modes and adapting to complex scenarios (paths
with obstacles of varying types and heights), thus leveraging the
robot’s affordances and leading to robust execution.
4.3 Loco-manipulation Tasks with Language Model Planner
Tasks with human instructions We validate the ability of LLM to plan motion primitives for differ-
ent loco-manipulation tasks, as well as the effect of the modular user input designed for humanoid
robots regarding reasoning and planning. Experiments were conducted on tasks requiring a combi-
nation of perceptions and actions. We recorded the success rate and the impact of different errors
of 4 representative tasks and provided quantitative evaluations in Fig.8. The results show the LLM
based planner can effectively plan semantic instructions based on learned skills and guide the robot
to complete a variety of tasks according to the action sequences, achieving a desired success rate
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Figure 7: Overall look of the long-horizon task Images above show the timelapse of roll outs
to robot motion trajectory. A. semantic navigation using AprilTag. B. object detection and pose
estimation. C. manipulation morphology selection. D. locomotion morphology selection. The
BehaviorTree below shows the details of LLM task planning.

(≥ 60%) on real-world robots. Whereas adding task complexity and selecting multiple functional
modules as input increases the difficulty of planning, and execution errors mainly stem from intricate
dynamical constraints on the actions and misalignment of the floating sensing with robot execution.

Figure 8: Average rate of the humanoid
robot successfully performing various
LLM planning tasks, and failure caused
by different type of errors during the
tasks.

Long-horizon Task We further explored whether HY-
PERmotion can enable behavior planning for a humanoid
robot towards long-horizon tasks. We orchestrated a col-
laborating task scenario and input verbal instruction as
shown in Fig.1. Qualitative results including time-lapse
shots of robot motion execution and a Behavior Tree
mapped out by LLM are shown in Fig.7. We demon-
strate that our framework can synthesize sequences of
motion primitives based on designed user input and ac-
curately infer the logic of semantic knowledge while se-
lecting robotic morphology of locomotion and manipula-
tion according to the environment and state of the task.
We found that language-based behavior planner exhibits
greater versatility and adaptability to more complex tasks
compared to existing methods.

5 Conclusion
We present HYPERmotion, a framework that enables humanoid robots to learn, select, and plan
behaviors, integrating knowledge and robotic affordance to perform embodied tasks. We evaluate
the framework’s efficiency and versatility through real-world experiments and long-horizon tasks.
Despite achieving expected results, there are limitations: the motion library’s size restricts the range
of task commands, and learning of new skills requires separate training optimization, hindering
generalization from existing actions. Moreover, the system struggles to handle external disturbances
and collisions, lacks real-time linguistic interaction during the task and has limited capability for
re-planning in response to unexpected tasks. Future work will focus on enriching the robot’s action
skills, enhancing LLM dynamic planning ability, and improving robot navigation and perception to
achieve close-loop humanoid motions and safe human-robot collaboration.
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A1 Robot System Setup

A1.1 Robot hardware

Our robot is a centaur-like robot platform. The upper body of the robot is humanoid in design and
is similar in size to the average human to adapt to both dual-arm and single-arm manipulation. The
robot’s mobility relies on its quadrupedal lower body and maintains whole-body balance to cope
with a variety of terrain conditions and perform loco-manipulation tasks. Moreover, to improve the
robot’s mobility on flat ground, wheel modules are integrated underneath each leg and can control
the direction and steering of the wheels.

The robot’s whole body consists of 38 actuatable joints. The robot’s torso is mounted on the pelvis
of the lower body via yaw joints, allowing the upper body to rotate in the transverse plane. Each arm
of the robot includes 6 DoF, where the right hand gripper contains one extra DoF that controls its
opening and closing. The robot’s legs are designed to provide an omni-directional wheeled motion
and articulated legged locomotion, with each leg containing six degrees of freedom, allowing for
positioning, orientation, and rotation of the wheeled-leg module.

The perception system of the robot consists of two on-board RealSense Depth Camera D435i, one
located in the robot’s head and the other in the robot’s pelvis, which are used to provide 2D images
and depth information of the surrounding environment and objects. The complete computing system
consists of two on-board computing units (ZOTAC-EN1070K PC, COM Express conga-TS170) for
system communication and real-time robot control and an external pilot PC (Inter Core i9-13900HX
CPU @3.90GHz, NVIDIA GeForce RTX 4090) for task planning and sensory data processing as
well as a user interface.

Figure A1: Robot hardware setup

A1.2 Robot software

We use XBotCore, a cross-platform, real-time, open-source software designed for interfacing with
low-level hardware components of robots [1]. This innovative tool enables effortless programming
and management of various robotic systems by offering a standardized interface that conceals the
intricacies of the hardware. Additionally, a proprietary CartesI/O motion controller [2] handles
higher-order motion instructions. It is capable of managing multiple responsibilities and restrictions,
prioritized according to the demands of specific situations. Through solving a series of quadratic
programming (QP) challenges, each linked to a unique priority tier, the controller ensures optimal
performance across all preceding priority stages.
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A2 Additional Experiment and Evaluation

A2.1 Experiment Setup

We experimentally validate the efficacy of HYPERmotion in behavior learning, planning, and
decision-making by implementing the framework and evaluating its performance on a wheel-legged
humanoid robot executing long-horizon tasks in response to semantic commands.

We conducted the experiment using objects that are commonly found in an office kitchen. The test
environment was an open area inside the lab, with objects randomly placed. The AprilTag system
[3], which incorporates a vision-driven algorithm, was used during the long-horizon task to identify
the relative objects’ location and direction of recognized tags. Within the actual environment, we
employ AprilTags to gather task-specific observations. A single visual marker on the door allows
for the determination of the door handle’s relative position. The robot searches for the tag if it
doesn’t exit the camera’s field of view (FOV). Additionally, AprilTags enable the identification of
the drawer’s relative positions.

A2.2 LLM based Task Planner

Long-horizon Task

A long-horizon task refers to a task that needs to be completed over an extended time period, typ-
ically involving the execution of multiple subtasks and decision-making across several steps. Such
tasks usually require the system to possess strong planning capabilities and long-term strategies to
effectively achieve objectives in complex environments. In this study, we define long-horizon tasks
based on the number of robotic actions included in the task. When the task described by the given
instructions comprises four or more robotic actions, we classify it as a long-horizon task. Here,
robotic actions refer to those included in the action library. For example, the task ’Pick the box’
consists of three actions: < ObjectDetect >, < MoveTarget >, and < DualP ick >, and is
thus categorized as a simple motion task. In contrast, the long-horizon task described in Fig. 1
requires the robot to perform multiple actions, including < FindObject >, < MoveTarget >,
< ObjectDetect >, < SingleP ick >, and < OpenDrawer > et., with a longer time span
required for task completion.

Behavior Planner

We initially conducted simulation experiments to compare the construction of behavior trees using
traditional method [4] with LLM based planner. The experiments included a qualitative analysis of
the capabilities of both approaches, as well as the planning results for various robotic tasks. Exe-
cutable rate refers to whether the generated BT is logically consistent and executable by the robot.
Compared to normal BT-planner, the integration of LLMs’ reasoning and decision-making capabil-
ities enables the direct generation of BTs from tasks described in free-text instructions. Moreover,
BT can be restructured by simply altering the input instructions, significantly enhancing the auton-
omy of task planning. Quantitative analysis in Table A1 indicates that BTs generated by LLMs
exhibit higher executability and task success rates compared to those generated by BT-planner. Ad-
ditionally, the time required for robots to complete tasks in the simulation environment was reduced.
These results underscore the advantage of LLMs’ reasoning and text generation capabilities in con-
structing behavior trees, which rely on a deep understanding of task logic and adherence to fixed
construction rules.

Loco-manipulation Tasks Simulation Results

After verified that the LLM-based planner is capable of effectively planning robotic tasks, we se-
lected six loco-manipulation tasks to validate the performance and adaptability of the HYPERmotion
framework performing different tasks. We compared its performance with traditional whole-body
MPC control methods [5] and conducted 25 experiments for each tasks separately, the simulation
results are shown in Table A2.

17



Table A1: Comparison of different methods for behavior planning

Method
Abilities Loco-manipulation Task Long-horizon Task

Autonomy Replan Text Input Exec ↑Succ ↑Avg. Time ↓ Exec ↑Succ ↑Avg. Time ↓
BT-Planner low ✗ ✗ 92% 80% 39.07s ± 12.4 74% 68% 145.37s ± 32.6

LLM-BT high ✔ ✔ 98% 94% 32.79s ± 8.6 86% 82% 121.20s ± 20.4

Table A2: Comparison of different methods towards various robotic tasks. TLE(time limit exceeded)

Task
WB-MPC LLM-Planner LLM-Planner+MS

Succ ↑ Avg. Time ↓ Succ ↑ Avg. Time ↓ Succ ↑ Avg. Time ↓
Move to target 84% 25.7s ± 12.3 96% 36.8s ± 10.6 92% 40.1s ± 29.3

Approach Object 72% 24.3s ± 10.6 88% 34.9s ± 8.6 96% 39.8s ± 22.1

Open door 64% 45.6s ± 13.5 84% 35.2s ± 12.6 88% 42.5s ± 18.6

Pick object 68% 38.9s ± 24.2 80% 38.6s ± 9.6 84% 44.3s ± 22.3

Pick and place object 60% 50.2s ± 47.3 72% 49.2s ± 23.6 84% 54.7s ± 32.1

Open drawer and pick object 0% TLE 64% 105.4s ± 27.6 72% 126.3s ± 33.6

The experimental results indicate that using an LLM to plan pre-trained motion primitives for exe-
cuting loco-manipulation tasks yields a higher success rate compared to WB-MPC, particularly for
complex tasks such as ’pick and place object’ and tasks requiring long-term planning such as ’open
drawer and pick object.’ However, for some simpler tasks, the time required by the LLM-Planner
is slightly longer than that of WB-MPC, attributable to the time taken for online API requests and
BT construction. Adding Morphology Selector (MS) into the task planning process results in a
modest increase in the average planning time, but it concurrently enhances the success rate of tasks,
especially those involving interaction with the surrounding environment and objects.

Figure A2: Success rate of loco-manipulation tasks in relation to task complexity.

We further investigated the relationship between the success rate of executing loco-manipulation
tasks using HYPERmotion and the complexity of the tasks. We conducted ten separate simulation
experiments for tasks involving 3, 4, 5, and 6 actions. The results show that as task complexity in-
creases, the success rate of task completion gradually decreases, though the overall average success
rate remains above 60%. Additionally, task success rates vary depending on the specific content
of the tasks and the difficulty of the required robotic actions, with this variability being more pro-
nounced in long-horizon tasks (those involving four or more actions).
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A2.3 Failure Cases Study

During the real-world experiment, failure of different cases happened in the process of the robotic
tasks performing. In Fig. 8, we recorded the average rate of failure caused by different type of
errors. Planning errors primarily occur during the BT construction process by the LLM-Planner.
When tasks are highly complex and require multiple estimations of the environment or object states,
the task graph generated by the LLM may exhibit logical errors or missing actions, leading to task
failure. To address this issue, we optimized the motion primitives by integrating the robot’s self-
state detection or environmental perception into the primitives to reduce the logical complexity of
constructing BT.

Perception errors stem from inaccuracies in the robot’s sensing system, particularly in tasks involv-
ing navigation and target or object detection. The perception system consists of AprilTag localization
and deep object pose estimation. While using an RGB camera for AprilTag localization, there is a
margin of error of 2-4 cm, especially when the robot is in motion. The accuracy of the object pose
detection algorithm is also influenced by the object’s orientation and potential occlusions, which can
affect the robot’s manipulation posture.

When performing robotic tasks in the real world, execution errors are the most common and can
arise from a variety of factors. During task execution, since the actions are pre-trained and op-
timized for full-body motion, unexpected disturbances can significantly impact performance. For
instance, while opening a door, if the robot’s leg collides with the doorframe, it may struggle to
adapt its trajectory in real-time. In the case of long-horizon tasks, errors tend to accumulate with the
increasing number of actions performed. For example, after pulling open a drawer and retrieving
an object, any deviation in the grasping pose can lead to failure in placing the object, causing it to
collide with the environment and drop. Additionally, tasks with extended durations can result in
overheating of the robot’s actuators, further compromising task performance.

Applying LLMs to a high-DOF, floating-based humanoid robot, where manipulation must be co-
ordinated with locomotion, is a complex and challenging endeavor. Due to the low real-time per-
formance of LLMs, they are unable to update plans in real-time during task execution and cannot
directly generate control trajectories for multiple joints simultaneously. To address this, we consider
the integration of a task graph and motion library, where the LLM is responsible for reasoning and
decision-making, constructing a task graph composed of motion primitives. This task graph then
issues control commands to enable the robot to complete long-horizon tasks.

During the acquisition of motion primitives, the prioritization in the whole-body motion optimiza-
tion phase significantly influences action generation. For instance, in actions like ’opening door’
and ’open drawers’, the optimization must not only account for the accuracy of the motion trajec-
tory but also maintain robot balance and avoid self-collision. Additionally, to accommodate drawers
of varying heights, we incorporate floating base adjustments in the optimization process.

When dealing with long-horizon tasks, differences in pose solving can lead to issues with action
continuity. For example, in the ”Pick and place object” task, we introduced a homing action between
the pick and place phases to ensure seamless transitions between actions to reduce the error rate.

A3 Details of Robot Learning

We utilize Proximal Policy Optimization (PPO) [6] for training our tasks, employing a multi-layer
perceptron within an actor-critic framework. The network architecture for the drawer opening, door
opening, and dual-arm picking tasks consists of layers with [256, 128, 64] units while the picking
task uses layers with [256, 128, 64] units. The activation function applied across all tasks is ELU.
Below, we detail the observations, task-specific rewards (rtask), and reward parameters for each task
in Sec. A3.1 and the task evaluation in Sec. A3.2
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A3.1 task design details

A3.1.1 drawer opening

First, we define the frame of the drawer handle. The x-axis of the handle points towards the robot,
while the z-axis points upwards. The handle’s inward direction is aligned negatively along the x-
axis, and the upward direction is consistent with the z-axis. The task reward is defined as

rtask = α7raround + ldrawer ∗ raround + ldrawer (A1)

where raround = 0.5 when the gripper’s top link is above the handle’s position and the bottom link
is below the handle’s position, otherwise raround = 0. ldrawer represents the length by which the
drawer has been pulled.

The observations and reward parameters for this task are listed in Tab. A1 and A2.

normalized upper body joints position
upper body joints velocity * 0.1

drawer pulled length
vector from gripper to drawer handle

Table A3: observations of drawer opening
task

α1 2.0
α2 0.0
α3 0.5
α4 7.5
α5 7.5
α6 0.01
α7 0.7
β 0.04

Table A4: reward parameters of drawer
opening task

A3.1.2 door opening

The door handle has the same frame as the drawer handle. The task reward is defined as

rtask = α7raround + anglehandle ∗ raround + anglehandle + angledoor (A2)

where raround is the same setting as the drawer opening task and anglehandle represents the angle
by which the door handle has been pushed. angledoor is the angle of the opened door.

The observations and reward parameters for this task are listed in Tab. A3 and A4.

base pose
right arm joints position

door handle pose
gripper pose

door handle angle
door opened angle

Table A5: observations

α1 2.0
α2 0.0
α3 1.5
α4 7.5
α5 2.0
α6 0.01
α7 0.125
β 0.02

Table A6: parameters

A3.1.3 single arm picking

We define the object’s upward direction as aligning negatively along the x-axis, and the inward
direction as aligning negatively along the z-axis. This orientation encourages the gripper to adopt a
top-to-bottom pose, facilitating a proper grasp of the object. The task reward is defined as

rtask = α7raround + h (A3)

where raround is the same setting as the previous tasks with the corresponding object frame and
h = 1 if the object is been picked up, otherwise h = 0.

The observations and reward parameters for this task are listed in Tab. A5 and A6.

20



base pose
right arm joints position

object pose
gripper pose

Table A7: observations

α1 7.5
α2 0.0
α3 5.0
α4 2.5
α5 7.5
α6 0.01
α7 0.7
β 0.1

Table A8: parameters

A3.1.4 dual arm picking

In the dual arm picking task, the distance dl and dr represents the left end-effector and right end-
effector to the left and right side of the object, respectively. The task reward is defined as

rtask = h (A4)

where h = 1 if the object is been picked up, otherwise h = 0.

The observations and reward parameters for this task are listed in Tab. A7 and A8.

base pose
two arms joints position

object pose
left end-effector pose

right end-effector pose
vector from object left side to left end-effector

vector from object right side to right end-effector

Table A9: observations

α1 2.0
α2 2.0
α3 0.0
α4 0.0
α5 7.5
α6 0.01
α7 0.0
β 0.0

Table A10: parameters

A3.2 task evaluation

We evaluate the learning results by applying the trained policy with 2000 rollouts for each task across
four different position randomization scopes. We train and evaluate under the same randomization
scope. Except for single arm picking task, which randomizes the position of the object, other tasks
randomize the position of the robot. We summarize the success rate of each task in Tab. A9.

mean relative position of
robot’s base to goal’s origin

(m)

domain of position
randomization (m)

success rate

drawer opening [1.2,−0.4, 0.65]⊤ [0.01, 0.10] 77.8%± 11.0%
door opening [1.0,−0.1, 1.0]⊤ [0.02, 1.0] 85.3%± 19.6%

single arm picking [0.45,−0.3, 0.8]⊤ [0.2, 0.5] 88.5%± 6.9%
dual arm picking [0.9, 0.0, 0.8]⊤ [0.02, 1.0] 73.8%± 15.7%

Table A11: success rate of each task under different position randomization scope

A4 Details of Whole-body Optimization

The trajectory optimization problem essentially constitutes a Nonlinear Programming (NLP) chal-
lenge characterized by a predetermined quantity of nodes and intervals. Its canonical formulation
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typically adheres to Eq.(A5) 
minx(.),u(.)

∫ T

0
L(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t)
g1(x(t),u(t), t) = 0
g2(x(t),u(t), t) ≤ 0

(A5)

A4.1 Formulation

The standard formulation(A5) necessitates conversion into a discrete programming format . Subse-
quently, we discrete the state and input variable as the follow sets, N is the node number

X =

 x1

...
xN

 ;U =

 u1

...
uN

 (A6)

then the general optimization form Eq.(A5) becomes Eq.(A7)

J =

N∑
i=0

Li(xi,ui)

ẋi = f(xi,ui) , i = 0, · · ·N
Cmin ≤ C(xi,ui) ≤ Cmax, i = 0, · · ·N

(A7)

where , C(xi,ui) is the discrete form of equality and inequality constrain, Cmin is the lower limit,
Cmax is the upper limit.

A4.2 Dynamic Equation

In order to keep the motion critical dynamic feasible, we construct our robotic’s motion equation as
following the whole body dynamic:

ẋi =

[
v̇i

M(qi)
−1

(
JT

c (qi)f
i
c − h(qi,vi) + Sτ i

) ]

where x = [q,v] ∈ Rnx is the state number, u = [v̇, fc] ∈ Rnu are vectors of state and input
variables, q,v are the generalized coordinates and generalized velocities, fc ∈ Rnc the vector of
contact forces, τ i ∈ Rna the vector of actuated joint torques, M ∈ Rnv×nv is the inertia matrix, the
nv is the dimension of general velocity, h ∈ Rnv the non-linear bias terms accounting for gravity,
Coriolis and centrifugal torques, Jc ∈ Rnc×nv is the contacts Jacobian, matrix S ∈ Rnν×na is used
to map actuated torques to the full vector of efforts.

A4.3 Feasible Constrain

Specifically, in order to keep the trajectory physical feasible, we should shape the constrains as the
following:

1) Initial state: In order to safely execute the trajectory, the robotic should start acting from a
initial state which has stability and safety. The initial state constrains are constructed as the
flowing:

q0 = qinit initial position (A8)

v0=0 initial velocity (A9)
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2) State limitation: Before we have got the joints trajectory from RL, which has a rough
feasible, so it is neccessary to consider the physical limit state of robot. The state limitation
constrains are constructed as the flowing:

qk
min ≤ qk ≤ qk

max position bounds ∀k ∈ [1, N − 1] (A10)

vk ≤ vk ≤ vk
max velocity bounds ∀k ∈ [1, N − 1] (A11)

v̇k
min ≤ v̇k ≤ v̇k

max acceleration upper bounds ∀k ∈ [0, N − 1] (A12)

v̇k
min ≤ v̇k ≤ v̇k

max acceleration lower bounds ∀k ∈ [0, N − 1] (A13)

3) Contact Condition: As mentioned before, our robot has two strategies legged and wheel.
So if just in the wheel motion, we should just keep the following constrain which keep the
force reasonable:

fz,kc,j · ni > 0 (A14)

if the robotic motion model is legged, we should keep the robotic not slip just as the con-
strain of friction cone (A15), so the contact condition should be (A14) and (A15) :∥∥∥(fx,kc,j , f

y,k
c,j )

∥∥∥
2
≤ µi

(
fz,kc,j · ni

)
leg contact force bounds ∀k ∈ [0, N − 1] (A15)

where fc,j = [fxc,j , f
y
c,j , f

z
c,j ], j is the j-th leg contact force, j = 1, 2, 3, 4.

4) Torque limitation: The underlying foundation of robot motion action is depend on the
ability of joints motor, so it is important to keep the torque in the capability limitation of
motor, just as the following (A16) and (A17):

Sτ i = M(q)iv̇i + h(qi,vi)− JT
c (qi)f

i
c (A16)

τk
fb = 0 ∀k ∈ [0, N ] τ k

j min ≤ τk
j ≤ τk

j max ∀k ∈ [0, N ] (A17)

where τk
fb is the virtual float joints keep zero, τk

j is the actuated joints torque,τ k
j min is the

joints lower limitation, τk
j max is the joints upper limitation.

A4.4 Cost

At the end of programming, its function of the whole body trajectory is to realize the motion learned
from RL framework, we implement the cost as :

Li(xi,ui) = ∥qu
i − q∗

i ∥
2
+ ∥u∥2 (A18)

the term ∥qu
i − q∗

i ∥
2 is for merging the gap between RL trajectory and actually feasible trajectroy,

qu
i is the upper body trajectory from RL, q∗

i is the upper body trajectory from whole body optimiza-
tion, ∥u∥2 for reduce the energy of the whole motion.

A5 Motion Library

We constructed a motion library to house the learned whole-body skills as well as the action and
condition nodes used to construct the task graph. The motion library includes information about the
skills fed to the LLM, as well as the control code corresponding to each skill. The following Fig.
A2, A3 shows the action skills and nodes inside the motion library that LLM can choose to invoke
to construct the task graph.
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Figure A3: Action nodes in the motion library, where the blue nodes are based on learned whole-
body motion skills.

Figure A4: Condition nodes with different functions in the motion library.
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A6 Motion Morphology Selection

In this section, we show the task scenarios used for the motion morphology selection experiments.

A6.1 Manipulation Scenarios

For the robot manipulation morphology selection experiments included six simulated and four real-
world scenarios. We conducted ten morphology selections for each scenario, and before each trial,
the positions and poses of the objects in the scenarios were reset. We applied the same prompts for
all manipulation morphology selections, with the instructions for each scenario shown in Fig. A5.

A6.2 Locomotion Scenarios

The robot locomotion morphology selection experiments included six simulated and four real-world
scenarios, as shown in Fig.A6. We conducted ten morphology selections for each scenario, and
before each trial, the positions of the robot and obstacles in the scenarios were reset. We applied the
same prompts for all locomotion morphology selections.

25



Figure A5: Task scenarios for manipulation morphology selection experiments.
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Figure A6: Task scenarios for locomotion morphology selection experiments.
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A6.3 VLM Prompts

The prompt words used for the motion morphology selector are shown in the figures, where the
prompt words for manipulation morphology selector will be fed into the VLM along with the re-
ceived textual task instructions from the Behavior Tree.

The motion morphology selector are packaged as one of the functions in ’User Input’ module and it
turned ’off’ by default. When it needs to be invoked in task planning, it must be enable in ’Function
Options’ or specified to be set to ’on’ when inputting the task instructions.

Figure A7: Prompts used for Manipulation Morphology Selection.

Figure A8: Prompts used for Locomotion Morphology Selection.
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A7 User Input

The ’User Input’ is the module that links the instructor to the language model and contains prede-
fined prompts for initializing the language system environment and limiting the model output, as
well as an interface for accepting task commands sent from the user side.

A7.1 Basic Prompts

Basic prompts provide a description of the task context and robot characteristics, as well as an
explanation of user commands and output formatting requirements. As shown below:

### Basic Prompts ###
"You are now a robot controller , please output a XML file for
constructing a behavior tree to control the robot under the
requirements and given task."
"The robot you control is a centaur like robot , with a humanoid
upper body and four legs , each leg has a wheel at the bottom."
"The robot has two arms , with a claw gripper on the right arm.
It can manipulate objects with two ways: single -arm manipulation
and dual -arm manipulation."
"The robot has two modes of movement: wheel motion and leg motion.
The robot default manipulation and locomotion modes are
’single arm’ and ’wheel ’."
"The robot has two depth cameras: one located on the head to view
objects , and one on the waist to view the road and terrain ahead."

A7.2 Function Options

We designed a number of functions for the robot and packaged them into condition nodes for selec-
tive invocation by the LLM during the planning of the task. These functions include: ’Manipulation
Morphology Selector’, ’Locomotion Morphology Selector’, ’Failure Detection and Recovery’. We
add the descriptions of these functions acting as ’Function Options’ inside the ’User Input’, and set
all functions to ’off’ state by default. When the instructor expects a function to be added during
a task planning, it can be manually set to ’on’ or include a declaration to use the function in the
instruction.

### Function Options ###
"The robot has the following functions , all of which are ’off’ by

default."
"When a function is ’on’, it need to be involved in planning for the

given task , and when it is ’off ’, it should not be used."
"Functions: "

"1. ’manipulation_mode_selector ’: this function allows the robot to
add the condition node <WhetherSingleArm > to the planning of
BehaviorTree , which is used to determine whether the current
manipulation task should use the ’single_arm ’ or ’dual_arm ’ type
of action."

"2. ’locomotion_mode_selector ’: this function allows the robot to add
the condition node <WhetherWheelMove > to the planning of the
behavior tree , which is used to determine whether the current
locomotion task should use the ’wheel’ or ’leg’ type of action."

"3. ’detection_recovery ’: this allows the robot to add the condition
node <IsActionSuccess >, which is used to determine whether the
previous action has been successfully completed and , if not , to
employ a recovery mechanism that repeat the action."
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A7.3 User Interface

The user interface is responsible for accepting task commands from the instructor and combining
them with pre-defined prompt for input to the LLM. The complete user input is as follows.

User Interface: hy-motion.github.io/prompt/user_input.ini

Motion Library: hy-motion.github.io/prompt/motion_library.ini

Basic Prompts: hy-motion.github.io/prompt/basic_prompt.ini

Function Options: hy-motion.github.io/prompt/Function_options.ini

A8 Task Planning with LLM

After receiving the prompts from ’User Input’, the LLM output a hierarchical task graph that con-
tains a series of nodes and actions for accomplishing the task. The task graph is saved in an .xml file
and serves as a framework for constructing the Behavior Tree that guides the robot’s actions. Below
we show the detail of experiments in ’Tasks with human instructions’ part of Sec. 4.3. For each
task, we present the task graph generated by LLM, and the Behavior Tree constructed from it.

Input: Open the drawer and pick up the drill.

Figure A9: Task planning of ’Open drawer and pick object’.

Input: Find the door and open it.

Figure A10: Task planning of ’Approach and open door’.
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Input: Pick up the cracker and put it into the box.

Figure A11: Task planning of ’Pick and place’.

Input: Pick up the box and put it on the table.
(’manipulation_mode_selector ’=on)

Figure A12: Task planning of ’Dual-arm pick place’.
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