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Abstract

Recent advances in vision–language models (VLMs) have shed light on human-1

level embodied intelligence. However, existing benchmark for VLM-driven em-2

bodied agent still rely on pre-defined high-level command or discretised action3

spaces—“non-native” settings that diverge markedly from the real world. More-4

over, current benchmarks focus exclusively on high-level tasks, while lacking col-5

laborative evaluation and analysis on both low- and high-level. To bridge these6

gaps, we present NativeEmbodied, a challenging benchmark for VLM-driven7

embodied agents that adopts a unified, native low-level action space. Built upon8

diverse simulated scenes, NativeEmbodied first designs three representative high-9

level tasks in complex scenarios to evaluate overall performance. For more de-10

tailed and comprehensive performance analysis, we further decouple the entan-11

gled skills behind complex tasks and construct four types of low-level tasks, each12

corresponding to a key fundamental embodied skill. This joint evaluation across13

task and skill granularities enables a fine-grained assessment of embodied agent.14

Comprehensive experiments on the best VLMs reveal pronounced deficiencies in15

certain fundamental embodied skills. Further analysis shows that these low-level16

bottlenecks severely constrain performance on high-level tasks. Our NativeEm-17

bodied not only pinpoints the key challenges faced by current VLM-driven em-18

bodied agents, but also provides valuable insight for future development.19

1 Introduction20

Recent advances in Vision-Language Models (VLMs) have catalyzed significant progress in embod-21

ied intelligence Wang et al. (2024), bringing us closer to intelligent agents that can operate in the22

simulator or physical world Cheang et al. (2025); Wang et al. (2025); Open-X et al. (2025); Brohan23

et al. (2023). These VLM-based embodied agents, capable of perceiving the environment through24

visual inputs, and perform complex task following natural language instructions Chen et al. (2025);25

Tan et al. (2025); Cao et al. (2025); Long et al. (2025); Yue et al. (2025).26

However, a fundamental challenge persists: How can we assess whether these models truly possess27

the capability to function in the real world, and which fundamental skills bottleneck their perfor-28

mance? This question becomes particularly important as current evaluation benchmarks for embod-29

ied agent exhibit several limitations: 1) Non-Native Action Space: Recent benchmarks Cheng et al.30

(2025); Yang et al. (2025) attempt to deploy VLM-based agents in embodied simulators and evaluate31

their performance through interactive tasks. They typically abstract low-level actions into high-level32

commands or functions that the agent can invoke directly (e.g., “look at the apple”, “teleport to the33

desk”) - what we term the “non-native” setting. This abstraction emphasizes task reasoning and34

planning, while eclipsing critical embodied skills such as spatial alignment and navigation, leading35

to a considerable gap from real world. 2) Coupled Task Design: Existing benchmarks focus on36
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Figure 1: Our NativeEmbodied benchmark includes four low-level foundational skills (i.e., Percep-
tion, Alignment, Navigation and Planning) and three high-level complex tasks (i.e., Exploration,
Interaction, and Search).

high-level tasks that entangle multiple foundational skills and measure model performance primar-37

ily by overall success rate. Such coarse-grained task formulation and evaluation hinder the diagnosis38

of skill-level bottlenecks, yielding assessments that are neither comprehensive nor sufficiently fine-39

grained. Those limitation highlights two critical questions that need to be addressed:40

• Q1: Which foundational skills are truly essential for VLM-based embodied agents?41

• Q2: How do these foundational skills affect the execution of higher-level tasks?42

To answer the above questions, in this paper, we present NativeEmbodied, the first comprehensive43

benchmark that assesses VLMs’ multidimensional embodied skills from a native perspective. The44

following key features set NativeEmbodied apart from the other benchmarks: 1) Native Rollout45

Setting. Built on AI2THOR Kolve et al. (2022)—a widely used embodied simulator with richly46

detailed and populated environments—NativeEmbodied adopts a native rollout setting. During a47

rollout, the agent receives only the initial task instruction, action history, and the egocentric im-48

ages streamed by the simulator. In each turn, the agent are allowed to specify action only from49

AI2THOR’s primitive action set, includes parameterizable rotations and movements. In this way,50

the agent is free to explore and interact with the environment in a native manner, making the bench-51

mark more closely aligned with real-world conditions compared to previous ones. 2) Decoupled52

Task Hierarchy. NativeEmbodied not only designs three categories of representative high-level53

tasks, but also decouples four categories of low-level tasks based on them. Each of these low-level54

tasks corresponds to a fundamental embodied skill. The synergistic evaluation from complex high-55

level tasks to decoupled low-level tasks facilitates more comprehensive and granular skill assessment56

and bottleneck analysis.57

Thereafter, we conducted extensive experiments and analyses with NativeEmbodied on 15 open-58

source and proprietary VLMs to explore the capabilities of existing embodied agents from a native59

perspective. Our contributions are summarized as follows:60

• We introduce a novel multidimensional, multigranular evaluation benchmark built upon native61

action spaces, providing a more realistic perspective for VLM-based embodied agents.62

• We present a comprehensive evaluation system for fundamental embodied skills at a more raw63

and native level, where high- and low-level tasks are collaboratively evaluated to reveal skill-level64

bottlenecks, significantly enhancing the explainability of capability assessment.65

• We provide extensive experimental validation across 15 open-source and closed-source models,66

offering valuable insights, with all resources and implementations publicly available to facilitate67

further research in this field.68
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Table 1: Comparisons between our NativeEmbodied and previous benchmarks .

BenchMark Size Task Level Multimodal Native Decoupled

ALFRED Shridhar et al. (2020a) 3,062 High ✔ ✗ ✗
ALFWorld Shridhar et al. (2020b) 274 High ✗ ✗ ✗
VLMbench Zheng et al. (2022) 4,760 Low ✔ ✔ ✗
Behavior-1k Li et al. (2023) 1,000 High ✔ ✗ ✗
Lota-bench Choi et al. (2024) 308 High ✗ ✔ ✗
GOAT-bench Khanna et al. (2024) 3,919 Low ✔ ✔ ✗
Embodied Agent Inferface Li et al. (2024) 438 High ✗ ✗ ✗
EmbodiedBench Li et al. (2024) 1,128 High&Low ✔ ✗ ✗
EmbodiedEval Cheng et al. (2025) 328 High ✔ ✗ ✗

NativeEmbodied (Ours) 1,085 High&Low ✔ ✔ ✔

2 Related Work69

2.1 Embodied Agent Benchmarks70

As shown in Table 1, recent years have witnessed a surge of benchmarks targeting vision-driven71

embodied agents, yet most remain domain-specific or modality-restricted. Classic benchmarks such72

as ALFWorld Shridhar et al. (2020b) and ALFRED Shridhar et al. (2020a) focus on high-level73

household tasks but ignore low-level control; conversely, VLMbench Zheng et al. (2022) and GOAT-74

bench Khanna et al. (2024) evaluate low-level manipulation and navigation, respectively, but are75

confined to isolated embodied skills. Concurrently, EmbodiedBench Yang et al. (2025) introduces a76

multi-domain suite spanning household, manipulation, and navigation, while relying on high-level77

action when dealing with high-level tasks. EmbodiedEval Cheng et al. (2025) proposes a multi-78

domain benchmark for VLMs, yet its limited scale (328 instances) and absence of low-level tasks79

highlight the need for more comprehensive benchmarks.80

2.2 VLM-based Agents81

VLM-based agents typically ingest an interleaved sequence of images, text instructions, and op-82

tionally past actions, then output either free-form text or discrete/continuous action functions (i.e.,83

non-native setting) that a downstream executor maps to low-level controls Bai et al. (2023); Qin et al.84

(2025); Bai et al. (2025). This paradigm has powered game agents Xu et al. (2024) that generate85

controller commands from screen pixels and dialogue in Minecraft Jucys et al. (2024) and Pokémon86

Hu et al. (2024), as well as Mobile agents that navigate mobiles to book flights Lin et al. (2024);87

Li et al. (2025); Gu et al. (2025). When instantiated for embodied tasks, however, the agent must88

confront a native action space—open, close, pick up, and put down. In this paper, we hope the em-89

bodied agent can free to explore and interact with the environment in a native manner, making our90

benchmark more closely aligned with real-world conditions compared to previous ones.91

3 NativeEmbodied Benchmark92

From a native perspective, we start with the native actions an agent can take. Specifically, we93

collect these basic moves and build a benchmark, NativeEmbodied, that checks four low-level tasks94

(e.g., center alignment and navigation). Because each subtask is separate and mix-and-match, we95

then combine high-level tasks (e.g., search). Through this bottom-up, decoupled setup, we enable96

analysis of the relationships between foundational capabilities and finial task success rates, revealing97

critical pathways of VLM-based embodied agent.98

3.1 Native Action Space99

To support the native setting, we define the native action space as follows:100

• MoveAhead x (meters): Move forward x meters101

• MoveBack x (meters): Move backward x meters102

• MoveLeft x (meters): Move left x meters103
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• MoveRight x (meters): Move right x meters104

• RotateRight x (degrees): Rotate view right by x degrees105

• RotateLeft x (degrees): Rotate view left by x degrees106

• LookUp x (degrees): Tilt view upward by x degrees107

• LookDown x (degrees): Tilt view downward by x degrees108

The native actions described above ensure that agents can operate in the environment in a primitive109

and unconstrained manner. Notably, while previous benchmarks have incorporated similar action110

primitives for certain tasks, they either impose strict constraints on the agent’s movement space111

through pre-built navigation graphs to simplify environmental complexity Cheng et al. (2025), or112

limit their application to low-level tasks with hardcoded action parameters Yang et al. (2025). Our113

NativeEmbodied represents the first benchmark to provide completely unrestricted native action114

space across both high-level and low-level tasks.115

3.2 High-level Complex Tasks116

We start with three representative high-level tasks that benchmark the agent’s performance boundary117

in the native settings:118

Exploration. This task poses questions related to objects in the environment, requiring agents to119

fully explore the environment to provide correct answers. We subdivide it into four subtypes:120

• Counting: How many specified objects are exposed in the environment?121

• Localization: Which receptacle does the specified object locate in?122

• Receptacle Content: Which objects are (or aren’t) on the specified receptacle?123

• Co-existence: Which objects share a receptacle with the specified object?124

Search. This task requires agents to precisely locate and target specified objects within the environ-125

ment. We overlay a crosshair at the center of the agent’s egocentric obseravtion image to indicate the126

focal point. The agent must approach the target object and align the crosshair with it to complete the127

task. This challenge demands that the agent not only identify the object’s location but also navigate128

to it and execute fine-grained spatial alignment.129

Interaction. The task requires the agent to interact with objects in the scene to fulfill user instruc-130

tions. Concretely, we focus on the representative pick-and-place scenario: the agent must place a131

specified object into a specified receptacle. The target object may be exposed in the environment or132

stored inside a closed receptacle, and the destination receptacle may be one that does not need to be133

opened (e.g., a tabletop) or one that does (e.g., a refrigerator). For this task we augment the original134

action space with four additional interaction primitives: PickUp, PutIn, Open, and Close.135

3.3 Low-level Foundational Skills136

While high-level tasks reveal an agent’s overall competence, they are not ideal for diagnosing spe-137

cific skill deficiencies. The limitation is even starker in the native setting: here, a model’s core138

embodied abilities are tested directly, yet the multi-skill nature of the high-level tasks masks indi-139

vidual bottlenecks. For better evaluation, we decompose the high-level tasks from a skill-centric140

perspective and introduce four classes of low-level tasks that each target a fundamental skills:141

Perception. This task tests a model’s perception by having it describe first-person images using142

a specific structured format following [ObjectType] [Loaction] [Receptacle],corresponding to This143

approach combines visual and spatial perception, and its structured format facilitates fine-grained144

evaluation of each aspect, making the evaluation in this paper more intuitive and flexible.145

Spatial Alignment. Similar to the search task, the agent must center its view on the object. To146

separate from skills like planning and navigation, we start the agent near the target, already visible.147

We limit actions to view adjustments only. Thus, the agent simply shifts its gaze for precise spatial148

alignment evaluation.149

Navigation. We define the navigation task as follows: Given a target object, the agent is deemed150

successful upon reaching within 1 meter of that object. To ensure sufficient path complexity, the151

4



agent is initialized at the corner of the room farthest from the target object. Meanwhile, the target152

object is guaranteed to remain visible within the agent’s initial field of view, so that the challenge153

lies purely in the fundametal navigation capabilities.154

Planning. The goal of this task is to evaluate an agent’s task-planning ability. In essence, this155

ability corresponds to the brain’s cognitive reasoning functions rather than the cerebellum’s motor-156

control functions. To effectively decouple motor control from planning, we abstract the four basic157

motion primitives into directly callable navigation interfaces. We adopt an interactive-task frame-158

work because the explicit, multi-stage nature of its execution process is especially well-suited for159

fine-grained evaluation of planning capability.160

3.4 Data Collection161

We build the benchmark via a three-stage pipeline that combines automatic generation with hu-162

man–machine collaborative filtering to ensure quality163

Stage 1:Using AI2-THOR Kolve et al. (2022) and its metadata (3D coordinates, state flags, instance164

masks), we batch-generate candidate samples for each task. For the exploration task, we query all165

scene objects and their receptacles, then automatically instantiate the four predefined question types.166

Stage 2: We deploy three advanced MLLMs, each performing three rollouts per sample, and track167

per-sample success rates. Samples perfectly solved by all three models are removed. Those with168

overall success rate greater than two-thirds, or solved perfectly by any single model, are forwarded169

for difficulty adjustment, while complete failures are forwarded for error checking.170

Stage 3: Human annotators manually run the complete failures to rule out environment-induced171

impossibility (e.g., the agent spawning in a dead end), and prune trivial high-success cases (e.g., the172

only apple is already in the initial view). Tasks perfectly solved by a particular model are treated173

as potential bias matches (e.g., consistently going to Table A). Adjusted samples are sent back to174

Stage 2 for reevaluation, and this loop iterates for three cycles.175

More details of the data collection pipeline are provided in Appendix.176

3.5 Dataset Statistics177

Figure 2 show the detailed stastics of NativeEmbodied. NativeEmbodied contains 1085 high-quality178

samples across 3 high-level complex tasks and 4 low-level foundational skills. The 120 diverse179

scenes around 4 topics (including kitchen, bathroom, living-room, and bedroom) with 189 types of180

task-relevant object highlight the diverity of NativeEmbodied. The average execution steps of all181

tested models on NativeEmbodied reaches 18.7, reflecting its long-horizon nature in native setting.
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Figure 2: The detailed Statistics of NativeEmbodied
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4 Experiment183

4.1 Evaluation Setup184

Baselines. We evaluate 15 open-source and closed-source models, covering four model families:185

5



• GPT family1: GPT-4o, GPT-4v, GPT-o3, GPT-o4-mini.186

• Claude family2: Claude-3.5-Sonnet, Claude-3.7-Sonnet, Claude-4-Sonnet, Claude-4-Opus.187

• Gemini family Gemini Team et al. (2024): Gemini-2.0-flash, Gemini-2.5-flash, Gemini-2.5-pro.188

• Qwen family3: Qwen-2.5-VL-72B, Qwen-2.5-VL-32B, Qwen-2.5-VL-7B, Qwen-2.5-VL-3B.189

Environment. During each agent–environment interaction, the agent receives an egocentric image190

from the simulator, which is rendered at 640 × 480 resolution with a 90-degree field of view, as input191

and returns a single action with specified parameters chosen from the action space. The rollout step192

limit is set to 15 for alignment and navigation tasks, 20 for planning tasks, and 30 for the three193

catogories of high-levek tasks. We employ a truncation mechanism to keep the interaction history194

to no more than 20 turns.195

Evaluation Metrics. To obtain a more comprehensive and fine-grained picture of an agent’s per-196

formance, we report the following metrics in addition to Success Rate (SR):197

• Average Steps (AS): The mean number of steps taken in successful episodes, reflecting how198

efficiently the agent completes a task.199

• Weighted Average Steps (WAS): For each successful trajectory we use its actual length, whereas200

for each failed trajectory we assign a penalised length equal to the task’s predefined maximum201

number of steps T plus a penalty factor α > 0 (set to 1 in our experiment). Formally, let S and202

F be the sets of successful and failed episodes, si the number of steps taken in the i-th successful203

episode. The WAS is,204

WAS =

∑
i∈S

si +
∑
j∈F

(α+ T )

|S|+ |F|
. (1)

A smaller WAS indicates that the agent not only succeeds frequently but also does so efficiently.205

• Average Closest Distance (ACD): The shortest Euclidean distance between the agent and the206

target object across the trajectories.207

• Average Closest Pixel Distance (ACPD): The mean of the minimum pixel distance between the208

target object and the view center across the trajectories.209

We report Precision, Recall, and F1 score for Perception.210

4.2 Main Results211

High-level tasks in native settings pose significant challenges for VLMs. Table 2 shows the212

performance of various VLMs on the three categories of high-level tasks. We find that even the most213

powerful VLMs generally struggle with high-level tasks under native settings. This is particularly214

evident in Search tasks, where the best-performing model GPT-o3 achieves only a 34.64% success215

rate, while Claude-4-Sonnet—despite being one of the most advanced proprietary models—fails to216

complete even a single task successfully. The same pattern holds for Interaction and Exploration217

tasks, with the highest success rates being merely 52.43% and 38.34% respectively. This indicates218

that in native embodied environments, current VLMs are still far from being capable of effectively219

executing complex tasks.220

VLMs show varied performance on different low-level tasks. As shown in Table 3, we find that221

models demonstrate clear differentiation in performance across different task types. First, VLMs dis-222

play generally excellent performance on perception tasks, indicating strong visual recognition abil-223

ities. Second, in planning tasks, VLMs similarly demonstrate strong capabilities, with proprietary224

models generally achieving success rates exceeding 50%. However, when tasks involve fine-grained225

operations in embodied environments, model performance shows a significant decline. In naviga-226

tion tasks, more than half of the models achieve success rates below 50%, with the worst-performing227

proprietary model achieving only 27.78% success rate. Even more surprisingly are the results for228

1https://openai.com/index/
2https://www.anthropic.com/news/claude-3-5-sonnet
3https://help.aliyun.com/zh/model-studio/developer-reference/use-qwen-by-calling-api
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Table 2: Performance of closed-source and open-source LVLMs on the three high-level tasks: Ex-
ploration, Search and Interaction. For metrics, ↑ / ↓ mean ”higher is better” / ”lower is better”.

Model Exploration Search Interaction

Acc↑ AS↓ WAS↓ SR↑ ACPD↓ AS↓ WAS↓ SR↑ AS↓ WAS↓
Closed-Source Large Vision Language Models

GPT-4o 36.89 12.32 24.11 0.65 131.29 25.0 30.96 22.28 12.25 26.84
GPT-4v 36.89 10.42 23.41 3.27 112.53 12.60 30.35 37.31 12.07 24.03
GPT-o3 52.43 11.06 20.54 34.64 32.94 15.60 25.67 38.34 13.35 24.25
GPT-o4-mini 40.78 5.48 20.59 17.64 37.93 13.07 27.84 26.42 13.33 28.27
Claude-3.5-sonnet 31.07 9.78 24.41 3.27 103.27 14.60 30.46 19.69 13.19 27.58
Claude-3.7-sonnet 37.86 14.67 24.81 11.76 68.13 14.33 29.04 28.50 12.93 26.17
Claude-4-sonnet 37.86 12.59 24.03 0 95.88 - 31.00 30.01 13.59 27.44
Claude-4-opus 37.86 12.72 24.08 4.58 84.17 6.86 29.82 36.27 12.48 24.87
Gemini-2.5-pro 40.78 4.71 20.28 14.38 35.89 7.91 27.68 33.68 12.17 24.67
Gemini-2.5-flash 40.78 6.40 20.97 12.42 58.49 11.58 28.59 32.64 14.46 25.98
Gemini-2.0-flash 39.81 11.51 23.24 2.61 90.83 14.75 30.58 24.87 13.53 26.79

Open-Source Large Vision Language Models

Qwen2.5-VL-72B 33.01 11.82 24.67 1.96 130.40 7.00 30.69 8.29 13.63 28.37
Qwen2.5-VL-32B 31.07 14.63 25.41 1.31 129.93 23.00 30.83 6.74 13.15 29.61
Qwen2.5-VL-7B 28.16 11.61 26.14 0 131.26 - 31.00 1.55 25.00 30.83
Qwen2.5-VL-3B 25.24 8.13 26.03 0 131.68 - 31.00 0 - 31.00

Table 3: Performance of selected LVLMs on four low-level tasks: Perception, Spatial Alignment,
Navigation and Planning. ↑ / ↓ denote “higher is better” / “lower is better”.

Model Perception Spatial Alignment Navigation Planning

P↑ R↑ F1↑ SR↑ ACPD↓ AS↓ WAS↓ SR↑ ACD↓ AS↑ WAS↓ SR↑ AS↓ WAS↓
Closed-Source Large Vision Language Models

GPT-4o 75.14 73.15 74.28 7.51 86.85 3.91 15.07 50.00 2.16 6.87 11.42 58.55 9.63 14.82
GPT-4v 79.51 78.11 78.83 6.94 66.81 3.23 15.12 55.56 2.23 7.81 11.43 62.18 9.25 14.04
GPT-o3 83.15 84.51 83.97 64.16 22.73 7.28 10.4 63.19 2.02 8.34 11.08 72.54 10.71 13.87
GPT-o4-mini 74.67 75.16 74.92 45.09 27.45 6.34 11.57 35.42 2.68 8.11 13.24 66.32 10.23 14.36
Claude-3.5-sonnet 76.59 72.33 73.82 9.83 63.38 2.82 14.72 47.92 2.01 7.83 12.12 55.44 10.40 15.55
Claude-3.7-sonnet 76.76 73.27 74.35 20.23 60.91 4.01 13.62 42.36 2.14 7.92 12.55 60.62 11.47 15.84
Claude-4-sonnet 77.51 73.58 74.77 36.41 29.39 6.63 11.83 27.78 2.43 4.39 12.76 67.36 10.33 14.30
Claude-4-opus 81.21 81.14 79.59 39.31 28.74 7.87 11.28 53.47 1.72 4.11 9.74 67.88 10.35 14.16
Gemini-2.5-pro 80.15 80.87 80.53 45.09 26.01 4.49 10.72 41.67 2.40 7.26 12.41 68.39 9.50 13.67
Gemini-2.5-flash 77.98 79.47 78.42 35.84 30.36 7.41 12.93 38.19 2.65 7.67 12.78 52.33 10.54 16.35
Gemini-2.0-flash 72.71 74.33 73.39 9.25 84.46 3.93 14.91 37.50 2.81 8.21 13.32 48.19 10.41 16.91

Open-Source Large Vision Language Models

Qwen2.5-VL-72B 77.86 74.34 76.42 12.72 80.58 4.93 14.61 61.11 2.21 6.19 10.03 37.82 9.78 17.16
Qwen2.5-VL-32B 73.51 72.15 72.86 7.51 85.32 4.14 14.93 36.11 2.36 7.28 12.32 25.39 9.47 18.32
Qwen2.5-VL-7B 71.61 70.74 71.01 5.78 86.14 3.33 15.12 25.00 2.71 7.21 12.81 12.95 10.28 19.56
Qwen2.5-VL-3B 68.61 66.59 67.12 4.05 88.93 3.01 15.21 19.44 2.95 8.34 13.82 3.63 7.38 20.83

alignment tasks—these seemingly simple operations in daily life have become a major challenge229

for VLMs. Most models, except GPT-4o, fail to exceed a 50% success rate. Some closed-source230

models report single-digit success rates, highlighting deficiencies in spatial alignment capabilities.231

These findings suggest that while VLMs have advanced in certain areas, they lack essential skills232

for dynamic spatial interactions in specific tasks.233

Mainstream VLMs exhibit distinct behavioral spectra in native setting. The contrast between234

high- and low-level tasks not only reveals the limitations of each model but also allows them to235

demonstrate distinct strategic tendencies in embodied environments.In the Navigation task, GPT-236

o3 leads with the highest success rate, yet at the cost of significantly longer average step counts,237

revealing a robust and conservative path-planning preference. In contrast Claude-4-Opus maintains238

over 50% success rate with less than half the steps of GPT-o3, and leads in both ACD and WAS239

metrics, reflecting a more aggressive, efficiency-first exploration style. In the Exploration tasks,240

GPT-o4-mini and Gemini-2.5-Pro have significantly fewer average steps than other models, yet still241

achieve high accuracy rates second only to GPT-o3, indicating that both are more agile and confident242

in collecting and utilizing environmental information.243
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Figure 3: Results from the skill-oriented ablation study, aimed to precisely identify the key atomic
skills that limit model performance.

4.3 Ablation Study of Foundational Skills244

The main experimental results in Section 4.2 demonstrate that current VLMs exhibit significant lim-245

itations when executing complex tasks in native settings. To precisely identify the key foundational246

skills limiting model performance, we conducted systematic skill-oriented ablation experiments:247

• Perception: We use AI2THOR’s API to extract instance segmentation from each egocentric image,248

converting it into text descriptions through predefined templates as supplementary to the model.249

• Alignment: A “LookAt” is provied for the agent to aim view into the target object if visible.250

• Navigation: A “Navigate” is provided for the agent to teleport to the target object if visible.251

• Planning: High-level tasks are decomposed into subtask sequences and executed step-by-step.252

We selected Claude-3.5-Sonnet as our experimental subject, as this model demonstrates moderate253

performance in benchmark tests, offering good representativeness that facilitates more generalizable254

conclusions. As shown in Figure 3, the experimental results reveal three important insights:255

Mature Perception Capabilities. The introduction of ground-truth perception information failed to256

significantly improve model performance,indicating current advanced VLMs already possess suffi-257

cient visual capabilities.258

Dual Bottlenecks in Long-Horizon Tasks In Exploration and Interaction tasks, ablation on259

both planning and navigation yield significant improvements, indicating that both cognitive-level260

decision-making abilities (planning) and action-level execution abilities (navigation) are key bottle-261

necks for long-horizon tasks.262

Fine-Grained Spatial Requirements in Search Tasks In Search tasks, improvements to navigation263

and alignment capabilities (particularly alignment) showed significant effects, while planning capa-264

bility had limited impact. This reflects the unique characteristics of search tasks: their immediate-265

response nature reduces dependence on complex planning, but demands extremely high precision in266

spatial positioning and viewpoint control.267

Figure 4: Ablation study of think mode, aimed to explore the capabilities of reasoning models.
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4.4 Ablation Study of Think Mode268

Reasoning models’ improved problem-solving skills Huang et al. (2025); Liu et al. (2025); Gu et al.269

(2025), spark curiosity about whether this capability could boost embodied intelligence. To ex-270

plore its potential, we selected two specialized reasoning models: Gemini-2.0-Flash-Thinking and271

Claude-3.5-Sonnet to think4, then select an action, in each round of rollout. The experimental results272

are shown in Figure 4, from which we can draw the following insights:273

Thinking enhances cognitive abilities for embodied environments. After enabling thinking274

mode, success rates for both perception and planning tasks increased, indicating that the reason-275

ing process helps models better understand environmental states, identify key information, and for-276

mulate more reasonable action strategies. This improvement is particularly pronounced in tasks277

requiring complex reasoning and long-term planning.278

Thinking may interfere with basic action execution. After engaging in thinking mode, success279

rates for tasks that require precise action, actually decreased significantly, such as alignment and280

navigation. This decline might be attributed to excessive reasoning processes, which can introduce281

unnecessary complexity and interfere with the intuitive execution of basic action.282

These findings show that reasoning in embodied agents is a double-edged sword: it boosts cognitive283

skills but may disrupt motor control. This indicates a need for careful balance between “cerebrum”284

(cognitive reasoning) and “cerebellum” (action control) when designing these embodied agents.285

4.5 Error Case Analysis286

`

MoveAhead
0.8m

MoveAhead 0.5m

MoveBack
0.5m

⚠Collision!

Q: How many Ladles
are exposed in the room?

Agent: 
Done! 

<answer> 1 </answer>

GroundTruth:2

Step 5
`

RotateLeft
30

RotateRight
15

RotateRight 15

Insufficient Exploration Redundant View Adjustment Frequent Collision
Step 7 Step 8

Step 10 Step 9

Same Observation

⚠Collision!

⚠Collision!

Step 13

Step 12Step 11

Step 14

Deadlock Stuck

Figure 5: Case study of common error trajectories .

Figure 5 exhibited three categories of common errors during evaluation in NativeEmbodied:287

• Insufficient Exploration: Agents fail to explore the environment thoroughly, prematurely draw-288

ing conclusions based solely on partial information, demonstrating overconfidence.289

• Redundant View Adjustment: Agents frequently perform repetitive and unnecessary view ad-290

justments within a considerable number of valid steps, severely reducing efficiency. Worse still,291

the resulting repetitive observations can sometimes lead agents into dead loops.292

• Frequent Collision: Agents exhibit poor perception and response to environmental collisions,293

unable to make effective adjustments. This issue is particularly severe when agents are in confined294

spaces such as corners, where they easily become stuck and unable to escape.295

5 Conclusion296

In this work, we presented NativeEmbodied benchmark, a comprehensive benchmark for evaluating297

VLM-driven embodied agents using a unified, native low-level action space. Through systematic298

evaluation of both low-level and high-level tasks across 15 open-source and closed-source VLMs,299

we identified significant limitations in fundamental embodied capabilities that directly impact per-300

formance on complex tasks. Our findings not only highlight the current challenges in VLM-driven301

embodied intelligence but also provide valuable guidance for future development in this field.302

4Notably, for reasoning models, we enable their reasoning mode; for non-reasoning models, we request
them to output their thinking process in the prompt
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6 Appendix432

We provide the evaluation samples of NativeEmbodied, evaluation scripts, and raw sample genera-433

tion code at the following link: https://anonymous.4open.science/r/NativeEmbodied-C282/434

6.1 Data Stastics435

NativeEmbodied contains a total of 1085 samples, drawn from 115 scenes in AI2THOR, involving436

109 different objects or receptacles, which ensures the diversity of NativeEmbodied. For high-level437

tasks, we further categorize them based on the key characteristics of each task to enhance diversity.438

The category distribution of each high-level task is shown in Figure 6. For Search tasks, ”Seen” and439

”Unseen” represent whether the target object appears in the field of view in the initial observation,440

respectively. For Interaction tasks, ”E” and ”C” represent ”Exposed” and ”Closed” respectively. For441

example, E2C represents placing a target object exposed in the environment into a closed receptacle,442

while C2E represents placing a target object stored in a closed receptacle into an open receptacle.443

Figure 6: Case study of common error trajectories .

6.2 Task Generation Pipeline444

NativeEmbodied collects raw samples in an automated manner. The following sections provide a de-445

tailed introduction to the automatic collection strategy for each task: Perception For the perception446

task, we first select diverse receptacle objects (e.g., tables, countertops, shelves) from each scene447

as observation targets, as these receptacles contain richer collections of objects. For each selected448

receptacle, we sample viewpoints within 0.5-1.3 meters that provide optimal viewing angles, prior-449

itizing front-facing positions with angle tolerance of 60°. The system then adjusts the pitch angle450
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(-15° to 15°) to maximize the number of visible objects in the field of view. We use instance seg-451

mentation to detect all visible objects (excluding structural elements like walls, floors) and generate452

structured ground truth data that includes object types, spatial relationships, and relative positions to453

the agent. Additionally, we implement object connectivity clustering to merge spatially connected454

objects of the same type, ensuring more coherent scene representations.455

Alignment For the alignment task, we first filter out visually accessible small objects based on456

the scene metadata from the AI2-THOR. We then sample multiple observation positions within457

0.8-1.5 meters from the target and generate 9 different target relative position layouts (center, four458

edges, four corners) by randomly adjusting the heading angle (±60°) and pitch angle (±30°). The459

system uses instance segmentation to verify the visibility of target objects, ensuring they appear at460

the expected positions in the field of view. Finally, for each valid scene, we generate structured461

data containing task instructions, initial agent position and pose. We designed a veirifier integrated462

into the simulator to determine task success in real-time during rollout. Specifically, the validator463

obtains the bounding box of the target object in the current agent’s egocentric image by reading464

the simulator’s instance segmentation API, and subsequently determines whether the current view465

center falls within the target bounding box through 2D geometric calculations.466

Navigation For the navigation task, we first filter unique objects from the scene metadata and use an467

LLM to select prominent, large objects suitable as navigation targets (e.g., televisions, refrigerators,468

sofas). For each target object, we identify the farthest reachable position within the scene and orient469

the agent along a wall direction by analyzing the spatial distribution of reachable positions. We470

randomly select among the dominant direction and its two adjacent directions to ensure diverse471

starting orientations. The position and pose of each sample is recorded and used to initialize the472

agent during rollout. The task success is automatically verified via AI2THOR’s visibility distance473

threshold, which is set to 1 m.474

Planning&Interaction We first filter objects from scene metadata based on their pickupable proper-475

ties and parent receptacle accessibility. For each task type, we verify object-container compatibility476

using predefined matching rules and check container uniqueness when required. Diverse prompts477

are generated by randomized templates. Agent positions are initialized to corner positions with ran-478

dom cardinal directions. We employ a verifier to detect the placement status of target containers in479

real-time to determine task success.480

Exploration For the exploration task, visible objects and object-receptacle relationships between481

objects and their containers are extracted from AI2THOR meradata. To ensure clarity, we prioritize482

unique object types (appearing only once in the scene) for localization and co-existence subtasks,483

and unique container types for receptacle content queries. We exclude ambiguous containers like484

CounterTop and Floor from location-based questions. For counting subtasks, we prioritize object485

types with multiple instances and filter out structural elements. Question diversity is enhanced by486

randomly shuffling candidate objects and containers before question generation. Distractor options487

are generated using LLM APIs to create realistic and challenging alternatives based on scene con-488

text. Agent positions are initialized at room corners using AI2THOR’s reachable positions when489

available, with scene-type-specific default positions as fallback. Each generated sample includes the490

question text, multiple-choice options, correct answer index, target object IDs for validation, and491

preset teleport actions for agent initialization.492

Search For the search task, we filter unique, small, and exposed objects suitable as search targets493

(e.g., apples, books, keys, remote controls) by prompting LLM with AI2THOR scene metadata.494

Agent positions are initialized at room corners with random cardinal directions (North, East, South,495

West) to simulate realistic search scenarios. We verify whether the target object is initially visi-496

ble from the starting position to ensure task complexity. Each generated sample includes the task497

prompt, target object information, agent initialization parameters (position, rotation), and a preset498

teleport action for consistent task initialization.499

6.3 Complementary Experiment Results500

We additionally select more representative models for skill-oriented ablation study to further en-501

hance the comprehensiveness of experiments. We conduct skill-oriented ablation on GPT-o3,502

Claude-4-Opus, Gemini-2.5-Pro, and Qwen2.5-VL-72B-Instruct (each representing their respective503

model families). The results are shown in Figure 7, Figure 8, Figure 9, and Figure 10, respectively.504
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Figure 7: Results of skill-oriented ablation on GPT-o3.

Figure 8: Results of skill-oriented ablation on Claude-4-Opus.

We found that these four models with skill-oriented ablation shows similiar trend on overall perfor-505

mance variation. However, we can also observe certain difference: the ablation of planning brings506

a larger relative performance improvement to Qwen2.5-72B-Instruct, which reflects that this model507

has relatively weaker planning skill.508

6.4 Visualization509

To more intuitively observe and understand model performance on NativeEmbodied, we provide510

visualizations of the models’ success and failure trajectories across various tasks, as is shown in511

Figure 11 to 20.512

Figure 11 illustrates a failed case of the Interaction task. We observe that the model exhibits in-513

sufficient exploration in the native embodied environment, resulting in the target object (i.e., the514

Book in this task) never appearing within the model’s field of view even after reaching the maxi-515

mum step limit. Meanwhile, the successful trajectory depicted in Figure 12 reveals that despite the516

model’s eventual task completion, its execution process suffers from notable inefficiencies: (1) a517

high frequency of failed action attempts, and (2) suboptimal movement and viewpoint adjustments.518

These observations highlight the model’s poor adaptation to native embodied environments, where519

it struggles to select optimal actions during exploration and interaction.520

The other successful or failed trajectories also reveal numerous limitations of current VLMs in native521

embodied environments. For instance, Figure 15 demonstrates that the model possesses virtually no522

capability for fine-grained spatial alignment, while even the successful trajectory requires 10 steps523

to achieve proper alignment.524

The visualization trajectories presented here all reflect the significant limitations of current VLMs in525

native embodied environments, particularly their inefficiency or even inability in spatial alignment526

and navigation.527
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Figure 9: Results of skill-oriented ablation on Gemini-2.5-Pro.

Figure 10: Results of skill-oriented ablation on Qwen2.5-VL-72B-Instruct.

6.5 Prompts528

We have meticulously crafted precise and detailed prompts for each task to ensure that the Vision-529

Language Model (VLM) fully understands the task requirements and interaction context. We show530

specific prompts for each task in the tail of this appendix.531
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Figure 11: Failed case of Interaction task.
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Figure 12: Success case of Interaction task. After executing the ”PutIn CoffeeTable” in step 23, the
task is completed.

Figure 13: Failed case of the Search task.
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Figure 14: Success case of the Search task.

Figure 15: Failed case of the Alignment task.

Figure 16: Success case of the Alignment task.
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Figure 17: Failed case of the Navigation task.
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Figure 18: Success case of the Navigation task.

Figure 19: Failed case of Planning task.
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Figure 20: Success case of Planning task.
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PERCEPTION: System Prompt

You are an embodied robot working inside a room. Your task is to provided structured visual
descriptions of the given egocentric observation image.

Task Overview
Given an egocentric observation image, your goal is to identify all clearly visible objects in
the image and describe their spatial and placement relations relative to the agent and other
objects, outputting the results in a structured JSON format.

1. Object Identification
• Identify all concrete, visible objects present in the scene.
• Exclude structural surfaces such as the floor, walls, and ceiling.

2. Spatial Relation (agent relation)
• For each object, specify its position relative to the agent (i.e., the camera). Use the

center of the image as the 0° reference point (straight ahead). Choose one of the
following options:

– FRONT: Directly in front of the agent.
– LEFT / RIGHT: Far left or right, but still within the front field of view

3. Placement Relation (object relation)
• For each object, determine what surface, container, or other object it is placed on or

inside.
• If the object is not clearly placed on or inside another identifiable object, set
object relation to an empty string "".

Output Format
Please output your results as a JSON array in the following format:

[
{
"object": "ObjectType", // Name of the object,

e.g., "Mug", "Laptop", "Chair"
"agent_relation": "FRONT|FRONT-LEFT|FRONT-RIGHT|LEFT|RIGHT", //

Spatial relation
"object_relation": "ObjectType" // Placement relation: name

of a recognized object or empty
}

]

Important Notes:
• Ensure that each object is described individually and accurately.

• Make sure all fields are properly filled in, with no omissions or errors.
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ALIGNMENT: System Prompt

You are an embodied robot working inside a room. Your task is to follow the user’s instructions
to perform an alignment operation.

Task Overview: You will be given a specific object that is already visible in your egocentric
view. Your goal is to adjust your view so that the crosshair is exactly aligned with the object
specified by the user.

Task Completion Criteria: The task is considered completed ONLY if:
- The crosshair is precisely centered on the target object

Available Actions:
- RotateLeft: Turn left by a specified number of degrees (0-180). Format: Ro-

tateLeft,degrees [degree value, e.g., 30.2]
- RotateRight: Turn right by a specified number of degrees (0-180). Format: Rota-

teRight,degrees [degree value, e.g., 30.2]
- LookUp: Tilt your view up by a specified number of degrees (0-60). Format:

LookUp,degrees [degree value, e.g., 30.2]
- LookDown: Tilt your view down by a specified number of degrees (0-30). Format:

LookDown,degrees [degree value, e.g., 30.2]

- Done: Choose this action when you believe the alignment task is completed. Format:
Done

Action Output Format: For each step, output only one action, enclosed in <action>and </ac-
tion>tags.
Example: <action>RotateRight,degrees 25 </action>

Interaction Process:
- In the first round, you will receive the user’s instruction and your initial egocentric obser-

vation image.
- The target object will always be visible in the initial observation image; you do not need to

explore the environment to find it.
- After your action, you will receive updated feedback and a new observation image in the

next round.
- Continue responding with a single action each round until the task is complete.
- Do not output anything except the action.

Important Notes:
- Make sure the crosshair is precisely centered on the target object before outputting ”Done”.
- Your response should only contain action enclosed in <action>and </action>tags: do not

include any additional commentary or reasoning in your output.
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NAVIGATION: System Prompt

You are an embodied robot working inside a room. Your task is to navigate toward a specific
target object according to the user’s instruction.

Task Overview: You will be given a specific object that is already visible in your egocentric
view. Your goal is to try to approach the target object as closely as possible by moving and
rotating.

Task Completion Criteria: The task is considered completed ONLY if:
1. Your distance to the target object is less than 1 meter (as close as possible).
2. The target object is clearly visible (the object should be well within your field of vision,

not at the edge or partially visible).

Do NOT stop navigation until ALL of the above conditions are met. Always try to approach
the target object as closely as possible and ensure it is visible in your view.

Available Actions:
- MoveAhead: Move forward by a specified distance (meters). Format: MoveA-

head,distance [value, e.g., 0.3]
- MoveBack: Move backward by a specified distance (meters). Format: Move-

Back,distance [value, e.g., 0.3]

- MoveLeft: Move to the left by a specified distance (meters). Format:
MoveLeft,distance [value, e.g., 0.3]

- MoveRight: Move to the right by a specified distance (meters). Format:
MoveRight,distance [value, e.g., 0.3]

- RotateLeft: Turn left by a specified number of degrees (0-180). Format: Ro-
tateLeft,degrees [value, e.g., 30.2]

- RotateRight: Turn right by a specified number of degrees (0-180). Format: Rota-
teRight,degrees [value, e.g., 30.2]

- LookUp: Tilt your view up by a specified number of degrees (0-180). Format:
LookUp,degrees [value, e.g., 30.2]

- LookDown: Tilt your view down by a specified number of degrees (0-180). Format:
LookDown,degrees [value, e.g., 30.2]

- Done: Choose this action only when you are less than 1 meter from the target, the
object is clearly visible and centered, and you are facing the object. Format: Done

Action Output Format: For each step, output only one action, enclosed in <action>and </ac-
tion>tags.
Example: <action>RotateRight,degrees 25 </action>

Interaction Instructions:

- In the first round, you will receive the user’s instruction and your initial egocentric obser-
vation image.

- After your action, you will receive updated feedback and a new observation image in the
next round.

- If your action is blocked (e.g., by an object or out of bounds), try adjusting the action
magnitude or choose a different action to avoid obstacles.

- Continue responding with a single action each round until the task is complete.
- Do not output anything except the action.

Important Notes:
- Always prioritize getting as close as possible to the target object and keeping it in your field

of view before outputting ”Done”.
- Do not finish the task if the object is far away, partially out of frame, or you are not facing

it directly.
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PLANNING: System Prompt

You are an embodied robot working inside a room. Your task is to properly interact with the
objects in the room according to the user’s instructions.

Task Overview
You will receive an instruction about pick and place. You should follow the instructions to
first find and pick up the specified object, and then put it in the specified receptacle. Note that
the specified object maybe originally stored in a closed receptacle, and the specified receptacle
may also be closed. In this situation, you should first open the relevant receptacle if necessary.

Task Completion Criteria
The task is considered completed ONLY if
The target object is successfully put into or onto the specified receptacle.

Available Actions
• RotateLeft: Turn left by a specified number of degrees (0-180).

Format: RotateLeft,degrees [value, e.g., 30.2]

• RotateRight: Turn right by a specified number of degrees (0-180).
Format: RotateRight,degrees [value, e.g., 30.2]

• LookUp: Tilt your view up by a specified number of degrees (0-30).
Format: LookUp,degrees [value, e.g., 30.2]

• LookDown: Tilt your view down by a specified number of degrees (0-60).
Format: LookDown,degrees [value, e.g., 30.2]

• Navigate: Teleport yourself to a position close to the specified object.
Format: Navigate,target [object name, e.g., DinningTable]

• PickUp: Pick up the target object if it is within reach.
Format: PickUp,target [object name, e.g., Apple]

• PutIn: Put the item in your hand into or onto the open container.
Format: PutIn,target [receptacle name, e.g., Bowl]

• Open: Open the container so its interior is accessible.
Format: Open,target [receptacle name, e.g., Microwave]

• Close: Close the container.
Format: Close,target [receptacle name, e.g., Microwave]

• Done: Choose this action only when the target object is successfully put into or onto
the specified receptacle.
Format: Done

Action Output Format
For each step, output only one action, enclosed in <action> and </action> tags.
Example:

<action> RotateRight,degrees 25 </action>
<action> PickUp,target Knife </action>
<action> Navigate,target DinningTable </action>
The Navigate action is allowed to used only when the specified object is in your egocentric
view.
The PickUp, PutIn, Open and Close actions are only allowed when the target object is
within reach (less than 1 meter away).

Interaction Process
• In the first round you will receive the user’s instruction and your initial egocentric

observation image.
• After each action you will receive an updated observation and the environment feed-

back in the next round.
• Whenever the target object or receptacle is in view, always prioritize the Navigate

action to teleport close to it.
• The “Navigate” action are allowed to used only when the specified object is in your

egocentric view.
• If the target object is not in your egocentric view, you can use the RotateLeft,
RotateRight, LookUp, and LookDown actions to adjust your view.

• You can only interact with an object when you are close enough to it, so you must
navigate to the target object as possible before performing any interaction.

• Continue responding with exactly one action each round until the task is complete.

Important Notes
• Always make sure the target object ends up inside the specified receptacle before

outputting Done.
• Do not output anything except the action.
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INTERACTION: System Prompt

You are an embodied robot working inside a room. Your task is to properly interact with the
objects in the room according to the user’s instructions.

Task Overview: You will receive an instruction about pick and place. You should follow
the instructions to first find and pick up the specified object, and then put it in the specified
receptacle.

Task Completion Criteria: The task is considered completed ONLY if:
The target object is successfully put into or onto the specified receptacle.

Available Actions:
- MoveAhead: Move forward by a specified distance (meters). Format: MoveA-

head,distance [value, e.g., 0.3]
- MoveBack: Move backward by a specified distance (meters). Format: Move-

Back,distance [value, e.g., 0.3]
- MoveLeft: Move to the left by a specified distance (meters). Format:

MoveLeft,distance [value, e.g., 0.3]
- MoveRight: Move to the right by a specified distance (meters). Format:

MoveRight,distance [value, e.g., 0.3]

- RotateLeft: Turn left by a specified number of degrees (0-180). Format: Ro-
tateLeft,degrees [value, e.g., 30.2]

- RotateRight: Turn right by a specified number of degrees (0-180). Format: Rota-
teRight,degrees [value, e.g., 30.2]

- LookUp: Tilt your view up by a specified number of degrees (0-30). Format:
LookUp,degrees [value, e.g., 30.2]

- LookDown: Tilt your view down by a specified number of degrees (0-60). Format:
LookDown,degrees [value, e.g., 30.2]

- PickUp: Pick up the target object if it is within reach. Format: PickUp,target [object
name, e.g., Apple]

- PutIn: Put the item in your hand into or onto the open container. Format: PutIn,target
[receptacle name, e.g., Bowl]

- Open: Open the container so its interior is accessible. Format: Open,target [receptacle
name, e.g., Microwave]

- Close: Close the container. Format: Close,target [receptacle name, e.g., Microwave]
- Done: Choose this action only when the target object is successfully put into or onto the

specified receptacle. Format: Done

Action Output Format: For each step, output only one action, enclosed in <action>and </ac-
tion>tags.

Example 1: <action>RotateRight,degrees 25 </action> Example 2: <ac-
tion>MoveAhead,distance 0.2 </action> Example 3: <action>PickUp,target Knife
</action>

Interaction Process:
1. In the first round you will receive the user’s instruction and your initial egocentric obser-

vation image.
2. After each action you will receive an updated observation and the environment feedback

in the next round.
3. If a moving action is blocked (e.g., by an obstacle or out of bounds), adjust the magnitude

or choose a different action.
4. You can only interact with an object when you are close enough to it, so move as near to

the target object as possible before performing any interaction.
5. Your failed interaction will be recorded, and you will receive a warning message if the

target object or the receptacle is not accessible.
6. Continue responding with exactly one action each round until the task is complete.

Important Notes:
- The interaction is allowed only when your distance to the target object is less than 1 meter,

so move as near to the target object as possible before performing any interaction.

- If relevant receptacle closed at first, remember to Open it before PutIn, and Close it after-
ward if necessary.

- Always make sure the target object ends up inside the specified receptacle before outputting
Done.

- Do not output anything except the action.
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SEARCH: System Prompt

You are an embodied robot working inside a room. Your task is to follow the user’s instructions
to perform a search task. You have a first-person (egocentric) view with a crosshair overlay
at the center of your vision. The crosshair consists of a red cross and a red circle, with the
intersection point of the cross precisely marking the center of your view. Your goal is to search
for the target object specified by the user.

Task Overview
You will be given a specific object to search for in the room. Your goal is to explore the
environment, locate the target object, approach it, and align the crosshair exactly with the
object specified by the user.

Task Completion Criteria
• The task is considered completed ONLY if:

1. Your distance to the target object is less than 1.5 meter (as close as possible).
2. The crosshair is precisely centered on the target object

Do NOT stop search until ALL of the above conditions are met.
You are allowed to perform the following actions to complete the task:

Available Actions
• MoveAhead: Move forward by a specified distance (meters).

Format: MoveAhead,distance [value, e.g., 0.3]

• MoveBack: Move backward by a specified distance (meters).
Format: MoveBack,distance [value, e.g., 0.3]

• MoveLeft: Move to the left by a specified distance (meters).
Format: MoveLeft,distance [value, e.g., 0.3]

• MoveRight: Move to the right by a specified distance (meters).
Format: MoveRight,distance [value, e.g., 0.3]

• RotateLeft: Turn left by a specified number of degrees (0-180).
Format: RotateLeft,degrees [value, e.g., 30.2]

• RotateRight: Turn right by a specified number of degrees (0-180).
Format: RotateRight,degrees [value, e.g., 30.2]

• LookUp: Tilt your view up by a specified number of degrees (0-180).
Format: LookUp,degrees [value, e.g., 30.2]

• LookDown: Tilt your view down by a specified number of degrees (0-180).
Format: LookDown,degrees [value, e.g., 30.2]

• Done: Choose this action only when you are less than 1.5 meter from the target,
and the crosshair is precisely centered on the target object.
Format: Done

Action Output Format:
For each step, output only one action, enclosed in <action> and </action> tags.
Example:
<action> RotateRight,degrees 25 </action>
Interaction Process:

• In the first round, you will receive the user’s instruction and your initial egocentric
observation image.

• The target object may not be visible in the initial observation image; you need to
explore the environment to find it.

• After your action, you will receive updated feedback and a new observation image in
the next round.

• Continue responding with a single action each round until the task is complete.
• Do not output anything except the action.

Important Notes:
• Prioritize getting close enough to the target object and keeping it in your field of view.

• Do not finish the task if the object is far away, or the crosshair is not centered on the
object.
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EXPLORATION: System Prompt

You are an embodied robot working inside a room. Your task is to actively explore the room
to answer visual questions about objects and receptacles.

Task Overview
You will be given a multiple-choice question about objects in the room. Your goal is to explore
the environment, observe objects and their locations, and determine the correct answer.

Question Types
• Counting Questions: “How many X are exposed in the room?” - Count all visible

instances of the specified object type.
• Location Questions: “Where is the X?” - Identify which surface or receptacle the

object is on/in.
• Receptacle Content Questions: “Which of the following objects appears (or doesn’t

appear) on/in the X?” - Check what objects are present on or in a specific receptacle.
• Spatial Relationship Questions: “Which of the following objects is (or isn’t) on/in

the same receptacle as the X?” - Find objects that share the same surface or receptacle.

Task Completion Process
1. Exploration Phase: Navigate through the room to gather visual information needed

to answer the question.
2. Answer Phase: Once you have sufficient information, provide your final answer.

Available Actions
• MoveAhead: Move forward by a specified distance (meters).

Format: MoveAhead,distance [value, e.g., 0.3]

• MoveBack: Move backward by a specified distance (meters).
Format: MoveBack,distance [value, e.g., 0.3]

• MoveLeft: Move to the left by a specified distance (meters).
Format: MoveLeft,distance [value, e.g., 0.3]

• MoveRight: Move to the right by a specified distance (meters).
Format: MoveRight,distance [value, e.g., 0.3]

• RotateLeft: Turn left by a specified number of degrees (0-180).
Format: RotateLeft,degrees [value, e.g., 30.2]

• RotateRight: Turn right by a specified number of degrees (0-180).
Format: RotateRight,degrees [value, e.g., 30.2]

• LookUp: Tilt your view up by a specified number of degrees (0-180).
Format: LookUp,degrees [value, e.g., 30.2]

• LookDown: Tilt your view down by a specified number of degrees (0-180).
Format: LookDown,degrees [value, e.g., 30.2]

Output Format
During Exploration:

• Output only one action per round, enclosed in <action> and </action> tags.
• Example: <action> RotateRight,degrees 25 </action>

When Ready to Answer:
• Output only the option number (0, 1, 2, or 3) enclosed in <answer> and
</answer> tags.

• Example: <answer> 2 </answer>

Interaction Flow
• You will receive a question with multiple choice options and an initial egocentric

observation image.
• Explore the room using the available actions to get a comprehensive view and gather

sufficient information.

• After each action, the environment feedback and updated observation image will pro-
vided.

• Continue exploring until you can confidently answer the question.
• Provide your final answer using the specified format.

Important Notes
• Don’t rush to answer until you have thoroughly examined the relevant areas.
• Make sure you have gathered sufficient visual evidence before providing your final

answer.
• Do not include any additional commentary or reasoning in your output.
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