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Abstract

Recent advances in vision-language models (VLMs) have shed light on human-
level embodied intelligence. However, existing benchmark for VLM-driven em-
bodied agent still rely on pre-defined high-level command or discretised action
spaces—‘non-native” settings that diverge markedly from the real world. More-
over, current benchmarks focus exclusively on high-level tasks, while lacking col-
laborative evaluation and analysis on both low- and high-level. To bridge these
gaps, we present NativeEmbodied, a challenging benchmark for VLM-driven
embodied agents that adopts a unified, native low-level action space. Built upon
diverse simulated scenes, NativeEmbodied first designs three representative high-
level tasks in complex scenarios to evaluate overall performance. For more de-
tailed and comprehensive performance analysis, we further decouple the entan-
gled skills behind complex tasks and construct four types of low-level tasks, each
corresponding to a key fundamental embodied skill. This joint evaluation across
task and skill granularities enables a fine-grained assessment of embodied agent.
Comprehensive experiments on the best VLMs reveal pronounced deficiencies in
certain fundamental embodied skills. Further analysis shows that these low-level
bottlenecks severely constrain performance on high-level tasks. Our NativeEm-
bodied not only pinpoints the key challenges faced by current VLM-driven em-
bodied agents, but also provides valuable insight for future development.

1 Introduction

Recent advances in Vision-Language Models (VLMs) have catalyzed significant progress in embod-
ied intelligence Wang et al. (2024), bringing us closer to intelligent agents that can operate in the
simulator or physical world Cheang et al. (2025); Wang et al. (2025); Open-X et al. (2025); Brohan
et al. (2023). These VLM-based embodied agents, capable of perceiving the environment through
visual inputs, and perform complex task following natural language instructions Chen et al. (2025);
Tan et al. (2025); Cao et al. (2025); Long et al. (2025); Yue et al. (2025).

However, a fundamental challenge persists: How can we assess whether these models truly possess
the capability to function in the real world, and which fundamental skills bottleneck their perfor-
mance? This question becomes particularly important as current evaluation benchmarks for embod-
ied agent exhibit several limitations: 1) Non-Native Action Space: Recent benchmarks Cheng et al.
(2025); Yang et al. (2025) attempt to deploy VLM-based agents in embodied simulators and evaluate
their performance through interactive tasks. They typically abstract low-level actions into high-level
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commands or functions that the agent can invoke directly (e.g., “look at the apple”, “teleport to the
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Figure 1: Our NativeEmbodied benchmark includes four low-level foundational skills (i.e., Percep-
tion, Alignment, Navigation and Planning) and three high-level complex tasks (i.e., Exploration,
Interaction, and Search).

desk”) - what we term the “non-native” setting. This abstraction emphasizes task reasoning and
planning, while eclipsing critical embodied skills such as spatial alignment and navigation, leading
to a considerable gap from real world. 2) Coupled Task Design: Existing benchmarks focus on
high-level tasks that entangle multiple foundational skills and measure model performance primar-
ily by overall success rate. Such coarse-grained task formulation and evaluation hinder the diagnosis
of skill-level bottlenecks, yielding assessments that are neither comprehensive nor sufficiently fine-
grained. Those limitation highlights two critical questions that need to be addressed:

* Q1: Which foundational skills are truly essential for VLM-based embodied agents?

* Q2: How do these foundational skills affect the execution of higher-level tasks?

To answer the above questions, in this paper, we present NativeEmbodied, the first comprehensive
benchmark that assesses VLMs’ multidimensional embodied skills from a native perspective. The
following key features set NativeEmbodied apart from the other benchmarks: 1) Native Rollout
Setting. Built on AI2THOR Kolve et al. (2022)—a widely used embodied simulator with richly
detailed and populated environments—NativeEmbodied adopts a native rollout setting. During a
rollout, the agent receives only the initial task instruction, action history, and the egocentric im-
ages streamed by the simulator. In each turn, the agent are allowed to specify action only from
AI2THOR’s primitive action set, includes parameterizable rotations and movements. In this way,
the agent is free to explore and interact with the environment in a native manner, making the bench-
mark more closely aligned with real-world conditions compared to previous ones. 2) Decoupled
Task Hierarchy. NativeEmbodied not only designs three categories of representative high-level
tasks, but also decouples four categories of low-level tasks based on them. Each of these low-level
tasks corresponds to a fundamental embodied skill. The synergistic evaluation from complex high-
level tasks to decoupled low-level tasks facilitates more comprehensive and granular skill assessment
and bottleneck analysis.

Thereafter, we conducted extensive experiments and analyses with NativeEmbodied on 15 open-
source and proprietary VLMs to explore the capabilities of existing embodied agents from a native
perspective. Our contributions are summarized as follows:

* We introduce a novel multidimensional, multigranular evaluation benchmark built upon native
action spaces, providing a more realistic perspective for VLM-based embodied agents.

* We present a comprehensive evaluation system for fundamental embodied skills at a more raw
and native level, where high- and low-level tasks are collaboratively evaluated to reveal skill-level
bottlenecks, significantly enhancing the explainability of capability assessment.



* We provide extensive experimental validation across 15 open-source and closed-source models,
offering valuable insights, with all resources and implementations publicly available to facilitate
further research in this field.

Table 1: Comparisons between our NativeEmbodied and previous benchmarks .

BenchMark | Size Task Level Multimodal Native Decoupled
ALFRED Shridhar et al. (2020a) 3,062 High v X X
ALFWorld Shridhar et al. (2020b) 274 High X X X
VLMbench Zheng et al. (2022) 4,760 Low v (4 X
Behavior-1k Li et al. (2023) 1,000 High (4 X X
Lota-bench Choi et al. (2024) 308 High X v X
GOAT-bench Khanna et al. (2024) 3,919 Low v v X
Embodied Agent Inferface Li et al. (2024) 438 High X X X
EmbodiedBench Li et al. (2024) 1,128 High&Low v X X
EmbodiedEval Cheng et al. (2025) 328 High v X X
NativeEmbodied (Ours) | 1,085 High&Low v v v

2 Related Work

2.1 Embodied Agent Benchmarks

As shown in Table 1, recent years have witnessed a surge of benchmarks targeting vision-driven
embodied agents, yet most remain domain-specific or modality-restricted. Classic benchmarks such
as ALFWorld Shridhar et al. (2020b) and ALFRED Shridhar et al. (2020a) focus on high-level
household tasks but ignore low-level control; conversely, VLMbench Zheng et al. (2022) and GOAT-
bench Khanna et al. (2024) evaluate low-level manipulation and navigation, respectively, but are
confined to isolated embodied skills. Concurrently, EmbodiedBench Yang et al. (2025) introduces a
multi-domain suite spanning household, manipulation, and navigation, while relying on high-level
action when dealing with high-level tasks. EmbodiedEval Cheng et al. (2025) proposes a multi-
domain benchmark for VLMs, yet its limited scale (328 instances) and absence of low-level tasks
highlight the need for more comprehensive benchmarks.

2.2 VLM-based Agents

VLM-based agents typically ingest an interleaved sequence of images, text instructions, and op-
tionally past actions, then output either free-form text or discrete/continuous action functions (i.e.,
non-native setting) that a downstream executor maps to low-level controls Bai et al. (2023); Qin et al.
(2025); Bai et al. (2025). This paradigm has powered game agents Xu et al. (2024) that generate
controller commands from screen pixels and dialogue in Minecraft Jucys et al. (2024) and Pokémon
Hu et al. (2024), as well as Mobile agents that navigate mobiles to book flights Lin et al. (2024);
Li et al. (2025); Gu et al. (2025). When instantiated for embodied tasks, however, the agent must
confront a native action space—open, close, pick up, and put down. In this paper, we hope the em-
bodied agent can free to explore and interact with the environment in a native manner, making our
benchmark more closely aligned with real-world conditions compared to previous ones.

3 NativeEmbodied Benchmark

From a native perspective, we start with the native actions an agent can take. Specifically, we
collect these basic moves and build a benchmark, NativeEmbodied, that checks four low-level tasks
(e.g., center alignment and navigation). Because each subtask is separate and mix-and-match, we
then combine high-level tasks (e.g., search). Through this bottom-up, decoupled setup, we enable
analysis of the relationships between foundational capabilities and finial task success rates, revealing
critical pathways of VLM-based embodied agent.

3.1 Native Action Space

To support the native setting, we define the native action space as follows:



¢ MoveAhead x (meters): Move forward x meters

* MoveBack x (meters): Move backward x meters

* MoveLeft x (meters): Move left x meters

* MoveRight x (meters): Move right X meters

» RotateRight x (degrees): Rotate view right by x degrees
* RotateLeft x (degrees): Rotate view left by x degrees

* LookUp x (degrees): Tilt view upward by x degrees

* LookDown x (degrees): Tilt view downward by x degrees

The native actions described above ensure that agents can operate in the environment in a primitive
and unconstrained manner. Notably, while previous benchmarks have incorporated similar action
primitives for certain tasks, they either impose strict constraints on the agent’s movement space
through pre-built navigation graphs to simplify environmental complexity Cheng et al. (2025), or
limit their application to low-level tasks with hardcoded action parameters Yang et al. (2025). Our
NativeEmbodied represents the first benchmark to provide completely unrestricted native action
space across both high-level and low-level tasks.

3.2 High-level Complex Tasks

We start with three representative high-level tasks that benchmark the agent’s performance boundary
in the native settings:

Exploration. This task poses questions related to objects in the environment, requiring agents to
fully explore the environment to provide correct answers. We subdivide it into four subtypes:

* Counting: How many specified objects are exposed in the environment?
* Localization: Which receptacle does the specified object locate in?
* Receptacle Content: Which objects are (or aren’t) on the specified receptacle?

* Co-existence: Which objects share a receptacle with the specified object?

Search. This task requires agents to precisely locate and target specified objects within the environ-
ment. We overlay a crosshair at the center of the agent’s egocentric obseravtion image to indicate the
focal point. The agent must approach the target object and align the crosshair with it to complete the
task. This challenge demands that the agent not only identify the object’s location but also navigate
to it and execute fine-grained spatial alignment.

Interaction. The task requires the agent to interact with objects in the scene to fulfill user instruc-
tions. Concretely, we focus on the representative pick-and-place scenario: the agent must place a
specified object into a specified receptacle. The target object may be exposed in the environment or
stored inside a closed receptacle, and the destination receptacle may be one that does not need to be
opened (e.g., a tabletop) or one that does (e.g., a refrigerator). For this task we augment the original
action space with four additional interaction primitives: PickUp, Putln, Open, and Close.

3.3 Low-level Foundational Skills

While high-level tasks reveal an agent’s overall competence, they are not ideal for diagnosing spe-
cific skill deficiencies. The limitation is even starker in the native setting: here, a model’s core
embodied abilities are tested directly, yet the multi-skill nature of the high-level tasks masks indi-
vidual bottlenecks. For better evaluation, we decompose the high-level tasks from a skill-centric
perspective and introduce four classes of low-level tasks that each target a fundamental skills:

Perception. This task tests a model’s perception by having it describe first-person images using
a specific structured format following [ObjectType] [Loaction] [Receptacle],corresponding to This
approach combines visual and spatial perception, and its structured format facilitates fine-grained
evaluation of each aspect, making the evaluation in this paper more intuitive and flexible.

Spatial Alignment. Similar to the search task, the agent must center its view on the object. To
separate from skills like planning and navigation, we start the agent near the target, already visible.



We limit actions to view adjustments only. Thus, the agent simply shifts its gaze for precise spatial
alignment evaluation.

Navigation. We define the navigation task as follows: Given a target object, the agent is deemed
successful upon reaching within 1 meter of that object. To ensure sufficient path complexity, the
agent is initialized at the corner of the room farthest from the target object. Meanwhile, the target
object is guaranteed to remain visible within the agent’s initial field of view, so that the challenge
lies purely in the fundametal navigation capabilities.

Planning. The goal of this task is to evaluate an agent’s task-planning ability. In essence, this
ability corresponds to the brain’s cognitive reasoning functions rather than the cerebellum’s motor-
control functions. To effectively decouple motor control from planning, we abstract the four basic
motion primitives into directly callable navigation interfaces. We adopt an interactive-task frame-
work because the explicit, multi-stage nature of its execution process is especially well-suited for
fine-grained evaluation of planning capability.

3.4 Data Collection

We build the benchmark via a three-stage pipeline that combines automatic generation with hu-
man-machine collaborative filtering to ensure quality

Stage 1:Using AI2-THOR Kolve et al. (2022) and its metadata (3D coordinates, state flags, instance
masks), we batch-generate candidate samples for each task. For the exploration task, we query all
scene objects and their receptacles, then automatically instantiate the four predefined question types.

Stage 2: We deploy three advanced MLLMs, each performing three rollouts per sample, and track
per-sample success rates. Samples perfectly solved by all three models are removed. Those with
overall success rate greater than two-thirds, or solved perfectly by any single model, are forwarded
for difficulty adjustment, while complete failures are forwarded for error checking.

Stage 3: Human annotators manually run the complete failures to rule out environment-induced
impossibility (e.g., the agent spawning in a dead end), and prune trivial high-success cases (e.g., the
only apple is already in the initial view). Tasks perfectly solved by a particular model are treated
as potential bias matches (e.g., consistently going to Table A). Adjusted samples are sent back to
Stage 2 for reevaluation, and this loop iterates for three cycles.

More details of the data collection pipeline are provided in Appendix.

3.5 Dataset Statistics

Figure 2 show the detailed stastics of NativeEmbodied. NativeEmbodied contains 1085 high-quality
samples across 3 high-level complex tasks and 4 low-level foundational skills. The 120 diverse
scenes around 4 topics (including kitchen, bathroom, living-room, and bedroom) with 189 types of
task-relevant object highlight the diverity of NativeEmbodied. The average execution steps of all
tested models on NativeEmbodied reaches 18.7, reflecting its long-horizon nature in native setting.
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Figure 2: The detailed Statistics of NativeEmbodied



4 Experiment

4.1 Evaluation Setup
Baselines. We evaluate 15 open-source and closed-source models, covering four model families:

e GPT familyl: GPT-40, GPT-4v, GPT-03, GPT-04-mini.

¢ Claude family2: Claude-3.5-Sonnet, Claude-3.7-Sonnet, Claude-4-Sonnet, Claude-4-Opus.

* Gemini family Gemini Team et al. (2024): Gemini-2.0-flash, Gemini-2.5-flash, Gemini-2.5-pro.
+ Qwen family’: Qwen-2.5-VL-72B, Qwen-2.5-VL-32B, Qwen-2.5-VL-7B, Qwen-2.5-VL-3B.

Environment. During each agent—environment interaction, the agent receives an egocentric image
from the simulator, which is rendered at 640 x 480 resolution with a 90-degree field of view, as input
and returns a single action with specified parameters chosen from the action space. The rollout step
limit is set to 15 for alignment and navigation tasks, 20 for planning tasks, and 30 for the three
catogories of high-levek tasks. We employ a truncation mechanism to keep the interaction history
to no more than 20 turns.

Evaluation Metrics. To obtain a more comprehensive and fine-grained picture of an agent’s per-
formance, we report the following metrics in addition to Success Rate (SR):

* Average Steps (AS): The mean number of steps taken in successful episodes, reflecting how
efficiently the agent completes a task.

* Weighted Average Steps (WAS): For each successful trajectory we use its actual length, whereas
for each failed trajectory we assign a penalised length equal to the task’s predefined maximum
number of steps 7" plus a penalty factor « > 0 (set to 1 in our experiment). Formally, let S and
F be the sets of successful and failed episodes, s; the number of steps taken in the ¢-th successful

episode. The WAS is,
D s+ D (a+T)
i€S JEF
|S]+ 7]

A smaller WAS indicates that the agent not only succeeds frequently but also does so efficiently.

WAS = (1)

» Average Closest Distance (ACD): The shortest Euclidean distance between the agent and the
target object across the trajectories.

» Average Closest Pixel Distance (ACPD): The mean of the minimum pixel distance between the
target object and the view center across the trajectories.

We report Precision, Recall, and F1 score for Perception.

4.2 Main Results

High-level tasks in native settings pose significant challenges for VLMs. Table 2 shows the
performance of various VLMs on the three categories of high-level tasks. We find that even the most
powerful VLMs generally struggle with high-level tasks under native settings. This is particularly
evident in Search tasks, where the best-performing model GPT-03 achieves only a 34.64% success
rate, while Claude-4-Sonnet—despite being one of the most advanced proprietary models—fails to
complete even a single task successfully. The same pattern holds for Interaction and Exploration
tasks, with the highest success rates being merely 52.43% and 38.34% respectively. This indicates
that in native embodied environments, current VLMs are still far from being capable of effectively
executing complex tasks.

'https://openai.com/index/
2https://www.anthropic.com/news/claude-3-5-sonnet
*https://help.aliyun.com/zh/model-studio/developer-reference/use-qwen-by-calling-api



Table 2: Performance of closed-source and open-source LVLMs on the three high-level tasks: Ex-
ploration, Search and Interaction. For metrics, 1/ | mean higher is better” / ”lower is better”.

Model Exploration | Search | Interaction
Acct ASL WAS| | SRT ACPD, AS, WAS| | SRT AS| WAS|
Closed-Source Large Vision Language Models
GPT-40 36.89 1232 24.11 0.65 131.29 25.0 3096 | 2228 1225 26.84
GPT-4v 36.89 1042 2341 3.27 112.53 12,60 30.35 | 37.31 12.07 24.03
GPT-03 5243 11.06 20.54 | 34.64 32.94 1560 25.67 | 38.34 1335 2425
GPT-04-mini 40.78 548 20.59 17.64 37.93 13.07 27.84 | 2642 13.33 28.27
Claude-3.5-sonnet  31.07  9.78 2441 3.27 103.27 14.60  30.46 19.69 13.19 27.58
Claude-3.7-sonnet  37.86 14.67 24.81 11.76 68.13 1433  29.04 | 28.50 1293 26.17
Claude-4-sonnet 37.86 12.59 24.03 0 95.88 - 31.00 | 30.01 13.59 27.44
Claude-4-opus 37.86 1272  24.08 4.58 84.17 6.86 29.82 | 36.27 1248 24.87
Gemini-2.5-pro 40.78  4.71 20.28 14.38 35.89 791 27.68 | 33.68 12.17 24.67
Gemini-2.5-flash 40.78 6.40 2097 | 1242  58.49 11.58 2859 | 32.64 1446 2598
Gemini-2.0-flash 39.81 11.51 23.24 2.61 90.83 1475 30.58 | 24.87 13.53  26.79
Open-Source Large Vision Language Models
Qwen2.5-VL-72B  33.01 11.82 24.67 1.96 130.40 7.00 30.69 8.29 13.63  28.37
Qwen2.5-VL-32B  31.07 14.63 2541 1.31 129.93  23.00 30.83 6.74 13.15 29.61
Qwen2.5-VL-7B 28.16 11.61 26.14 0 131.26 - 31.00 1.55 25.00 30.83
Qwen2.5-VL-3B 2524  8.13 26.03 0 131.68 - 31.00 0 - 31.00

Table 3: Performance of selected LVLMs on four low-level tasks: Perception, Spatial Alignment,
Navigation and Planning. 1/ | denote “higher is better” / “lower is better”.

Model Perception | Spatial Alignment | Navigation | Planning
Pt Rt  FIf | SRt ACPD| AS, WAS| | SRt ACD, ASt WAS| | SRt AS| WAS|
Closed-Source Large Vision Language Models
GPT-40 75.14 7315 7428 | 7.51 86.85 391 15.07 | 50.00 2.16 6.87 1142 | 5855 9.63 14.82
GPT-4v 79.51 78.11 78.83 | 6.94 66.81 323 1512 | 5556 223 7.81 1143 | 62.18 9.25 14.04
GPT-03 83.15 84.51 83.97 | 64.16 22.73 7.28 104 63.19 2.02 8.34 11.08 | 72.54 10.71 13.87
GPT-04-mini 74.67 75.16 7492 | 45.09 27.45 6.34 11.57 | 35.42 2.68 8.11 1324 | 6632 10.23 14.36
Claude-3.5-sonnet ~ 76.59 7233  73.82 9.83 63.38 2.82 14.72 | 47.92 2.01 7.83 12.12 | 55.44 1040 15.55
Claude-3.7-sonnet ~ 76.76 ~ 73.27 74.35 | 20.23 60.91 4.01 13.62 | 42.36 2.14 7.92 12.55 | 60.62 1147 15.84
Claude-4-sonnet 77.51 73.58 7477 | 36.41 2939  6.63 11.83 | 2778 243 439 1276 | 67.36 1033  14.30
Claude-4-opus 81.21 81.14 79.59 | 39.31 2874  7.87 1128 | 5347 172 411 974 | 67.88 1035 14.16
Gemini-2.5-pro 80.15 80.87 80.53 | 45.09 2601 449 1072 | 41.67 240 726 1241 | 6839 950  13.67
Gemini-2.5-flash ~ 77.98 7947 7842 | 3584 3036 741 1293 | 38.19 265 7.67 12.78 | 5233 1054 16.35
Gemini-2.0-flash ~ 72.71 7433 73.39 | 9.25 8446 393 1491 | 3750 2.81 821 1332 | 48.19 1041 1691
Open-Source Large Vision Language Models
Qwen2.5-VL-72B  77.86 7434 7642 | 12.72 80.58 4.93 14.61 61.11 2.21 6.19 10.03 | 37.82 9.78 17.16
Qwen2.5-VL-32B 7351 72.15 72.86 | 7.51 8532 414 1493 | 36.11 236 728 1232 | 2539 947 18.32
Qwen2.5-VL-7B 71.61 70.74 71.01 | 5.78 86.14 333 15.12 | 25.00 271 721 12.81 | 1295 1028 19.56
Qwen2.5-VL-3B 68.61 66.59 67.12 | 4.05 8893  3.01 1521 | 1944 295 834 1382 | 3.63 738 2083

VLMs show varied performance on different low-level tasks. As shown in Table 3, we find that
models demonstrate clear differentiation in performance across different task types. First, VLMs dis-
play generally excellent performance on perception tasks, indicating strong visual recognition abil-
ities. Second, in planning tasks, VLMs similarly demonstrate strong capabilities, with proprietary
models generally achieving success rates exceeding 50%. However, when tasks involve fine-grained
operations in embodied environments, model performance shows a significant decline. In naviga-
tion tasks, more than half of the models achieve success rates below 50%, with the worst-performing
proprietary model achieving only 27.78% success rate. Even more surprisingly are the results for
alignment tasks—these seemingly simple operations in daily life have become a major challenge
for VLMs. Most models, except GPT-4o, fail to exceed a 50% success rate. Some closed-source
models report single-digit success rates, highlighting deficiencies in spatial alignment capabilities.
These findings suggest that while VLMs have advanced in certain areas, they lack essential skills
for dynamic spatial interactions in specific tasks.

Mainstream VLMs exhibit distinct behavioral spectra in native setting. The contrast between
high- and low-level tasks not only reveals the limitations of each model but also allows them to
demonstrate distinct strategic tendencies in embodied environments.In the Navigation task, GPT-
03 leads with the highest success rate, yet at the cost of significantly longer average step counts,
revealing a robust and conservative path-planning preference. In contrast Claude-4-Opus maintains
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Figure 3: Results from the skill-oriented ablation study, aimed to precisely identify the key atomic
skills that limit model performance.

over 50% success rate with less than half the steps of GPT-03, and leads in both ACD and WAS
metrics, reflecting a more aggressive, efficiency-first exploration style. In the Exploration tasks,
GPT-04-mini and Gemini-2.5-Pro have significantly fewer average steps than other models, yet still
achieve high accuracy rates second only to GPT-03, indicating that both are more agile and confident
in collecting and utilizing environmental information.

4.3 Ablation Study of Foundational Skills

The main experimental results in Section 4.2 demonstrate that current VLMs exhibit significant lim-
itations when executing complex tasks in native settings. To precisely identify the key foundational
skills limiting model performance, we conducted systematic skill-oriented ablation experiments:

 Perception: We use AI2ZTHOR’s API to extract instance segmentation from each egocentric image,
converting it into text descriptions through predefined templates as supplementary to the model.

* Alignment: A “LookAt” is provied for the agent to aim view into the target object if visible.
» Navigation: A “Navigate” is provided for the agent to teleport to the target object if visible.

» Planning: High-level tasks are decomposed into subtask sequences and executed step-by-step.

We selected Claude-3.5-Sonnet as our experimental subject, as this model demonstrates moderate
performance in benchmark tests, offering good representativeness that facilitates more generalizable
conclusions. As shown in Figure 3, the experimental results reveal three important insights:

Mature Perception Capabilities. The introduction of ground-truth perception information failed to
significantly improve model performance,indicating current advanced VLMs already possess suffi-
cient visual capabilities.

Dual Bottlenecks in Long-Horizon Tasks In Exploration and Interaction tasks, ablation on
both planning and navigation yield significant improvements, indicating that both cognitive-level
decision-making abilities (planning) and action-level execution abilities (navigation) are key bottle-
necks for long-horizon tasks.

Fine-Grained Spatial Requirements in Search Tasks In Search tasks, improvements to navigation
and alignment capabilities (particularly alignment) showed significant effects, while planning capa-
bility had limited impact. This reflects the unique characteristics of search tasks: their immediate-
response nature reduces dependence on complex planning, but demands extremely high precision in
spatial positioning and viewpoint control.

4.4 Ablation Study of Think Mode

Reasoning models’ improved problem-solving skills Huang et al. (2025); Liu et al. (2025); Gu et al.
(2025), spark curiosity about whether this capability could boost embodied intelligence. To ex-
plore its potential, we selected two specialized reasoning models: Gemini-2.0-Flash-Thinking and
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Figure 4: Ablation study of think mode, aimed to explore the capabilities of reasoning models.

Claude-3.5-Sonnet to think?®, then select an action, in each round of rollout. The experimental results
are shown in Figure 4, from which we can draw the following insights:

Thinking enhances cognitive abilities for embodied environments. After enabling thinking
mode, success rates for both perception and planning tasks increased, indicating that the reason-
ing process helps models better understand environmental states, identify key information, and for-
mulate more reasonable action strategies. This improvement is particularly pronounced in tasks
requiring complex reasoning and long-term planning.

Thinking may interfere with basic action execution. After engaging in thinking mode, success
rates for tasks that require precise action, actually decreased significantly, such as alignment and
navigation. This decline might be attributed to excessive reasoning processes, which can introduce
unnecessary complexity and interfere with the intuitive execution of basic action.

These findings show that reasoning in embodied agents is a double-edged sword: it boosts cognitive
skills but may disrupt motor control. This indicates a need for careful balance between “cerebrum”
(cognitive reasoning) and “cerebellum” (action control) when designing these embodied agents.

4.5 Error Case Analysis

Insufficient Exploration Redundant View Adjustment Frequent Collision
Step7 Step 8 Step 11 Step 12
| Q: How many Ladles - o
are exposed in the room? I RotateLeft I MoveAhea
| 30 I
GroundTruth:2 o s : *‘ o *‘
. “7. ) 7. )
(Same Observation RotaicRight 15 Deadlock Stuck ,f:_} MoveAhead|0.5m  Colision
. - - '
,;—l)hcm{ | e 1 MoveBack
one! = s 05m
<answer> | </answer> E .

M Q/v L} 7. L
Step 10 Step 9 Step 14 Step 13

Figure 5: Case study of common error trajectories .

Figure 5 exhibited three categories of common errors during evaluation in NativeEmbodied:

* Insufficient Exploration: Agents fail to explore the environment thoroughly, prematurely draw-
ing conclusions based solely on partial information, demonstrating overconfidence.

* Redundant View Adjustment: Agents frequently perform repetitive and unnecessary view ad-
justments within a considerable number of valid steps, severely reducing efficiency. Worse still,
the resulting repetitive observations can sometimes lead agents into dead loops.

* Frequent Collision: Agents exhibit poor perception and response to environmental collisions,
unable to make effective adjustments. This issue is particularly severe when agents are in confined
spaces such as corners, where they easily become stuck and unable to escape.

“Notably, for reasoning models, we enable their reasoning mode; for non-reasoning models, we request
them to output their thinking process in the prompt



5 Conclusion

In this work, we presented NativeEmbodied benchmark, a comprehensive benchmark for evaluating
VLM-driven embodied agents using a unified, native low-level action space. Through systematic
evaluation of both low-level and high-level tasks across 15 open-source and closed-source VLMs,
we identified significant limitations in fundamental embodied capabilities that directly impact per-
formance on complex tasks. Our findings not only highlight the current challenges in VLM-driven
embodied intelligence but also provide valuable guidance for future development in this field.
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6 Appendix

We provide the evaluation samples of NativeEmbodied, evaluation scripts, and raw sample genera-
tion code at the following link: https://anonymous.4open.science/r/NativeEmbodied-C282/

6.1 Data Stastics

NativeEmbodied contains a total of 1085 samples, drawn from 115 scenes in AI2THOR, involving
109 different objects or receptacles, which ensures the diversity of NativeEmbodied. For high-level
tasks, we further categorize them based on the key characteristics of each task to enhance diversity.
The category distribution of each high-level task is shown in Figure 6. For Search tasks, ”’Seen” and
”Unseen” represent whether the target object appears in the field of view in the initial observation,
respectively. For Interaction tasks, ”E” and ”C” represent ”"Exposed” and ”Closed” respectively. For
example, E2C represents placing a target object exposed in the environment into a closed receptacle,
while C2E represents placing a target object stored in a closed receptacle into an open receptacle.

Co-existence

. 23.3%
Counting
35.0%
Exploration
Receptacle
23.3%
Localization
18.4%
C2C
Seen 12.4%
23.5%
C2E
12.4%
E2E .
Search 48.7% Interaction

Unseen E2C
76.5% 26.4%

Figure 6: Case study of common error trajectories .

6.2 Task Generation Pipeline

NativeEmbodied collects raw samples in an automated manner. The following sections provide a de-
tailed introduction to the automatic collection strategy for each task: Perception For the perception
task, we first select diverse receptacle objects (e.g., tables, countertops, shelves) from each scene
as observation targets, as these receptacles contain richer collections of objects. For each selected
receptacle, we sample viewpoints within 0.5-1.3 meters that provide optimal viewing angles, prior-
itizing front-facing positions with angle tolerance of 60°. The system then adjusts the pitch angle
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(-15° to 15°) to maximize the number of visible objects in the field of view. We use instance seg-
mentation to detect all visible objects (excluding structural elements like walls, floors) and generate
structured ground truth data that includes object types, spatial relationships, and relative positions to
the agent. Additionally, we implement object connectivity clustering to merge spatially connected
objects of the same type, ensuring more coherent scene representations.

Alignment For the alignment task, we first filter out visually accessible small objects based on
the scene metadata from the AI2-THOR. We then sample multiple observation positions within
0.8-1.5 meters from the target and generate 9 different target relative position layouts (center, four
edges, four corners) by randomly adjusting the heading angle (+60°) and pitch angle (+30°). The
system uses instance segmentation to verify the visibility of target objects, ensuring they appear at
the expected positions in the field of view. Finally, for each valid scene, we generate structured
data containing task instructions, initial agent position and pose. We designed a veirifier integrated
into the simulator to determine task success in real-time during rollout. Specifically, the validator
obtains the bounding box of the target object in the current agent’s egocentric image by reading
the simulator’s instance segmentation API, and subsequently determines whether the current view
center falls within the target bounding box through 2D geometric calculations.

Navigation For the navigation task, we first filter unique objects from the scene metadata and use an
LLM to select prominent, large objects suitable as navigation targets (e.g., televisions, refrigerators,
sofas). For each target object, we identify the farthest reachable position within the scene and orient
the agent along a wall direction by analyzing the spatial distribution of reachable positions. We
randomly select among the dominant direction and its two adjacent directions to ensure diverse
starting orientations. The position and pose of each sample is recorded and used to initialize the
agent during rollout. The task success is automatically verified via AI2THOR’s visibility distance
threshold, which is set to 1 m.

Planning&Interaction We first filter objects from scene metadata based on their pickupable proper-
ties and parent receptacle accessibility. For each task type, we verify object-container compatibility
using predefined matching rules and check container uniqueness when required. Diverse prompts
are generated by randomized templates. Agent positions are initialized to corner positions with ran-
dom cardinal directions. We employ a verifier to detect the placement status of target containers in
real-time to determine task success.

Exploration For the exploration task, visible objects and object-receptacle relationships between
objects and their containers are extracted from AI2THOR meradata. To ensure clarity, we prioritize
unique object types (appearing only once in the scene) for localization and co-existence subtasks,
and unique container types for receptacle content queries. We exclude ambiguous containers like
CounterTop and Floor from location-based questions. For counting subtasks, we prioritize object
types with multiple instances and filter out structural elements. Question diversity is enhanced by
randomly shuffling candidate objects and containers before question generation. Distractor options
are generated using LLM APIs to create realistic and challenging alternatives based on scene con-
text. Agent positions are initialized at room corners using AI2THOR’s reachable positions when
available, with scene-type-specific default positions as fallback. Each generated sample includes the
question text, multiple-choice options, correct answer index, target object IDs for validation, and
preset teleport actions for agent initialization.

Search For the search task, we filter unique, small, and exposed objects suitable as search targets
(e.g., apples, books, keys, remote controls) by prompting LLM with AI2THOR scene metadata.
Agent positions are initialized at room corners with random cardinal directions (North, East, South,
West) to simulate realistic search scenarios. We verify whether the target object is initially visi-
ble from the starting position to ensure task complexity. Each generated sample includes the task
prompt, target object information, agent initialization parameters (position, rotation), and a preset
teleport action for consistent task initialization.

6.3 Complementary Experiment Results

We additionally select more representative models for skill-oriented ablation study to further en-
hance the comprehensiveness of experiments. We conduct skill-oriented ablation on GPT-03,
Claude-4-Opus, Gemini-2.5-Pro, and Qwen2.5-VL-72B-Instruct (each representing their respective
model families). The results are shown in Figure 7, Figure 8, Figure 9, and Figure 10, respectively.
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Figure 7: Results of skill-oriented ablation on GPT-03.
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Figure 8: Results of skill-oriented ablation on Claude-4-Opus.

We found that these four models with skill-oriented ablation shows similiar trend on overall perfor-
mance variation. However, we can also observe certain difference: the ablation of planning brings
a larger relative performance improvement to Qwen?2.5-72B-Instruct, which reflects that this model
has relatively weaker planning skill.

6.4 Visualization

To more intuitively observe and understand model performance on NativeEmbodied, we provide

visualizations of the models’ success and failure trajectories across various tasks, as is shown in
Figure 11 to 20.

Figure 11 illustrates a failed case of the Interaction task. We observe that the model exhibits in-
sufficient exploration in the native embodied environment, resulting in the target object (i.e., the
Book in this task) never appearing within the model’s field of view even after reaching the maxi-
mum step limit. Meanwhile, the successful trajectory depicted in Figure 12 reveals that despite the
model’s eventual task completion, its execution process suffers from notable inefficiencies: (1) a
high frequency of failed action attempts, and (2) suboptimal movement and viewpoint adjustments.
These observations highlight the model’s poor adaptation to native embodied environments, where
it struggles to select optimal actions during exploration and interaction.

The other successful or failed trajectories also reveal numerous limitations of current VLMs in native
embodied environments. For instance, Figure 15 demonstrates that the model possesses virtually no

capability for fine-grained spatial alignment, while even the successful trajectory requires 10 steps
to achieve proper alignment.

The visualization trajectories presented here all reflect the significant limitations of current VLMs in
native embodied environments, particularly their inefficiency or even inability in spatial alignment
and navigation.
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Figure 9: Results of skill-oriented ablation on Gemini-2.5-Pro.
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Figure 10: Results of skill-oriented ablation on Qwen2.5-VL-72B-Instruct.

6.5 Prompts
We have meticulously crafted precise and detailed prompts for each task to ensure that the Vision-

Language Model (VLM) fully understands the task requirements and interaction context. We show
specific prompts for each task in the tail of this appendix.
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Task: put the Book in the Drawer

z - N
Step 0: RotateLeft 45.0° Step 1: RotateRight 90.0° Step 2: RotateLeft 90.0° Step 3: LookDown 30.0° Step 4: RotateRight 45 0°

A

Siep 10: Movelfl 0.3m Step 11: MoveAhead 03m Step 12: PickUp Book (failed) Step 13: MoveBack 10m Siep 14: RotatcR
S

Step 15: MoveAliead 0.5m Step 16: RolateLefl 90.0° Siep 17: MoveT.eft 0.5m Siep 18: RotatcRight 90.0° Step 19: RolateLell 90.0°
Sy

Step 20: MoveAhead 1.0m Step 21: PickUp Book (failed) Siep 22 RotatcRight 45.0° Step 23: PickUp Book (failed) Siep 24: MoveRight 0.5m

S

Step 25: RolateLefl 45.0° Step 26: MoveLeft 0.5m Step 27: MoveAhead 0.5m Step 28: PickUp Book (failed) Step 29: RotateLefl 90.0°

Figure 11: Failed case of Interaction task.
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Task: put the Vase in the CoffeeTable

Step 0: MoveAhead 1.0m Step 1: MoveAhead 0.6m Step 2: MoveAhead 0.3m Step 3: LookDown 30.0° Step 4: MoveAhead 0.2m

Step 5: PickUp Vase (failed) Step 6: LookDown 20.0° Step 7: MoveAhead 0.2m Step 8: PickUp Vase (failed) Step 9: MoveAhead 025m

Step 10: MoveLeft 0.2m Step 11: LookDown 20.0° (failed) Step 12: MoveLeft 0.15m Step 13: MoveAhead 0.1m Step 14: MoveAhead 0 2m

Step 15: MoveLeft 0.15m Step 16: PickUp Vase Step 17: RotateRight 90.0° Step 18: RotateLeft 135.0° Step 19: RotateLeft 45.0°

Step 20: MoveLeft 0 3m Step 21 MoveAhead 0.4m Step 22: MoveLeft 0 3m (failed) Step 23 Putln CoffeeTable

Figure 12: Success case of Interaction task. After executing the ”Putln CoffeeTable” in step 23, the
task is completed.

Task: Search for the Bread.

Step 0: RotateLeft 45 0° Step 11 RotateLeft 300° Step 2: MoveAhead 1.0m (failed) Step 3 RotateRight 90 0° Step 4: MoveAhead 1.5m

Step 5: RotateLeft 90 0° Step 6: MoveAhead 1.0m (failed) Step 7: RotateLeft 45.0° Step 8: MoveAhead 0.5m Step 9: RotateLeft 30.0°

: )

Step 10: LookUp 200° Step 11: RotateRight 10.0° Step 12: MoveAhead 0.5m Step 13: Rotateleft 10.0° Step 14: Done

Figure 13: Failed case of the Search task.
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Task: Search for the DishSponge.

Step 0: MoveAhead 0.5m Step 1: MoveAhead 0.3m Siep 2: RotateLeft 20.0° Siep 3: RotateLeft 12.0° Step 4: LookDown 10.0°

Step 5 LookDown 12.0° Step 6 RotateLeft 5.0° Step 7: RotateLeft 12.0° Step 8 LookDown 5 0°

Figure 14: Success case of the Search task.

Task: Please locate the Cup.

Step 0: RotateRight 10.0° Step 11 RotateRight 15.0° Siep2: RotatcRight 8.0° Step 3: TookUp 10.0° Siep 4: RotatcRight 8.0°

Siep 5: RolateLell 60° Step 6: LookUp 5.0° Step 7: LookUp 8.0° Slep 8 LookDown 10.0° Slep 9: RolalcRight 4.0°

Siep 10: RotaleLeft 60° Siep 11: RotaleLeft 4.0° Step 12: LookDown 15.0° Siep 13: RotaleLeft §0° Step 14: LookUp 10.0°

Figure 15: Failed case of the Alignment task.

Task: Please locate the KeyChain.

Step 5 Rotatel eft 5.0° Step 6: Rotateleft 4.0° Step 7: LookDown 4.0° Step 8: Rotateleft 3.0° Step 9: Rotateleft 3.0°

Figure 16: Success case of the Alignment task.
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Task: Navigate to the Fridge.

-

Step 0: RotateLeft 45.0° Step 1: MoveAhead 1.5m Step 2: RotateRight 90.0° Step 3: MoveAhead 1.0m Step 4 RotateLeft 90.0°

Siep 5: MoveRight 1.0m (failed) Step 6 MoveRight 0.5m (failed) Step 7: Movel eft 0.3m 10m (failed) Siep 9: MoveBack 0.5m

~

Siep 10: RotateRight 30.0° Step 11: MoveRight 1.0m (failed) Siep 12: MoveT.efl 0.5m Step 13: MoveT efl 0.5 (failed) Stcp 14: MoveAhead 0.3m

(8 ° =3

Step 15: MoveLeft 0.2m (failed) Step 16: MoveBack 0.2m Step 17: RolateLell 40.0° Step 18: MoveAhead 0.5m (ailed) Step 19: MoveT.eft 0.3m

(o (o iy

Step 20 RotateRight 35.0° Siep 21: MoveAhead 0.6m (failed) Siep 22: MoveRight 0.2m Step 23: RolateLeft 35.0° Siep 24: MoveAhead 1.0m (failed)

Figure 17: Failed case of the Navigation task.
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Task: Navigate to the Fridge.

Step 0: MoveAhead 1.5m Step 1: RotateLeft 45.0° Step 2: Moveahead 1.5m (failed) Step 3: MoveAhead 0.5m Step 4: MoveAhead 0.5m

Step 5 MoveAhead 0.5m (failed) Step 6: MoveAhead 0.3m (failed) Step 7: MoveRight 0.5m (failed) Step 8: MoveRight 0 3m (failed) Step9: MoveAhead 0 2m

Step 10: MoveAhead 0.2m (failed) Step 11: MoveRight 0.2m Step 12: MoveAhead 0. 2m Step 13: MoveAhead 0. 2m Step 14: MoveAhead 0.2m

=

Step 15: MoveAhead 0. 2m Step 16: MoveAhead 0. 2m Step 17: MoveAhead 0. 2m

Figure 18: Success case of the Navigation task.

Task: put the Pen in the TVStand

Step 0: RotaleRight 90.0° Step 1: RotateRight 90 0° Step 2: RolaleRight 90.0° Step 3: RolaleRight 90.0° Step 4: Navigate DiningTable (fziled)

Step 7: Navigate Box

Step 10: LookDown 20.0° (failed) Step 11: PickUp Pen (fziled) Step 12 Navigate CoffeeTable. Step 13: PickUp Pen (failed) Step 14: RotateLeft 90.0°

Step 15 Navigate CoffeeTable Step 16: Navigate Sofa Step 17 RotateRight 45 0° Step 18: Navigate SideTable Step 19: PickUp Pen

Figure 19: Failed case of Planning task.
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Step 0: Navigate SoapBotile: Step 1: PickUp SoapBolile Step 2 RotateRight 30.0° Step 3: RolateRight 30.0° Siep 4: Rotatel cfl 90.0°

Siep 5: LookDown 30.0° Step 6: Navigale GarbageCin Siep 7: Pulln GarbigeCan

Figure 20: Success case of Planning task.
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ALIGNMENT: System Prompt

You are an embodied robot working inside a room. Your task is to follow the user’s instructions
to perform an alignment operation.

Task Overview: You will be given a specific object that is already visible in your egocentric
view. Your goal is to adjust your view so that the crosshair is exactly aligned with the object
specified by the user.

Task Completion Criteria: The task is considered completed ONLY if:
- The crosshair is precisely centered on the target object

Available Actions:

- RotateLeft: Turn left by a specified number of degrees (0-180). Format: Ro-
tateLeft,degrees [degree value, e.g., 30.2]

- RotateRight: Turn right by a specified number of degrees (0-180). Format: Rota-
teRight,degrees [degree value, e.g., 30.2]

- LookUp: Tilt your view up by a specified number of degrees (0-60). Format:
LookUp,degrees [degree value, e.g., 30.2]

- LookDown: Tilt your view down by a specified number of degrees (0-30). Format:
LookDown,degrees [degree value, e.g., 30.2]

; <

- Done: Choose this action when you believe the alignment task is completed. Format:
Done
Action Output Format: For each step, output only one action, enclosed in <action>and </ac-
tion>tags.
Example: <action>RotateRight,degrees 25 </action>
Interaction Process:

- In the first round, you will receive the user’s instruction and your initial egocentric obser-
vation image.

- The target object will always be visible in the initial observation image; you do not need to
explore the environment to find it.

- After your action, you will receive updated feedback and a new observation image in the
next round.

- Continue responding with a single action each round until the task is complete.

- Do not output anything except the action.
Important Notes:

- Make sure the crosshair is precisely centered on the target object before outputting "Done”.

- Your response should only contain action enclosed in <action>and </action>tags: do not
include any additional commentary or reasoning in your output.

. y,
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NAVIGATION: System Prompt

You are an embodied robot working inside a room. Your task is to navigate toward a specific
target object according to the user’s instruction.

Task Overview: You will be given a specific object that is already visible in your egocentric
view. Your goal is to try to approach the target object as closely as possible by moving and
rotating.

Task Completion Criteria: The task is considered completed ONLY if:

1. Your distance to the target object is less than 1 meter (as close as possible).

2. The target object is clearly visible (the object should be well within your field of vision,
not at the edge or partially visible).

Do NOT stop navigation until ALL of the above conditions are met. Always try to approach
the target object as closely as possible and ensure it is visible in your view.
Available Actions:

- MoveAhead: Move forward by a specified distance (meters). Format: MoveA-
head,distance [value, e.g., 0.3]

- MoveBack: Move backward by a specified distance (meters). Format: Move-
Back,distance [value, e.g., 0.3]

\ y,
e ~

- MoveLeft: Move to the left by a specified distance (meters). Format:
MovelLeft,distance [value, e.g., 0.3]

- MoveRight: Move to the right by a specified distance (meters). Format:
MoveRight,distance [value, e.g., 0.3]

- RotateLeft: Turn left by a specified number of degrees (0-180). Format: Ro-
tateLeft,degrees [value, e.g., 30.2]

- RotateRight: Turn right by a specified number of degrees (0-180). Format: Rota-
teRight,degrees [value, e.g., 30.2]

- LookUp: Tilt your view up by a specified number of degrees (0-180). Format:
LookUp,degrees [value, e.g., 30.2]

- LookDown: Tilt your view down by a specified number of degrees (0-180). Format:
LookDown,degrees [value, e.g., 30.2]

- Done: Choose this action only when you are less than 1 meter from the target, the
object is clearly visible and centered, and you are facing the object. Format: Done
Action Output Format: For each step, output only one action, enclosed in <action>and </ac-
tion>tags.

Example: <action>RotateRight,degrees 25 </action>
Interaction Instructions:
> <

- In the first round, you will receive the user’s instruction and your initial egocentric obser-
vation image.

- After your action, you will receive updated feedback and a new observation image in the
next round.

- If your action is blocked (e.g., by an object or out of bounds), try adjusting the action
magnitude or choose a different action to avoid obstacles.

- Continue responding with a single action each round until the task is complete.

- Do not output anything except the action.

Important Notes:

- Always prioritize getting as close as possible to the target object and keeping it in your field
of view before outputting "Done”.

- Do not finish the task if the object is far away, partially out of frame, or you are not facing
it directly.

\. J
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PLANNING: System Prompt

You are an embodied robot working inside a room. Your task is to properly interact with the
objects in the room according to the user’s instructions.

Task Overview

You will receive an instruction about pick and place. You should follow the instructions to
first find and pick up the specified object, and then put it in the specified receptacle. Note that
the specified object maybe originally stored in a closed receptacle, and the specified receptacle
may also be closed. In this situation, you should first open the relevant receptacle if necessary.

Task Completion Criteria

The task is considered completed ONLY if
The target object is successfully put into or onto the specified receptacle.

Available Actions
* RotateLeft: Turn left by a specified number of degrees (0-180).
Format: RotatelLeft,degrees [value, e.g., 30.2]
* RotateRight: Turn right by a specified number of degrees (0-180).
Format: RotateRight, degrees [value, e.g., 30.2]

* LookUp: Tilt your view up by a specified number of degrees (0-30).
Format: LookUp, degrees [value, e.g., 30.2]

N
J\.

* LookDown: Tilt your view down by a specified number of degrees (0-60).
Format: LookDown, degrees [value, e.g., 30.2]

» Navigate: Teleport yourself to a position close to the specified object.

Format: Navigate, target [object name, e.g., DinningTable]
* PickUp: Pick up the target object if it is within reach.

Format: PickUp, target [object name, e.g., Apple]
* Putln: Put the item in your hand into or onto the open container.

Format: PutIn, target [receptacle name, e.g., Bowl]

* Open: Open the container so its interior is accessible.
Format: Open, target [receptacle name, e.g., Microwave]

¢ Close: Close the container.
Format: Close, target [receptacle name, e.g., Microwave]

* Done: Choose this action only when the target object is successfully put into or onto
the specified receptacle.
Format: Done

Action Output Format

For each step, output only one action, enclosed in <action> and </action> tags.
Example:

J\

\_
>
Interaction Process

¢ In the first round you will receive the user’s instruction and your initial egocentric
observation image.

» After each action you will receive an updated observation and the environment feed-
back in the next round.

* You can only interact with an object when you are close enough to it, so you must
navigate to the target object as possible before performing any interaction.
Important Notes

* Always make sure the target object ends up inside the specified receptacle before
outputting Done.

* Do not output anything except the action.
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INTERACTION: System Prompt

You are an embodied robot working inside a room. Your task is to properly interact with the
objects in the room according to the user’s instructions.
Task Overview: You will receive an instruction about pick and place. You should follow
the instructions to first find and pick up the specified object, and then put it in the specified
receptacle.
Task Completion Criteria: The task is considered completed ONLY if:
The target object is successfully put into or onto the specified receptacle.
Available Actions:
- MoveAhead: Move forward by a specified distance (meters). Format: MoveA-
head,distance [value, e.g., 0.3]
- MoveBack: Move backward by a specified distance (meters). Format: Move-
Back,distance [value, e.g., 0.3]
- MoveLeft: Move to the left by a specified distance (meters). Format:
MoveLeft,distance [value, e.g., 0.3]
- MoveRight: Move to the right by a specified distance (meters). Format:
MoveRight,distance [value, e.g., 0.3]
\, J
4 N\
- RotateLeft: Turn left by a specified number of degrees (0-180). Format: Ro-
tateLeft,degrees [value, e.g., 30.2]
- RotateRight: Turn right by a specified number of degrees (0-180). Format: Rota-
teRight,degrees [value, e.g., 30.2]
- LookUp: Tilt your view up by a specified number of degrees (0-30). Format:
LookUp,degrees [value, e.g., 30.2]
- LookDown: Tilt your view down by a specified number of degrees (0-60). Format:
LookDown,degrees [value, e.g., 30.2]
- PickUp: Pick up the target object if it is within reach. Format: PickUp,target [object
name, e.g., Apple]
- PutlIn: Put the item in your hand into or onto the open container. Format: Putln,target
[receptacle name, e.g., Bowl]
- Open: Open the container so its interior is accessible. Format: Open,target [receptacle
name, e.g., Microwave]
- Close: Close the container. Format: Close,target [receptacle name, e.g., Microwave]
- Done: Choose this action only when the target object is successfully put into or onto the
specified receptacle. Format: Done
Action Output Format: For each step, output only one action, enclosed in <action>and </ac-
tion>tags.
Examplessssss: <action>RotateRight,degrees 25 </action>
s <
Interaction Process:
In the first round you will receive the user’s instruction and your initial egocentric observation
image.
After each action you will receive an updated observation and the environment feedback in
the next round.
If a moving action is blocked (e.g., by an obstacle or out of bounds), adjust the magnitude or
choose a different action
Important Notes:
- The interaction is allowed only when your distance to the target object is less than 1 meter,
S0 move as near to the target object as possible before performing any interaction.
- If relevant receptacle closed at first, remember to Open it before Putln, and Close it after-
ward if necessary.
_ J
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SEARCH: System Prompt

You are an embodied robot working inside a room. Your task is to follow the user’s instructions
to perform a search task. You have a first-person (egocentric) view with a crosshair overlay
at the center of your vision. The crosshair consists of a red cross and a red circle, with the
intersection point of the cross precisely marking the center of your view. Your goal is to search
for the target object specified by the user.

Task Overview

You will be given a specific object to search for in the room. Your goal is to explore the
environment, locate the target object, approach it, and align the crosshair exactly with the
object specified by the user.

Task Completion Criteria
* The task is considered completed ONLY if:
1. Your distance to the target object is less than 1.5 meter (as close as possible).
2. The crosshair is precisely centered on the target object

Do NOT stop search until ALL of the above conditions are met.
You are allowed to perform the following actions to complete the task:
L J
>

Available Actions

* MoveAhead: Move forward by a specified distance (meters).
Format: MoveAhead, distance [value, e.g., 0.3]

* MoveBack: Move backward by a specified distance (meters).
Format: MoveBack, distance [value, e.g., 0.3]

* MoveLeft: Move to the left by a specified distance (meters).
Format: MovelLeft,distance [value, e.g., 0.3]

¢ MoveRight: Move to the right by a specified distance (meters).
Format: MoveRight,distance [value, e.g., 0.3]

* RotateLeft: Turn left by a specified number of degrees (0-180).
Format: RotatelLeft,degrees [value, e.g., 30.2]

¢ RotateRight: Turn right by a specified number of degrees (0-180).
Format: RotateRight, degrees [value, e.g., 30.2]

* LookUp: Tilt your view up by a specified number of degrees (0-180).
Format: LookUp, degrees [value, e.g., 30.2]

* LookDown: Tilt your view down by a specified number of degrees (0-180).
Format: LookDown, degrees [value, e.g., 30.2]

Y
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* Done: Choose this action only when you are less than 1.5 meter from the target,

and the crosshair is precisely centered on the target object.
Format: Done

Action Output Format:

For each step, output only one action, enclosed in <action> and </action> tags.
Example:

<action> RotateRight,degrees 25 </action>

Interaction Process:

¢ In the first round, you will receive the user’s instruction and your initial egocentric
observation image.

» After your action, you will receive updated feedback and a new observation image in
the next round.

 Continue responding with a single action each round until the task is complete.
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EXPLORATION: System Prompt

You are an embodied robot working inside a room. Your task is to actively explore the room
to answer visual questions about objects and receptacles.

Task Overview

You will be given a multiple-choice question about objects in the room. Your goal is to explore
the environment, observe objects and their locations, and determine the correct answer.

Task Completion Process

1. Exploration Phase: Navigate through the room to gather visual information needed
to answer the question.

2. Answer Phase: Once you have sufficient information, provide your final answer.

Available Actions

* MoveAhead: Move forward by a specified distance (meters).
Format: MoveAhead, distance [value, e.g., 0.3]

* MoveBack: Move backward by a specified distance (meters).
Format: MoveBack, distance [value, e.g., 0.3]

* MoveLeft: Move to the left by a specified distance (meters).
Format: Moveleft,distance [value, e.g., 0.3]

\
A

* MoveRight: Move to the right by a specified distance (meters).
Format: MoveRight,distance [value, e.g., 0.3]

* RotateLeft: Turn left by a specified number of degrees (0-180).
Format: RotatelLeft,degrees [value, e.g., 30.2]

* RotateRight: Turn right by a specified number of degrees (0-180).
Format: RotateRight, degrees [value, e.g., 30.2]

* LookUp: Tilt your view up by a specified number of degrees (0-180).
Format: LookUp, degrees [value, e.g., 30.2]

* LookDown: Tilt your view down by a specified number of degrees (0-180).
Format: LookDown, degrees [value, e.g., 30.2]
Output Format
During Exploration:
* Output only one action per round, enclosed in <action> and </action> tags.
e Example: <action> RotateRight,degrees 25 </action>
When Ready to Answer:

e Output only the option number (0, 1, 2, or 3) enclosed in <answer> and
</answer> tags.
e Example: <answer> 2 </answer>

\ J/
( )

Interaction Flow

* You will receive a question with multiple choice options and an initial egocentric
observation image.

» Explore the room using the available actions to get a comprehensive view and gather
sufficient information.

 After each action, the environment feedback and updated observation image will pro-
vided.

* Continue exploring until you can confidently answer the question.
* Provide your final answer using the specified format.

29



NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ’[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”’

” provided a proper justification is given (e.g., “error bars are not reported because it would be too
computationally expensive” or “we were unable to find the license for the dataset we used”). In
general, answering ” or ’[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Check-
list”,
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The Experiment Section
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The Conclusion Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The Experiment Section
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In the Experiment Section

Guidelines: The Evaluation Setup subsection of the Experiment Section, together with the
Appendix
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided the anonymous repo link in the Appendix

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Mips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The Experiment section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The Experiment section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: In the Experiment Section and Appendix
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In the Conclusion section
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: In the Appendix
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In the Appendix
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: In the Appendix
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t use crowdsourcing or research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We don’t use crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: In the Experiment section and the Appendix
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

36



