
Discovering Bugs in Vision Models using Off-the-shelf

Image Generation and Captioning

Olivia Wiles∗

DeepMind
oawiles@deepmind.com

Isabela Albuquerque
DeepMind

isabelaa@deepmind.com

Sven Gowal∗

DeepMind
sgowal@deepmind.com

Abstract

Automatically discovering failures in vision models under real-world settings is an
open challenge. This work describes how off-the-shelf, large-scale, image-to-text
and text-to-image models, trained on vast amounts of data, can be leveraged to
automatically find such failures. We detail a pipeline that demonstrates how we
can interrogate classifiers trained on IMAGENET to find specific failure cases and
discover spurious correlations. We also show that we can scale our approach to
generate adversarial datasets targeting specific classifier architectures. This work
serves as a proof-of-concept demonstrating the utility of large-scale generative
models to automatically discover bugs in vision models in an open-ended manner.

1 Introduction

Machine learned models are known to exhibit numerous failures arising from using shortcuts and
spurious correlations [20, 3, 60, 40]. As a result, they can fail catastrophically when training and
deployment data differ [8]. Yet, only a few tools exist to automatically find failure cases of such
models on unseen data (see expanded literature survey in App. A). Some methods analyze the
performance of models by collecting new datasets (usually by scraping the web). These datasets
must be large enough to obtain some indication of how models perform on a particular subset of
inputs [29, 30, 50]. Other methods rely on expertly crafted, synthetic (and often unrealistic) datasets
that highlight particular shortcomings [22, 63].

In this work, we present a methodology to automatically find failure cases of image classifiers
in an open-ended manner, without prior assumptions on the types of failures and how they arise.
We leverage off-the-shelf, large-scale, text-to-image, generative models, such as DALL·E 2 [49],
IMAGEN [54] or STABLE-DIFFUSION [52], to obtain realistic images that can be reliably manipulated
using a text prompt. We also leverage captioning models, such as FLAMINGO [2] or LEMON [33],
to retrieve human-interpretable descriptions of each failure case. This provides a few advantages:
(i) generative models trained on web-scale datasets can be re-used and have broad non-domain-specific
coverage; (ii) they demonstrate basic compositionality, can generate novel data and can faithfully
capture the essence of (most) prompts, thereby allowing images to be realistically manipulated;
(iii) textual descriptions of failures can be easily interpreted (even by non-experts) and interrogated
(e.g., by performing counterfactual analyses). Overall, our contributions are as follows:

• We describe a methodology to discover failures of image classifiers trained on IMAGENET [14].
To the contrary of prior work, we leverage off-the-shelf generative models, thereby avoiding the
need to collect new datasets or to rely on expertly crafted heuristics to compose new images.

• Our approach surfaces human-interpretable failures by captioning inputs on which classifiers fail.
These captions can be modified to produce alternative hypotheses of why failures occur.

∗Equal contributions.
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x ∼ p̂(x|y)

Ex∼p(x|y) [f(x) ̸= y]

z ∼ p̂(z|x, y)

x ∼ p̂(x|z, y)

Ex∼p(x|y,zA) [f(x) ̸= y]

Figure 1: Diagram of our method. The method starts by generating images containing a given class y to
measure the baseline failure rate of that class (right-hand side of Eq. 1). For misclassified image, we construct
a detailed textual description. This description is used to produce new images and measure the failure rate on
images corresponding to that description (left-hand side of Eq. 1). The final description can be edited (manually
or automatically) to understand where the source of failures comes from.

• In Sec. B.2, we demonstrate the scalability of the approach by generating adversarial datasets
(akin to IMAGENET-A; 29). In contrast to IMAGENET-A, our generated datasets align more
closely with the original training distribution from IMAGENET and generalize to multiple classifier
architectures.

Importantly, while this work focuses on vision models trained on IMAGENET, it is neither limited to
IMAGENET nor the visual domain. It serves as a proof-of-concept that demonstrates how large-scale,
off-the-shelf, generative models [6] can be combined to automate the discovery of bugs in machine
learning models and produce compelling descriptions of model failures. The approach is agnostic to
the model architecture, which can be treated as a black box.

2 Method

Notation. We consider a classifier f : X → Y, where X is the set of inputs (i.e., images) and Y

is the label set. We also assume that inputs x ∈ X with label y ∈ Y are drawn from an underlying
distribution p(x|z, y) conditioned on latent representations z ∈ Z. In the context of this specific work,
z is a textual description of the image x. We are interested in discovering captions z corresponding
to images x ∼ p(x|z, y) with label y that lead to significantly higher misclassification rates than
generic images drawn from the marginal distribution p(x|y) conditioned solely on the label. Formally,
given a label y, we would like to find z with

E
x∼p(x|z,y)

[f(x) ̸= y] > E
x∼p(x|y)

[f(x) ̸= y] (1)

where [·] represents the Iverson bracket.

As we do not have access to the true underlying distributions p(x|z, y) and p(x|y), we leverage
a large-scale text-to-image model (we use IMAGEN) to approximate them. Similarly, we approxi-
mate p(z|x, y) with a captioning model (we use FLAMINGO). We denote approximations of these
distributions with the symbol p̂.

Generating failure cases. Our approach is described in Fig. 1. It consists of initially finding
baseline failures for the underlying model f by sampling inputs x from p̂(x|y). Given a label of
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(a) Persian cat→ Snow leopard (b) Fly→ Bee (c) Crayfish→ Chainlink fence

Figure 2: Distribution of failures of a RESNET-50 for the baseline and automatically discovered captions
for three true and target label pairs. For each panel, failures resulting from the baseline caption are on
the left and failures resulting from the discovered caption are on the right. We show the top-15 mistakes and
three randomly sampled images for each caption. We highlight in red, the bar corresponding to the target label.
Absolute failure rates, shown in Table 1, rise from 0.11% to 0.64%, 0.48% to 4.11% and 0.93% to 6.31%.

interest y, the output of this step is a set D = {xi ∼ p̂(x|y)}Ni=1 (where N is the number of images
we wish to generate), a set Dfail = {x ∈ D|f(x) ̸= y} and an estimate of the baseline failure rate
|Dfail|/N (corresponding to the right-hand side of Eq. 1).2 The conditioning on y is implemented
using prompts such as “a realistic photograph of a fly (insect).”, which are automatically generated
from the corresponding label name and WORDNET hierarchy.

Failure case captioning. For each input x ∈ Dfail, we would like to find a caption z that describes
it. Ideally, we would like to find the caption z that maximizes the likelihood of sampling x, i.e.,
z = argmax

z
P̂ (x|z, y). We may wish to impose constraints on z, such as a maximum number of

words or sentences.3 Finding such a caption is computationally hard and measuring exact likelihoods
P̂ (x|z, y) can be challenging. Hence, we resort to sampling captions directly from a captioning
model p̂(z|x, y) for each image.4 To condition on y, we force the captioning model to only consider
completions to the original baseline prompt. An example of resulting caption could be “a realistic
photograph of a fly (insect). the background is blurred. the fly is in focus. it is on a yellow flower. the
background is green.” Each caption serves as a failure hypothesis.

Measuring failure rates of hypotheses. For each failure hypothesis or caption z, we can measure
its failure rate via sampling Ex∼p(x|z,y) [f(x) ̸= y].5 This step allows to surface captions z⋆ that
satisfy Eq. 1 by comparing the resulting failure rate with the baseline failure rate obtained initially.

Caption refinement and counterfactual analysis. Given a caption z
⋆, we would like to provide a

shorter, self-contained caption that obtains a similar failure rate. For this step, we rely on handcrafted
rules6 and evaluate promising caption rewrites. Finally, as captions are human-readable, users can
interact with the system and test alternative hypotheses.

3 Results on open-ended failure search

Setup. We evaluate a RESNET-50 [26] trained on IMAGENET and available online on TF-HUB.7

We select three labels y at random, namely Persian cat, fly and crayfish and execute the

2In this work, we consider problematic misclassifications only and we restrict ourselves to failures where any
of the top-3 predicted labels are not under the same parent as the true label y in the WORDNET hierarchy [45].

3These constraints guarantee that captions remain simple and not overly descriptive.
4This formulation implicitly assumes that any caption is as likely as another under a given label y, which in

general does not hold true, but serves as a reasonable approximation.
5Grounding failures to simple textual descriptions allows to maintain the diversity of the generated images. It

is important that generated images resemble images leading to the original failure without being exact copies.
6This may seem at odds with our claim on open-endedness. However, we note that this step is optional and

its goal is simply to produce shorter failure descriptions. In this work, we evaluate all individual sentences and
the most promising prompt is further refined by dropping adjectives.

7https://tfhub.dev/google/imagenet/resnet_v2_50/classification/5
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protocol defined in Sec. 2. Fig. 2 (and Table 1 in Sec. B.1 of the appendix) shows the resulting
automatically discovered failures. More failures for additional labels are also shown in Sec. B.1.

Discovered failures. Fig. 2(a) shows the distribution of failures for the baseline label Persian
cat. We observe that the most frequent confusion, on images generated using the baseline caption

“a realistic photograph of a Persian cat (domestic animal).” is with lynx. This mistake arises about
0.1% of the time and constitutes 87.3% of all failures. In comparison, the confusion with snow
leopard is rather infrequent and arises only 0.00022% of the time. Our approach automatically
discovers that adding “the background is green.” to the caption results in a large increase in failure
rates. Failures are 5.72× more likely and the model is 14.3× more likely to predict snow leopard.
We observe that mistakes with wild animals are more prevalent when the cat is outdoors.

Similarly, Fig. 2(b) and Fig. 2(c) show failures on images of flies and crayfish, respectively. Flies on
flowers are significantly more likely to be confused for bees when they are on flowers (497×), while
crayfish in nets are more frequently confused as chainlink fences (3721×), honeycomb, window
screens or spider webs. These highlight two shortcomings of the underlying classifier: (i) the
over-reliance on spurious cues (such as the flower); (ii) the inability to determine which object is the
main subject of a photograph (e.g., which of the net or crayfish is important).

Generalizability of failure descriptions. To verify that the discovered failures are not specific to
the text-to-image model (IMAGEN) used in this manuscript and do not result from artifacts in the
image generation process, we generate 30 images using the baseline and discovered captions with
DALL·E 2 and STABLE-DIFFUSION (samples are shown in Fig. 7 and Fig. 8). We evaluate the failure
rates for the fly and crayfish labels (which exhibited higher failure rates). With DALL·E 2, for
the 30 images generated with the prompt “a realistic photograph of a fly (insect).”, 18 are correctly
classified as flies and none are classified as bees. When adding “it is on a flower.” to the prompt,
the overall failure rate increases (only 14 images are correctly classified) and nine images are now
classified as bees. Similarly, for “a realistic photograph of a crayfish (crustacean).”, 29 images are
correctly classified as either crayfish, spiny lobster, American lobster, Dungeness crab
or king crab, while none are classified as chainlink fence. When adding “it is in a net.”,
four are classified as chainlink fence (with chainlink fence appearing ten times in the top-3
predictions), while only 21 images are correctly classified.8 Overall, we observe that discovered
failures generalize across generative models. Finally, we also leverage Google Image Search9 to
find 30 images for each of the following queries: “fly”, “fly on flower”, “crayfish”, “crayfish in net”
(images must have a resolution of at least 256×256 and should contain the true label). We classify all
images and observe that the number of failures towards bee increases from zero to two and those
towards chainlink fence increase from zero to four. This illustrates again that discovered failures
are general and extend to real photographs.

4 Conclusion

The motivation behind our work is to develop a proof-of-concept demonstrating that today’s large-
scale text-to-image and image-to-text models can be leveraged to find human-interpretable failures
in vision models. While we focus exclusively on IMAGENET, there are encouraging signs that
these generative models could be used to probe models trained on specialized tasks such as medical
imaging [37]. We note that there remain a number of keys challenge to address and detail some of
them in more details in App. D.
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Appendix

A Related Work

Model failures. Spurious correlations can entice models to learn unintended shortcuts that obtain
high accuracy on the training set but fail to generalize [43, 20]. Recht et al. [50] show that the
accuracy of IMAGENET models is impacted by changes in the data collection process, while Torralba
et al. [60], Khosla et al. [38], Choi et al. [12] explore how contextual bias affects generalization.
Mania et al. [44] demonstrate that models trained on IMAGENET make consistent mistakes with one
another and Geirhos et al. [21] show that these mistakes are not necessarily consistent with human
judgment.

Evaluation datasets. Understanding how model failures arise and empirically analyzing their
consequences often requires collecting and annotating new test datasets. Hendrycks et al. [29]
collected datasets of natural adversarial examples (IMAGENET-A and IMAGENET-O) to evaluate
how model performance degrades when inputs have limited spurious cues. Hendrycks et al. [30]
collected four real-world datasets (including IMAGENET-R) to understand how models behave under
distribution shifts. In many cases, particular shortcomings can only be explored using synthetic
datasets [13]. Hendrycks and Dietterich [28] introduced IMAGENET-C, a synthetic set of common
corruptions. Geirhos et al. [19] propose to use images with a texture-shape cue conflict to evaluate
the propensity of models to over-emphasize texture cues. Xiao et al. [63], Sagawa et al. [53]
investigate whether models are biased towards background cues by compositing foreground objects
with various background images (IMAGENET-9, WATERBIRDS). In all cases, building such datasets
is time-consuming and requires expert knowledge.

Automated failure discovery. In some instances, it is possible to distill rules or specifications
that constrain the input space enough to enable the automated discovery of failures via optimization
or brute-force search. In vision tasks, adversarial examples, which are constructed using ℓp-norm
bounded perturbations of the input, can cause neural networks to make incorrect predictions with
high confidence [9, 10, 23, 41, 57]. In language tasks, some efforts manually compose templates to
generate test cases for specific failures [36, 17, 51]. Such approaches rely on human creativity and are
intrinsically difficult to scale. Several works [4, 55, 62, 47, 61, 42, 24] go beyond hard-coded rules by
leveraging generative and perceptual models. However, such approaches are difficult to automate as
it is unclear how to relate specific latent variables to isolated structures of the original input. Finally,
we highlight a concurrent work from Ge et al. [18], which leverages captioning and text-to-image
models to construct background images to evaluate (and improve) an object detector. Their approach
requires compositing the resulting images with foreground objects and is not open-ended, in the sense
that it relies on the availability of a source dataset of background images. Perhaps, the work by Perez
et al. [46] on red-teaming language models is the most similar to ours. Perez et al. demonstrate how
to prompt a language model to automatically generate test cases to probe another language model for
toxic and other unintended output.

Interpretability. A recent direction is to extract interpretable explanations of failures. Casper et al.
[11] demonstrate how to use adversarial patches to add objects to images and fool a classifier; unlike
our work, the resulting images are clearly not realistic to a human. Leveraging a dataset of images
and auxiliary information in the form of attributes or image-to-text embeddings (e.g. from CLIP [48]),
other works [1, 34, 16] aim to explain the spurious correlations or other factors that cause failures in
the dataset. However, their analyses and conclusions are limited by the images present in the dataset.
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B Additional results

B.1 Open-ended failure search

Table 1 shows the absolute failure rates of a RESNET-50 trained on IMAGENET for the three true
and target label pairs highlighted in the main manuscript. For each row, we sample images from the
text-to-image model until we obtain 20 images that are misclassified as the target label.10 Overall,
we observe that failure rates are between six and nine times more likely with our automatically
discovered prompts. Failures towards specific labels become orders of magnitude more frequent.

True label Target label Caption Failure rate (any) Failure rate (target)

Persian cat Snow leopard
a realistic photograph of a Persian cat (domestic animal). 0.11% 1× 0.00022% 1×
— ” — the background is green. 0.64% 6× 0.0032% 14×

Fly Bee
a realistic photograph of a fly (insect). 0.48% 1× 0.0014% 1×
— ” — it is on a flower. 4.11% 9× 0.72% 497×

Crayfish Chainlink fence
a realistic photograph of a crayfish (crustacean). 0.93% 1× 0.00047% 1×
— ” — it is in a net. 6.31% 7× 1.73% 3721×

Table 1: Absolute failure rates of a RESNET-50 for three true and target label pairs. We show the total
failure rate (i.e., the model prediction is different from the true label) as well as the target failure rate (i.e., the
model prediction is the target label). Captions are automatically discovered using the method detailed in Sec. 2.11

Similarly to Fig. 2 and Table 1, Fig. 3 and Table 2 show failure cases automatically found by our
pipeline for the same RESNET-50 on additional labels. The labels considered are a subset of the
200 labels present in IMAGENET-A. We let the reader interpret these failure cases themselves. The
failures are diverse and are due to different factors, such as: (i) misleading color patterns (e.g., sea
amemone→ daisy), (ii) spurious context (e.g., jeep→ snowplow), (iii) missing knowledge (e.g.,
custard apple→ mask), or (iv) hallucinations (e.g., feather boa→ maltese dog).

10This amounts to 9.1M samples for the first row of the table, 625K for the second and 1.4M, 2.8K, 4.3M,
1.2K for the subsequent rows.

11As a point of comparison, we can also evaluate the baseline failure rates on images from the IMAGENET

test set. For Persian cat, fly and crayfish the baseline failure rates are 16%, 8% and 18%, respectively
(the target failure rate is 0% for all labels). These failure rates are higher than on generated images. This is
perhaps indicating that the generative model produces images that are more canonical and conservative.
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robin hummingbird african chameleonagama harvestman umbrella scorpion crayfish jellyfish torch sea anemone daisy

flatworm hook snail conch snail hermit crab flamingo pelican flamingo albatross oystercatcher albatross

sea lion killer whale bee rock crab butterfly hair slide capuchin gorilla acoustic guitar vacuum airliner minibus

apron lab coat balloon ping pong ball lighthouse flagpole lighthouse submarine chain swing doormat band aid

envelope ambulance envelope ping pong ball envelope police van feather boa maltese dog flagpole sailboat jeep snowplow

kimono lab coat lighter candle obelisk projectile saltshaker spotlight banana toucan custard apple mask

Figure 3: Illustration of failure cases listed in Table 2. The correct label is to the left in green. The incorrect
prediction is to the right in red. The model used is a RESNET-50 found on TF-HUB.
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True label Target label Caption Failure rate (target)

robin hummingbird
a realistic photograph of a robin (oscine). 0.0032% 1×
— ” — It is flying. 7.35% 2264.3×

african chameleon agama
a realistic photograph of an african chameleon (lizard). 0.15% 1×
— ” — He is holding a stick. The chameleon is orange and white. 1.01% 6.7×

harvestman umbrella
a realistic photograph of a harvestman (arthropod). 0.45% 1×
— ” — It is shot from above. The harvestman is on a white background. 1.32% 2.9×

scorpion crayfish
a realistic photograph of a scorpion (arthropod). 0.0042% 1×
— ” — It is on a person’s hand. 0.13% 29.5×

jellyfish torch
a realistic photograph of a jellyfish (invertebrate). 0.14% 1×
— ” — The background is black. The jellyfish is orange. 0.45% 3.2×

sea anemone daisy
a realistic photograph of a sea anemone (coelenterate). 0.32% 1×
— ” — It is yellow and white. The background is blurred. 1.33% 4.2×

flatworm hook
a realistic photograph of a flatworm (invertebrate). 0.61% 1×
— ” — It is on a white background. 1.58% 2.6×

snail conch
a realistic photograph of a snail (mollusk). 0.039% 1×
— ” — It is on a black background. The snail is reflected on the floor. 0.88% 22.5×

snail hermit crab
a realistic photograph of a snail (mollusk). 0.0082% 1×
— ” — It is on a grey road. 0.10% 12.2×

flamingo pelican
a realistic photograph of a flamingo (aquatic bird). 0.023% 1×
— ” — It is a close up of the head. The flamingo is facing the camera. 0.87% 37.6×

flamingo albatross
a realistic photograph of a flamingo (aquatic bird). 0.081% 1×
— ” — It is black and white. The flamingo is looking to the right. 1.30% 16.1×

oystercatcher albatross
a realistic photograph of an oystercatcher (wading bird). 0.0025% 1×
— ” — It is flying. 0.52% 208.2×

sea lion killer whale
a realistic photograph of a sea lion (seal). 0.14% 1×
— ” — It is jumping out of the water. 4.31% 31.3×

bee rock crab
a realistic photograph of a bee (insect). 0.086% 1×
— ” — It is flying. The background is black. 0.18% 2.1×

cabbage butterfly hair slide
a realistic photograph of a cabbage butterfly (butterfly). 0.099% 1×
— ” — It is on a white background. It is in the middle of the image. 1.98% 20.0×

capuchin gorilla
a realistic photograph of a capuchin (monkey). 0.011% 1×
— ” — It is a black and white photograph. 0.84% 73.9×

acoustic guitar vacuum
a realistic photograph of an acoustic guitar (stringed instrument). 0.20% 1×
— ” — It is leaning against a wall. 1.02% 5.0×

airliner minibus
a realistic photograph of an airliner (heavier-than-air craft). 0.16% 1×
— ” — There are seats in the foreground. 3.05% 19.2×

apron lab coat
a realistic photograph of an apron (clothing). 0.44% 1×
— ” — It is white. 3.57% 8.1×

balloon ping-pong ball
a realistic photograph of a balloon (aircraft). 0.53% 1×
— ” — It is yellow. The background is blurred. 17.86% 33.8×

lighthouse flagpole
a realistic photograph of a beacon (structure). 0.095% 1×
— ” — The lighthouse has red and white stripes. 2.12% 22.4×

lighthouse submarine
a realistic photograph of a beacon (structure). 0.041% 1×
— ” — It is on a small island at the horizon. 12.5% 308.0×

chain swing
a realistic photograph of a chain (attachment). 1.22% 1×
— ” — The chain is vertical. The chain is in focus. 12.5% 10.2×

doormat band aid
a realistic photograph of a doormat (floor cover). 0.94% 1×
— ” — The doormat is rectangular and is on a white background. 5.68% 6.1×

envelope ambulance
a realistic photograph of an envelope (instrumentality). 0.210% 1×
— ” — It has white and has red and blue stripes at the top and bottom. 17.86% 60.0×

envelope ping-pong ball
a realistic photograph of an envelope (instrumentality). 1.04% 1×
— ” — It is white and has a red dot on it. 75.% 72.0×

envelope police van
a realistic photograph of an envelope (instrumentality). 0.510% 1×
— ” — It has white and has white and blue diagonal stripes at the top and bottom. 6.94% 11.7×

feather boa maltese dog
a realistic photograph of a feather boa (garment). 4.59% 1×
— ” — It is white and fluffy. 41.67% 9.1×

flagpole sailboat
a realistic photograph of a flagpole (stick). 0.19% 1×
— ” — It is white and the sky is blue. 2.19% 11.5×

jeep snowplow
a realistic photograph of a jeep (motor vehicle). 0.30% 1×
— ” — It is parked in the snow. 17.86% 59.3×

kimono lab coat
a realistic photograph of a kimono (garment). 0.69% 1×
— ” — It is white. 2.84% 4.1×

lighter candle
a realistic photograph of a lighter (instrumentality). 5.37% 1×
— ” — It has a flame coming out of it. 41.67% 7.8×

obelisk projectile
a realistic photograph of an obelisk (structure). 0.14% 1×
— ” — It is pointing up. The sky is blue. 1.09% 7.7×

saltshaker spotlight
a realistic photograph of a saltshaker (container). 1.02% 1×
— ” — It has a silver lid. The salt shaker is on a white background. The salt is spilling
out of the jar.

13.89% 13.7×

banana toucan
a realistic photograph of a banana (produce). 0.0058% 1×
— ” — It is yellow and is floating in the air. The background is black. 0.047% 8.2×

custard apple mask
a realistic photograph of a custard apple (produce). 0.32% 1×
— ” — The fruit is cut in half. 4.46% 14.0×

Table 2: Absolute failure rates of a RESNET-50 for 36 additional true and target label pairs. We show the
target failure rate (i.e., the model prediction is the target label). Captions are automatically discovered using the
method detailed in Sec. 2. Note that to the contrary of Table 1, we consider an image to be misclassified when
the top-1 prediction is wrong (and not from the same WORDNET parent) rather than when the true label is not
part of the top-3 predictions.
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B.2 Adversarial dataset generation at scale

In this section, we demonstrate how to apply our automated pipeline to generate large datasets of
failures. We seed our search by captioning a set of problematic images from IMAGENET-A. We
show that the discovered failures generalize across initializations of a given model architecture and
between models of different architectures.

Generating large-scale datasets. We assume that we have access to a set of problematic captions
that describe potential failure cases.12 These captions are automatically extracted from the 7,500
images of IMAGENET-A using FLAMINGO, limiting its output to two sentences maximum. For
each caption, we sample up to a thousand images keeping those leading to misclassifications and
limit the number of misclassified images kept per caption. We consider two models: a RESNET-50
(abbreviated hereafter by RN) and a Vision Transformer in its B/16 variant [15], abbreviated by VIT.
Both models are trained solely on IMAGENET and achieve 76% and 80% top-1 accuracy, respectively.
This yields two separate datasets of failures which we refer to as IN-G-RN and IN-G-VIT that are of
size 12,332 and 9,536 respectively.

Visualizations of failure cases. Samples from IN-G-RN are shown in Fig. 4, along with true
and predicted labels. We can see that while the images clearly show the correct class, the model
erroneously predicts a different one. Additional samples for both IN-G-RN and IN-G-VIT are visible
in Fig. 9 and Fig. 10 (at the end of this manuscript).

mushroom jack-o’-lantern bee soap dispensor robin agama vulture flagpole

Figure 4: Examples of failures automatically found in IN-G-RN. The correct label is to the left in green. The
incorrect prediction is to the right in red. More examples are given in Fig. 9 and 10.

Generalizability of failure cases. To investigate whether the discovered failures generalize across
classification models, we train an additional Residual Network (RESNET) and VIT on IMAGENET

with the exact same setup as our two original models but different random seeds. We also consider a
large set of additional models trained on IMAGENET and optionally pre-trained on larger datasets
obtained from TF-HUB:

• VIT-B*, VIT-L*, VIT-S* [15]: VITs pretrained on IMAGENET21K.

• VIT-R* [56]: a hybrid VIT and RESNET model pretrained on IMAGENET21K.

• BIT-* [39]: BIT models pretrained either on IMAGENET21K (BIT-M *) or not pretrained (BIT-S
*).

• INCEPTION_RESNET V2 [59]: a hybrid INCEPTION, RESNET model with no pretraining.

• INCEPTION* [58]: INCEPTION models with no pretraining.

• RESNET* [26]: RESNET models with no pretraining.

Fig. 5 shows the failure rates induced by both datasets and IMAGENET on all models (failures are
accounted when the top-3 predictions do not include the true label). First, we observe that failures
transfer well between models of the same architecture. Indeed, about 80% of the failures in IN-G-RN

transfer to the RESNET-50 we trained, while the ones in IN-G-VIT transfer with at least 75% chance
to the other VIT. Second, we can observe that while there is a drop in performance, failures for a
given model architecture often transfer across architectures. Even when large scale pretraining is
used (e.g. the BIT-M * models and VIT models were pretrained on IMAGENET21K), failures transfer
at a rate of about 35-55% for IN-G-RN and about 45-65% for IN-G-VIT. Within a model class,

12This assumption is not necessary. However, it accelerates our search by generating images that are more
likely to induce failures.
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Figure 5: Failure rates (top-3) for different models on two generated datasets. We report the failure rates of
different models trained on IMAGENET on both IN-G-RN and IN-G-VIT as well as on IMAGENET.

larger versions of the model seem more robust. For example, VIT-B/16 is more robust than VIT-B/32
(and correspondingly gets lower error on IMAGENET) and similarly the larger BITs (those of size
101x1) are more robust than their smaller counterparts (those of size 50x1). Thus, stronger pretraining
and larger models seem to lead to improved (but not complete) robustness against these generated
datasets.

Distribution shift. We compare our generated datasets to IMAGENET and IMAGENET-A. The
aim is to validate that we generate images that are similar to those in IMAGENET. We compute the
Fréchet Inception Distance (FID; 32) and Kernel Inception Distance (KID; 5) between the generated
images and the IMAGENET test set. Table 3 also shows the FID and KID of a sample of size 50000
of the IMAGENET train set and IMAGENET-A. We find that our generated images are more similar to
those from IMAGENET under both metrics than those from IMAGENET-A.

FID ↓ KID ↓

IMAGENET-A 56.6 0.0460
IN-G-RN 48.3 0.0305
IN-G-VIT 53.9 0.0330

IMAGENET (train) 2.3 0.0003

Table 3: FID and KID scores. We report the FID and KID scores of IMAGENET (train), IMAGENET-A and our
two generated datasets (IN-G-RN, IN-G-VIT) in relation to IMAGENET (test).

14



C Additional figures

Figure 6: Images from IMAGEN (which was used in this manuscript). Images are generated with captions
identical to those used in Fig. 2(b) and Fig. 2(c). A comparison with DALL·E 2 is shown in Fig. 7.

Figure 7: DALL·E 2 images. Images are generated with captions identical to those used in Fig. 2(b) and
Fig. 2(c).

Figure 8: STABLE-DIFFUSION images. Images are generated with captions identical to those used in Fig. 2(b)
and Fig. 2(c).
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Figure 9: Further examples from IN-G-RN. The label at the top of the column is one of the incorrectly
predicted top-3 labels and the label on the left is the true label.
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Figure 10: Examples from IN-G-VIT. The label at the top of the column is one of the incorrectly predicted
top-3 labels and the label on the left is the true label.
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D Discussion and Limitations

The motivation behind our work is to develop a proof-of-concept demonstrating that today’s large-
scale text-to-image and image-to-text models can be leveraged to find human-interpretable failures
in vision models. While we focus exclusively on IMAGENET, there are encouraging signs that
these generative models could be used to probe models trained on specialized tasks such as medical
imaging [37]. Overall, there remain a number of keys challenges to address.

Coverage. While our approach can successfully be used to demonstrate the presence of failures, it is
important to understand that (just like scraping the web) it cannot prove their absence. In other words,
there is no guarantee that it will discover all failures of a given model. Moreover, the generative
model is only an approximation of the distribution of interest and may lack coverage. For example, it
might almost never generate “a lawnmower falling down from the sky” (an actual image from the
IMAGENET training set; 35) when prompted with “a realistic photograph of a lawnmower”. While
this can help ground failures to scenes that are likely to occur in the real-world, it also means that
rare failures are unlikely to be discovered (see Fig. 11(a)).

Bias. While we take the view here that off-the-shelf large-scale generative models are trained on
diverse and unbiased data, the reality is far from it: these models mirror the distribution of images
and captions seen on the web. The generative model may over-sample particular regions of the image
manifold and, as a result, our approach is more likely to discover failures in these high-density regions
and miss failures pertaining to other regions (see Fig. 11(b)). Possible solutions to reduce bias include
clever prompting (which introduces expert knowledge) or discovering failure prompts more actively
by avoiding random sampling (e.g., through adversarial techniques).

Captioning issues. Using captions as our latent representation allows our approach to produce
human-interpretable explanations. This requirement constrains our search to failures that can be
explained in words. Not only is it possible for the captioning model to miss important details or
produce ungrounded captions, but some failures may simply be hard to describe (even by a human).
As a result, newly generated images may look different from the set of images that induced the
original failure. We note that efficiently enforcing consistency between the generated and original
images (through a common caption) is an open problem since we would like to search over reasonable

(a) Coverage (b) Bias (c) Captioning issues (d) Generation issues (e) OOD sampling

Figure 11: Illustrative examples of various challenges. (a) Persian cats in snow (generated using “a realistic
photograph of a Persian cat (domestic animal). it is walking in the snow.”) are misclassified as snow leopards at
a rate of 0.016%, which is significantly higher than the failure rate of 0.0032% induced by the automatically
found caption (“— ” — the background is green.”); the total failure rate also increases twelve-fold to 8.15%
(from 0.64%). (b) It is estimated that only 1 in 10,000 crayfish turn blue. However, 9% of the images generated
using “a realistic photograph of a crayfish (crustacean).” contain a blue crayfish (estimated by manually looking
at 100 samples). (c) This image of a crayfish is misclassified as a chainlink fence. The output of the captioning
model for this particular image is “a realistic photograph of a crayfish. the crayfish is very detailed. the crayfish
is facing the camera. the crayfish is orange. it has two antennae.” While the caption describes the image, it
does not provide enough details to reconstruct the image. (d) This image is generated from the caption “a
realistic photograph of a saltshaker (container). there is a lemon slice on the side of the salt shaker.” While the
image contains a lemon, the main subject which corresponds to the true class y (saltshaker) is not visible.
(e) Generated with the caption “a realistic photograph of a ladybug (insect). it is in a plastic bag.”, this image
illustrates that text-to-image models can create image that are not from the intended distribution (i.e., of realistic
photographs).
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captions that are likely to produce images corresponding to the original failure. Fig. 11(c) shows an
example. The figure shows a crayfish misclassified as a chainlink fence. While the reason for
that failure is immediately obvious to us, it remains difficult to describe with a succinct caption.

Image generation issues. While the text-to-image model may make occasional mistakes (such as
generating the wrong object for unambiguous prompts), subtle errors can also arise from the interplay
between the model and its prompt. The prompt may be ambiguous, such as using words that have
multiple meanings (e.g., a “walking stick” can be both a cane or an insect), or may describe multiple
objects with complex relationships that exacerbate failures (see Fig. 11(d)).

Out-of-distribution sampling. Ensuring that images sampled from an off-the-shelf generative
model are part of the intended distribution (e.g., resembling IMAGENET) is difficult. We start our
prompts with “a realistic photograph” in a bid to help steer the approximated distribution p̂(x|y, z)
away from artistic drawings and closer to the true distribution p(x|y, z). This approach is effective,
but not always successful (see Fig. 11(e)). In some cases, finding a suitable prompt is not obvious
(e.g., to output images from a particular medical domain; 37) and fine-tuning models on the dataset
of interest may be necessary.

Privacy. As we are generating large amounts of images and captions, it is important to consider the
privacy risks associated with our approach. While these risks can be mitigated by using generative
models trained on public, non-sensitive data, we believe that more research on private generative
modelling is necessary [25].

Despite these challenges, we foresee that large-scale generative models will increasingly be used as
debugging tools. In this work, we introduced an automated pipeline that discovers failure cases in
vision models. It constitutes a proof-of-concept that such a system allows for large-scale investigations
of vision models in an open-ended manner.
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E Experimental details

E.1 Prompting the image-to-text model (FLAMINGO)

To ensure that captions are descriptive and composed of short sentences. We prompt FLAMINGO

with the following:

is a realistic picture of two penguins. They are holding hands. They are
standing in front of the sea. The picture is mostly grey. The penguins are
facing away from the camera. They take up most of the image.

is a portrait photograph of a famous person. She is wearing two necklaces.
She has dark hair and is wearing makeup. She is facing the camera and the
background is black.

is a cute photograph of three kittens. They are under a blanket. The back-
ground is blurred but it seems white and orange. The blanket is purple. The
two cats on the right are orange and the one on the left is grey. The orange
cats have open eyes and the grey cat has closed eyes. They are all super cute.

Image to caption is a realistic photograph of a [label name]. [...]

We also set the decoding strategy to be greedy (as we did not observe significant improvements from
using beam search).

E.2 Resource requirements

Each experiment in Sec. 3 and Sec. B.2 runs on twenty TPUv4s. We use JAX [7], Haiku [31] and
Flax [27].
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