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Abstract001

In real practice, questions are typically complex002
and knowledge-intensive, requiring Large Lan-003
guage Models (LLMs) to recognize the multi-004
faceted nature of the question and reason across005
multiple information sources. Iterative and006
adaptive retrieval, where LLMs decide when007
and what to retrieve based on their reasoning,008
has been shown to be a promising approach009
to resolve complex, knowledge-intensive ques-010
tions. However, the performance of such re-011
trieval frameworks is limited by the accumu-012
lation of reasoning errors and misaligned re-013
trieval results. To overcome these limitations,014
we propose TreeRare (Syntax Tree-Guided015
Retrieval and Reasoning), a framework that uti-016
lizes syntax trees to guide information retrieval017
and reasoning for question answering. Follow-018
ing the principle of compositionality, TreeRare019
traverses the syntax tree in a bottom-up fashion,020
and in each node, it generates subcomponent-021
based queries and retrieves relevant passages022
to resolve localized uncertainty. A subcom-023
ponent question answering module then syn-024
thesizes these passages into concise, context-025
aware evidence. Finally, TreeRare aggregates026
the evidence across the tree to form a final an-027
swer. Experiments across five question answer-028
ing datasets involving ambiguous or multi-hop029
reasoning demonstrate that TreeRare achieves030
substantial improvements over existing state-031
of-the-art methods.032

1 Introduction033

Large Language Models (LLMs) (Chowdhery et al.,034

2023; Achiam et al., 2023) have demonstrated re-035

markable capabilities across a wide range of natu-036

ral language processing (NLP) tasks, including text037

generation and question answering, often achieving038

strong performance in few-shot or even zero-shot039

settings without task-specific fine-tuning (Brown040

et al., 2020). Despite their impressive performance,041

LLMs generate plausible but factually incorrect042

𝑄:What coastal area does the medieval 
fortress in … on the south side?
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Figure 1: Comparison of TreeRare and ReAct(Yao et al.,
2022) on a multihop question. TreeRare decomposes
the question into structured sub-questions and retrieves
focused evidence. In contrast, ReAct fails to generate
useful query and misidentifies the region.

statements due to over-reliance on their paramet- 043

ric knowledge when tackling knowledge-intensive 044

tasks that demand factual accuracy and external 045

grounding (Roberts et al., 2020; Maynez et al., 046

2020; Chen et al., 2022). To address this issue, 047

existing work has shown that retrieval-augmented 048

generation (RAG) can largely reduce factual hal- 049

lucination by incorporating LLMs with external 050

knowledge sources (Lewis et al., 2020; Guu et al., 051

2020). 052

RAG enhances LLMs by integrating external 053

knowledge retrieval into the generation process. 054

Traditional RAG systems follow a “retrieve-then- 055

read” paradigm, where a retriever selects top-k 056

documents based on similarity metrics, and the 057

LLM generates responses conditioned on retrieved 058

documents (Lewis et al., 2020). While effective 059

for well-posed queries, this paradigm often strug- 060
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gles to answer ambiguous or multihop questions,061

as similarity-based retrieval may miss relevant ev-062

idence. To address this limitation, many works063

enhance retrieval quality via retrieval judgment,064

adaptive search mechanisms, or question decompo-065

sition to improve retrieval quality and performance066

of complex knowledge-intensive tasks. (Li et al.,067

2025; Asai et al., 2024; Tan et al., 2024; Yao et al.,068

2022) However, as illustrated in Figure 1, these069

methods often rely on internal reasoning in LLMs,070

which can cause errors to accumulate across steps.071

Mistakes made during reasoning or retrieval can072

result in information that is misaligned with the073

original intent of the question, leading to noisy074

inputs and incorrect final answers (Li et al., 2024).075

Inspired by the principle of compositionality076

—the meanings of complex expressions are con-077

structed from the meanings of the less complex078

expressions that are their constituents (Fodor and079

Lepore, 2002)— we then ask: Can the syntactic080

structure of complex, knowledge-intensive ques-081

tions guide effective retrieval and inference toward082

correct answers? We leverage syntax trees as a083

basis for question decomposition, since parsing084

tree has been shown to be effective in capturing085

the syntactic relations between each phrase in a086

sentence (Li et al., 2015). Then, we propose a087

bottom-up traversal of the syntax tree, where each088

child node is processed first, and its output is used089

to guide the processing of its parent node. Addi-090

tionally, observing that LLMs frequently fail to091

detect ambiguity or knowledge gaps present within092

sub-phrases (Piryani et al., 2024; Kim et al., 2024),093

we provide LLMs at each node with information094

from the child nodes to formulate queries that re-095

solve the associated sub-phrase uncertainty. Fur-096

thermore, recognizing that LLM performance de-097

grades when conditioned on long or noisy inputs098

(Liu et al., 2024b; Xu et al., 2024), we introduce a099

subcomponent question answering that synthesize100

the retrieved context into concise, phrase-relevant101

evidence.102

Combining these modules, we propose syntax103

tree-guided retrieval and reasoning (TreeRare).104

TreeRare incrementally retrieves and resolves sub-105

components of a question in accordance with its106

syntax structure. As illustrated in Figure 2, TreeR-107

are traverses the syntax tree in a bottom-up man-108

ner, resolving the uncertainty at each node through109

a two-stage process, starting with subcomponent-110

based retrieval, followed by subcomponent ques-111

tion answering. Upon completing the traversal,112

TreeRare constructs targeted, comprehensive evi- 113

dence for each sub-phrase in the parsing tree and 114

aggregates these evidence across nodes to generate 115

a final answer. 116

Our contributions are as follows: (1) We propose 117

TreeRare to handle complex, knowledge-intensive 118

questions, which enhances LLMs’ performance 119

by interleaving retrieval with reasoning over the 120

syntax tree. (2) We introduce retrieval-only coun- 121

terpart, Tree-Retrieval, effectively improving the 122

retrieval quality without involving any LLM reason- 123

ing. (3) We perform experiments across multiple 124

multihop and ambiguous question answering (QA) 125

benchmarks for three LLM backbones. On multi- 126

hop QA benchmarks, TreeRare achieves an average 127

relative improvement up to 17.8%. For ambiguous 128

QA, TreeRare yields an average improvement of 129

23.7% across various evaluation metrics. 130

2 Related Work 131

2.1 LLMs for Reasoning 132

Significant efforts have been dedicated to enhance 133

the reasoning capabilities of LLMs during the infer- 134

ence phase. Chain-of-prompting (CoT) (Wei et al., 135

2022) prompting introduces intermediate reason- 136

ing steps between the initial query and the final 137

answer, thereby improving performance on com- 138

plex tasks. Building upon this, self-consistency 139

(SC) (Wang et al., 2022) generates multiple reason- 140

ing paths and employ majority voting to select the 141

final answer; self-verification (Shinn et al., 2023) 142

prompts LLMs to reflect on their outputs and itera- 143

tively refine them through feedback. Additionally, 144

Tree-of-Thought (ToT) and Reasoning via Plan- 145

ning (RAP) prompting (Yao et al., 2023; Hao et al., 146

2023) extend the CoT approach. These methods 147

further enhance LLMs’ reasoning abilities by ex- 148

ploring multiple reasoning paths with different tree 149

search algorithm. Above approaches rely solely 150

on the internal reasoning traces of LLMs and lack 151

structural guidance, such as syntax tree included in 152

TreeRare. 153

2.2 Retrieval Augmented Generation 154

Common RAG systems proceed in a retriever-then- 155

read paradigm, where it first retrieves relevant docu- 156

ments based on the user’s query using either sparse 157

or dense retrieval and then takes the retrieved infor- 158

mation in addition to the question as input to gener- 159

ate final answer (Khandelwal et al., 2020; Shi et al., 160

2024; Borgeaud et al., 2022). This paradigm outper- 161
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Figure 2: Overview of the TreeRare framework. Given a knowledge-intensive question, TreeRare first decomposes
it into a syntax tree. It then traverses the tree in a bottom-up manner. At each node, the framework generates
subcomponent-based queries conditioned on evidence from its child nodes and the current phrase. These queries
guide document retrieval, and a subcomponent question answering module extracts evidence related to the generated
queries. Finally, all node-level evidence is aggregated to produce the final answer.

forms regular LLMs, especially for the knowledge-162

intensive single-hop questions. In order to answer163

these single-hop questions, the needed information164

is evident from the question itself, such that a one-165

time retrieval can find the documents that contain166

the answer (Trivedi et al., 2022).167

However, this paradigm is inadequate for com-168

plex, knowledge-intensive questions, such as mul-169

tihop or ambiguous questions. Standard RAG sys-170

tems retrieve documents based solely on the orig-171

inal query, without accounting for the evolving172

information needs of further reasoning steps (Tal-173

mor and Berant, 2018; Amouyal et al., 2023). In174

the case of ambiguous questions, such approaches175

run the risk of making an early commitment to a176

single interpretation and potentially overlooking177

alternative meanings necessary for accurate com-178

prehension. (Lee et al., 2024; Gao et al., 2021). No-179

tably, LLMs have demonstrated their strong ability180

in decomposing complex tasks into different sub181

queries to facilitate its performance on complex,182

knowledge-intensive tasks (Drozdov et al., 2022;183

Khot et al., 2023; Dua et al., 2022). Several ap-184

proaches incorporate LLMs’ generating contents,185

including intermediate reasoning steps or heuristic186

answers, to guide retrieval (He et al., 2022; Trivedi187

et al., 2023; Tan et al., 2024). Similar to how hu- 188

mans iteratively resolve complex questions by iden- 189

tifying salient information gaps, querying on search 190

engine, and progressively narrowing uncertainty 191

until reaching a final answer, further work has ap- 192

plied LLM agents for information retrieval by lever- 193

aging LLMs’ reasoning capabilities to dynamically 194

determine both when and what to retrieve (Jiang 195

et al., 2023; Li et al., 2025; Yao et al., 2022). While 196

these adaptive RAGs depend on reasoning traces 197

or heuristic decision-making, TreeRare utilizes the 198

syntactic structure of the question to guide the re- 199

trieval and reasoning. 200

3 TreeRare: Syntax Tree-Guided 201

Retrieval and Reasoning 202

In this section, we give a detailed explanation of 203

TreeRare. Our approach is built on three key intu- 204

itions: (1) answering complex reasoning questions 205

requires addressing uncertainty within each phrase 206

of a question; (2) the uncertainty associated with 207

a phrase depends on clarifying its constituent sub- 208

phrases, as understanding the parts is necessary to 209

resolve the whole; and (3) effective retrieval should 210

target diverse and fine-grained evidence that aligns 211

with the phrase. 212
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3.1 Syntax Tree-Based Decomposition213

Given an input question Q, TreeRare converts it214

into its corresponding syntax tree. The resulting215

tree comprises a set of nodes N , where each node216

n ∈ N corresponds to a sub-phrase sn and is asso-217

ciated with a set of child nodes Cn. Specifically, sn218

spans all tokens dominated by node n in the parse219

tree. These syntax structures make explicit the220

constituency-based or dependency-based relation-221

ships between phrases, displaying how meaning is222

composed from sub-units of the question. TreeR-223

are interprets each sub-phrase as a constraint of224

the question and reasons over them incrementally.225

Following principles of compositional semantics226

(Fodor and Lepore, 2002), the reasoning process227

proceeds in a bottom-up tree traversal, ensuring228

that node n is processed only after resolving all its229

children Cn. Such ordering provides a basis for230

constructing a stepwise reasoning path grounded231

in syntax decomposition.232

3.2 Subcomponent-Based Information233

Retrieval234

At each node n in the syntax tree, TreeRare gen-235

erates a set of subcomponent-based queries to ad-236

dress the latent knowledge gaps associated with237

its sub-phrase sn. Complicated uncertainty often238

emerges not at the level of individual sub-phrases,239

but from their interaction. For instance, through240

the composition of sub-phrases, novel entities may241

emerge, and modifiers can introduce ambiguity or242

context-sensitive reinterpretations. Therefore, even243

if each child node contributes reliable evidence,244

Ec, this evidence alone may be insufficient to re-245

solve the uncertainty within sn. To bridge these246

gaps, TreeRare prompts the LLM to generate mul-247

tiple subcomponent-based queries that are condi-248

tioned on global question, local sub-phrase and249

evidence from its children. Formally, the query set250

is constructed as: Qn = QG(Q, sn, {Ec|c ∈ Cn}),251

where QG is a function that prompts LLMs to gen-252

erate a set of simple queries. This formulation253

ensures two key properties of generated queries:254

• Compositional Grounding: Queries are255

crafted to resolve the information gap that256

emerges from interactions between sub-257

phrases or from novel information introduced258

through their composition.259

• Explicit Reasoning: Queries function as an260

intermediate reasoning step to resolve sn,261

which eventually leads to coherent inference 262

toward the full question. 263

Following the generation of subcomponent queries, 264

TreeRare initiates a targeted retrieval procedure 265

aimed at acquiring external textual documents that 266

directly resolve the subcomponent-based queries, 267

Qn. Each query q ∈ Qn guides the retriever over 268

a large corpus to obtain a set of top-ranked doc- 269

uments dn,q. The complete retrieved context for 270

node n is then defined as Dn =
⋃

q∈Qn
dn,q. 271

3.3 Subcomponent Question Answering 272

Naively combining all retrieved documents leads to 273

excessive input length and noise, especially harm- 274

ful under the "Lost-in-the-Middle" effect in LLMs 275

(Liu et al., 2024b). To mitigate this effect, TreeR- 276

are introduces subcomponent question answering 277

module. It processes the retrieved content to retain 278

information that is salient to sub-phrase sn. At 279

the same time, it tries to address remaining reason- 280

ing gaps that arise when integrating evidence from 281

the subcomponents. These may include contra- 282

dictions, underspecified relationships, or missing 283

inferences needed to represent the full meaning of 284

sn from its children. Formally, given generated 285

queries Qn and retrieved documents Dn, the LLM 286

is instructed to produce a concise set of answers. 287

En = SAG(Qn, Dn), where SAG is a subcompo- 288

nent answer generation function that resolves Qn 289

based on retrieved documents Dn. 290

3.4 Final Answer Generation 291

Once each node n in the syntax tree has resolved its 292

local uncertainty with a set of evidence En, TreeR- 293

are advances to the final synthesis stage. To pro- 294

duce the final answer A, we prompt the LLM with 295

the full set of node-level evidence {En|n ∈ N} 296

and original question Q. The model is guided to 297

synthesize these into a unified response that ad- 298

dresses uncertainties across all sub-phrases: A = 299

FAG {Q, {En|n ∈ N}}, where FAG is a final 300

answer generation prompting function. This phase 301

is responsible for aggregating the distributed, fine- 302

grained inferences across the entire tree into a co- 303

herent answer to the original question Q. It enables 304

the detection and reconciliation of inconsistencies 305

or conflicting signals that may arise between differ- 306

ent pieces of evidence. These inconsistencies can 307

lead to multiple, potentially conflicting answers. 308

Additionally, it ensures logical coherence across 309

the whole tree, validating that intermediate infer- 310
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ences collectively support a consistent global rea-311

soning path.312

4 Experiments313

4.1 Experiment Setup314

Datasets. We assess our method on five315

knowledge-intensive question answering bench-316

marks that challenge LLMs with multi-step317

reasoning and ambiguities. For each dataset,318

we run experiment on 500 randomly sampled319

questions. We analyze three multihop question320

answering datasets: (1) HotpotQA (Yang et al.,321

2018), which contains questions requiring rea-322

soning over multiple supporting paragraphs; (2)323

2WikiMultiHopQA (2WikiMQA) (Ho et al.,324

2020), which consists of entity-centric questions325

that necessitate combining information from two or326

more distinct Wikipedia articles; and (3) MuSiQue327

(Trivedi et al., 2022), which features complex328

questions composed from simple single-hop329

questions. We also evaluate performance on330

ambiguous question answering using two datasets:331

(1) AmbigDocQA (Lee et al., 2024), which332

contains questions involving ambiguous mentions333

that may refer to multiple distinct entities, each334

associated with a different valid answer; and (2)335

ASQA (Stelmakh et al., 2022), which contains336

questions characterized by various types of337

multifacetedness.338

339

Evaluation Metrics. We employ COVER-340

EM (Rosset et al., 2021), which assesses whether341

the generated answer includes the ground truth342

answer to evaluate multihop questions and343

ASQA datasets. Following (Stelmakh et al.,344

2022), we also use Disambig-F1 (Dis-F1) to345

evaluate performance on the ASQA dataset. For346

AmbigDocQA, we follow the standard evaluation347

framework introduced by Lee et al. (2024), using348

Answer Recall (AR) and Entity Recall (ER) as349

performance metrics.350

351

Baselines. We evaluate TreeRare against a352

comprehensive suite of baselines that represent353

key prompting and planning paradigms under a354

unified retriever backbone (BM25 (Robertson355

et al., 2009)). (1) Zero-shot and few-shot356

prompting is introduced by Brown et al. (2020).357

These serve as foundational setups without any358

intermediate reasoning steps. (2) Chain-of-359

Thought prompting (CoT) (Wei et al., 2022)360

encourages step-by-step reasoning by appending 361

an instruction such as “Let’s think step by step” 362

to the input. (3) Self-Consistency (SC) (Wang 363

et al., 2022) samples multiple reasoning paths 364

and selects the final answer via majority voting. 365

(4) Tree-of-Thoughts (ToT) (Yao et al., 2023) 366

explores multiple structured reasoning trajectories 367

using tree-based search and pruning strategies. (5) 368

ReAct (Yao et al., 2022) interleaves reasoning 369

and retrieval by prompting the model to decide 370

dynamically when and what to retrieve. We 371

adapt ReAct to use BM25 instead of web-based 372

tools, denoted as ReAct*. Details of the baseline 373

implementations are included in Appendix B. 374

375

Implementation details. We conduct ex- 376

periments on three backbone LLMs: GPT-4o-mini 377

(OpenAI, 2024), LLaMA3.3-70B (AI, 2024), and 378

DeepSeek-V3 (Liu et al., 2024a). We implement 379

two variants of TreeRare by adopting two different 380

syntactic formalisms: TreeRare (DT), which 381

leverages dependency trees (Culotta and Sorensen, 382

2004) to capture head-dependent relations, and 383

TreeRare (CT), which utilizes constituency trees 384

(LANGACKER, 1997) to reflect hierarchical 385

phrase structures. We use the Stanza (Qi et al., 386

2020) toolkit’s dependency and constituency 387

parsers to obtain the required syntactic representa- 388

tions for our framework. For each term-specific 389

query, we employ BM25 (Robertson et al., 2009) 390

to retrieve the top fifteen relevant paragraphs. 391

More specific details of TreeRare are included in 392

Appendix A. 393

4.2 Results 394

Table 1 presents the evaluation results of TreeR- 395

are against competitive baselines across three LLM 396

backbones. In general, TreeRare leads or closely 397

matches top-performing baselines in both multi- 398

hop and ambiguous QA tasks, demonstrating the 399

effectiveness of TreeRare in handling complex, 400

knowledge-intensive QA. 401

In multihop QA, TreeRare achieves the best or 402

near-best scores in most cases. TreeRare (CT) 403

under DeepSeek-V3 achieves the strongest per- 404

formance, with an average COVER-EM of 0.515 405

on multihop QA and a relative improvement of 406

0.082 over the best-performing baseline. Simi- 407

lar trends are observed under LLaMA3.3-70B and 408

GPT4o-mini. The only exception is 2WikiMQA un- 409

der GPT4o-mini, where TOT slightly outperforms 410

TreeRare, likely because the extended evidence 411
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Model Method HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

GPT4o-mini

zero-shot 0.459 0.146 0.493 0.366 0.472 0.601 0.319 0.370
few-shot 0.473 0.151 0.520 0.381 0.409 0.539 0.328 0.423
COT (zero-shot) 0.466 0.124 0.432 0.340 0.349 0.447 0.327 0.386
COT (few-shot) 0.482 0.144 0.454 0.360 0.373 0.497 0.328 0.425
SC (zero-shot) 0.502 0.141 0.546 0.396 0.375 0.486 0.282 0.349
SC (few-shot) 0.484 0.144 0.437 0.355 0.407 0.542 0.314 0.391
ReAct 0.454 0.208 0.574 0.412 0.359 0.496 0.286 0.331
ReAct* 0.461 0.196 0.550 0.402 0.359 0.496 0.293 0.335
TOT 0.491 0.205 0.612 0.436 0.187 0.535 0.255 0.265
TreeRare (DT) 0.544 0.240 0.583 0.457 0.592 0.722 0.381 0.547
TreeRare (CT) 0.542 0.264 0.600 0.468 0.545 0.642 0.369 0.565
Rel. Impr. 0.083 0.269 -0.019 0.073 0.254 0.201 0.165 0.329

Llama3.3-70B

zero-shot 0.516 0.134 0.521 0.390 0.476 0.558 0.344 0.478
few-shot 0.502 0.142 0.575 0.406 0.522 0.603 0.331 0.407
COT (zero-shot) 0.468 0.152 0.352 0.324 0.404 0.512 0.303 0.364
COT (few-shot) 0.508 0.164 0.478 0.383 0.419 0.635 0.336 0.410
SC (zero-shot) 0.530 0.172 0.548 0.417 0.417 0.538 0.345 0.459
SC (few-shot) 0.532 0.168 0.563 0.421 0.411 0.586 0.331 0.384
ReAct 0.460 0.200 0.570 0.410 0.231 0.305 0.269 0.329
ReAct* 0.440 0.190 0.540 0.390 0.258 0.405 0.296 0.385
TOT 0.404 0.195 0.603 0.401 0.185 0.530 0.283 0.423
TreeRare (DT) 0.568 0.286 0.634 0.496 0.587 0.686 0.341 0.518
TreeRare (CT) 0.540 0.244 0.584 0.456 0.568 0.704 0.357 0.517

Rel. Impr. 0.068 0.430 0.051 0.178 0.125 0.165 0.038 0.084

Deepseek-V3

zero-shot 0.512 0.146 0.547 0.401 0.521 0.632 0.348 0.451
few-shot 0.526 0.154 0.550 0.410 0.545 0.661 0.358 0.411
COT (zero-shot) 0.498 0.142 0.426 0.355 0.405 0.527 0.347 0.416
COT (few-shot) 0.533 0.163 0.526 0.395 0.426 0.599 0.358 0.419
SC (zero-shot) 0.513 0.146 0.574 0.411 0.446 0.631 0.362 0.465
SC (few-shot) 0.524 0.152 0.574 0.417 0.421 0.578 0.352 0.448
ReAct 0.503 0.252 0.673 0.476 0.266 0.352 0.283 0.308
ReAct* 0.479 0.264 0.630 0.458 0.284 0.371 0.308 0.477
TOT 0.505 0.273 0.551 0.443 0.174 0.513 0.214 0.308
TreeRare (DT) 0.572 0.280 0.650 0.501 0.567 0.667 0.406 0.558
TreeRare (CT) 0.594 0.278 0.674 0.515 0.589 0.721 0.391 0.566
Rel. Impr. 0.114 0.026 0.001 0.082 0.131 0.091 0.122 0.187

Table 1: Performance of TreeRare (CT) TreeRare(DT), Chain-of-Thought (CoT), Self-Consistency (CoT-SC),
ReAct, ReAct*, and Tree-of-Thoughts (ToT) across five different QA datasets. AVG indicates the average COV-EM
on the three multihop datasets. ReAct* denotes a BM25-based variant of ReAct. Bold marks the best performance,
and underline denotes the second-best under teh same setting. Rel. Impr. stands for relative improvement over the
best baseline in the same setting.

derived from the tree structure exceeds GPT4o-412

mini’s limited reasoning capacity. ReAct performs413

well with stronger backbones but degrades under414

smaller models, reflecting its reliance on effective415

prompt-based reasoning. In contrast, TreeRare416

demonstrates robust performance across different417

model scales.418

TreeRare shows remarkable gains on Ambig-419

Doc and ASQA across all backbones. In particu-420

lar, under DeepSeek-V3, TreeRare (DT) achieves421

the highest Dis-F1 score of 0.406 and the largest422

relative improvement in COVER-EM in ASQA.423

These results demonstrate that grounding retrieval424

in each sub-phrase and subsequently aggregating425

the collected information helps uncover signals of426

different plausible interpretations. Notably, on Am-427

bigDoc, TreeRare (CT) also achieves the highest428

AR score of 0.592, outperforming the best baseline429

by a substantial margin. This highlights TreeRare’s 430

strength in disambiguating entities that share the 431

same name. 432

5 Analysis 433

5.1 Tree-Retrieval 434

To demonstrate the contribution of syntactic de- 435

composition to retrieval quality, we devise Tree- 436

Retrieval that mirrors TreeRare while eliminat- 437

ing all the module that require LLM’s reasoning. 438

Specifically, we discard the subcomponent-based 439

query generation module and instead directly uti- 440

lize the corresponding sub-phrases to retrieve rele- 441

vant documents from the corpus. Then we employ 442

a reranking model to select the top 15 passages 443

across the sub tree rooted at each node. These 444

top passages serve as a substitute for the evidence 445

generated by subcomponent question answering in 446
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Retriever HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

BM25 0.473 0.151 0.520 0.381 0.409 0.539 0.423 0.328
DPR 0.392 0.132 0.318 0.281 0.343 0.449 0.438 0.343
BM25+DPR 0.456 0.146 0.380 0.327 0.322 0.404 0.480 0.351
Tree-Retrieval (DT) 0.528 0.138 0.562 0.409 0.427 0.581 0.514 0.361
Tree-Retrieval (CT) 0.510 0.156 0.538 0.401 0.558 0.681 0.533 0.335

Table 2: Performance comparison of Tree-Retrieval and standard retrievers on multihop (HotpotQA, MuSiQue,
2WikiMQA) and ambiguous QA datasets (AmbigDoc, ASQA). The AVG column represents the mean COV-EM
across multihop datasets.

TreeRare. Reranking model evaluates the initially447

retrieved documents using more sophisticated mod-448

els to better assess their relevance to the subcom-449

ponent (Kratzwald et al., 2019). Implementation450

details and experiments on other backbone models451

are provided at Appendix D.452

As shown in Table 2, Tree-Retrieval consistently453

surpasses classical retrieval approaches such as454

BM25, DPR(Karpukhin et al., 2020), and their455

hybrid combination (BM25+DPR) across all QA456

datasets. The performance gain shows that incor-457

porating syntactic structure into the retrieval pro-458

cess enhances the relevance of retrieved documents.459

Additionally, these results suggest that the effec-460

tiveness of TreeRare cannot be solely attributed461

to enhanced downstream reasoning by the LLMs.462

Rather, a significant portion of its advantage stems463

from its retrieval stage, which is structurally guided464

to extract more fine-grained, contextually aligned465

documents.466

5.2 Ablation studies467

We conduct a series of systematic ablation exper-468

iments to evaluate the importance of each single469

module in TreeRare. Specifically, we evaluate the470

impact of (1) subcomponent-based query genera-471

tion (QG), (2) information retrieval (IR), and (3)472

subcomponent question answering (SAG). In each473

setting, we selectively disable one module, and474

we additionally assess configurations where only a475

single module is retained. Implementation details476

of these ablation experiments are provided in the477

Appendix C.478

Table 3 shows that removing any core module479

from TreeRare leads to a significant performance480

drop, confirming their complementary importance.481

First, the largest decreases are observed in removal482

of information retrieval, indicating that information483

retrieval is the most essential component for gen-484

erating the correct answer. Second, the absence485

of question generation causes moderate perfor-486

Figure 3: Distribution of outcome types for ReAct and
TreeRare on randomly sampled multihop QA.

mance drop (average COVER-EM down to 0.419). 487

Therefore, subcomponent-based queries enhance 488

retrieval relevance and correctness of each reason- 489

ing step. Third, removing subcomponent question 490

answering results in substantial degradation, with 491

average COVER-EM decreasing to 0.318. This 492

finding aligns with the “Lost-in-the-Middle” (Liu 493

et al., 2024b) phenomenon. Interestingly, its re- 494

moval subtly improves performance on AmbigDoc, 495

suggesting that entity-specific cues might be lost 496

during LLM-based filtering. 497

Among the single-module configurations, the 498

IR-only setting achieves the highest overall per- 499

formance, confirming the dominant role of infor- 500

mation retrieval in knowledge-intensive QA. In 501

contrast, QG-only and COT-only variants perform 502

poorly. As QG-only generates target queries, it 503

outperforms COT-only on ambiguous QA. 504

5.3 Error Analysis 505

To better understand the performance differences 506

between ReAct and TreeRare, we conduct a human 507

evaluation comparing their outputs on randomly 508

sampled multihop questions. Each output is manu- 509

ally categorized into one of five distinct outcome 510

types: Success, Retrieval Error, Reasoning Error, 511

Partial Answer, and Label Ambiguity. The detailed 512

definitions and illustrative examples of each error 513
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Ablation HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

TreeRare (DT) w/o QG 0.514 0.214 0.537 0.422 0.624 0.797 0.337 0.454
TreeRare (DT) w/o SAG 0.514 0.155 0.472 0.380 0.589 0.766 0.360 0.485
TreeRare (DT) w/o IR 0.431 0.156 0.366 0.318 0.244 0.262 0.285 0.403

IR Only 0.450 0.146 0.490 0.362 0.472 0.601 0.319 0.371
QG Only 0.352 0.124 0.448 0.308 0.183 0.197 0.248 0.350
COT Only 0.373 0.146 0.334 0.284 0.172 0.186 0.284 0.333

Table 3: Ablation study on TreeRare based on Dependency Tree where the backbone model is GPT4o-mini.
"QG","SAG","IR" refer to the subcomponent queries generation, subcomponent answer generation and information
retrieval.

type are presented in Appendix F.514

As shown in Table 3, TreeRare achievees a515

higher success rate compared to ReAct(Yao et al.,516

2022), indicating TreeRare’s effectiveness in en-517

hancing the LLM’s ability to produce correct an-518

swers. ReAct exhibits a high rate of retrieval er-519

rors, suggesting a lack of effective guidance in520

query generation. This is primarily due to its heavy521

reliance on few-shot prompting and the model’s522

reasoning abilities. In contrast, TreeRare offers523

explicit structural guidance through syntax tree,524

which results in more effective queries to guide525

retrieval and a large decrease in the retrieval error526

rate. Additionally, TreeRare reduces the rate of527

partial answer by 2% and reasoning errors by 8%,528

suggesting that its structured guidance mechanism529

better supports the reasoning alignment. Mean-530

while, TreeRare has a higher proportion of label531

ambiguity. While reflecting a higher incidence of532

mismatch with labeled answers, TreeRare may in533

fact produce correct responses that differ from an-534

notated references.535

5.4 Cost Analysis536

To assess the computational efficiency of TreeRare,537

we measure the total number of input and output to-538

kens generated during inference on 500 randomly539

sampled examples per dataset. The token usage540

is translated into cost according to the GPT-4o-541

mini pricing scheme published by OpenAI. Fig-542

ure 4 illustrates the cost breakdown across different543

methods. We observe that TreeRare (CT) incurs544

higher inference cost compared to TreeRare (DT).545

This difference can be attributed to the structural546

characteristics of constituency trees, which repre-547

sent nested phrase structures and thus tend to in-548

clude more nodes and sub-phrases than dependency549

trees. Since TreeRare performs query generation550

and retrieval at each node, deeper trees with more551

branches lead to increased token usage. Further-552

Figure 4: Total GPT-4o-mini API cost for TreeRare
(CT), TreeRare (DT), TOT, ReAct, SC, and COT across
HotpotQA, MuSiQue, 2WikiMQA, AmbigDoc, and
ASQA

more, since methods such as ToT and SC involve 553

extensive sampling of reasoning trajectories, they 554

inflate both input and output token counts and ex- 555

hibit significantly high computational costs. TreeR- 556

are (DT) offers a favorable trade-off, achieving 557

better performance with moderate computational 558

demands. 559

6 Conclusion 560

In conclusion, we propose TreeRare for knowledge- 561

intensive question answering, utilizing syntax trees 562

to guide information retrieval and structural rea- 563

soning. When traversing the syntax tree, our 564

method performs subcomponent-based information 565

retrieval and question answering. This structured 566

approach enhances retrieval quality and models’ 567

ability to resolve information gaps at each node. 568

Experimental results across knowledge-intensive 569

benchmarks demonstrate that our method achieve 570

significant performance improvements over state- 571

of-the-art baselines. 572
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Limitation573

While TreeRare demonstrates strong performance574

across multihop and ambiguous question answering575

datasets, several limitations remain.576

First, TreeRare relies on the quality and granu-577

larity of syntax parsers. Errors in dependency or578

constituency parsing may propagate through the579

bottom-up reasoning pipeline, leading to subopti-580

mal subcomponent decomposition and misaligned581

query formulation.582

Second, TreeRare incurs additional computa-583

tional overhead due to its multi-stage decomposi-584

tion, retrieval, and filtering pipeline. This overhead585

is particularly pronounced for the constituency tree586

variant, which typically produces deeper and more587

richly branched trees, resulting in increased token588

usage. Such cost implications may hinder TreeR-589

are’s scalability in latency- or budget-constrained590

deployment settings.591

Third, TreeRare has been evaluated exclusively592

on factoid-style questions, where each query maps593

to discrete factual answers. Its performance on594

open-domain dialogue or generative settings—such595

as those requiring opinion modeling, pragmatic596

reasoning, or user intent tracking—remains unex-597

plored.598
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A TreeRare Implementation Details923

Parsing Module. To construct the syntax trees924

required by TreeRare, we utilize the dependency925

parser and constituency parser from Stanza(Qi926

et al., 2020). For each input question, we parse it927

into both dependency and constituency structures.928

We implement a unified interface to map parsed929

trees into a bottom-up traversal format, ensuring930

that each node contains: (i) its corresponding sub-931

phrase span, (ii) its child nodes. (iii) syntactic type932

(e.g., NP, VP for constituency, or head-dependent933

relation for dependency).934

935

Traversing Details In the experiment, TreeRare936

conducts a pre-order traversal. Each node is937

processed only after all its child nodes are resolved.938

We maintain a processing queue initialized with939

leaf nodes. When processing a node: If it has no940

children, we directly use its text span to generate941

quries. If it has children, we first aggregate942

evidence from its children before proceeding to943

subcomponent-specific query generation. If it has944

no children, we directly use its text span as the ini-945

tial evidence. To improve computational efficiency,946

we implement a pruning mechanism that skips947

nodes based on two criteria: Nodes with syntactic948

types typically considered non-informative (e.g.,949

punctuation, determiners, conjunctions). Nodes950

whose associated sub-phrases are shorter than951

three tokens.952

953

Subcomponent Query Generation. At954

each non-leaf node, we generate queries to955

resolve syntactic uncertainty associated with its956

sub-phrase. We prompt the LLM using templates957

detailed in Appendix G We generate up to five958

candidate queries and select the top three queries959

according to heuristic rules prioritizing coverage960

and specificity.961

962

Retrieval Module. We use BM25 via Py-963

serini (Lin et al., 2021) as the retrieval backend.964

For each generated query, we retrieve the top-15965

paragraphs from Wikipedia dump in (Karpukhin966

et al., 2020). If multiple queries exist for a node,967

their retrieved documents are merged. In Table 4,968

we present the comparison of the performance969

between BM25 and DPR(Karpukhin et al., 2020)970

on TreeRare. We observe that BM25 outperforms971

DPR under five benchmark, and thus we implement972

TreeRare with BM25 as the backbone retriever.973

B Baseline Implementation Details 974

To ensure a fair comparison with TreeRare, we im- 975

plemented all baseline prompting methods within a 976

direct RAG setup using a shared retrieval backbone. 977

Specifically, we employ BM25 (Robertson et al., 978

2009) as the sparse retriever and retrieve the top-20 979

most relevant passages from a Wikipedia corpus 980

for each query. We directly use the implementation 981

from Pyserini (Lin et al., 2021). The retrieved con- 982

texts are concatenated with the input prompt and 983

passed to the large language model, leveraging its 984

extended context window. 985

Few-shot Prompting. For few-shot prompting, 986

we prepend three in-context examples drawn from 987

the same dataset as the test instance 988

Chain-of-Thought Prompting. We follow the 989

original CoT formulation (Wei et al., 2022), ap- 990

pending reasoning demonstrations to the prompt to 991

elicit step-by-step inference. In the few-shot CoT 992

setting, each demonstration consists of a question, 993

a multi-step rationale, and the final answer. In zero- 994

shot CoT, the test query is prefixed by the phrase 995

“Let’s think step by step.” 996

Self-Consistency. For multihop question, we 997

generate 10 independent reasoning trajectories us- 998

ing the few-shot CoT prompt. The model’s fi- 999

nal answer is selected by majority vote among 1000

the answers extracted from each reasoning trace. 1001

However, SC is not suitable for long-form answer 1002

generation. In AmbigDoc and ASQA, we fol- 1003

low the USC(Chen et al., 2024) protocol for self- 1004

consistency. 1005

React. We closely follow the original ReAct 1006

framework as proposed by (Yao et al., 2022). The 1007

maximum number of steps is set to eight. If the 1008

model fails to reach a conclusive answer within this 1009

limit, we default to using Self-Consistency prompt- 1010

ing to generate the final response. For ambiguous 1011

questions, we adopt the query refinement prompts 1012

introduced by (Amplayo et al., 2023) abd incorpo- 1013

rate few-shot exemplars directly into the prompt. 1014

1015

Tree-of-Thoughts. The original Tree-of- 1016

Thought paper does not provide a pipeline tai- 1017

lored for multihop or ambiguous question answer- 1018

ing. Therefore, we implement ToT following the 1019

setup in (Zhou et al., 2024). Instead of sampling 1020

multiple reasoning paths as in the original version, 1021

our implementation adopts the React framework 1022

to sample diverse plan-and-action paths, enabling 1023

interaction with Wikipedia and equipping ToT with 1024
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Retriever HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

Tree-Retrieval (DT) w BM25 0.528 0.138 0.562 0.409 0.427 0.581 0.514 0.361
Tree-Retrieval (DT) w DPR 0.482 0.16 0.504 0.382 0.409 0.479 0.399 0.332

Table 4: Comparison of Tree-Retrieval (DT) with BM25 and DPR as retriever backbone.

Figure 5: Total GPT-4o-mini API cost (input + output tokens) for TreeRare(CT), TreeRare(DT), TOT, ReAct, SC,
and COT across HotpotQA, MuSiQue, 2WikiMQA, AmbigDoc, and ASQA based on OpenAI pricing.

enhanced capabilities for open-domain QA.1025

C Ablation Study Details1026

We do not include a setting with only subcompo-1027

nent question answering in our ablation study. This1028

is because it is not feasible to generate fine-grained1029

answers without first performing query generation1030

and retrieval.1031

1032

TreeRare(DT) w/o CQ. To assess the im-1033

pact of subcomponent-based query generation, we1034

replace the TreeRare query generation module1035

with a naive retrieval. Specifically, for each node1036

in the syntactic tree, we bypass the LLM-generated1037

term-specific queries and instead directly use the1038

surface form of the corresponding sub-phrase as1039

the retrieval query. In the downstream subcompo-1040

nent answering stage, we prompt LLMs to directly1041

answer the question with the retrieved documents.1042

1043

TreeRare(DT) w/o QA. In this variant,1044

we eliminate the intermediate reasoning step that1045

resolves each node’s syntactic uncertainty. Instead1046

of prompting the LLM to process the retrieved1047

evidence at each node, we directly aggregate all1048

retrieved documents across sub-nodes and forward 1049

the combined evidence to their parent node without 1050

further interpretation. 1051

D Tree Retrieval 1052

For each node in the syntax tree, we directly use 1053

sub-phrase pn without any LLM-based reformula- 1054

tion. This phrase is used as a query to the retrieval 1055

systems. We retrieve the top10 passages from 1056

Wikipedia corpus using BM25. The retrieved pas- 1057

sages across all nodes within a sub-tree are merged. 1058

To suppress noise and prioritize passages most rele- 1059

vant to the sub-tree’s syntactic content, we apply a 1060

cross-encoder reranker MS-Marco-MiniLM-L-12- 1061

v2. In Table 4, we compared Tree-Retrieval with 1062

different both BM25 and DPR(Karpukhin et al., 1063

2020). 1064

E Further Cost Analysis 1065

We measure the API cost of GPT-4o-mini by sum- 1066

ming the number of input and output tokens pro- 1067

cessed for each method across five datasets: Hot- 1068

potQA, MuSiQue, 2WikiMultihopQA, AmbigDoc, 1069

and ASQA. For each dataset, 500 examples were 1070
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randomly sampled and processed with each method.1071

The input and output tokens were multiplied by1072

OpenAI’s published pricing for GPT-4o-mini (as1073

of April 2025).1074

F Case Study1075

Here is the definition for different categories:1076

• Success: Model produces a correct and com-1077

plete answer aligned with the reference.1078

• Retrieve Error: Retrieved documents are ir-1079

relevant or do not aid answer resolution.1080

• Reasoning Error: Model performs faulty rea-1081

soning despite relevant evidence being avail-1082

able.1083

• Partial Answer: Answer is generally correct1084

but lacks necessary specificity.1085

• Label Ambiguity: Prediction is plausible but1086

does not exactly match the labeled answer.1087

we randomly sampled 50 multihop questions1088

from the HotpotQA development set. For each1089

sample, a human annotator examined the reasoning1090

trace produced by both ReAct and TreeRare, along1091

with the final answer and supporting documents.1092

We present one representative example for each1093

failure category.1094
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Partial Answer

TreeRare:
Question: What is the name of the fight song of the university whose main campus is in Lawrence,
Kansas and whose branch campuses are in the Kansas City metropolitan area?
.......
Final answer: The fight song of the University of Kansas is "I’m a Jayhawk."(Label: Kansas
Song)
ReAct:
Question: The director of the romantic comedy "Big Stone Gap" is based in what New York city?
.......
Final answer: New York City

Figure 7: Examples of Partial Answer. The partial answer is highlighted in red.
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Search Error

TreeRare:
Question: What type of forum did a former Soviet statesman initiate? Generate Question: What
is the name of the former Soviet statesman who initiated the forum? ... answer: The name of the
former Soviet statesman who initiated a notable forum is Yegor Gaidar....
Generate Question: What was the name of the former Soviet statesman? ... answer: The name of
the former Soviet statesman is Mikhail Suslov .... question: What was the role of Mikhail Suslov
in the Soviet Union? ....
answer: Mikhail Suslov served as the Second Secretary .....
Generate Question: What topics are typically discussed in the forum organized by the former
Soviet statesman? .... answer: The document does not contain specific information about a
political forum initiated by a former Soviet statesman ...
Fianl answer: former Soviet statesman, Yegor Gaidar, initiated the Gaidar Forum, which focuses
on discussions among Russia’s political and business elite regarding economic reforms and political
strategies. ReAct:
Question: This singer of A Rather Blustery Day also voiced what hedgehog?
Search[A Rather Blustery Day] Thought 1: I need to search for the song "A Rather Blustery Day"...
Action 1: Search[A Rather Blustery Day] Observation 1: Winnie the Pooh and the Blustery Day is
a 1968 American animated musical fantasy short ...
Lookup[singer of A Rather Blustery Day] Thought 2: The search didn’t give me the specific singer
...
Action 2: Lookup[singer of A Rather Blustery Day] Observation 2: No more results.
Search[A Rather Blustery Day singer] Thought 3: The search did not yield any direct information
Action 3: Search[A Rather Blustery Day singer] Observation 3: Could not find A Rather Blustery
Day singer
Search[hedgehog character voiced by a singer from Winnie the Pooh] Thought 4: The search did
not provide specific details
Action 4: Search[hedgehog character voiced by a singer from Winnie the Pooh] Observation 4:
Could not find hedgehog character
Search[hedgehog character in animated films] Thought 5: The search has not provided concrete
information
Action 5: Search[hedgehog character in animated films] Observation 5: Could not find hedgehog
character
Search[singer of Sonic the Hedgehog] Thought 6: It seems that I’m stuck
Action 6: Search[singer of Sonic the Hedgehog] Observation 6: Could not find singer of Sonic the

Figure 8: Examples of Search Error. The search result or incorrect query is highlighted in red.
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Incorrect reasoning

TreeRare:
Question: question: Brown State Fishing Lake is in a country that has a population of how many
inhabitants ?
Generate Question: What country is Brown State Fishing Lake located in?; answer: Brown State
Fishing Lake is located in the United States ....
Generate Question: What is the population of the United States as of 2023? answer:The
population of the United States as of 2023 is approximately 333 million people. ....
Final answer: The population of the United States, where Brown State Fishing Lake is located, is
approximately 333 million as of 2023. (label: 9,984)
ReAct:
Question: Which performance act has a higher instrument to person ratio, Badly Drawn Boy or
Wolf Alice? Search[Badly Drawn Boy] Thought 1: I need to search both Badly Drawn Boy and
Wolf Alice ..... Action 1: Search[Badly Drawn Boy] Observation 1: Damon Michael Gough (born
2 October 1969), ..... and multi-instrumentalist.
Lookup[Badly Drawn Boy performances] Thought 2: .... I need to search for more explicit
information about his performances.
Action 2: Search[Wolf Alice] Observation 2: Wolf Alice are an English rock band fr.... acoustic
duo comprising singer Ellie Rowsell and guitarist Joff Oddie, Wolf Alice have also featured bassist
Theo Ellis and drummer Joel Amey since 2012 .... Lookup[Wolf Alice instruments] Thought 4:
Wolf Alice consists of four members: Ellie Rowsell (vocals), Joff Oddie (guitar), Theo Ellis (bass),
and Joel Amey (drums). .....
Action 3: Lookup[Wolf Alice instruments] Observation 3: No more results.
Finish[Wolf Alice] Thought 4: I know they reportedly consist of four members and typically
feature guitar, bass, drums, and vocals whwereas Badly Drawn Boy only have one member . (label:
Badly Drawn Boy)

Figure 9: Examples of Reasoning Error. The incorrect part is highlighted in red.
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G Prompt for TreeRare1095
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Final answer generation prompt for multi hop QA

Answer the following question: {{questions}} , with following documents: {{documents}}.

Your response should strictly follow the format:
Explanations :[give your step by step Analysis here ]

FINAL:(BE CONCISE, ONLY a FEW phrases)

let’s think step by step

Subcomponent Question generation prompt for Ambiguous QA

You’re a disambiguation expert analyzing "{{phrase}}" in: {{self.question}} Instruction:
1. Analyze the question by considering these potential ambiguities:
- Temporal: Check for unclear time references, periods, or temporal scope
- Entity: Identify names, references, or terms that could refer to multiple entities
- Semantic: Look for words with multiple meanings (polysemy/homonymy)
- Scope: Consider possible boundaries and levels of detail
- Intent: Examine possible purposes and expected answer types
- Cultural: Consider cultural-dependent interpretations
- Quantitative: Check for unclear measurements or numerical references
- Linguistic: Analyze syntax and referential clarity
- Categorical: Consider possible classification schemes
- Contextual: Examine required background knowledge and relationships
2. Analyze the question word by word. Return disambiguated question and its interperatation for
each different meaning

Here is what we currently know Documents:{{context}}

pick top 5 questions that are best in disambiguating the question. (covers different mean-
ings of the questions) and strictly FOLLOW the format: response: question1; question2;....

Final answer generation prompt for Ambiguous QA

The question may be ambiguous and have multiple correct answers, and in that case, you have to
provide a long-form answer including all correct answers.
1. Carefully go through all the given documents.
2.The using your and context, provide answer.
Your response should strictly follow the format:
Explanations (Step 2):[give your step by step Analysis here ]

FINAL(Step 2):
Please ONLY reply according to this format
Question: {{questions}} Document: {{documents}} let’s think step by step
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Subcomponent question answering prompt

Answer the {{questions}} based on on the document info. For each question find as many answers
as possible. Response all the answers in a short paragraph (as specific as possible).
Relevant Document: {{context}}

Subcomponent Question generation prompt for multihop QA

You’re a an expert analyzing "{{phrase}}" in main query: "{{self.question}}".
1.You should generate at most 5 simple questions that mainly ask for information about {{phrase}}
that helps understand the main query. Question should be single-hop, clear and search-friendly.
2. Here is what we currently know
Documents:{{context}}
pick top 3 questions that are best in decomposing the main query and leading to final answer of the
main query.
strictly FOLLOW the format: response: question1; question2;....
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