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ABSTRACT

The rising interest in Bayesian deep learning (BDL) has led to a plethora of meth-
ods for estimating the posterior distribution. However, efficient computation of
inferences, such as predictions, has been largely overlooked with Monte Carlo inte-
gration remaining the standard. In this work we examine streamlining prediction in
BDL through a single forward pass without sampling. For this we use local lineari-
sation on activation functions and local Gaussian approximations at linear layers.
Thus allowing us to analytically compute an approximation to the posterior predic-
tive distribution. We showcase our approach for both MLP and transformers, such
as ViT and GPT-2, and assess its performance on regression and classification tasks.

1 INTRODUCTION

Recent progress and adoption of deep learning models, has led to a sharp increase of interest in
improving their reliability and robustness. In applications such as aided medical diagnosis (Begoli
et al., 2019), autonomous driving (Michelmore et al., 2020), or supporting scientific discovery
(Psaros et al., 2023), providing reliable and robust predictions as well as identifying failure modes
is vital. A principled approach to address these challenges is the use of Bayesian deep learning
(BDL, Wilson & Izmailov, 2020; Papamarkou et al., 2024) that promises a plug & play framework
for uncertainty quantification. However, while plugging the Bayesian approach into deep learning
is relatively straightforward (Blundell et al., 2015; Gal & Ghahramani, 2016; Wu et al., 2019), the
play part is typically severely hampered by computational and practical challenges (Wenzel et al.,
2020; Foong et al., 2020; Gelberg et al., 2024; Coker et al., 2022; Kristiadi et al., 2023).

The key challenges associated with BDL, can roughly be divided into three parts: (i) defining a
meaningful prior, (ii) estimating the posterior distribution, and (iii) performing inferences of interest,
e.g., making predictions for unseen data, detecting out-of-distribution settings, or analysing model
sensitivities. While constructing a meaningful prior is an important research direction (Nalisnick,
2018; Meronen et al., 2021; Fortuin et al., 2021; Tran et al., 2022), it has been argued that the
differentiating aspect of Bayesian deep learning is marginalisation (Wilson & Izmailov, 2020; Wilson,
2020) rather than the prior itself. Estimating the posterior distribution has seen significant progress in FIX

(oXsH)recent years (Blundell et al., 2015; Maddox et al., 2019; Daxberger et al., 2021a) with a particular
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Figure 1: Our streamlined approach allows for practical outlier detection and sensitivity analysis.
Locally linearizing the network function with local Gaussian approximations enables many relevant
inference tasks to be solved analytically, helping render BDL a practical tool for downstream tasks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

focus on post-hoc approximations (Kristiadi et al., 2020; Daxberger et al., 2021b). However, while
these approaches have shown promise in making BDL useful for real-world applications, they are
tackling only part of the computational and practical challenges associated with using BDL.

In this work, we focus on streamlining BDL for downstream tasks by providing a straightforward
and effective method to compute inferences of interest, cf., Fig. 1. For this, we make the neural
network locally linear with respect to the inputs. Thus, inferences, such as computing predictions,
admit a closed-form solution and can be estimated efficiently. In particular, we propose to use local
linearisation of non-linear activation functions at every layer of the network and use local Gaussian
approximations at linear layers. Empirically, we find that local linearisation combined with Gaussian
approximation of Bayesian neural networks provides accurate predictions, with useful predictive
uncertainties, while being conceptually simple. Moreover, complex inference tasks w.r.t. the inputs,
such as analysing model sensitivities to input perturbations, can be computed efficiently. Thus,
allowing to truly account for all sources of uncertainties.

Contributions: (i) We propose layer-wise local linearisation and local Gaussian approximations of
neural networks to streamline BDL for downstream tasks (Sec. 3). (ii) We discuss how to handle
different covariance structures and architecture choices (Sec. 3.2 & Sec. 3.3). (iii) Finally, we present
an empirical assessment of our approach on regression and classification tasks, and showcase its
utility for uncertainty quantification, out-of-domain detection, and sensitivity analysis (Sec. 4).

2 RELATED WORK

To estimate the posterior in BDL, variational inference (VI, Blei et al., 2017; Zhang et al., 2018)
utilizes a variational approximation to the true posterior distribution and minimizes a divergence
measure between both distributions. A typically choice for the variational family is a factorized
Gaussian distribution, chosen for computational reasons. Early works on mean-field VI (MFVI) and
related approaches, require a modification on the model structure (Blundell et al., 2015) to perform a
reparametrization of the variational distribution. Recent work by Shen et al. (2024) developed an
optimiser to ease the use of MFVI, and have shown good performance on large-scale models such
as ResNets (He et al., 2016) and GPT (Radford et al., 2019). However, VI-based methods typically
require Monte Carlo estimation to perform inferences, which can be problematic in practice due to
additional computational overhead.

A recent trend in BDL are post-hoc methods, such as the Laplace approximation (LA, MacKay,
1992a), which can be applied directly on the trained model without modification (Kristiadi et al.,
2020; Daxberger et al., 2021a). Daxberger et al. (2021b) extended the applicability of LAs by
showing that treating a subset of parameters Bayesian can still give good predictive uncertainties.
Moreover, Immer et al. (2021b) proposed the linearised LA by performing a global linearisation,
which is principled under the Generalised Gauss–Newton approximation to the Hessian, and has
shown promise in providing useful predictive uncertainties. Recent works applied LA in various
large-scale applications, such as large language models (Yang et al., 2024; Kampen et al., 2024) and
dynamic neural networks (Meronen et al., 2024).

In addition, various tailored ensemble-based methods for BDL have been proposed, such as Monte
Carlo dropout (Gal & Ghahramani, 2016), deep ensembles (Lakshminarayanan et al., 2017), and
stochastic weight averaging-Gaussian (Maddox et al., 2019). While some works on deep ensembles FIX

(oXsH)enable estimating the predictive distribution in a single forward pass (Eschenhagen et al., 2021;
Havasi et al., 2021), most methods typically require multiple forward passes to estimate the predictive
distribution and do not explicate an approximation to the posterior distribution.

More recently, there has been a trend on exploring deterministic computations in BDL to avoid the
need for sampling (Goulet et al., 2021; Giordano et al., 2024; Burroni et al., 2024). In particular,
Wu et al. (2019) derived an analytically training objective for VI by using moment-matching at each
layer of the network. However, the solutions to the moment-matching have to be derived manually
for each type of activation function, making it impractical in practice. More recently, Goulet et al.
(2021) proposed local linearisation of the network to perform message-passing on the network under
a mean-field assumption. Moreover, Petersen et al. (2024) used a local linearisation of the network to
propagate aleatoric uncertainties over the input through a deterministic network. In addition, Dhawan FIX

(tEnH)et al. (2023) investigated local linearisations of activation functions to estimate the function space
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Figure 2: Illustration our approach for different network architectures. In MLPs, we can directly
apply local Gaussian approximations and local linearisation of each layer. The distribution over
activations is then propagated to the next layer. In attention layers, we treat the query Q and key
K deterministically and only treat the value V as a random quantity, resulting in a straightforward
propagation path. The resulting distribution is then propagated to the subsequent MLP layer.

distance of two neural networks, for example, relevant in continual learning settings. In contrast, our
work disentangles the approximation of the posterior distribution and the computation of inferences
w.r.t. the posterior distribution. Hence, providing a streamlined framework to propagate all forms of
uncertainties through Bayesian neural networks.

3 METHOD: STREAMLINING BAYESIAN DEEP LEARNING

In Bayesian deep learning (BDL), predicting the output y (e.g., class label, regression value) for an
input x ∈ X is performed by marginalizing out the model parameters θ of the neural network fθ(·)
instead of trusting a single point estimate, i.e.,

p(y |x,D) =

∫

θ

p(y | fθ(x)) p(θ | D) dθ, (1)

where D = {(xn, yn)}Nn=1 denotes the training data and the posterior distribution p(θ | D) = p(θ,D)
p(D)

is given by Bayes’ rule. However, for most neural networks integrating over the high-dimensional
parameter space is intractable, necessitating the use of approximations to compute the posterior
distribution p(θ | D) and the posterior predictive distribution p(y |x,D).

Recently, much progress has been made in efficiently approximating the posterior distribution for
BDL, including scaling mean-field variational inference (Shen et al., 2024) to large-scale models
and performing post-hoc estimation using the Laplace approximations (Daxberger et al., 2021a).
A common thread is the use of a tractable distribution q to approximate the posterior distribution
q(θ) ≈ p(θ | D), typically chosen to be a Gaussian distribution. Consequently, the posterior predictive
distribution is typically approximated using Monte Carlo integration, i.e., by sampling from q, to
estimate the integral in Eq. (1), with the exception of the linearised Laplace approximation (Immer
et al., 2021b). However, while using a Gaussian approximation facilitates efficient computation of the
approximate posterior distribution, sampling from the high-dimensional Gaussian can be challenging
(Vono et al., 2022) and result in a high computational overhead.

We will now shift our focus on estimating integrals of the form of Eq. (1) and assume that an
approximation to the posterior distribution q(θ) is given. Further, we will assume that q is in the FIX

(oXsH)family of stable distributions, for which a linear combination of two independent random variables
with this distribution has the same distribution. Gaussian distribution is a typical example of stable
distribution. Note that marginalisation tasks such as in Eq. (1) appear in many scenarios, e.g., active
learning (MacKay, 1992a; Gal et al., 2017; Smith et al., 2023), model selection (Immer et al., 2021a;
MacKay, 1996), or outlier detection (Wilson & Izmailov, 2020), and pose a reappearing challenge in
downstream applications of BDL.

3.1 STREAMLINING COMPUTATIONS WITH LOCAL APPROXIMATIONS

Let the weights and biases of the mth linear layer of the network f be denoted as W (m) ∈
RDout×Din and b(m) ∈ RDout , respectively. Then the pre-activation h(m) is given as h(m) =

3
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W (m)a(m−1) + b(m), where a(m−1) ∈ RDin is the activation of the previous layer. In case
m = 1, then a(0) corresponds to the input x. We further denote the kth element of h(m) as
h
(m)
k =

∑Din
i=1 W

(m)
ki a

(m−1)
i + b

(m)
k and drop the superscript if it is clear from the context.

Given an approximate posterior distribution q(θ) with θ = {W (m), b(m)}Mm=1, we aim to compute
the probability distribution of the activation a(m) of each layer m. For this, we need to estimate the
distribution of the pre-activation h(m) and then compute an approximation to the activation a(m)

after application of a non-linear activation function g(·).
Approximating the pre-activation distribution In case the activation a(m−1) is deterministically
give, i.e., for the input layer, we can compute the distribution over pre-activations analytically as a
consequence of the stability of stable distributions under linear transformations (Petersen et al., 2024).
However, for hidden layers the distribution over pre-activations is generally not of the same family as
the posterior distribution (Wolinski & Arbel, 2022). Nevertheless, we will apply a local Gaussian
approximation to the pre-activation at every hidden layer. Specifically, we make the assumption:

Assumption 3.1. Assume that the activations of the previous layer a(m−1)i and parameters of the
mth layer are independent.

Then followed by a Gaussian approximation of a(m−1)i W
(m)
ki for each i and each k, the mean of the

pre-activation h(m) is given as:

E
[
h(m)

]
= E

[
W (m)

]
E
[
a(m−1)

]
+ E

[
b(m)

]
, (2)

and the covariance between the kth and the jth hidden unit is computed as:

Cov
[
h
(m)
k , h

(m)
l

]
=

∑

1≤i,j≤Din

Cov
[
a
(m−1)
i W

(m)
ki , a

(m−1)
j W

(m)
lj

]
+ Cov

[
b
(m)
k , b

(m)
l

]

+
∑

1≤i≤Din

E
[
a
(m−1)
i

] (
Cov

[
W

(m)
ki , b

(m)
l

]
+ Cov

[
W

(m)
li , b

(m)
k

])
, (3)

where
Cov

[
a
(m−1)
i W

(m)
ki , a

(m−1)
j W

(m)
lj

]
= E

[
a
(m−1)
i

]
E
[
a
(m−1)
j

]
Cov

[
W

(m)
ki ,W

(m)
lj

]

+ E
[
W

(m)
ki

]
E
[
W

(m)
lj

]
Cov

[
a
(m−1)
i , a

(m−1)
j

]

+ Cov
[
a
(m−1)
i , a

(m−1)
j

]
Cov

[
W

(m)
ki ,W

(m)
lj

]
. (4)

A detailed derivation alongside an empirical evaluation of the approximation quality can be found in
Apps. A.1 and A.2. Depending on the structure of the covariance matrix, we can further simplify the
computation of the covariance matrix, which we will discuss in Sec. 3.3.

Approximating the activation distribution Let g(·) denote a non-linear activation function
computing a = g(h) for a pre-activation h. Inspired by the application of local linearisation in
Bayesian filtering (e.g., Särkkä & Svensson, 2023), we use a first order Taylor expansion of g(·) at
the mean of the pre-activation E [h]. Specifically, we approximate g(h) using

g(h) ≈ g(E [h]) + Jg|h=E[h](h− E [h]), (5)
where Jg|h=E[h] is the Jacobian of g(·) at h = E [h]. Then, as stable distributions are closed under
linear transformations, the distribution of a can be computed analytically and is given as follows in
case of a Gaussian distributed, i.e.,

a ∼ N (g(E [h]),Jg|⊤h=E[h]ΣhJg|h=E[h]). (6)
Note that the quality of the local linearisation will depend on the scale of the distribution over the
input h. For ReLU activation functions, Petersen et al. (2024) have shown that local linearisation
provides the optimal Gaussian approximation of a univariate Gaussian distribution in total variation.
For classification tasks, we employ a probit approximation MacKay (1992b); Kristiadi et al. (2020).

Intuition One way to understand the resulting approximation is as a piecewise linear function (or FIX
(tEnH)multilinear function). Globally, the function will still be non-linear, but locally it will behave linear.

In contrast to the original model, which composes piecewise linear functions in case of a ReLU
network, our approximation composes linear functions locally. And we obtain a piecewise linear
function due to the local composition, which allows us to the capture nonlinear nature of the model.

4
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Figure 3: To retrieve the highlighted submatrix Cov[W [1, :],W [2, :]] of the covariance for W ∈
R2×3, we identify the Kronecker blocks that contain the covariance of interest (II, III, V, and VI),
explicate those blocks in memory, and then retrieve the relevant submatrix.

3.2 ARCHITECTURE CHOICES

By combining local Gaussian approximations for linear layers and local linearisation for non-linear
activation functions, we can analytically compute the distribution over activations at each layer in a
single forward pass. In case of a multi-layer perceptron (MLP) and common architecture choices, the
described approach can be directly applied to each layer of the network. However, for more complex
architectures such as attention, further considerations are needed to streamline the computation path.
Fig. 2 illustrates the computation path for MLPs and attention layers.

Attention layers Each block in a transformer (Vaswani et al., 2017) constitutes: multi-head attention,
an MLP, layer normalisation, and a residual connection. For the MLP part, the propagation is the
same as previously described. Further, layer normalisation and residual connections are linear
transformations and, hence, the resulting distribution can be obtained analytically. Treating the multi-
head attention block is more involved as the softmax activation function ‘squashes’ the distribution
on pre-activations. We describe our method below and further details are in App. A.6.

Given an input H ∈ RT×D, where T is the number of tokens in the input sequence and D is the
dimension of each token, denote the query, key and value matrices as WQ ∈ RD×D, WK ∈ RD×D,
WV ∈ RD×D, respectively. Further we denote the key, query and value in an attention blocks as
Q = HWQ, K = HWK , and V = HWV . Then the output of attention layer is given as follows
Attention(H) = Softmax

(
QK⊤

/
√
D
)
V . For computational reasons we will assume the input

distribution to the multi-head attention block to have a diagonal covariance structure. As pushing a FIX
(8AJz)random vectors over a softmax activation may require further approximations and will not result in an

output with distribution close to a Gaussian distribution. Hence, we treat the query and key matrices
as deterministically given. A possible remedy is to leverage an approximation to the softmax function
such as Lu et al. (2021).

Consequently, the attention scores are given as:

Attention(H) = Softmax

(
E [H]E [WQ] (E [H]E [WK ])⊤√

D

)
V , (7)

where V follows a stable distributions. Due to linearity, the resulting distribution can again be
obtained analytically.

3.3 COVARIANCE STRUCTURE

Computing the full covariance of the posterior is usually infeasible due to high computational and
memory cost. We describe our methods for two most common covariance approximations and will
briefly discuss the computational cost in case of a full and diagonal covariance structure.

Full covariance When the posterior has full covariance, for the mth linear layer the computational
complexity for computing Cov[hk, hl] is O([D

(m)
in ]2). Consequently, computing the covariance of

the activations for the mth layer adds to O([D
(m)
out ]2[D

(m)
in ]2). Computing the local linearisation for

element-wise activation functions results in a complexity of O([D
(l)
out]

2). Hence, we obtain a total cost
of O(

∑M
m=1[D

(m)
out ]2[D

(m)
in ]2 + [D

(m)
out ]2) for a network with M layers. As the computational cost is

directly linked to the number of parameters and their correlation structure, a natural way to reduce

5
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the computational cost is to either exploit structure in covariance matrix or consider only a subset of
parameters, in the spirit of subnetwork Laplace (Daxberger et al., 2021b). We will focus on the covari-
ance structure in the following as consider a subset of parameters trivially extends from our discussion.

Diagonal approximation In case the correlations between model parameters are ignored, as in
mean-field variational inference, the computation of the pre-activation covariance reduces to:

Cov
[
h
(m)
k , h

(m)
l

]
=

∑

1≤i,j≤Din

E
[
W

(m)
ki

]
E
[
W

(m)
lj

]
Cov

[
a
(m−1)
i , a

(m−1)
j

]
, (8)

and variance of the kth pre-activation is given as: Var[h(m)
k ] =

∑

1≤i≤Din

E
[
a
(m)
i

]2
Var

[
W

(m)
ki

]
+ Var

[
b
(m)
k

]
+ Var

[
a
(m−1)
i

](
E
[
W

(m)
ki

]2
+ Var

[
W

(m)
ki

])
. (9)

Hence, assuming a diagonal covariance structure can help in reducing the computational burden. If
only the variance of the layer output is of interest, the computational cost can be further reduced and
adds to a total of O(

∑M
m=1 D

(m)
out D

(m)
in +D

(m)
out ). Further details are given in App. A.3.

Kronecker-factorisation (KFAC) Another common choice for approximating the posterior co-
variance is the use of a Kronecker-factorisation (KFAC) (Martens & Grosse, 2015), popularised in
the context of Laplace approximations (Ritter et al., 2018). In this case, the posterior covariance
Σ is given by a Kronecker product of two factors, i.e., Σ = (A⊗B + λ2I)−1 where ⊗ denotes
the Kronecker product and λ2I is a prior precision. Note that in case of a non-zero prior precision,
the covariance cannot be expressed in the form of a Kronecker matrix multiplication. Denote the
eigenvectors and eigenvalues of A as UA and ΛA, respectively, we approximate the Σ as follows:

Σ = (A⊗B + λ2I)−1 =
(
(UAΛAU

⊤
A )⊗(UBΛBU

⊤
B ) + λ2I

)−1
(Eigen Decomposition)

≈ ((UA ⊗UB)(ΛA + λIA))
−1 ⊗

(
(ΛB + λIB)(UA ⊗UB)

⊤)−1 . (10)

To compute the covariance of the pre-activations, we need to retrieve the covariance between
the weights of the kth unit and the weights of the lth unit, which corresponds to the kth and
lth row in W , i.e., Cov[W [k, :],W [l, :]]. In case of KFAC Laplace approximations, accessing
Cov[W [k, :],W [l, :]] cannot be done directly. Therefore, we developed a block retrieval method to
retrieve Cov[W [k, :],W [l, :]] without explicating the full covariance matrix in memory.

The key idea is to first identify the Kronecker blocks that contain the covariance of interest and then
retrieve the submatrix by reconstructing only the relevant blocks. Fig. 3 illustrates the idea in a toy
example for a weight matrix W ∈ R2×3 and a submatrix of interest Cov[W [1, :],W [2, :]]. Our
method only reconstructs blocks contain the sub-covariance of interest (II, III, V, and VI) and then
retrieves the relevant submatrix. Further details are given in App. A.4.

4 EXPERIMENTS

We demonstrate practical applicability of our approach on classification/regression tasks (Sec. 4.1),
large-scale classification results with ViT/GPT models (Sec. 4.2), and sensitivity estimation (Sec. 4.3).

Data sets We use a selection of data sets from UCI repository (Kelly et al., 2023) for the regression
experiments. For classification, we experiment on MNIST (LeCun et al., 1998), FMNIST (Xiao et al.,
2017), as well as the 11-class data sets OrganCMNIST and OrganSMNIST from MedMNIST (Yang
et al., 2023). To assess our method on higher-dimensional settings, we experiment with CIFAR-10
and CIFAR-100 (Krizhevsky & Hinton, 2009), DTD (Cimpoi et al., 2014), RESISC (Cheng et al.,
2017) and a subsampled version of ImageNet-R (Hendrycks et al., 2021) with 100 classes to reduce
the memory overhead for LA. For the GPT model we used the BOOLQ, WIC, and MRPC tasks from
GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) benchmarks.

Posterior approximations We adopt the Laplace approximation (LA, MacKay (1996)) and mean-
field variational inference (MFVI, Blei et al., 2017) for approximating the posterior distribution of the
network parameters. For LA, we estimate the full covariance for the regression experiments, while
we use diagonal or KFAC approximations for the covariance where applicable in the classification

6
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Table 1: Negative log predictive density ↓ on UCI regression data sets. Ours results in better or
matching performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diagonal Covariance) Laplace Approximation (Full Covariance)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 1.287±0.069 1.136±0.182 3.795±0.110 1.047±0.172 1.443±0.077
LD (345, 5) 1.346±0.280 1.369±0.440 2.221±0.110 1.495±0.580 1.474±0.648
AM (398, 7) 1.004±0.052 0.807±0.087 1.812±0.065 0.492±0.279 0.478±0.309
REV (414, 6) 1.076±0.059 0.925±0.091 1.932±0.045 0.859±0.129 0.833±0.156
FF (517, 12) 2.160±3.003 2.333±3.671 2.086±0.292 1.584±0.950 1.596±1.217
ITT (1020, 33) 0.937±0.047 0.841±0.065 1.681±0.069 0.825±0.095 0.756±0.164
CCS (1030, 8) 0.939±0.068 0.828±0.108 1.612±0.048 0.319±0.109 0.234±0.161
ASN (1503, 5) 0.962±0.054 0.899±0.065 1.788±0.045 0.422±0.109 0.396±0.133
CAC (1994, 127) 0.973±0.092 0.920±0.118 1.848±0.055 1.281±0.069 2.662±1.096
PT (5875, 19) 0.976±0.069 0.940±0.074 0.984±0.101 0.576±0.181 0.651±0.306
CCPP (9568, 4) 0.365±0.040 0.352±0.042 1.345±0.085 −0.062±0.182 −0.062±0.200

Bold Count 3/11 11/11 0/11 7/11 8/11

experiments. We compare our method using local Gaussian approximation and local linearisation
against Monte Carlo (MC) sampling and a global linearised model (GLM, Immer et al., 2021b).
For MFVI, we adopt the IVON optimiser (Shen et al., 2024) to obtain the posterior approximation
with a diagonal covariance structure by default, which has been shown to be effective and scalable
to large-scale classification tasks. Here, we compare our method against MC sampling from the
posterior to make predictions as done in Shen et al. (2024). For the MFVI and LA sampling baselines,
we used 1, 000 MC samples in the regression and classification experiments in Sec. 4.1, and 50 MC
samples for the ViT and GPT-2 in Sec. 4.2. For our method, we fit an additional scaling factor on the FIX

(KRRC)predictive variance by minimising the NLPD on the validation set, similar to the pseudo-count used
in Ritter et al. (2018). FIX

(8AJz)Network architectures We experiment with one or two layer multi-layer perceptron (MLP) on
the UCI regression data sets with details given in App. B.1. For MNIST, FMNIST, OrganCMNIST
and OrganSMNIST, we use an MLP with layers containing 784 − 128 − 64 − C neurons, where
C is the number of classes. For CIFAR-10/100, DTD, RESISC and ImageNet-R, we fine-tune a
Vision Transformer (ViT) (Dosovitskiy et al., 2021) base model pre-trained on ImageNet-1k (Deng
et al., 2009). For the GPT model, we use the pre-trained GPT-2 base model from Hugging Face
Transformers (Wolf et al., 2019) and fine-tune it on the respective tasks.

Evaluation metrics For the regression experiments, we measure the negative log predictive density
(NLPD) and root-mean-square error (RMSE) for each method. In the classification experiments, we
use accuracy (ACC), NLPD, and expected calibration error (ECE) for comparing the methods. We
use a paired t-test with p = 0.05 to bold results with significant statistical difference when reporting
the results. For assessing out-of-distribution (OOD) robustness, we use a Gaussian kernel density
estimator with variance 0.25 on the histogram of the predictive entropy evaluated on the test set.

4.1 DOES OUR METHOD PROVIDE USEFUL UNCERTAINTY ESTIMATES?

Regression We experiment on a selection of data sets from the UCI repository and run a 5-fold
cross validation to report results for each data set. We use either MFVI and LA to obtain the posterior
approximation and separately compare our method against their corresponding prediction approaches.
Table 1 shows that our method achieves better NLPD in general than the predictions with sampling
for both MFI and LA. Moreover, our method performs on par with the GLM, even though our method
results in a locally linearised network w.r.t. the inputs. Similar conclusions are made inspecting
Table 8.

Classification Here, we assess our method on MNIST-like classification tasks. For the LA, we use
KFAC approximation of the covariance to reduce the memory overhead. In Table 2, we report the
ACC and NLPD with their standard errors and the ECE for each method. Our method achieves similar
ACC with the baselines, while outperforming them on the NLPD and ECE metrics. In App. B.2, we
assess our method on robustness to OOD data. We evaluate an MLP trained on MNIST on rotated
versions of the test set. Our method consistently reduces overconfidence on OOD data, cf., Fig. 8.

Ours vs. moment-matching To verify the viability of local linearisation, we compare our method
against moment-matching (MM) used in Wu et al. (2019). We apply MM instead of local linearisation

7
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Table 2: Performance metrics on the MNIST-like data sets for each method with the standard error
for ACC and NLPD. Our method achieves better NLPD and ECE than the baselines.

Metrics Methods MNIST FMNIST ORGANCMNIST ORGANSMNIST
LA Sampling 0.972±0.002 0.868±0.004 0.734±0.008 0.591±0.010
LA GLM 0.975±0.002 0.882±0.003 0.824±0.007 0.634±0.009

ACC ↑ LA Ours 0.975±0.002 0.881±0.003 0.826±0.008 0.630±0.009
MFVI Sampling 0.974±0.002 0.843±0.004 0.620±0.010 0.467±0.010
MFVI Ours 0.974±0.002 0.842±0.004 0.630±0.010 0.454±0.010
LA Sampling 0.210±0.003 0.556±0.008 1.135±0.017 1.614±0.021
LA GLM 0.089±0.004 0.548±0.018 0.875±0.44 1.967±0.070

NLPD ↓ LA Ours 0.089±0.005 0.397±0.010 0.710±0.021 1.365±0.025
MFVI Sampling 0.179±0.014 2.010±0.051 4.775±0.140 6.095±0.141
MFVI Ours 0.086±0.005 0.529±0.011 1.492±0.026 1.895±0.022

ece

LA Sampling 0.122 0.151 0.292 0.261
LA GLM 0.009 0.078 0.038 0.170

ECE ↓ LA Ours 0.004 0.012 0.122 0.151

MFVI Sampling 0.018 0.144 0.251 0.385
MFVI Ours 0.003 0.013 0.145 0.067

Table 3: Performance comparison between our method and Moment-Matching (MM) on the MNIST-
like classification tasks. We report the ACC and NLPD with standard errors and the ECE. Our method
outperforms MM despite being simpler and more applicable to various distributions.

Metrics Methods MNIST FMNIST ORGANCMNIST ORGANSMNIST
MM 0.971±0.002 0.882±0.003 0.771±0.004 0.600±0.010

ACC ↑ Ours 0.975±0.002 0.881±0.003 0.816±0.004 0.614±0.010
MM 0.103±0.005 0.463±0.014 0.838±0.015 1.401±0.036

NLPD ↓ Ours 0.090±0.005 0.435±0.010 0.733±0.010 1.282±0.024
MM 0.014 0.051 0.023 0.110

ECE ↓ Ours 0.006 0.022 0.127 0.081

to our setting, assuming a diagonal posterior approximation from LA. In Table 3, we show the results
for our method against MM on MNIST-like classification tasks. Our approach outperforms MM across
the data sets and the metrics, except for the ECE on OrganCMNIST. Compared to MM, our method
is applicable to any differentiable activation function and any type of stable distribution (Petersen
et al., 2024), while MM requires tailored derivations for each case and, hence, is less plug-and-play.

4.2 IS OUR METHOD SCALABLE?

We demonstrate that our method is applicable to large-scale networks by experimenting with pre-
trained ViT and GPT-2 models. In particular, we experiment with applying our method on either
the attention layer or the MLP after the attention layer in the last two (ViT)/four (GPT) transformer
blocks. For each target data set, we fine-tune the layers we obtain the posterior approximation for.
We assume a diagonal posterior, to reduce the memory overhead. Table 5 shows the results when
fine-tuning ViT models and obtaining the posterior approximation from the attention layers. We
observe that our method achieves better or on par NLPD and ECE compared to the baselines for both
LA and MFVI across all data sets while maintaining similar ACC as the baselines.

Table 4: Performance on language understanding tasks.
Metrics Methods BOOLQ WIC MRPC

LA Sampling 0.383±0.009 0.500±0.020 0.335±0.011
ACC ↑ LA GLM 0.698±0.008 0.611±0.019 0.710±0.011

LA Ours 0.641±0.008 0.500±0.020 0.665±0.011
LA Sampling 0.814±0.006 0.858±0.024 1.219±0.018

NLPD ↓ LA GLM 0.650±0.014 0.730±0.027 0.660±0.023
LA Ours 0.684±0.001 0.719±0.010 0.629±0.009
LA Sampling 0.259 0.261 0.484

ECE ↓ LA GLM 0.086 0.126 0.145
LA Ours 0.129 0.118 0.054

In Table 4 we show the results for a
GPT-2 model with LA on the MLP
layers. We observe that our method
systematically outperforms sampling,
while achieving similar performance
to GLM in some cases. Thus indi-
cating that our method is applicable
to different application domains. We
present additional results for ViT mod-
els in App. B.

We also assess the robustness to out-of-distribution (OOD) data for our method and the baselines. In
particular, we take the ViT network fine-tuned on CIFAR-10 and evaluate its predictive entropy on
the SVHN data set (Netzer et al., 2011). Fig. 4 shows the kernel density of the predictive entropy
computed on the test sets of CIFAR-10 and SVHN, where the model should have high entropy for data
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Table 5: Performance metrics using ViT with posterior approximation on the attention layers with
the standard error for ACC and NLPD. Our method achieves better NLPD and ECE in general and
achives similar ACC compared to the baselines.

Metrics Methods CIFAR-10 CIFAR-100 DTD RESISC IMAGENET-R
LA Sampling 0.971±0.002 0.882±0.003 0.715±0.010 0.892±0.004 0.731±0.012
LA GLM 0.976±0.002 0.879±0.003 0.718±0.010 0.891±0.004 0.739±0.012

ACC ↑ LA Ours 0.976±0.002 0.880±0.003 0.719±0.010 0.892±0.004 0.739±0.012
MFVI Sampling 0.975±0.002 0.880±0.003 0.732±0.010 0.867±0.004 0.730±0.012
MFVI Ours 0.975±0.002 0.880±0.003 0.734±0.010 0.867±0.004 0.728±0.012
LA Sampling 0.170±0.004 0.444±0.012 1.238±0.028 0.461±0.009 1.208±0.048
LA GLM 0.092±0.007 0.459±0.012 1.197±0.029 0.385±0.010 1.180±0.047

NLPD ↓ LA Ours 0.086±0.006 0.456±0.012 1.068±0.035 0.352±0.012 1.267±0.043
MFVI Sampling 0.133±0.011 0.641±0.022 1.091±0.048 1.010±0.041 1.577±0.083
MFVI Ours 0.088±0.006 0.468±0.013 1.007±0.035 0.617±0.019 1.234±0.052

ece

LA Sampling 0.006 0.022 0.197 0.129 0.070
LA GLM 0.011 0.024 0.155 0.053 0.057

ECE ↓ LA Ours 0.008 0.027 0.040 0.016 0.132

MFVI Sampling 0.015 0.070 0.075 0.079 0.118
MFVI Ours 0.008 0.025 0.042 0.017 0.036

0 1 2
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Figure 4: Kernel density plots over the predictive entropy from a ViT network finetuned on CIFAR-10
(blue, in-distribution) and data from SVHN (red, out-of-distribution). Our method results in a clear
separation between the in- and out-of-distribution data.

different from the training data. Although our method is slightly underconfident on the in-distribution
data, the entropy for in-distribution and OOD data is clearly separated, especially for MFVI.

4.3 CAN OUR METHOD ESTIMATE INPUT SENSITIVIES?

We demonstrate that our method can estimate sensitivities w.r.t. the inputs to the network. For this, we
use an 3-class MLP trained on the digits 0/6/8. Our goal is to estimate sensitivity maps by assuming
that the input images x ∼ N (x,Σ) are distributed according to a Gaussian centred at the pixel values
with diagonal covariance Σ. We optimise the input covariance of each image by minimising the loss

ℓ =
∑N

n=1 cross-entropy(f(xn), yn)−H(N (xn,Σn)). (11)

In words, we jointly minimise the cross-entropy loss, after analytically propagating the input distri-
bution through the network, while maximising the entropy H(N (xn,Σn)) of the input distribution.
The optimisation is stopped once the difference in NLPD between the current iteration and initial
condition is more than 0.1. Fig. 5 shows examples of the resulting sensitivity maps for a deterministic
MLP (MAP) and the same MLP with last-layer LA (Bayes). We observe that the largest sensitivity for
the digits 0 and 8 are generally in the middle, while for 6 in the upper right corner. The Bayes model
shows less spurious sensitivities across the pixels compared to the MAP model. Thus, indicating that
incorporating all sources of uncertainties can lead to a more interpretable sensitivity analysis.

5 DISCUSSION & CONCLUSION

In this work, we proposed to streamline Bayesian deep learning through local linearisation and
local Gaussian approximations of the network. For this, we discussed the propagation in different
neural network architectures and covariance structures. In particular, we discussed how to handle
Kronecker-factorised posterior covariances and transformer architectures. We showed through a
series of experiments that our method obtains high predictive performance, provides useful predictive
uncertainties, and can be used for sensitivity analysis. Our method helps in making BDL more useful
in practice and expands the use-cases and sources of uncertainties that can be considered.
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Figure 5: Pixel sensitivity maps of an MLP trained on a subset of MNIST digits (classes 0/6/8).
The two rows show sensitivities to pixel perturbations for the MLP (MAP) and MLP with last-layer
Laplace approximation (Bayes). The sensitivities are visualised in range (0.5 1.0). The Bayes
MLP shows less spurious sensitivities across the pixels compared to MAP.

In future work, we aim to apply our approach to tasks with larger number of output classes, explore
additional use-case scenarios in which our streamlined approach can be beneficial, and scale to
even larger networks. Moreover, we aim to further investigate computational benefits obtained by
exploiting the posterior covariance structure and sparsity in the network. FIX

(8AJz)
&
(KRRC)

Limitations The local linearisation of activation functions induces an error that depends on both the
activation function as well as the location and scale of the distribution over the input to the activation
function. Moreover, we assume independence between the activations and model parameters for
the local Gaussian approximation in linear layers and residual connections, which may incur a
loss of information in the propagation. Especially, the independence assumption in residual block
is potentially harmful, and relaxing it would be a valuable future direction. Further, it would be
interesting to estimate the induced approximation error to identify potential failure modes. Finally, we
assume access to a validation set for fitting the scaling factor of the predictive posterior distribution,
which is currently done using a grid search. Interesting future step is the use of the marginal likelihood.
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APPENDICES

The appendices are structured as follows: App. A presents the derivations of our method in detail.
App. B describes the experimental setup and additional experimental results.

A DERIVATIONS

We derive how to propagate the distribution in a deterministic way in this section. See Table 6 for the
list of notation that will be used throughout this section.

We first derive the general result in App. A.1 where the posterior covariance has full structure in
linear layer and evaluate the quality of local Gaussian approximation in App. A.2. Next, in App. A.3
and App. A.4 we give the derivation for diagonal and KFAC covariance respectively. Then, App. A.5
shows the derivation for activation functions. Finally, App. A.6 describes how we apply our method
in a transformer network (Vaswani et al., 2017).

Table 6: Notation.

x lowercase bolder letter, vector
W uppercase bold letter, matrix
D set
xi ith element of x
Wki kth row, ith column of W
W [k, :] kth row of a matrix
k, l dimension of the output
i, j dimension of the input
d data feature dimension
n,N number of data points
C total number of classes
m layer index

A.1 DERIVATION FOR FULL COVARIANCE STRUCTURE

Denote the weight and bias of the mth linear layer as W (m) ∈ RDout×Din and b(m) ∈ RDout

respectively, and its input as a(m−1) ∈ RDin . The pre-activation is then given as h(m) =

W (m)a(m−1) + b(m) with its kth element being h
(m)
k =

∑Din
i=1 W

(m)
ki a

(m−1)
i + b

(m)
k .

We make the following assumptions to obtain a tractable distribution on the pre-activation:

• Assumption 1: We assume each a
(m−1)
i W

(m)
ki is a Gaussian distribution.

• Assumption 2: We assume that the activations of the previous layer a(m−1)i and parameters
of the mth layer are independent.

From assumption 1, because now a
(m−1)
i W

(m)
ki and b

(m)
k are all Gaussian distributions, h(m)

k will
follow Gaussian distribution as well. We call this local Gaussian approximation as we approximate
each local component a(m−1)i W

(m)
ki with a Gaussian. As now each h

(m)
k is a Gaussian, h(m) will be

jointly Gaussian. We derive its mean and covariance and drop the layer index if it is clear from the
context.
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Derivation of mean As ai is assumed to be uncorrected with Wki, we have

E [hk] = E

[
Din∑

i=1

Wkiai + bk

]
(12)

=

Din∑

i=1

E [Wkiai + bk] (13)

=

Din∑

i=1

E [Wkiai] + E [bk] (14)

≈
Din∑

i=1

E [Wki]E [ai] + E [bk] . (Assumption 2)

Derivation of covariance The covariance between the kth and lth pre-activation can be written as

Cov [hk, hl] = Cov

[
Din∑

i=1

aiWki + bk,

Din∑

i=1

aiWli + bl

]
(15)

= Cov

[
Din∑

i=1

aiWki,

Din∑

i=1

aiWli

]
+ Cov

[
Din∑

i=1

aiWki, bl

]
+ Cov

[
Din∑

i=1

aiWli, bk

]

+ Cov [bk, bl] (16)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] +
∑

1≤i≤Din

(Cov [aiWki, bl] + Cov [aiWli, bk])

+ Cov [bk, bl] (17)
We first derive the form of Cov[aiWki, aiWli]:
Cov [aiWki, ajWlj ]

= E [(aiWki − E [aiWki])(ajWlj − E [ajWlj ])] (18)

= E [aiWkiajWlj − aiWkiE [ajWlj ]− E [aiWki] ajWlj + E [aiWki]E [ajWlj ]] (19)

= E [aiajWkiWlj ]− E [aiWki]E [ajWlj ]− E [aiWki]E [ajWlj ] + E [aiWki]E [ajWlj ] (20)

≈ E [aiaj ]E [WkiWlj ]− E [ai]E [Wki]E [aj ]E [Wlj ] (Assumption 2)

= (E [ai]E [aj ] + Cov [ai, aj ])(E [Wki]E [Wlj ] + Cov [Wki,Wlj ])

− E [ai]E [Wki]E [aj ]E [Wlj ] (21)

= E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ] .
(22)

Then we drive the form of Cov[aiWki, bl]:
Cov [aiWki, bl] = E [(aiWki − E [aiWki])(bl − E [bl])] (23)

≈ E [(aiWki − E [ai]E [Wki])(bl − E [bl])] (Assumption 2)

= E [aiWkibl − aiWkiE [bl]− E [ai]E [Wki] bl + E [ai]E [Wki]E [bl]] (24)

= E [aiWkibl]− E [ai]E [Wki]E [bl] (25)

≈ E [ai]E [Wkibl]− E [ai]E [Wki]E [bl] (Assumption 2)

= E [ai] (E [Wki]E [bl] + Cov [Wki, bl])− E [ai]E [Wki]E [bl] (26)

= E [ai]Cov [Wki, bl] . (27)
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Putting it together, we have Cov[hk, hl] =

∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] +

Din∑

i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] , (28)

where Cov[aiWki, ajWlj ] =

E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ] . (29)

Note that
∑

1≤i,j≤Din
Cov[aiWki, ajWlj ] in Eq. (28) could be rewrite into the form of matrix multi-

plication for efficient implementation:

∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] (30)

=
∑

1≤i,j≤Din

E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ] (31)

=
∑




E [a1]E [a1]Cov[Wk1,Wl1] . . . E [a1]E
[
aDin

]
Cov[Wk1,WlDin ]

...
...

...
E
[
aDin

]
E [a1]Cov[Wk Din ,Wl1] . . . E [a1]E

[
aDin

]
Cov[Wk Din ,WlDin ]


 (32)

⊙




Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin ]

...
...

...
Cov[Wk Din ,Wl1] . . . Cov[Wk Din ,WlDin ]


 (33)

+
∑




E [Wk1]E [Wl1] . . . E [Wk1]E
[
WlDin

]

...
...

...
E
[
Wk Din

]
E [Wl1] . . . E

[
Wk Din

]
E
[
WlDin

]


⊙




Cov[a1, a1] . . . Cov[a1, aDin ]

...
...

...
Cov[aDin , a1] . . . Cov[aDin , aDin ]


 (34)

+
∑




Cov[a1, a1] . . . Cov[a1, aDin ]

...
...

...
Cov[aDin , a1] . . . Cov[aDin , aDin ]


⊙




Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin ]

...
...

...
Cov[Wk Din ,Wl1] . . . Cov[Wk Din ,WlDin ]


 (35)

A.2 ERROR INDUCED THROUGH LOCAL GAUSSIAN APPROXIMATION

In this section we provide analysis of the error induced through the local Gaussian approximation.
Recall we made these two assumptions for the derivation:

• Assumption 1: We assume a
(m−1)
i W

(m)
ki is a Gaussian distribution.

• Assumption 2: We assume that the activations of the previous layer a(m−1)i and parameters
of the mth layer are independent.

We first examine the error induced by A2 on the moments for aiWki. Given two correlated univariate
Gaussian x1 and x2 with the joint being

[
x1

x2

]
∼ N

([
E [x1]
E [x2]

]
,

[
σ2
x1

Cov[x1, x2]
Cov[x1, x2] σ2

x2

])
, (36)

from Nadarajah & Pogány (2016); Kan (2008), although the distribution form of x1x2 is no longer
Gaussian and intractable, its mean and variance can be computed analytically as

E [x1x2] = E [x1]E [x2] + Cov [x1, x2] , (37)

Var [x1x2] = σ2
1σ

2
2 + σ2

1E [x2]
2
+ σ2

2E [x1]
2
+ (σ2

1σ
2
2 + 2E [x1]E [x2])Cov [x1, x2] . (38)

Applying the above result in our case, we have

E [aiWki] = E [ai]E [Wki] + Cov [ai,Wki] , (39)

Var [aiWki] = σ2
ai
σ2
Wki

+ σ2
ai
E [Wki]

2
+ σ2

Wki
E [ai]

2

+ (2E [ai]E [Wki] + σ2
ai
σ2
Wki

)Cov [ai,Wki] . (40)
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As Cov[ai,Wki] is intractable, in A2 we ignore the correlation between ai and Wki, which results in

E [aiWki] ≈ E [ai]E [Wki](((((((
+Cov [ai,Wki], (41)

Var [aiWki] ≈ σ2
ai
σ2
Wki

+ σ2
ai
E [Wki]

2
+ σ2

Wki
E [ai]

2

(((((((((((((((((((

+(2E [ai]E [Wki] + σ2
ai
σ2
Wki

)Cov [ai,Wki]. (42)

Note that in the case of diagonal posterior covariance, as each parameters are independent from each
other, A2 holds automatically. In this case we recover the correct mean and variance for aiWki.

Now, we examine the error induced by A1 and A2 through Monte-Carlo estimation. Fig. 6 provides a
simulation result illustrating the error induced by the local Gaussian approximation on aiWki. We
plot the results for weights with the largest absolute magnitude of a MLP trained on MNIST. We find
this approximation to work well in practice, but fail to capture potential skewness of the distributions.

−40 −20 0
pre-activation value

−50 −30 −10
pre-activation value

−40 −20 0
pre-activation value

−20 0 20
pre-activation value

−50 −30 −10
pre-activation value

Figure 6: Comparison between Monte-Carlo estimates of the distribution over aiWki and our
analytic Gaussian approximation .

A.3 DERIVATION FOR DIAGONAL COVARIANCE STRUCTURE

When the posterior has diagonal covariance, the mean E [hk] will still be the same.

For covariance, when k ̸= l we have Cov[hk, hl] =

∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] +

Din∑

i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] (43)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj ] (44)

=
∑

1≤i,j≤Din

E [ai]E [aj ]Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [ai, aj ] + Cov [ai, aj ]Cov [Wki,Wlj ]

(45)

=
∑

1≤i,j≤Din

E [Wki]E [Wlj ]Cov [ai, aj ] . (46)

For k = l, we have Var[hk] =

∑

1≤i,j≤Din

Cov [aiWki, ajWkj ] +

Din∑

i=1

(E [ai]Cov [Wki, bk] + E [ai]Cov [Wki, bk]) + Var [bk] (47)

=
∑

1≤i≤Din

Cov [aiWki, aiWki] + Var [bk] (48)

=
∑

1≤i≤Din

E [ai]
2 Var [Wki] + E [Wki]

2 Var [ai] + Var [ai]Var [Wki] + Var [bk] . (49)
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Note that as

Var
[
h
(m)
k

]
=

∑

1≤i≤Din

E
[
a
(m−1)
i

]2
Var

[
W

(m)
ki

]
+ E

[
W

(m)
ki

]2
Var

[
a
(m−1)
i

]
(50)

+
∑

1≤i≤Din

Var
[
a
(m−1)
i

]
Var

[
W

(m)
ki

]
+ Var

[
b
(m)
k

]
, (51)

the variance of h
(m)
k will only rely on the variance of the activations of previous layers, i.e.,

Var[a(m−1)i ]. In the case of element-wise activation functions, Var[a(m−1)i ] will only rely on
Var[h(m−1)

i ] as now the Jacobian of activation is diagonal. As a result, in the case where we only
need the variance of the input, we could drop the computation of Cov[hk, hl] and only compute the
variance for each layer, which will largely reduce the computation cost.

A.4 DERIVATION FOR KRONECKER COVARIANCE STRUCTURE

In KFAC, the Hessian is represented in Kronecker product form Hess = A⊗B. Denote the prior
precision as λ2, then the posterior covariance is

Σ = (Hess+ λ2I)−1 = (A⊗B + λ2I)−1 (52)

As there is no closed form for the inverse, to express the covariance in the form of Kronecker product
as well, we approximate the covariance as

Σ = (A⊗B + λ2I)−1 (53)

=
[
(UAΛAU

⊤
A )⊗(UBΛBU

⊤
B ) + λ2I

]−1
(Eigen Decomposition)

≈
[
(UA(ΛA + λIA)U

⊤
A )⊗(UB(ΛB + λIB)U

⊤
B )

]−1
(54)

=
(
UA(ΛA + λIA)U

⊤
A

)−1

C

⊗
(
UB(ΛB + λIB)U

⊤
B

)−1

D

. ((A⊗B)−1 = A−1 ⊗B−1)

Recall for an efficient implementation for computing
∑

1≤i,j≤Din
Cov[aiWki, ajWlj ] (Eq. (35)), we

need to retrieve the covariance between the kth row of weight and lth row of weight, which is a
Din ×Din matrix:

Cov [W [k, :],W [l, :]] =




Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin ]
...

. . .
...

Cov[WkDin ,Wl1] . . . Cov[WkDin ,WlDin ]


 . (55)

As Σ ≈ C ⊗D where C ∈ Din ×Din and D ∈ Dout ×Dout, the posterior covariance is represented
by a total number of Din ×Din matrix with size Dout ×Dout. Retrieving a Din ×Din matrix from
it is not trivial. In the toy example as shown in Fig. 7, for a Din = 3 and Dout = 2 matrix W ,
its covariance is represented by a total number of 9 (Din ×Din) matrix I, II, . . . , IX with shape
2 × 2 (Dout ×Dout). To retrieve Cov[W [1, :],W [2, :]], we need to first decide which Kronecker
blocks contains it (in this case block II , III , V and V I) and reconstruct these Kronecker blocks.
Then, we retrieve Cov[W [1, :],W [2, :]] from the reconstructed blocks.

In general, the retrieval process consists of two steps: (1) identifying the block indices within the
Kronecker product matrix that correspond to the required covariance block, and (2) extracting the
covariance of interests from the constructed block

Identifying Block Indices We first identify the Kronecker blocks that contains the covariance of
interest. This is achieved by calculating the block indiced for C which is later used to construct
Kronecker blcoks. Specifically, the start and end positions of the covariance block corresponding to
rows k and l can be computed as:

row_start =
⌊
k ·Din

Dout

⌋
, (56)
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Cov[W ] =

Figure 7: To retrieve the highlighted submatrix Cov[W [1, :],W [2, :]] of the covariance for W ∈
R2×3, we identify the Kronecker blocks that contain the covariance of interest (II, III, V, and VI),
explicate those blocks in memory, and then retrieve the relevant submatrix.

row_end =

⌈
(k + 1) ·Din

Dout

⌉
, (57)

col_start =
⌊
l ·Din

Dout

⌋
, (58)

col_end =

⌈
(l + 1) ·Din

Dout

⌉
. (59)

Then, we can construct the Kronecker blocks that contain the covariance of interest by C[row_start :
row_end, col_start : col_end]D.

Extract the Covariance Once we have C[row_start : row_end, col_start : col_end]D, as we know
the covariance we need to retrieve has shape Din ×Din, we only need to compute the start row and
column index, which can be computed as

select_row_start = (k ·Din) mod Dout, (60)

select_col_start = (l ·Din) mod Dout. (61)

A.5 DERIVATION FOR ACTIVATION LAYERS

For a = g(h) where h ∼ N (h;E [h] ,Σh) and g(·) is the activation function, we use local
linearisation to approximate the distribution of a. Specifically, we do a first-order Taylor expansion
on g(·) at E [h]:

a = g(h) (62)
≈ g(E [h]) + Jg|h=E[h](h− E [h]). (63)

Given that Gaussian distribution is closed under linear transformation, we have

h ∼N (E [h] ,Σh) (64)
h− E [h] ∼N (0,Σh) (65)

Jg|h=E[h](h− E [h]) ∼N (0,Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (66)

g(E [h]) + Jg|h=E[h](h− E [h]) ∼N (g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (67)

a ∼
approx

N (a; g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]). (68)

A.6 TRANSFORMER BLOCK

There are four components in each transformer block (Vaswani et al., 2017): (1) multi-head attention;
(2) MLP; (3) layer normalisation; and (4) residual connection. For MLP blocks, the propagation is the
same as described above. For layer normalisation and residual connection, as Gaussian distribution
is closed under linear transformation, push distribution over them is straightforward. We describe
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how to push distribution through attention layers below. Note for computational reasons, we always
assume the input has diagonal covariance.

Given an input H ∈ RT×D where T is the number of tokens in the input sequence and D is the
dimension of each token, denote the query, key and value matrices as WQ ∈ RD×D, WK ∈ RD×D,
WV ∈ RD×D respectively, the key, query and value in an attention blocks are

Q = HWQ, K = HWK , V = HWV , (69)

and the output of attention block is

Attention(H) = Softmax(
QK⊤√

D
)V . (70)

When the input H is a distribution, Q, K and V will all be distributions as well. As pushing a
distribution over a softmax activation requires further approximation, we ignore the distribution over
Q and K for computational reasons and compute their value by using the mean of input:

Q = E [H]E [WQ] , K = E [H]E [WK ] . (71)

For V , for simplicity we describe our approximation for a single token h whose value is v = WV h

with kth element being vk =
∑D

i=1 WVki
hi. Assuming h is a Gaussian, the covariance between the

kth and the lth value is

Cov [vk, vl] = Cov




D∑

i=1

WVki
hi,

D∑

j=1

WVlj
hj


 (72)

=

D∑

i=1

D∑

j=1

Cov
[
WVki

hi,WVlj
hj

]
. (73)

When treating WV deterministically, we have

Cov [vk, vl] =
D∑

i=1

D∑

j=1

Cov
[
WVki

hi,WVlj
hj

]
(definition)

=

D∑

i=1

D∑

j=1

WVki
WVlj

Cov [hi, hj ] (WV deterministic)

≈
D∑

i=1

WVki
WVli

Var [hi] . (ignore correlation between h for computational reason)

When WV is a isotropic Gaussian, we have

Cov [vk, vl] =
∑

1≤i,j≤D
Cov

[
WVki

hi,WVlj
hj

]
(74)

≈
∑

1≤i,j≤D
(E [hi]E [hj ] + Cov [hi, hj ])Cov [Wki,Wlj ] + E [Wki]E [Wlj ]Cov [hi, hj ]

(assumption A2)

=
∑

1≤i,j≤D
E [Wki]E [Wlj ]Cov [hi, hj ] (WV is isotropic Gaussian)

≈
∑

1≤i≤D
E [Wki]E [Wli]Var [hi] .

(ignore correlation between h for computational reason)
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Var [vk] =
∑

1≤i,j≤D
Cov

[
WVki

hi,WVkj
hj

]
(definition)

≈
∑

1≤i,j≤D
(E [hi]E [hj ] + Cov [hi, hj ])Cov [Wki,Wkj ] + E [Wki]E [Wkj ]Cov [hi, hj ]

(assumption A2)

=
∑

1≤i≤D
(E [hi]

2
+ Var [hi])Var [Wki] + E [Wki]

2 Var [hi] .

(WV is isotropic Gaussian)
(75)

Once we have the distribution over V , the distribution over Attention(H) becomes a distribution of
linear combination of Gaussian, which is tractable.

Then for multi-head attention, we assume each attention head’s output is independent, which allows
us to compute the distribution over the final output in tractable form. As we assume all input is
isotropic, here we only need to compute the variance for each dimension.

A.7 CONVOLUTIONAL NEURAL NETWORK

The derivation for convolutional layer is very similar to fully connected layer as convolution layer can
be considered as a shared weight fully connected layer. We first give the derivation for convolutional
layer, then discuss pooling layers in convolutional neural network.

Denote the pixel value at (i, j) of cin
th channel as acin [i, j], the cin

th channel of convolutional kernel
corresponding to cout

th output channel as Wcout,cin [i, j] and the pixel value at (k, l) of the cout
th output

channel as hcout [k, l]. Then suppose there are Cin channel in total and the kernel size is Kh ×Kw, we
can write convolutional layer as

hcout [k, l] =

Cin∑

cin=1

Kh∑

i=1

Kw∑

j=1

acin [k + i− 1, l + j − 1]Wcout,cin [i, j]. (76)

Derivation of mean Following our assumption that acin [k + i− 1, l + j − 1] is uncorrelated with
Wcout,cin [i, j], we have

E [hcout [k, l]] =

Cin∑

cin=1

Kh∑

i=1

Kw∑

j=1

E [acin [k + i− 1, l + j − 1]]E [Wcout,cin [i, j]] (77)

Derivation of covariance The covariance between pixels of the cout
th output channel are given as

Cov [hcout [k1, l1], hcout [k2, l2]] (78)

= Cov




Cin∑

cin,1=1

Kh∑

i1=1

Kw∑

j1=1

acin,1 [k1 + i1 − 1, l1 + j1 − 1]Wcout,cin [i1, j1] , (79)

Cin∑

cin,2=1

Kh∑

i2=1

Kw∑

j2=1

acin,2 [k2 + i2 − 1, l2 + j2 − 1]Wcout,cin [i2, j2]


 (80)

=

Cin∑

cin,1=1

Kh∑

i1=1

Kw∑

j1=1

Cin∑

cin,2=1

Kh∑

i2=1

Kw∑

j2=1

Cov
[
acin,1 [k1 + i1 − 1, l1 + j1 − 1]Wcout,cin [i1, j1] (81)

acin,2 [k2 + i2 − 1, l2 + j2 − 1]Wcout,cin [i2, j2]
]
. (82)

Using earlier result in Eq. (22), we have
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Cov [ain,1[k1 + i1 − 1, l1 + j1 − 1]Wcout,cin [i1, j1], ain,2[k2 + i2 − 1, l2 + j2 − 1]Wcout,cin [i2, j2]]
(83)

≈ E [ain,1[k1 + i1 − 1, l1 + j1 − 1]ain,2[k2 + i2 − 1, l2 + j2 − 1]]E [Wcout,cin [i1, j1]Wcout,cin [i2, j2]]
(84)

− E [ain,1[k1 + i1 − 1, l1 + j1 − 1]]E [ain,2[k2 + i2 − 1, l2 + j2 − 1]]E [Wcout,cin [i1, j1]]E [Wcout,cin [i2, j2]]
(85)

= E [ain,1[k1 + i1 − 1, l1 + j1 − 1]]E [ain,2[k2 + i2 − 1, l2 + j2 − 1]]Cov [Wcout,cin [i1, j1],Wcout,cin [i2, j2]]
(86)

+ E [Wcout,cin [i1, j1]]E [Wcout,cin [i2, j2]]Cov [ain,1[k1 + i1 − 1, l1 + j1 − 1], ain,2[k2 + i2 − 1, l2 + j2 − 1]]
(87)

+ Cov [ain,1[k1 + i1 − 1, l1 + j1 − 1], ain,2[k2 + i2 − 1, l2 + j2 − 1]]Cov [Wcout,cin [i1, j1],Wcout,cin [i2, j2]]
(88)

B ADDITIONAL EXPERIMENTS

B.1 REGRESSION

Table 7 gives the UCI regression data set information and the neural network structure we used. For
all neural networks, we use ReLU activation function. In Table 8 we report the Root Mean Square
Error (RMSE), our method results in matching or better performance compared with sampling and
GLM, indicating the effectiveness of our method. Note that as the mean of the posterior prediction
of our method is the same as the prediction made by setting the weights of the neural network to
be the mean of the posterior, we result in the same prediction as GLM of LA, and hence the same
performance.

Table 7: UCI regression experiment setup.

Data Set Name Shorthand (n, d) Network Structure

SERVO SERVO (167, 4) d-50-1
LIVER DISORDERS LD (345, 5) d-50-1
AUTO MPG AM (398, 7) d-50-1
REAL ESTATE VALUATION REV (414,6) d-50-1
FOREST FIRES FF (517, 12) d-50-1
INFRARED THERMOGRAPHY TEMPERATURE ITT (1020, 33) d-100-1
CONCRETE COMPRESSIVE STRENGTH CCS (1030, 8) d-100-1
AIRFOIL SELF-NOISE ASN (1503, 5) d-100-1
COMMUNITIES AND CRIME CAC (1994, 127) d-100-1
PARKINSONS TELEMONITORING PT (5875, 19) d-50-50-1
COMBINED CYCLE POWER PLANT CCPP (9568, 4) d-50-50-1

B.2 CLASSIFICATION

Table 9 gives the classification data sets information and the neural network structure we used for the
MLP experiment. We use ReLU activation for MLP.

OOD Experiments with MLP To test our method on out-of-distribution (OOD) data, we first
evaluate the MNIST-trained MLP on rotated versions of the test set as shown in Fig. 8. The rotation
degree interval is 10◦ from 0− 180◦. We observe that with increasing rotation degree, our method
achieves a lower NLPD compared to LA MAP and MFVI Sampling, while being close compared
with LA Sampling and GLM. Also, our method achieves similar NLPD for both LA and MFVI
posterior approximations across the rotation degrees. All methods perform on par on the ACC. In
Fig. 9, we show kernel density plots over the predictive entropy of an FMNIST-trained MLP evaluated
on MNIST. Our method can distinguish between in-distribution and OOD data better than the LA
MAP and MFVI Sampling. Although our method underfits on the in-distribution data, the separation
between is clear for the OOD data similar.
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Table 8: Root Mean Square Error ↓ on UCI regression data sets. Ours results in better or matching
performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diag. Cov.) Laplace Approximation (Full Cov.)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 0.749±0.147 0.740±0.143 1.632±0.233 0.658±0.141 0.658±0.141
LD (345, 5) 0.884±0.273 0.881±0.272 0.989±0.441 0.977±0.418 0.977±0.418
AM (398, 7) 0.415±0.115 0.417±0.113 0.505±0.105 0.371±0.103 0.371±0.103
REV (414, 6) 0.563±0.096 0.562±0.095 0.789±0.130 0.532±0.104 0.532±0.104
FF (517, 12) 0.874±1.123 0.874±1.124 0.910±0.824 0.852±0.792 0.852±0.792
ITT (1020, 33) 0.481±0.057 0.497±0.066 0.560±0.075 0.507±0.072 0.507±0.072
CCS (1030, 8) 0.472±0.102 0.476±0.106 0.494±0.102 0.301±0.057 0.301±0.057
ASN (1503, 5) 0.568±0.062 0.560±0.062 0.550±0.069 0.352±0.055 0.352±0.055
CAC (1994, 127) 0.571±0.105 0.585±0.092 1.481±0.167 0.703±0.101 0.703±0.101
PT (5875, 19) 0.601±0.067 0.590±0.068 0.479±0.081 0.410±0.076 0.410±0.076
CCPP (9568, 4) 0.241±0.038 0.241±0.038 0.358±0.041 0.224±0.037 0.224±0.037

Bold Count 8/11 10/11 2/11 11/11 11/11

Table 9: Classification experiment setup.
Data Set Name (n, d) Network Structure

MNIST (50000, 784) d-128-64-10
FMNIST (50000, 784) d-128-64-10
ORGANCMNIST (12975, 784) d-128-64-11
ORGANSMNIST (13932, 784) d-128-64-11
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Figure 8: NLPD and ACC for MNIST-trained MLP on rotated versions of the MNIST test set. The
rotation degree interval is 10◦ from 0− 180◦. Our method achieves similar NLPD for both LA and
MFVI posterior approximations.
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Figure 9: Kernel density plots over the predictive entropy from an MLP trained on FMNIST (blue, in-
distribution) and data from MNIST (red, out-of-distribution). Our method results in a clear separation
between the in- and out-of-distribution data.

Our method applied to MLP in ViT In Table 10 we report the results for fine tuning the MLPS
after the attention layers in the last two transformer block in ViT and later treating them Bayesian.
We observe that our method achieves better or on par NLPD and ECE compared to the baselines for
both LA and MFVI across all data sets while maintaining similar ACC as the baselines.

We present results for GPT-2 on tasks from GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al.,
2019a) benchmark. These natural language understanding tasks could be turned into classification
tasks with the prompt shown in Table 11. We add a classification layer on top of the encoder and use
the embedding of the last token in each input to do classification.
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Table 10: Performance metrics using ViT with posterior approximation on MLPs after the attention
layers with the standard error for ACC and NLPD. Our method achieves better NLPD and ECE in
general and achives similar ACC compared to the baselines.

Metrics Methods CIFAR-10 CIFAR-100 DTD RESISC IMAGENET-R
LA Sampling 0.971±0.002 0.855±0.004 0.656±0.011 0.812±0.005 0.589±0.013
LA GLM 0.974±0.002 0.873±0.003 0.714±0.010 0.886±0.004 0.687±0.012

ACC ↑ LA Ours 0.976±0.002 0.884±0.003 0.716±0.010 0.909±0.004 0.713±0.012
MFVI Sampling 0.978±0.001 0.896±0.003 0.727±0.010 0.870±0.004 0.733±0.012
MFVI Ours 0.978±0.001 0.895±0.003 0.720±0.010 0.868±0.004 0.732±0.012
LA Sampling 0.169±0.004 1.043±0.010 2.035±0.022 1.304±0.011 2.330±0.041
LA GLM 0.089±0.005 0.602±0.011 1.260±0.029 0.568±0.011 1.584±0.045

NLPD ↓ LA Ours 0.088±0.006 0.457±0.012 1.078±0.036 0.318±0.013 1.339±0.047
MFVI Sampling 0.124±0.011 0.480±0.018 1.277±0.060 1.098±0.043 1.489±0.081
MFVI Ours 0.080±0.005 0.437±0.013 1.146±0.040 0.651±0.020 1.206±0.053
LA Sampling 0.078 0.349 0.442 0.431 0.331
LA GLM 0.005 0.097 0.174 0.157 0.155

ECE ↓ LA Ours 0.006 0.031 0.055 0.019 0.087

MFVI Sampling 0.014 0.040 0.083 0.075 0.115
MFVI Ours 0.005 0.033 0.053 0.024 0.041

Table 11: Prompt templates for fine-tuning GPT-2 on natural language understanding tasks.

Task Prompt
MRPC Answer whether sentence 2 is equivalent to sentence 1.

Sentence 1: {sentence1}. Sentence 2: {sentence2}. Answer:
WiC Select whether word {word} has the same meaning in these two sentences.

Sentence 1: {sentence1}. Sentence 2: {sentence2}. Answer:
BoolQ Answer the question with only True or False.

Passage: {passage}. Question: {question}. Answer:

Lasy Layer Laplace Approximation on ViT In Table 12 we report the results for fine tuning only
the last classification layer in ViT base and later treating it Bayesian. We observe that our method (LL-
LA Ours) achieves better or on par NLPD and ECE compared to last layer Laplace approximation
(LL-LA GLM/Sampling) across all data sets while maintaining similar ACC. Compared to the
case where more layers are treated Bayesian (LA Ours) (results are taken from Table 5), last layer
approximations in general have lower accuracies and higher NLPD and ECE, which indicates the
benefits gained by treating more layers Bayesian. In Table 13 we report the wall-clock run times for FIX

(oXsH)last layer Laplace approximation on CIFAR-10 in milliseconds (see App. B.7 for the run time setting)
Our method has matching speed with MAP and slight speed improvements over GLM.

Table 12: Performance metrics using ViT with posterior approximation on last layer with the standard
error for ACC and NLPD. In last layer Laplace approximation (LL-LA), our method achieves better
NLPD and ECE in general and achives similar ACC compared to the baselines. Compared with the
case where more intermediate layers are treated Bayesian (LA Ours), last layer Laplace approximation
in general have lower accuracies and higher NLPD and ECE.

Metrics Methods CIFAR-10 CIFAR-100 DTD RESISC IMAGENET-R

ACC ↑
LL-LA GLM 0.965±0.002 0.825±0.004 0.681±0.006 0.506±0.012 0.592±0.013
LL-LA Sampling 0.966±0.002 0.827±0.004 0.025±0.002 0.509±0.012 0.604±0.013
LL-LA Ours 0.965±0.002 0.825±0.004 0.693±0.006 0.508±0.012 0.592±0.013
LA Ours 0.976±0.002 0.880±0.003 0.719±0.010 0.892±0.004 0.739±0.012

NLPD ↓
LL-LA GLM 0.115±0.005 0.889±0.018 1.500±0.021 2.574±0.026 2.034±0.051
LL-LA Sampling 0.118±0.005 0.924±0.021 7.341±0.065 2.456±0.030 2.000±0.058
LL-LA Ours 0.110±0.005 0.874±0.019 1.411±0.026 2.319±0.032 2.020±0.052
LA Ours 0.086±0.006 0.456±0.012 1.068±0.035 0.352±0.012 1.267±0.043

ECE ↓
LL-LA GLM 0.011 0.062 0.137 0.333 0.145
LL-LA Sampling 0.015 0.045 0.215 0.304 0.127
LL-LA Ours 0.007 0.029 0.026 0.233 0.135

LA Ours 0.008 0.027 0.040 0.016 0.132
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Table 13: Wallclock times for Last layer ViT base on CIFAR-10 in milliseconds.

Model Methods AVG. RUNTIME (± STD) ↓
MAP 3.732±0.091
LA Sampling 188.732±0.051

Last Layer ViT LA GLM 5.517±0.033
Ours 3.782±0.088
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Figure 10: Pixel sensitivity of MLP classifiers trained on binary classification tasks (0/6/8) for
MNIST digits. The rows show the sensitivity of the MAP predictor to pixel perturbations, and the
pixel sensitivity for a last-layer Laplace approximation. The predictive distribution is approximated
analytically in both cases. We observe that the Bayesian model using a Laplace approximation has
less spurious sensitivities to pixel perturbations indicating that it is more robust to input perturbations.
The sensitivities are visualised in the range (0.5 1.0)

B.3 IMAGE PIXEL SENSITIVITY

We trained a 4 layer MLP classifier on MNIST digits zero and eight using a batch size of 64, learning
rate of 1e − 3, weight decay set to 1e − 5, and for 50 epochs. We used a subset of 0.1% of the
training data as held-out validation set and assumed a full covariance Gaussian distribution for each
input centred at the pixel values of the datum and with a fixed co-variance of 0.1. We then computed
the pixel sensitivities for the trained model by learning the pixel-wise input covariance matrices by
minimizing the negative log-likelihood of the held-out validation set and jointly maximizing the
entropy of the input distributions. The optimization was performed using Adam with a learning
rate of 5e − 3 until the validation loss dropped below a divergence to the intial loss of 1e − 1.
Doing so typically took around 900 iterations. Fig. 10 shows some additional examples with the
input-dependent sensitivties. Furthermore, we experiment with using an inter-class covariance shared
between the images containing the same digit with the loss

ℓ =
∑N

n=1 cross-entropy(f(xn), yn)−H(N (xn,Σc=yn
)), (89)

where Σc=yn
is the intra-class covariance for class c. Fig. 11 shows examples of the input sensitivities

when learning the intra-class covariance, where we observe that the input sensitivities are similar
between the determinisitic MLP (MAP) and the Bayes MLP.

B.4 EFFECT OF THE NUMBER OF MC SAMPLES ON PERFORMANCE FIX
(KRRC)We investigate the influence of number of samples on performance.

On regression tasks with small scale neural network (two layer MLP), we run experiments with the
range of [100, 500, 1000, 5000, 10000, 50000]. On classification tasks with medium scale neural net-
work (four layer MLP), we run experiments with the range of [100, 500, 1000, 5000, 10000, 25000].
On classification tasks with large scale neural network (ViT-Base), we run experiments with the range
of [10, 20, . . . , 100]. The results are reported in Figs. 12 to 14. The number of samples we used to
report results in the main paper is shown in the dashed line.

In Fig. 12 and Fig. 14, we observe that for regression on small scale network and classification
on large scale network, the performance saturates when set the number of samples to 50 samples
(classification with ViT-Base) or 1000 samples (regression with two layer MLP). In Fig. 13, the
performance saturates with 1000 samples with LA. For MFVI the performance saturates with 5000
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Figure 11: Per-class pixel sensitivities for MLP classifiers trained on classification tasks (0/6/8)
where we learn an intra-class covariance. The sensitivities are visualised in the range (0.5 1.0)

samples, as the improvement gained on NLPD is marginal (from 2.13 to 2.11) from 1000 samples to
5000 samples, in experiment we set the number of samples as 1000 for MFVI as well.
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Figure 12: Effects of the number of MC samples on performance for LA and MFVI on CIFAR-10
with ViT-Base model. In the results reported in main paper, we set the number of MC samples to 50
(dashed line).

B.5 ESTIMATING DEGREE OF LOCAL LINEARITY FIX
(tEnH)We performed an additional experiment to assess the degree of local linearity of a trained MLP

with ReLU activation functions. In particular, for trained MLP f(·), we are estimating the expected
absolute error

δLin = Ez∼p(z) [|f(z(1± ϵ))− f(z)(1± ϵ)|] , (90)

where ϵ ≥ 0 and δLin is zero for any ϵ if f(·) is linear around each z.
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Figure 13: Effects of the number of MC samples on performance for LA and MFVI on FMNIST. In
the results reported in main paper, we set the number of MC samples to 1000 (dashed line).

In our experiments we vary ϵ in the range of ϵ ∈ [1e−6, 1e−5, . . . , 1] for a fully connected ReLU
MLP with layers with sizes [784, 128, 64, 10] trained on MNIST digits. After training, we removed
the softmax operation on the last layer and measure the local linearisation error on the logits. We
estimated the error on a random subset of 124 validation data points and estimated the range of the
inputs and the function outputs on the same subset. The range of input values is 3.246 and the range
of the function outputs varies between 153.072 and 291.168. Fig. 15 shows the results for each of
the ten output dimensions scaled relative to their respective range. We observe that the trained ReLU
MLP obtains low expected absolute error and behaves locally linear to a certain degree.

B.6 COMPARISON OF VALUE COVARIANCE IN TRANSFORMERS

One way to improve efficiency in transformer is dropping the correlation between values, i.e., drop
the correlation Cov[vk, vl] given in Eq. (74). We compare the performance of both approximation
and the results are given in Tables 14 to 16. Both approximation results in almost the same results for
NLPD, ACC and ECE.

B.7 RUNTIME EXPERIMENT

We compared the runtime of our method against sampling (using the ‘torch-laplace’ library Daxberger
et al. (2021a) for Laplace and the IVON Shen et al. (2024)) and the GLM implementation of the
‘torch-laplace’ library for diagonal posterior covariances. For our streamlined approach on ViT,
we assessed two cases: (i) propagating Cov[vk, vl] covariance terms (cf., Eq. (74)) through the
transformer (+Cov), and (ii) ignoring Cov[vk, vl] covariance terms. We used a pre-trained ViT base
model on CIFAR-10 and a pre-trained MLP on MNIST. For comparision we also list the runtime
for a single forward pass. For this, we ran experiments on an NVIDIA H100 80GB GPU for 400
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Figure 14: Effects of the number of MC samples on performance for LA and MFVI on regression
tasks. In the results reported in main paper, we set the number of MC samples to 1000 (dashed line).
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Figure 15: Estimated divergence from a locally linear function as a function of ϵ. Note that a value of
zero means that the function behaves locally like a linear function.

data points, batchsize of one, and for each data point we repeated the measurement ten times. To
account for code compilation overheads, we droped the first run on each data point. We report the
mean and standard deviation of the runtime (in milliseconds) over the remaining nine runs and all
400 data points. The results are shown in Table 17. For ViT, we can see that our method without
Cov[vk, vl] covariance terms has a comparable runtime to a single forward pass in the deterministic
model. When additionally accounting for covariance terms, we obtain slight speed improvements
over GLM but overall comparable performance. Note that our implemention is not optimised for
speed and larger speedups may be obtained by optimising the code. For MLP, we obtain slight speed
improvements over LA GLM but overall comparable performance.
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Table 14: Negative Log Predictive Density (NLPD) for ViT with posterior approximation n the
attention layers. We compare only considering variance for value V and considering full covariance.
For MFVI and LA, both approximation results in almost the same result.

Mean Field Variational Inference Laplace Approximation
Dataset Full Covariance Only Variance Full Covariance Only Variance

CIFAR-10 0.088± 0.006 0.088± 0.006 0.086± 0.006 0.086± 0.006
CIFAR-100 0.468± 0.013 0.467± 0.012 0.456± 0.012 0.456± 0.012
DTD 1.007± 0.035 1.007± 0.035 1.068± 0.035 1.068± 0.035
RESISC 0.617± 0.019 0.616± 0.019 0.352± 0.012 0.352± 0.012
IMAGENET-R 1.234± 0.052 1.233± 0.052 1.267± 0.043 1.267± 0.043

Table 15: Accuracy (ACC) for ViT with posterior approximation n the attention layers. We compare
only considering variance for value V and considering full covariance. For MFVI and LA, both
approximation results in almost the same result.

Mean Field Variational Inference Laplace Approximation
Dataset Full Covariance Only Variance Full Covariance Only Variance

CIFAR-10 0.975± 0.002 0.975± 0.004 0.976± 0.002 0.976± 0.004
CIFAR-100 0.880± 0.003 0.880± 0.009 0.880± 0.003 0.880± 0.009
DTD 0.734± 0.010 0.734± 0.012 0.719± 0.010 0.719± 0.012
RESISC 0.867± 0.004 0.867± 0.009 0.892± 0.004 0.892± 0.008
IMAGENET-R 0.728± 0.012 0.728± 0.012 0.739± 0.012 0.739± 0.012

Table 16: Expected Calibration Error (ECE) for ViT with posterior approximation n the attention
layers. We compare only considering variance for value V and considering full covariance. For
MFVI and LA, both approximation results in almost the same result.

Mean Field Variational Inference Laplace Approximation
Dataset Full Covariance Only Variance Full Covariance Only Variance

CIFAR-10 0.008 0.008 0.008 0.008
CIFAR-100 0.027 0.026 0.025 0.023
DTD 0.040 0.040 0.042 0.043
RESISC 0.016 0.016 0.017 0.020
IMAGENET-R 0.132 0.132 0.036 0.039

Table 17: Wallclock times for ViT base on CIFAR-10 and MLP on MNIST in milliseconds.

Model Methods AVG. RUNTIME (± STD) ↓
MAP 3.737±0.093
LA Sampling 190.806±0.137
LA GLM 17.191±0.734

ViT MFVI Sampling 207.854±0.307
Ours (+ Cov) 14.728±0.144
Ours 4.350±0.079
MAP 0.069±0.001
LA Sampling 98.584±3.737
LA GLM 1.656±0.049

MLP MFVI Sampling 190.302±0.466
Ours 0.542±0.073
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