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Abstract

We present a reinforcement learning framework for training agents in simulated
clinical diagnostic tasks within virtual patient simulations. Each patient case is
cast as a Markov Decision Process with a hybrid state that fuses semantic encod-
ings of clinical text with structured physiology and a masked Proximal Policy
Optimization policy that enforces clinical action feasibility. The learned policy is
stable and competent, achieving a recall of 0.75 for clinically indicated actions
while avoiding over 96% of harmful actions. Domain-specific language encoders
materially improve performance, underscoring the value of a language-grounded
state. Crucially, we find that a conservative checklist strategy, which favors com-
pleteness over efficiency, reveals disparities across specialties and demographics,
including a safety drop in geriatric cases. Our framework offers a rigorous testbed
and strong baseline for language-based clinical policy learning and clarifies targets
for improving efficiency, generalization, and fairness in reinforcement learning
agents for clinical decision-making.

1 Introduction

Competency-based medical education aims to ensure trainees can perform the professional tasks
required for independent practice at a consistent level of safety and quality [32]. Entrustable
Professional Activities (EPAs) map broad competencies to concrete, observable units of clinical work
that can be entrusted once competence is demonstrated [32, 30]. Defensible entrustment hinges on
reliable assessment of clinical reasoning across time and contexts—a process that is difficult to scale
via direct observation and burdensome for faculty, motivating the use of virtual patient simulations as
standardized, lower-friction settings to practice and assess sequential diagnostic decision-making; in
these environments clinical reasoning unfolds as sequences of information-gathering and interventions
under uncertainty, lending itself to computational formalization [16, 13, 35].

Reinforcement learning (RL) provides a principled framework for learning decision policies from
interaction, optimizing long-horizon objectives by balancing exploration and exploitation [35, 11].
Applying RL to clinical simulations highlights long-standing design challenges—representing the
clinical state so salient semantics are preserved, constraining actions to feasible and clinically
appropriate choices, and specifying rewards that reflect safety, efficiency, and diagnostic value
[35, 13]. State representation is particularly consequential because, while structured physiological
variables are informative, much clinical context—presenting complaints, history, and textual test
results—is inherently linguistic; representing environment state with natural language can therefore
improve sample efficiency, robustness, generalization, and interpretability [18, 21, 8, 29].
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At the same time, evaluating clinical reasoning with modern language models has outgrown reliance
on static, multiple-choice benchmarks. High scores on such tests do not necessarily translate into
reliable, context-sensitive decision-making in interactive settings [3, 4]. Recent evaluation paradigms
therefore emphasize multi-turn interaction, tool use, and sequential information-gathering within
simulated clinical workflows [26]. EPA-style simulations provide a complementary testbed in this
spirit: they offer standardized cases with explicit action constraints and clinically grounded utility
signals, while retaining the sequential structure of real diagnostic work.

This paper situates EPA simulations within an RL formulation that leverages natural language as
a carrier of clinical state. Concretely, we model diagnostic encounters as a finite-horizon decision
process in which the state integrates semantic embeddings of the initial presentation and accumulated
findings with structured physiology. Actions are drawn from a constrained, case-specific set provided
by the simulation. In our experiments, the dataset is based on the ENTRUST virtual patient simulation
platform [16], which teaches surgical decision-making through comprehensive case vignettes. Each
case includes a diverse set of actions—imaging, laboratory tests, and physical examinations—with
utilities spanning indicated, harmful, and neutral options. Reward signals reflect stepwise costs and
clinically derived utilities [2]. Within this setting, we develop a policy optimized with an on-policy
algorithm that respects dynamic action masks for clinical feasibility [27, 20].

Beyond aggregate performance, our evaluation framework is designed to probe properties of practical
importance in medical education and safety. We assess diagnostic completeness and parsimony
using standard information-retrieval metrics; examine generalization by stratifying performance
across clinical specialties and patient demographics; and analyze qualitative trajectories to understand
common success and failure modes. Finally, because collecting the “right” information is only useful
insofar as it supports downstream clinical reasoning, we include a probe that summarizes agent
trajectories for use in a separate question-answering task, thereby testing whether gathered evidence
is organized in a way that aids external decision support [3, 4, 26].

Taken together, this language-grounded RL perspective on surgical EPAs aims to connect scalable,
simulation-based assessment with policy learning that is explicit about clinical constraints and
utilities. By centering representation, feasibility, and evaluation on clinically meaningful constructs,
the framework is intended to support rigorous study of how agents acquire diagnostic strategies—and
where they fall short—in settings that matter for entrustment and training [32, 16].

2 Related Work

Reinforcement Learning in Healthcare RL is a natural fit for sequential clinical decisions and
has been studied for dynamic treatment regimens and critical care management [35, 11, 1]. Success
in this setting depends on careful MDP design: states must capture clinically salient context, actions
must reflect feasible interventions, and rewards must align with safety and diagnostic value [35, 13].
We focus on the state representation problem as a lever for reliable policy learning within constrained
clinical simulations [18].

Natural Language as State Representation Text encodings have progressed from hand-engineered
features to learned representations that capture semantics from interaction. Early work in text-based
environments showed gains from sequence models and separate state/action embeddings [21, 8].
Subsequent studies indicate that natural-language state descriptions can improve robustness and
convergence—even when other modalities are available—while also offering interpretability [29].
Our formulation adopts this paradigm by encoding clinical presentations and accumulated findings
using domain-specific biomedical language models [2].

Evaluating LLMs in Clinical Environments High performance on multiple-choice medical QA
(e.g., MedQA, MedMCQA) does not fully capture interactive, uncertainty-laden clinical reasoning
[12, 22]. Recent benchmarks therefore emphasize multi-turn interaction, tool use, and sequential
information-gathering [3, 4, 26]. EPA-style simulations align with this shift since they provide
standardized cases, explicit action constraints, and clinically grounded utilities. Our study builds on
this work by casting EPA simulations as an RL environment and studying how language-grounded
policies acquire diagnostic strategies through interaction [26].



3 Method

Our approach models the sequential clinical decision-making task within a reinforcement learning
(RL) framework. We formalize the problem as a Markov Decision Process (MDP), where the agent’s
policy is optimized using a state-of-the-art on-policy algorithm. The state representation is engineered
to integrate semantic information from clinical text with structured physiological data, enabling the
agent to navigate complex diagnostic scenarios.

3.1 Problem Formulation as a Markov Decision Process

We define the diagnostic task as a finite-horizon, discounted MDP, represented by the tuple
(S, A, P,R,~). The agent’s goal is to learn a policy 7(a|s) that maximizes the expected cumu-
lative discounted reward, Gy = "1 _ "' ¥ r;, 1., where T is the episode horizon and ~ € [0, 1] is
the discount factor.

3.1.1 State Space (S)

The state s; € S at timestep ¢ is a fixed-dimension vector constructed to provide a comprehensive
summary of the clinical encounter. It concatenates four distinct components, s; = [€init || €nist. ||
Uphys,t || 7¢], where || denotes concatenation.

Initial Case Embedding (ejni¢). A static, deyp-dimensional vector representing the initial patient
presentation. This embedding is generated by encoding the concatenation of the patient’s history,
chief complaint, and initial physical exam findings using a pre-trained biomedical language model,
Bio_Clinical BERT [2]. We compute the final embedding via mean-pooling of the last hidden states
of all input tokens and apply L2 normalization. This static component provides a constant contextual
anchor throughout the episode.

Historical Action Embedding (epist:). A dynamic, demp-dimensional vector that summarizes
the semantic content of all information gathered up to timestep ¢. The result of each action q;
(e.g., lab result text) is encoded into an embedding e ; using the same language model. The
historical embedding is the L2-normalized running average of these result embeddings: epis,; =

L2N0rm(% Zf;} €res,i)- This provides an evolving summary of the diagnostic findings [10, 19].

Physiological State Vector (vpnys¢). A dia-dimensional numerical vector representing the patient’s
known physiological parameters, including initial vital signs and any laboratory values revealed
by previous actions. To ensure a consistent scale across different measures, each value is z-score
normalized using the mean and standard deviation computed from the entire training portion of the
dataset.

Time Step Feature (7). A scalar value 73 = t/Ti,,x representing the normalized progression of
the episode, where T}, .« is the maximum allowed number of steps. This feature allows the policy to
be time-aware.

The resulting state vector has a total dimension of 2dey + diap + 1.

3.1.2 Action Space (A)

The action space A is a discrete set of all unique diagnostic and therapeutic actions available across
all cases in the dataset. For each specific case ¢, a binary action mask M, € {0, 1}|A| is provided
by the environment. This mask restricts the agent to a subset of clinically relevant actions and is
updated at each step to prevent the re-selection of previously taken actions, ensuring a realistic and
constrained decision space.

3.1.3 Reward Function (R)

The reward function is engineered to guide the agent toward policies that are both diagnostically
accurate and efficient. The reward r, received at timestep ¢ after taking action a; is a sum of three
components:

R(Sta at) = Tstep + Taction (at) + Tterminal(£t+1) (D



* Step Penalty (rgep): A small negative constant (rgep, = —0.2) is applied at every timestep.
This incentivizes the agent to solve the case in as few steps as possible, promoting efficiency.

* Action Score (7action): Each action a, has a pre-defined clinical utility score, S(a;), provided
by the simulation environment. This score is given as an immediate reward, rcion(a:) =
S(at)/100, directly rewarding clinically valuable actions and penalizing detrimental ones.

* Terminal Reward (7¢rminal): A large bonus or penalty is awarded only at the end of an
episode. An episode terminates if all designated positive-utility actions for the case have
been selected (solved), or if the step limit 7}, .« is reached (unsolved).

— If solved at step T' < Tinax: A large positive reward is given, scaled by the remaining
time to encourage speed: Terminal = Rsolve + Rspeed * (1 — T'/Timax), Where we set
Rgoive = 10 and Rgpeeq = 5.

— If unsolved at step Thax: A large negative penalty is applied, scaled by the fraction of
missed positive-utility actions: reminal = —Rpail - (1 — Recall), where Ry, = 10.

3.2 Policy Optimization with Masked PPO

We train the agent using Proximal Policy Optimization (PPO) [27], an on-policy actor-critic algorithm
known for its sample efficiency and stable training dynamics. To handle the constrained action space,
we employ a variant that incorporates action masking directly into the policy distribution.

3.2.1 Agent Architecture

The agent utilizes a shared-parameter actor-critic architecture [20] with a two-layer Multi-Layer
Perceptron (MLP) backbone. The network takes the state vector s; € R2demb+diant1 gg input. The
shared backbone consists of two hidden layers of 64 units each, with tanh activation functions.
Network weights are initialized using orthogonal initialization, which has been shown to improve
stability in deep RL settings [9]. The backbone outputs a shared feature representation that feeds into
two separate linear heads:

1. The Actor Head outputs logits 1 € RI“l over the entire action space. The action mask
M. is applied by setting the logits of invalid actions to negative infinity (—oo) before the
softmax operation, ensuring that the probability of selecting an invalid action is zero. The
final stochastic policy is given by mg(a | s;) = Softmax(1 — oo - (1 — MC))a'

2. The Critic Head outputs a single scalar value Vj(s;), which estimates the expected cumula-
tive return (the state-value) from state s;.

3.2.2 Training Procedure

The actor and critic networks are optimized jointly. We collect trajectories using multiple parallel
environments and compute advantage estimates using Generalized Advantage Estimation (GAE) [28]
to reduce variance. The composite loss function is:

L(0, ) = By [-L(0) + 1 LY(¢) — c2S[ma) (s1)] (@)

where L°MP is the PPO clipped surrogate objective, LV is the squared-error value function loss, and
S|[me] is an entropy bonus to encourage exploration. ¢; and ¢ are weighting coefficients. The clipped
objective is:

L) = E [min (m(e)fit, clip(p¢(0),1 — ;1 + e)fit)] 3)

7o (at|st)

o (at]s) is the probability ratio, Ay is the GAE advantage estimate, and € is the
ol LAt 15

clipping hyperparameter. The training procedure is detailed in Algorithm 1. We use the Adam
optimizer [14] for gradient-based updates. Full implementation details and hyperparameter settings
are provided in Appendix D.

where p;(0) =

3.3 Experimental Setup and Evaluation

We evaluate the agent’s performance on a held-out set of medical cases, using metrics that capture
diagnostic accuracy, efficiency, and the clinical coherence of its learned behavior.



Algorithm 1 Masked PPO for Clinical Decision-Making

1: Input: Hyperparameters: num. envs N, rollout length 7}.,;;0v¢, €pochs K, minibatch size M,
learning rate «, 7, GAE-, clip €, entropy coef. cs.

2: Initialize actor network 7y and critic network V.

3: Initialize N, parallel environments.

4: for iteration = 1,2, ..., Nj, do

5: Initialize a trajectory storage buffer D.

6.

7

8

Reset environments and get initial observations sy and masks M.
forstept =0,...,Tro110ut — 1 do
With probability from 7y (+|s¢, M;), sample actions a;.

9: Compute action log-probabilities log 7 (a;|s, M) and values v, = Vi(s;).
10: Execute actions ay, receive rewards r;, next states s;1, done d;, and next masks M.
11: Store (s, at, r¢, d¢, log mo(ag|se, My), vy) in D.
12: St < St41, Mt — Mt+1.
13: end for
14: Compute last value vigst = V(ST 0000 )-
15: Compute advantage estimates A, and returns R, for all timesteps in D using GAE.
16: forepoch=1,..., K do
17: Shuffle transitions in D.
18: for each minibatch of size M from D do
19: Evaluate current policy: new log-probs, values Vi, and entropy S.
20: Compute policy ratio p;(6) = exp(new_log_probs — old_log_probs).
21: Compute clipped surrogate objective L“* via Eq. 3.
22: Compute value loss LVF = (R — V)2
23: Compute total loss L = —L P ¢, LVF — ¢, 8.
24: Update parameters ¢, ¢ using Adam: (6, ¢) < (6, ¢) — aV g 4)L.
25: end for
26: end for
27: end for

Performance Metrics. A complete description of the dataset and environment is available in
Appendix C. We assess the agent’s policy on the test set using a deterministic protocol, evaluating
both overall performance and diagnostic accuracy. Overall performance is measured by the average
number of steps per episode and case completion rate. Diagnostic accuracy is evaluated by comparing
the agent’s selected actions, Apgen, against the set of required positive-utility actions, A}, and
negative-utility actions, A, for each case c¢. Key metrics include recall (|Apgen N AL |/|AT]),
precision (| Auxen N AT |/|Asken|)» their harmonic mean (F1 score), and specificity (the fraction of
negative-utility actions correctly avoided). To gauge the clinical utility of the agent’s information-
gathering, we perform a downstream question-answering (QA) task, detailed in Appendix B. A
summary of the agent’s trajectory serves as context for an external LLM (Gemma 3 27B-IT [31]) to
answer case-specific multiple-choice questions.

4 Results

We evaluate our RL agent’s performance through its training progression and a series of ablation
studies on a held-out test set of clinical cases. We assess overall performance, diagnostic accuracy,
and efficiency to validate our method and understand the contributions of its core components.

4.1 Overall Agent Performance

The agent successfully learns a stable policy, demonstrated by the monotonic increase in cumulative
reward over 100,000 training episodes (Figure 1a). The policy optimizes for diagnostic comprehen-
siveness at the cost of efficiency, a trade-off revealed by the final performance metrics. The agent
rapidly learns to identify the majority of necessary clinical actions (recall = 0.75) and consistently
avoids harmful ones (specificity > 0.96), as shown in Figures 1b and 1c. However, its lower precision
(0.55) indicates a tendency to select superfluous, diagnostically neutral actions, resulting in a final F1
score of 0.60. This suggests the agent adopts a safe but exhaustive information-gathering strategy.
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Figure 1: Agent training performance over 100,000 episodes.

4.2 Performance Analysis Across Subgroups

Table 1: Performance breakdown by medical specialty, averaged over 3 seeds.

Specialty Solved (%) F1 Score Recall Precision Specificity
Plastic and Maxillofacial 28.6 0.610 0.696 0.570 0.975
Vascular Surgery 16.0 0.582 0.625 0.593 0.981
General Surgery 13.8 0.519 0.653 0.474 0.960
Pediatric Surgery 6.3 0.513 0.653 0.489 0.972
Cardiothoracic Surgery 14.3 0.437 0.546 0.389 0.943
Neurological Surgery 0.0 0.530 0.601 0.494 0.965
Orthopaedic Surgery 0.0 0.576 0.576 0.650 0.979

The learned policy exhibits significant performance disparities across clinical and demographic
subgroups, indicating uneven generalization from the training data. Performance varies substantially
by medical specialty (Table 1). The agent shows moderate success in common scenarios such as
plastic surgery (28.6% solve rate) and vascular surgery (16.0% solve rate), but struggles or fails
altogether in less-represented specialties such as neurological surgery and orthopaedic surgery, both
of which had a 0% solve rate across all runs. These gaps suggest the policy has overfit to case patterns
prevalent in the training data distribution.

Table 2: Performance breakdown by patient demographics, averaged over 3 seeds. Asterisks (*)
denote a statistically significant difference (p < 0.05) across groups for that metric, determined by a
one-way ANOVA test.

Group Solved (%) F1 Score Recall Precision Specificity
Gender
Male 13.2 0.534 0.667 0.497 0.963
Female 11.8 0.454%* 0.622 0.401* 0.957
Age Group
0-18 9.1 0.544 0.666 0.538 0.974
19-40 8.6 0.503 0.652 0.461 0.963
41-65 21.1 0.534 0.659 0.485 0.975
65+ 6.7 0.430 0.634 0.359 0.911*
Race
Black 15.1 0.521 0.668 0.470 0.961
Caucasian 15.0 0.531 0.673 0.501 0.976
Asian 6.9 0.465 0.607 0.430 0.951

Critically, the agent displays statistically significant biases across demographic groups (Table 2).
A significant performance gap exists between genders, with male patient cases showing higher
diagnostic F1 score and precision (p < 0.05). The most severe bias relates to age: The agent



performs best on middle-aged patients (41-65), achieving its highest solve rate (21.1%). In contrast,
performance on geriatric patients (65+) collapses, with a significantly lower total reward (p < 0.05)
and a dramatic, highly significant drop in specificity to 0.911 (p < 0.001). This indicates that the
policy is not only ineffective but also potentially unsafe for this demographic, as it is more likely to
select harmful actions. Performance differences across racial groups were not statistically significant.

4.3 Ablation Studies
We conducted ablation studies to isolate the contributions of the reward function, state representation
model, and training data size. Further ablations on hyperparameter sensitivity and action space

composition are presented in Appendix A.

Table 3: Ablation of reward function design.

Overall Performance Diagnostic Accuracy
Reward Model Reward Solved (%) Steps Recall Precision F1 Score Specificity
Our Method 1.013 20.6 17.79 0.673 0.449 0.499 0.959
Entrust Scaling 6.191 17.6 17.71 0.684 0.460 0.511 0.967
Zero-Clipped Scaling  6.544 17.6 17.97 0.588 0.394 0.427 0.931
Score Agnostic 4.706 17.6 18.09 0.676 0.432 0.483 0.970

Reward Function. The reward structure critically shapes the policy’s trade-offs between diagnostic
accuracy, completion rate, and safety (Table 3). Directly using normalized EPA scores (“Entrust
Scaling”) yielded the highest F1 Score (0.511), while our method’s terminal rewards produced a +3%
higher case completion rate. Nullifying penalties (“Zero-Clipped Scaling”) degraded all accuracy
metrics, confirming their importance in policy shaping. Conversely, a score-agnostic model induced
the most conservative policy, achieving the highest specificity (0.970).

Table 4: Ablation of foundation model for state embeddings.

Overall Performance Diagnostic Accuracy
Foundation Model Reward Solved (%) Steps Recall Precision F1 Score Specificity
Bio_ClinicalBERT [2] 1.013 20.6 17.79 0.673 0.449 0.499 0.959
ClinicalBERT [17, 33] 1.862 20.6 17.59 0.697 0.501 0.542 0.962
BioBERT v1.1 [15] 1.038 17.6 17.59 0.675 0.474 0.519 0.960
BERT-base [6] 0.899 17.6 1791 0.671 0.446 0.497 0.961
Qwen3-Embedding-0.6B [36] 1.227 20.6 17.76  0.682 0.456 0.506 0.958
Qwen3-Embedding-4B [36] 1.732 17.6 17.85 0.706 0.467 0.522 0.964

Foundation Model. Using domain-specific language models for state representation significantly
improves performance (Table 4). C1inicalBERT, pretrained on clinical notes, achieved the highest
F1 score (0.542), a +4.5 percentage-point improvement over the general-purpose BERT-base. The
larger Qwen3-Embedding-4B model also performed strongly, attaining the highest recall (0.706).
While our framework is robust to the choice of encoder, these results confirm that performance is
enhanced by semantic representations aligned with the clinical domain.

Table 5: Ablation of training data fraction.

Overall Performance Diagnostic Accuracy

Data Fraction Reward Solved (%) Steps Recall Precision F1 Score Specificity

10% -9.293 8.8 18.71 0.485 0.315 0.350 0.929
25% -1.610 20.6 17.62  0.635 0.421 0.467 0.948
50% -1.084 14.7 17.79 0.666 0.459 0.504 0.950
75% 0.580 20.6 17.38 0.675 0.455 0.506 0.954
100% (Full) 1.013 20.6 17.79  0.673 0.449 0.499 0.959




Data Regime. Policy performance scales with the quantity of training data, but with diminishing
returns (Table 5). The most substantial gain occurs when increasing data from 10% to 50%, boosting
the F1 score by over 15 percentage-points (from 0.350 to 0.504). Performance plateaus beyond this
point, suggesting that either model capacity is reached or the additional data provides insufficient
novelty to improve generalization further. The low reward on smaller data fractions is driven by the
agent’s failure to solve cases, thus incurring large terminal penalties.

4.4 Qualitative Analysis of Agent Behavior

Analysis of individual trajectories reveals the agent learns effective templates for common scenarios
but lacks deeper contextual reasoning.

Goal-Oriented Policy with Contextual Oversights. In a standard preoperative workup, the agent
achieved a recall of 1.0 but a precision of only 0.56. It successfully executed a learned template for
the primary task but ordered a battery of irrelevant tests based on a secondary feature (family history
of breast cancer). This behavior suggests that the policy relies on high-level pattern matching but
fails to weigh the relevance of different state features, resulting in a comprehensive but inefficient
"checklist-style" execution.

Strategy Drift from Lack of Long-Term Coherence. In a more complex case of an adrenal
incidentaloma, an initially coherent diagnostic strategy devolved into irrelevant actions, including
ordering a breast cancer workup for a male patient. This catastrophic failure indicates a brittle policy
that relies on superficial keyword correlations (e.g., "nodule") without integrating critical context like
patient gender. This highlights a failure to develop a robust, causal model of the diagnostic process,
leading to a breakdown in long-term decision-making.

4.5 Downstream Evaluation of Clinical Reasoning

To assess the clinical utility of the information gathered by the agent, we evaluated its trajectory on a
downstream question-answering task. The agent’s policy provided negligible informational gain for
this task. An external LLM achieved an accuracy of 66.34% using the agent’s action summary as
context, a marginal improvement of less than 0.4% compared to baselines with no actions (66.02%)
or random actions (65.37%). This suggests the agent’s policy does not gather information that
significantly enhances performance on this specific reasoning task. Furthermore, providing the oracle
set of all positive actions yielded the lowest accuracy (64.72%), suggesting that the QA task primarily
tests reasoning based on the initial patient presentation, and that additional diagnostic results, even
optimal ones, may act as distracting context for the LLM in this specific evaluation format.

5 Discussion

The findings show that an RL agent with a natural-language state can acquire a stable and competent
policy for EPA-style simulations, as reflected in steadily rising returns and strong recall with high
specificity (Figure 1). At the same time, its comparatively lower precision indicates a preference
for breadth over parsimony: the policy tends to accumulate many diagnostically neutral actions
while reliably capturing required ones. The qualitative trajectories reinforce this picture. In common
scenarios the agent executes a reliable template, yet it is less adept at pruning actions based on
evolving case context, which manifests as a conservative, checklist-oriented strategy. This behavior is
consistent with the incentives in our environment: a small step penalty, immediate utility rewards, and
a sizable terminal bonus collectively favor comprehensive coverage with limited pressure to optimize
marginal utility once likely positives have been identified.

Performance heterogeneity across specialties and demographics (Tables 1 and 2) suggests uneven
generalization rather than a universal deficit. Where the training distribution is richer, the policy
performs reasonably; where cases are sparser or atypical, solve rates decline and error profiles
shift. The drop in specificity for geriatric patients is particularly important, as it indicates a higher
propensity to select low-value or potentially harmful actions in that subgroup. These patterns point
to distributional imbalance as a primary driver and highlight the need for fairness-aware training
objectives, subgroup-sensitive validation, and targeted data augmentation to reduce gap amplification.



‘We view this not as a fundamental limitation of RL for clinical simulation, but as a reminder that
agent objectives and data curricula must be designed with equity and safety in mind.

The downstream QA analysis provides a complementary lens. Minimal gains from using the agent’s
trajectories as context indicate that “solving the simulation” is not synonymous with organizing
information in a way that benefits separate reasoning tasks. The agent appears to collect the right
pieces frequently (high recall) but does not consistently assemble them into a compact, decision-
supportive narrative for an external model. Bridging this gap likely requires objectives that explicitly
value informativeness and coherence (e.g., penalizing redundant evidence, rewarding discriminative
findings, or training a summarization head that learns to produce compact clinical state descriptions
aligned with downstream tasks).

Several design choices constrain what the agent can learn. The simulated environment abstracts a
complex clinical workflow into a discrete action set with oracle-derived utilities, which necessarily
simplifies real-world trade-offs among benefit, risk, cost, and time. The language representation
aggregates sequential text into fixed vectors, which is efficient but may blur temporal dependencies and
attenuate rare but crucial signals. Finally, the reward emphasizes task completion and aggregate utility
more than calibrated decision quality, leaving limited capacity for the agent to express uncertainty or
defer.

These observations motivate directions for future work. Architecturally, adding memory and attention
(e.g., Transformer-based critics or recurrent policies) can preserve temporal structure and support
long-range credit assignment. Framing the problem as a partially observed process with explicit
belief states would allow the agent to quantify and act on uncertainty, improving both efficiency and
safety. On the objective side, cost- and risk-sensitive rewards, counterfactual or inverse RL from
expert trajectories, and constraints that penalize over-testing can better align incentives with clinical
priorities. To address subgroup disparities, distributionally robust optimization, reweighting, and
stratified curricula—paired with pre-specified fairness metrics and guardrails—can help stabilize
performance across underrepresented cases. Finally, evaluation should extend beyond solve rates and
F1 to include calibration, justification quality, and human-in-the-loop assessments, as well as tasks that
test whether the agent’s information-gathering improves other clinically relevant computations (e.g.,
differential diagnosis ranking or indication-specific decision rules). Taken together, these refinements
aim to shift the agent from procedural mimicry toward context-sensitive, uncertainty-aware reasoning
while keeping safety and equity central.

6 Conclusion

This study presents a natural language—based RL framework for surgical EPA simulations and
demonstrates that a masked-PPO agent can learn a functional, stable policy with strong recall and
high specificity across diverse patient cases. The same experiments surface key limitations that are
instructive for future work: reduced precision stemming from conservative, checklist-style behavior;
uneven generalization across specialties and demographics; and limited transfer of the collected
information to a separate reasoning task. These results distinguish success at the simulation objective
from the broader goal of cultivating clinically useful reasoning.

Methodologically, the work contributes a clear formulation of clinical EPA simulations as an MDP
with semantic state representations, a practical masking mechanism for constrained actions, and
an evaluation suite that combines aggregate metrics, subgroup analysis, and qualitative trajectory
inspection. Looking ahead, we see the most leverage in (i) architectures that retain temporal structure
and model uncertainty; (ii) objectives that explicitly trade off benefit, risk, cost, and informa-
tiveness, potentially learned from expert behavior; (iii) fairness-aware training and validation to
stabilize performance across subgroups; and (iv) evaluation protocols that test whether agent-driven
information-gathering improves downstream clinical tasks and supports well-calibrated, interpretable
decisions. With these extensions, language-grounded RL has the potential to evolve from a capable
simulator policy into a foundation for educational tools and decision-support systems in healthcare
settings.
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Appendices

A Additional Ablations

‘We conduct further ablations to analyze the impact of key hyperparameters and the composition of
the action space on agent performance.

A.1 Hyperparameter Sensitivity

We assess the agent’s sensitivity to three key hyperparameters: learning rate, entropy coefficient, and
rollout buffer size (n44¢ps). The baseline configuration (Ir=3e-4, ent=0.05, n_steps=10240) provides
a strong balance of performance. As shown in Table 6, performance degrades with very high or very
low learning rates. A smaller entropy coefficient of 0.01 yields the strongest performance, indicating
the policy benefits from a reduced, but non-zero, incentive for exploration compared to the baseline.
The model is largely robust to changes in the rollout buffer size.

Table 6: Hyperparameter ablation results on the evaluation set.

Overall Performance Diagnostic Accuracy

Parameter Value Reward Solved (%) Steps Recall Precision F1 Specificity

Learning Rate  1le-5  -6.971 8.8 18.71 0.511 0316  0.358 0.947
le-4  -2.221 11.8 18.29 0.597 0.394  0.436 0.957

3e-4 1.013 20.6 17.79  0.673 0.449  0.499 0.959

le-3  -0.466 17.6 17.44 0.638 0452  0.490 0.954

le-2  -9.965 11.8 18.50 0.410 0.219  0.260 0.922

Entropy Coef. 0 1.114 17.6 17.88  0.694 0.459  0.509 0.962
0.01 1.956 23.5 17.50 0.685 0472  0.517 0.963

0.05 1.013 20.6 17.79 0.673 0.449  0.499 0.959

0.1 0.087 14.7 17.85 0.661 0.457  0.501 0.959

0.2 0.730 17.6 17.85 0.675 0.460  0.507 0.960

Rollout Buffer 2560  0.514 14.7 18.00 0.678 0.458  0.504 0.956
5120  0.634 17.6 17.71  0.662 0.465  0.506 0.959

10240 1.013 20.6 17.79  0.673 0.449  0.499 0.959

15360  1.487 17.6 17.56 0.712 0.470  0.525 0.960

20480  0.498 17.6 17.65 0.672 0473  0.515 0.960

A.2 Action Space Composition

We investigate the agent’s reliance on different categories of clinical actions through three experiments:
restricting the agent to a single category (Table 7), excluding one category at a time (Table 8), and
cumulatively adding categories (Table 9).

Restricted Action Space (‘Only’). When limited to a single action category, the agent’s perfor-
mance reveals the intrinsic utility of each type. Categories with simple, universally positive actions
(e.g., Oxygen, Fluids, Consult) lead to 100% solve rates on applicable cases, though their low
precision reflects a narrow scope. In contrast, information-gathering categories like Lab Tests and
Interventions yield higher F1 scores, demonstrating their broader diagnostic value.
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Table 7: Performance when the agent is restricted to a single action category.

Overall Performance Diagnostic Accuracy

Category Only Reward Solved (%) Steps Recall Precision F1 Specificity

Lab Tests 8.781 67.6 1041 0.928 0.592  0.666 0.978
Imaging 5.918 73.5 7.82  0.869 0.399  0.451 0.966
Interventions 11.095 94.1 5.62 0.983 0483  0.550 0.980
Medications 8.737 88.2 7.59 0.928 0.254  0.311 0.968
Blood Supplement  14.249 100.0 1.15  1.000 0.162  0.176 0.995
Consult 14.707 100.0 1.50  1.000 0.281 0.307 0.994
Fluids 14.599 100.0 1.09 1.000 0.088  0.088 0.996
Oxygen 14.834 100.0 1.09 1.000 0.118  0.127 1.000

Leave-One-Out Exclusion (‘Exclude’). Removing a single action category tests policy robustness.
Excluding ‘Medications‘ improves performance, suggesting the agent struggles to use these actions
effectively and their absence simplifies the task. Conversely, excluding ‘Lab Tests* significantly
harms the F1 score, confirming their critical role in the diagnostic process.

Table 8: Performance when a single action category is excluded from the action space.

Overall Performance Diagnostic Accuracy

Category Excluded Reward Solved (%) Steps Recall Precision F1 Specificity

Baseline (None) 1.013 20.6 17.79 0.673 0.449 0499 0.959
Lab Tests -1.453 20.6 17.06 0.715 0.301  0.390 0.945
Imaging 2.353 23.5 16.97 0.762 0.467  0.541 0.958
Interventions 0.314 20.6 17.24  0.732 0415 0484 0.956
Medications 3.074 324 16.32 0.783 0.489  0.558 0.959
Blood Supplement 0.677 14.7 17.82  0.673 0470 0512 0.962
Consult -0.253 14.7 1791 0.684 0.460  0.509 0.956
Fluids 1.468 20.6 17.24  0.699 0469  0.524 0.964
Oxygen 1.044 17.6 17.62  0.687 0480  0.524 0.960

Cumulative Addition (‘Add’). As action categories are cumulatively added, performance initially
drops. Starting with only high-utility ‘Interventions® is easy, but as more complex, lower-utility
actions (‘Blood Supplement®, ‘Consult) are introduced, the agent’s task becomes harder, leading to
lower rewards and solve rates. Performance stabilizes as the full action space is restored, indicating
the agent learns to manage the complexity.

Table 9: Performance as action categories are cumulatively added.

Overall Performance Diagnostic Accuracy

Cumulative Actions Added Reward Solved (%) Steps Recall Precision F1 Specificity

Interventions 11.095 94.1 5.62 0.983 0.483 0.550 0.980
+ Lab Tests 3.623 41.2 1435 0.858 0.507 0.593 0.963
+ Imaging 3.280 38.2 15.68 0.810 0.486  0.564 0.961
+ Medications 0.913 20.6 17.35 0.700 0.465 0.517 0.964
+ Blood Supplement -0.068 17.6 17.79  0.695 0.456  0.507 0.958
+ Consult 0.561 20.6 17.32  0.675 0.450 0.499 0.963
+ Fluids 1.044 17.6 17.62 0.687 0.480 0.524 0.960
+ Oxygen (Full) 1.013 20.6 17.79 0.673 0.449 0.499 0.959

B Downstream QA Details

To evaluate the clinical utility of the information gathered by our agent, we designed a downstream
question-answering (QA) task. For each case in the test set, we prompted an external Large Language
Model (LLM) to answer multiple-choice questions based on the clinical scenario.
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Model and Task Setup We used Gemma 3 27B-IT as the external reasoning agent. The evaluation
was conducted under four distinct conditions to isolate the informational value of the agent’s actions:

1. RL Agent Trajectory: The LLM was provided with the patient context (if required by the
question) and the sequence of actions selected by our trained RL agent.

2. Random Actions Baseline: The LLM was provided with the patient context and a sequence
of randomly selected, valid actions. The number of random actions was identical to the
number of actions taken by our RL agent for that specific case.

3. No Actions Baseline: The LLM was provided with only the patient context, without any
information about actions taken. This measures the LLM’s ability to answer based solely on
the initial case presentation.

4. All Positive Actions (Oracle): The LLM was provided with the patient context and the
complete set of all clinically appropriate (non-negative utility) actions for the case. This
condition serves as an oracle to test the effect of providing maximal, correct information.

Prompt Format A consistent prompt structure was used for all three conditions. The prompt
specified an expert persona, provided the relevant context and actions (if any), stated the question
and options, and instructed the model to return only the full text of the correct answer. The specific
format is shown below.

You are an expert medical professional. Based on the
provided information, answer the multiple-choice question.
CONTEXT:

{Patient Information String}

STEPS TAKEN / ACTIONS ORDERED:
{Action 1, Action 2, ...}

QUESTION:
{Question Text}

OPTIONS:

- {Answer Option A}

- {Answer Option B}

- {Answer Option C}

INSTRUCTION: Choose the best answer from the options above.
Respond with ONLY the full text of the correct answer, without
any prefixes or explanations.

Note that the ‘CONTEXT* and ‘STEPS TAKEN® blocks were conditionally included based on the
question’s requirements and the specific evaluation condition being tested.

Evaluation An answer was marked as correct if the LLM’s generated text contained a case-
insensitive, punctuation-normalized match for the ground-truth answer string.

C Dataset and Environment Details

Cases. Each case is a JSON object with: caseId, free-text patientInformation, numeric
initialVitals (dbp, hr, rr, sbp, spo2, temp), free-text per-system initialPhysicalExam, and
a list caseOrders where each item has fullName (action), result (free text), and utility scores
(score, entrustScore, zeroClippedScore). Optional multiple-choice questions are used only
for a downstream QA probe (not for RL).

Specialty labels. Specialties are assigned by prompting a Gemma model to map each case (full
context) to one of the fourteen American College of Surgeons surgical specialties.
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Split and action coverage. An 80/20 random split creates train/test. To avoid unseen actions at test
time, each test case is filtered to retain only actions that appear in the training split.

Numeric features & parsing. Vitals are always present as keys {hr, rr, spo2, sbp, dbp, temp}.
Additional numeric values are parsed from order result text using three pattern types: (i) keyed
ranges (“Sodium: 135-145”), (ii) keys-only lists, and (iii) value-only strings (mapped to the action
name as a key when appropriate). For each key, mean/std are computed over the training split;
observed values are z-scored online.

Text embeddings. Two sources are embedded: (i) initial case text (patient summary + all ini-
tial exam strings concatenated) and (ii) per-(case, action) result texts. We use Hugging Face
AutoTokenizer/AutoModel with Bio_Clinical BERT as default; token-level last hidden states are
mean-pooled with attention masking, then L2-normalized (Transformers [34], Bio_Clinical BERT
[2]). Embeddings are cached in a single NPZ per encoder, keyed by SHA1(text), and reused across
runs.

MDP & observation. Finite-horizon MDP with T;,,, = 20. The observation at step ¢ is
[ €init || enistt || Viabs,¢ || 7¢ |+ €inic is the fixed initial-text embedding; epig ¢ is the L2-normalized running
average of embeddings of all revealed result texts; vyaps,; is the z-scored numeric vector over the
learned lab/vital key set; 7, = t/Tnax. Dimension = 2demb + djap + 1.

Actions, feasibility, termination. The global action set is the sorted unique
caseOrders[*] .fullName. A dynamic mask enables only case-valid, not-yet-selected ac-
tions at each step. Episodes terminate when all positive-utility actions for the case have been taken or
when t = Thax.

Rewards. Default “smart” reward: per-step —0.2; immediate +entrustScore/100 if available;
terminal bonus on solve +10+5 (1 —¢/Tnax); terminal penalty on timeout —10 (1 —Recall). Alterna-
tives used in ablations: (i) Entrust (immediate entrustScore/100 only), (ii) Zero-Clipped (immedi-
ate max(0, entrustScore/100) only), (iil) Score-agnostic (+1/ — 1/0 for positive/negative/neutral
utilities).

Evaluation metrics. On termination we compute: solved indicator, steps, total reward, re-
call/precision/F1 against positive-utility actions, specificity (fraction of negative-utility actions
avoided), counts of positive/negative/neutral actions taken, completion-speed (Tinax — t)/Timaxs
and the ordered action sequence.

D Implementation Details

Core stack. PyTorch for tensors [23], NumPy for arrays [7], Transformers for encoders [34], scikit-
learn for the split [24], Gymnasium for the environment API [5], Stable-Baselines3 and SB3-Contrib
for PPO and action masking (MaskablePPQO, ActionMasker) [25]. PPO/GAE follow prior work
[27, 28]; shared-MLP actor-critic follows prior work [20]; Adam optimizer [14].

Policy/algorithm. Algorithm: Masked PPO with dynamic action masks applied throughout train-
ing and evaluation. Network: shared actor—critic MLP (two hidden layers of 64, tanh, orthogonal
init). Key hyperparameters (defaults): learning rate 3 x 10~%; entropy coefficient 0.05; PPO
epochs 2; minibatch size 64; discount v = 0.99; GAE-)\ = 0.95; clip e = 0.2.

Seeding & device. A single integer seed is set for Python random, NumPy, PyTorch, and SB3;
device is CUDA if available, else CPU. On average, one training and evaluation experiment took 25
minutes. All ablations and the downstream QA evaluation together took approximately 9 hours.

E Broader Societal Impact

The primary societal impact of this research is methodological. It provides a framework for rigor-
ously studying and identifying failure modes in automated clinical reasoning agents well before any
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real-world deployment. The key contribution in this regard is the clear demonstration of performance
disparities across demographic subgroups, particularly the reduced safety profile in geriatric cases.
This finding provides concrete evidence that standard RL objectives, when applied to imbalanced
clinical data, can produce policies that amplify societal biases. By surfacing these fairness and gener-
alization challenges within a controlled simulation, this work underscores the necessity of developing
fairness-aware learning objectives and robust evaluation protocols as foundational prerequisites for
any future translation of such technologies.

F Licenses

All assets are credited to their original creators. The licenses for third-party assets used in this work
are listed below. The primary clinical case dataset used for training and evaluation is proprietary and
not publicly available.

e PyTorch [23]: Deep learning framework used for model implementation. License: BSD-
style.

e NumPy [7]: Library for numerical operations. License: BSD 3-Clause.

* Transformers [34]: Library for accessing pre-trained models and tokenizers. License:
Apache 2.0.

* scikit-learn [24]: Used for data splitting. License: BSD 3-Clause.
* Gymnasium [5]: API for the reinforcement learning environment. License: MIT.
* Stable-Baselines3 [25]: Library for PPO implementation and training. License: MIT.

* Bio_ClinicalBERT [2]: Pre-trained language model used for default state embeddings.
License: Apache 2.0.

* ClinicalBERT [17, 33]: Used in ablation studies for state embeddings. License: Apache
2.0.

* BioBERT vl.1 [15]: Used in ablation studies for state embeddings. License: Apache 2.0.
* BERT-base [6]: Used in ablation studies for state embeddings. License: Apache 2.0.

* Qwen3 Embeddings [36]: Used in ablation studies for state embeddings. License: Apache
2.0.

* Gemma Models [31]: Used for the downstream QA task and specialty labeling. License:
Gemma Terms of Use.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The stated contributions match the methods and evidence presented in Sec.3
and Sec.4 (Fig.1, Tables1-5).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations and failure modes are discussed in Sec.5 and evidenced by sub-
group gaps in Sec.4 (Tablesl, 2).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Not applicable—no new theoretical results are claimed; the work is empirical
(see Sec.3 and Sec.4).

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Key details are specified in Sec.3, Alg.1, Appendices C, and D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The primary dataset is proprietary and code is not released; see Appendices C
and F for data description and terms.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training/test setup, T,,,.x, masks, optimizer, hyperparameters, and seeds are
detailed in Sec. 3 and Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Statistical significance is reported via one-way ANOVA with p-values for demographics
(Table 2); variability across settings appears in ablation tables (e.g., Tables 6-9).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute device and runtimes are provided in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and made sure that the paper
conforms to it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive/negative impacts (e.g., simulation safety benefits vs. subgroup dispari-
ties) are discussed in Sec. 5 and Appendix E.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

20


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No public release of high-risk models or scraped datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Third-party assets and licenses are enumerated in Appendix F and cited in the
references.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new public assets are released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human-subjects studies; experiments use simulated cases.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human-subjects research or identifiable data.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLM usage is described for downstream QA and specialty labeling in Appen-
dices B and C.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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