
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STREAMLINING PREDICTION IN BAYESIAN
DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The rising interest in Bayesian deep learning (BDL) has led to a plethora of meth-
ods for estimating the posterior distribution. However, efficient computation of
inferences, such as predictions, has been largely overlooked with Monte Carlo inte-
gration remaining the standard. In this work we examine streamlining prediction in
BDL through a single forward pass without sampling. For this we use local lineari-
sation on activation functions and local Gaussian approximations at linear layers.
Thus allowing us to analytically compute an approximation to the posterior predic-
tive distribution. We showcase our approach for both MLP and transformers, such
as ViT and GPT-2, and assess its performance on regression and classification tasks.

1 INTRODUCTION

Recent progress and adoption of deep learning models, has led to a sharp increase of interest in
improving their reliability and robustness. In applications such as aided medical diagnosis (Begoli
et al., 2019), autonomous driving (Michelmore et al., 2020), or supporting scientific discovery
(Psaros et al., 2023), providing reliable and robust predictions as well as identifying failure modes
is vital. A principled approach to address these challenges is the use of Bayesian deep learning
(BDL, Wilson & Izmailov, 2020; Papamarkou et al., 2024) that promises a plug & play framework
for uncertainty quantification. However, while plugging the Bayesian approach into deep learning
is relatively straightforward (Blundell et al., 2015; Gal & Ghahramani, 2016; Wu et al., 2019), the
play part is typically severely hampered by computational and practical challenges (Wenzel et al.,
2020; Foong et al., 2020; Gelberg et al., 2024; Coker et al., 2022; Kristiadi et al., 2023).

The key challenges associated with BDL, can roughly be divided into three parts: (i) defining a
meaningful prior, (ii) estimating the posterior distribution, and (iii) performing inferences of interest,
e.g., making predictions for unseen data, detecting out-of-distribution settings, or analysing model
sensitivities. While constructing a meaningful prior is an important research direction (Nalisnick,
2018; Meronen et al., 2021; Fortuin et al., 2021; Tran et al., 2022), it has been argued that the
differentiating aspect of Bayesian deep learning is marginalisation (Wilson & Izmailov, 2020; Wilson,
2020) rather than the prior itself. Estimating the posterior distribution has seen significant progress in FIX

(oXsH)recent years (Blundell et al., 2015; Maddox et al., 2019; Daxberger et al., 2021a) with a particular

In Domain Out of Domain

MAP Model

Entropy →

Practical Outlier Detection

x

f(x)

Input Sensitivity Analysis

Figure 1: Our streamlined approach allows for practical outlier detection and sensitivity analysis.
Locally linearizing the network function with local Gaussian approximations enables many relevant
inference tasks to be solved analytically, helping render BDL a practical tool for downstream tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

focus on post-hoc approximations (Kristiadi et al., 2020; Daxberger et al., 2021b). However, while
these approaches have shown promise in making BDL useful for real-world applications, they are
tackling only part of the computational and practical challenges associated with using BDL.

In this work, we focus on streamlining BDL for downstream tasks by providing a straightforward
and effective method to compute inferences of interest, cf., Fig. 1. For this, we make the neural
network locally linear with respect to the inputs. Thus, inferences, such as computing predictions,
admit a closed-form solution and can be estimated efficiently. In particular, we propose to use local
linearisation of non-linear activation functions at every layer of the network and use local Gaussian
approximations at linear layers. Empirically, we find that local linearisation combined with Gaussian
approximation of Bayesian neural networks provides accurate predictions, with useful predictive
uncertainties, while being conceptually simple. Moreover, complex inference tasks w.r.t. the inputs,
such as analysing model sensitivities to input perturbations, can be computed efficiently. Thus,
allowing to truly account for all sources of uncertainties.

Contributions: (i) We propose layer-wise local linearisation and local Gaussian approximations of
neural networks to streamline BDL for downstream tasks (Sec. 3). (ii) We discuss how to handle
different covariance structures and architecture choices (Sec. 3.2 & Sec. 3.3). (iii) Finally, we present
an empirical assessment of our approach on regression and classification tasks, and showcase its
utility for uncertainty quantification, out-of-domain detection, and sensitivity analysis (Sec. 4).

2 RELATED WORK

To estimate the posterior in BDL, variational inference (VI, Blei et al., 2017; Zhang et al., 2018)
utilizes a variational approximation to the true posterior distribution and minimizes a divergence
measure between both distributions. A typically choice for the variational family is a factorized
Gaussian distribution, chosen for computational reasons. Early works on mean-field VI (MFVI) and
related approaches, require a modification on the model structure (Blundell et al., 2015) to perform a
reparametrization of the variational distribution. Recent work by Shen et al. (2024) developed an
optimiser to ease the use of MFVI, and have shown good performance on large-scale models such
as ResNets (He et al., 2016) and GPT (Radford et al., 2019). However, VI-based methods typically
require Monte Carlo estimation to perform inferences, which can be problematic in practice due to
additional computational overhead.

A recent trend in BDL are post-hoc methods, such as the Laplace approximation (LA, MacKay,
1992a), which can be applied directly on the trained model without modification (Kristiadi et al.,
2020; Daxberger et al., 2021a). Daxberger et al. (2021b) extended the applicability of LAs by
showing that treating a subset of parameters Bayesian can still give good predictive uncertainties.
Moreover, Immer et al. (2021b) proposed the linearised LA by performing a global linearisation,
which is principled under the Generalised Gauss–Newton approximation to the Hessian, and has
shown promise in providing useful predictive uncertainties. Recent works applied LA in various
large-scale applications, such as large language models (Yang et al., 2024; Kampen et al., 2024) and
dynamic neural networks (Meronen et al., 2024).

In addition, various tailored ensemble-based methods for BDL have been proposed, such as Monte
Carlo dropout (Gal & Ghahramani, 2016), deep ensembles (Lakshminarayanan et al., 2017), and
stochastic weight averaging-Gaussian (Maddox et al., 2019). While some works on deep ensembles FIX

(oXsH)enable estimating the predictive distribution in a single forward pass (Eschenhagen et al., 2021;
Havasi et al., 2021), most methods typically require multiple forward passes to estimate the predictive
distribution and do not explicate an approximation to the posterior distribution.

More recently, there has been a trend on exploring deterministic computations in BDL to avoid the
need for sampling (Goulet et al., 2021; Giordano et al., 2024; Burroni et al., 2024). In particular,
Wu et al. (2019) derived an analytically training objective for VI by using moment-matching at each
layer of the network. However, the solutions to the moment-matching have to be derived manually
for each type of activation function, making it impractical in practice. More recently, Goulet et al.
(2021) proposed local linearisation of the network to perform message-passing on the network under
a mean-field assumption. Moreover, Petersen et al. (2024) used a local linearisation of the network to
propagate aleatoric uncertainties over the input through a deterministic network. In addition, Dhawan FIX

(tEnH)et al. (2023) investigated local linearisations of activation functions to estimate the function space

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

W (l)

×

a(l−1)

≈

h(l)

g(h(l))
≈

a(l)

Local Gaussian
Approximation

Local Linearization

(a) Multi-layer Perceptron (MLP)

H(l−1)

t1
t2
t3

E
[
H(l−1)W (l)

Q

]

E
[
H(l−1)W (l)

K

]

H(l−1)W (l)
V

softmax(Q
(l)K(l)⊤
√
D

)V (l)
Q(l)

K(l)

V (l)

(b) Attention Layer

Figure 2: Illustration our approach for different network architectures. In MLPs, we can directly
apply local Gaussian approximations and local linearisation of each layer. The distribution over
activations is then propagated to the next layer. In attention layers, we treat the query Q and key
K deterministically and only treat the value V as a random quantity, resulting in a straightforward
propagation path. The resulting distribution is then propagated to the subsequent MLP layer.

distance of two neural networks, for example, relevant in continual learning settings. In contrast, our
work disentangles the approximation of the posterior distribution and the computation of inferences
w.r.t. the posterior distribution. Hence, providing a streamlined framework to propagate all forms of
uncertainties through Bayesian neural networks.

3 METHOD: STREAMLINING BAYESIAN DEEP LEARNING

In Bayesian deep learning (BDL), predicting the output y (e.g., class label, regression value) for an
input x ∈ X is performed by marginalizing out the model parameters θ of the neural network fθ(·)
instead of trusting a single point estimate, i.e.,

p(y |x,D) =

∫

θ

p(y | fθ(x)) p(θ | D) dθ, (1)

where D = {(xn, yn)}Nn=1 denotes the training data and the posterior distribution p(θ | D) = p(θ,D)
p(D)

is given by Bayes’ rule. However, for most neural networks integrating over the high-dimensional
parameter space is intractable, necessitating the use of approximations to compute the posterior
distribution p(θ | D) and the posterior predictive distribution p(y |x,D).

Recently, much progress has been made in efficiently approximating the posterior distribution for
BDL, including scaling mean-field variational inference (Shen et al., 2024) to large-scale models
and performing post-hoc estimation using the Laplace approximations (Daxberger et al., 2021a).
A common thread is the use of a tractable distribution q to approximate the posterior distribution
q(θ) ≈ p(θ | D), typically chosen to be a Gaussian distribution. Consequently, the posterior predictive
distribution is typically approximated using Monte Carlo integration, i.e., by sampling from q, to
estimate the integral in Eq. (1), with the exception of the linearised Laplace approximation (Immer
et al., 2021b). However, while using a Gaussian approximation facilitates efficient computation of the
approximate posterior distribution, sampling from the high-dimensional Gaussian can be challenging
(Vono et al., 2022) and result in a high computational overhead.

We will now shift our focus on estimating integrals of the form of Eq. (1) and assume that an
approximation to the posterior distribution q(θ) is given. Further, we will assume that q is in the FIX

(oXsH)family of stable distributions, for which a linear combination of two independent random variables
with this distribution has the same distribution. Gaussian distribution is a typical example of stable
distribution. Note that marginalisation tasks such as in Eq. (1) appear in many scenarios, e.g., active
learning (MacKay, 1992a; Gal et al., 2017; Smith et al., 2023), model selection (Immer et al., 2021a;
MacKay, 1996), or outlier detection (Wilson & Izmailov, 2020), and pose a reappearing challenge in
downstream applications of BDL.

3.1 STREAMLINING COMPUTATIONS WITH LOCAL APPROXIMATIONS

Let the weights and biases of the mth linear layer of the network f be denoted as W (m) ∈
RDout×Din and b(m) ∈ RDout , respectively. Then the pre-activation h(m) is given as h(m) =

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

W (m)a(m−1) + b(m), where a(m−1) ∈ RDin is the activation of the previous layer. In case
m = 1, then a(0) corresponds to the input x. We further denote the kth element of h(m) as
h
(m)
k =

∑Din
i=1 W

(m)
ki a

(m−1)
i + b

(m)
k and drop the superscript if it is clear from the context.

Given an approximate posterior distribution q(θ) with θ = {W (m), b(m)}Mm=1, we aim to compute
the probability distribution of the activation a(m) of each layer m. For this, we need to estimate the
distribution of the pre-activation h(m) and then compute an approximation to the activation a(m)

after application of a non-linear activation function g(·).
Approximating the pre-activation distribution In case the activation a(m−1) is deterministically
give, i.e., for the input layer, we can compute the distribution over pre-activations analytically as a
consequence of the stability of stable distributions under linear transformations (Petersen et al., 2024).
However, for hidden layers the distribution over pre-activations is generally not of the same family as
the posterior distribution (Wolinski & Arbel, 2022). Nevertheless, we will apply a local Gaussian
approximation to the pre-activation at every hidden layer. Specifically, we make the assumption:

Assumption 3.1. Assume that the activations of the previous layer a(m−1)i and parameters of the
mth layer are independent.

Then followed by a Gaussian approximation of a(m−1)i W
(m)
ki for each i and each k, the mean of the

pre-activation h(m) is given as:

E
[
h(m)

]
= E

[
W (m)

]
E
[
a(m−1)

]
+ E

[
b(m)

]
, (2)

and the covariance between the kth and the jth hidden unit is computed as:

Cov
[
h
(m)
k , h

(m)
l

]
=

∑

1≤i,j≤Din

Cov
[
a
(m−1)
i W

(m)
ki , a

(m−1)
j W

(m)
lj

]
+ Cov

[
b
(m)
k , b

(m)
l

]

+
∑

1≤i≤Din

E
[
a
(m−1)
i

] (
Cov

[
W

(m)
ki , b

(m)
l

]
+ Cov

[
W

(m)
li , b

(m)
k

])
, (3)

where
Cov

[
a
(m−1)
i W

(m)
ki , a

(m−1)
j W

(m)
lj

]
= E

[
a
(m−1)
i

]
E
[
a
(m−1)
j

]
Cov

[
W

(m)
ki ,W

(m)
lj

]

+ E
[
W

(m)
ki

]
E
[
W

(m)
lj

]
Cov

[
a
(m−1)
i , a

(m−1)
j

]

+ Cov
[
a
(m−1)
i , a

(m−1)
j

]
Cov

[
W

(m)
ki ,W

(m)
lj

]
. (4)

A detailed derivation alongside an empirical evaluation of the approximation quality can be found in
Apps. A.1 and A.2. Depending on the structure of the covariance matrix, we can further simplify the
computation of the covariance matrix, which we will discuss in Sec. 3.3.

Approximating the activation distribution Let g(·) denote a non-linear activation function
computing a = g(h) for a pre-activation h. Inspired by the application of local linearisation in
Bayesian filtering (e.g., Särkkä & Svensson, 2023), we use a first order Taylor expansion of g(·) at
the mean of the pre-activation E [h]. Specifically, we approximate g(h) using

g(h) ≈ g(E [h]) + Jg|h=E[h](h− E [h]), (5)
where Jg|h=E[h] is the Jacobian of g(·) at h = E [h]. Then, as stable distributions are closed under
linear transformations, the distribution of a can be computed analytically and is given as follows in
case of a Gaussian distributed, i.e.,

a ∼ N (g(E [h]),Jg|⊤h=E[h]ΣhJg|h=E[h]). (6)
Note that the quality of the local linearisation will depend on the scale of the distribution over the
input h. For ReLU activation functions, Petersen et al. (2024) have shown that local linearisation
provides the optimal Gaussian approximation of a univariate Gaussian distribution in total variation.
For classification tasks, we employ a probit approximation MacKay (1992b); Kristiadi et al. (2020).

Intuition One way to understand the resulting approximation is as a piecewise linear function (or FIX
(tEnH)multilinear function). Globally, the function will still be non-linear, but locally it will behave linear.

In contrast to the original model, which composes piecewise linear functions in case of a ReLU
network, our approximation composes linear functions locally. And we obtain a piecewise linear
function due to the local composition, which allows us to the capture nonlinear nature of the model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

W11,W21 W11,W23 W11,W33 W11,W31 W11,W32 W11,W33

W12,W11 W12,W12 W12,W13 W12,W31 W12,W32 W12,W33

W13,W11 W13,W13 W13,W13 W13,W31 W13,W32 W13,W33

W21,W11 W21,W12 W21,W13 W21,W31 W21,W32 W21,W33

W22,W11 W22,W12 W22,W13 W22,W31 W22,W32 W22,W33

W23,W11 W23,W12 W23,W13 W23,W31 W23,W32 W23,W33







I II III

IV V VI

VII VIII IX

Cov[W] =

Figure 3: To retrieve the highlighted submatrix Cov[W [1, :],W [2, :]] of the covariance for W ∈
R2×3, we identify the Kronecker blocks that contain the covariance of interest (II, III, V, and VI),
explicate those blocks in memory, and then retrieve the relevant submatrix.

3.2 ARCHITECTURE CHOICES

By combining local Gaussian approximations for linear layers and local linearisation for non-linear
activation functions, we can analytically compute the distribution over activations at each layer in a
single forward pass. In case of a multi-layer perceptron (MLP) and common architecture choices, the
described approach can be directly applied to each layer of the network. However, for more complex
architectures such as attention, further considerations are needed to streamline the computation path.
Fig. 2 illustrates the computation path for MLPs and attention layers.

Attention layers Each block in a transformer (Vaswani et al., 2017) constitutes: multi-head attention,
an MLP, layer normalisation, and a residual connection. For the MLP part, the propagation is the
same as previously described. Further, layer normalisation and residual connections are linear
transformations and, hence, the resulting distribution can be obtained analytically. Treating the multi-
head attention block is more involved as the softmax activation function ‘squashes’ the distribution
on pre-activations. We describe our method below and further details are in App. A.6.

Given an input H ∈ RT×D, where T is the number of tokens in the input sequence and D is the
dimension of each token, denote the query, key and value matrices as WQ ∈ RD×D, WK ∈ RD×D,
WV ∈ RD×D, respectively. Further we denote the key, query and value in an attention blocks as
Q = HWQ, K = HWK , and V = HWV . Then the output of attention layer is given as follows
Attention(H) = Softmax

(
QK⊤

/
√
D
)
V . For computational reasons we will assume the input

distribution to the multi-head attention block to have a diagonal covariance structure. As pushing a FIX
(8AJz)random vectors over a softmax activation may require further approximations and will not result in an

output with distribution close to a Gaussian distribution. Hence, we treat the query and key matrices
as deterministically given. A possible remedy is to leverage an approximation to the softmax function
such as Lu et al. (2021).

Consequently, the attention scores are given as:

Attention(H) = Softmax

(
E [H]E [WQ] (E [H]E [WK])⊤√

D

)
V , (7)

where V follows a stable distributions. Due to linearity, the resulting distribution can again be
obtained analytically.

3.3 COVARIANCE STRUCTURE

Computing the full covariance of the posterior is usually infeasible due to high computational and
memory cost. We describe our methods for two most common covariance approximations and will
briefly discuss the computational cost in case of a full and diagonal covariance structure.

Full covariance When the posterior has full covariance, for the mth linear layer the computational
complexity for computing Cov[hk, hl] is O([D

(m)
in]2). Consequently, computing the covariance of

the activations for the mth layer adds to O([D
(m)
out]2[D

(m)
in]2). Computing the local linearisation for

element-wise activation functions results in a complexity of O([D
(l)
out]

2). Hence, we obtain a total cost
of O(

∑M
m=1[D

(m)
out]2[D

(m)
in]2 + [D

(m)
out]2) for a network with M layers. As the computational cost is

directly linked to the number of parameters and their correlation structure, a natural way to reduce

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the computational cost is to either exploit structure in covariance matrix or consider only a subset of
parameters, in the spirit of subnetwork Laplace (Daxberger et al., 2021b). We will focus on the covari-
ance structure in the following as consider a subset of parameters trivially extends from our discussion.

Diagonal approximation In case the correlations between model parameters are ignored, as in
mean-field variational inference, the computation of the pre-activation covariance reduces to:

Cov
[
h
(m)
k , h

(m)
l

]
=

∑

1≤i,j≤Din

E
[
W

(m)
ki

]
E
[
W

(m)
lj

]
Cov

[
a
(m−1)
i , a

(m−1)
j

]
, (8)

and variance of the kth pre-activation is given as: Var[h(m)
k] =

∑

1≤i≤Din

E
[
a
(m)
i

]2
Var

[
W

(m)
ki

]
+ Var

[
b
(m)
k

]
+ Var

[
a
(m−1)
i

](
E
[
W

(m)
ki

]2
+ Var

[
W

(m)
ki

])
. (9)

Hence, assuming a diagonal covariance structure can help in reducing the computational burden. If
only the variance of the layer output is of interest, the computational cost can be further reduced and
adds to a total of O(

∑M
m=1 D

(m)
out D

(m)
in +D

(m)
out). Further details are given in App. A.3.

Kronecker-factorisation (KFAC) Another common choice for approximating the posterior co-
variance is the use of a Kronecker-factorisation (KFAC) (Martens & Grosse, 2015), popularised in
the context of Laplace approximations (Ritter et al., 2018). In this case, the posterior covariance
Σ is given by a Kronecker product of two factors, i.e., Σ = (A⊗B + λ2I)−1 where ⊗ denotes
the Kronecker product and λ2I is a prior precision. Note that in case of a non-zero prior precision,
the covariance cannot be expressed in the form of a Kronecker matrix multiplication. Denote the
eigenvectors and eigenvalues of A as UA and ΛA, respectively, we approximate the Σ as follows:

Σ = (A⊗B + λ2I)−1 =
(
(UAΛAU

⊤
A)⊗(UBΛBU

⊤
B) + λ2I

)−1
(Eigen Decomposition)

≈ ((UA ⊗UB)(ΛA + λIA))
−1 ⊗

(
(ΛB + λIB)(UA ⊗UB)

⊤)−1 . (10)

To compute the covariance of the pre-activations, we need to retrieve the covariance between
the weights of the kth unit and the weights of the lth unit, which corresponds to the kth and
lth row in W , i.e., Cov[W [k, :],W [l, :]]. In case of KFAC Laplace approximations, accessing
Cov[W [k, :],W [l, :]] cannot be done directly. Therefore, we developed a block retrieval method to
retrieve Cov[W [k, :],W [l, :]] without explicating the full covariance matrix in memory.

The key idea is to first identify the Kronecker blocks that contain the covariance of interest and then
retrieve the submatrix by reconstructing only the relevant blocks. Fig. 3 illustrates the idea in a toy
example for a weight matrix W ∈ R2×3 and a submatrix of interest Cov[W [1, :],W [2, :]]. Our
method only reconstructs blocks contain the sub-covariance of interest (II, III, V, and VI) and then
retrieves the relevant submatrix. Further details are given in App. A.4.

4 EXPERIMENTS

We demonstrate practical applicability of our approach on classification/regression tasks (Sec. 4.1),
large-scale classification results with ViT/GPT models (Sec. 4.2), and sensitivity estimation (Sec. 4.3).

Data sets We use a selection of data sets from UCI repository (Kelly et al., 2023) for the regression
experiments. For classification, we experiment on MNIST (LeCun et al., 1998), FMNIST (Xiao et al.,
2017), as well as the 11-class data sets OrganCMNIST and OrganSMNIST from MedMNIST (Yang
et al., 2023). To assess our method on higher-dimensional settings, we experiment with CIFAR-10
and CIFAR-100 (Krizhevsky & Hinton, 2009), DTD (Cimpoi et al., 2014), RESISC (Cheng et al.,
2017) and a subsampled version of ImageNet-R (Hendrycks et al., 2021) with 100 classes to reduce
the memory overhead for LA. For the GPT model we used the BOOLQ, WIC, and MRPC tasks from
GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a) benchmarks.

Posterior approximations We adopt the Laplace approximation (LA, MacKay (1996)) and mean-
field variational inference (MFVI, Blei et al., 2017) for approximating the posterior distribution of the
network parameters. For LA, we estimate the full covariance for the regression experiments, while
we use diagonal or KFAC approximations for the covariance where applicable in the classification

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Negative log predictive density ↓ on UCI regression data sets. Ours results in better or
matching performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diagonal Covariance) Laplace Approximation (Full Covariance)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 1.287±0.069 1.136±0.182 3.795±0.110 1.047±0.172 1.443±0.077
LD (345, 5) 1.346±0.280 1.369±0.440 2.221±0.110 1.495±0.580 1.474±0.648
AM (398, 7) 1.004±0.052 0.807±0.087 1.812±0.065 0.492±0.279 0.478±0.309
REV (414, 6) 1.076±0.059 0.925±0.091 1.932±0.045 0.859±0.129 0.833±0.156
FF (517, 12) 2.160±3.003 2.333±3.671 2.086±0.292 1.584±0.950 1.596±1.217
ITT (1020, 33) 0.937±0.047 0.841±0.065 1.681±0.069 0.825±0.095 0.756±0.164
CCS (1030, 8) 0.939±0.068 0.828±0.108 1.612±0.048 0.319±0.109 0.234±0.161
ASN (1503, 5) 0.962±0.054 0.899±0.065 1.788±0.045 0.422±0.109 0.396±0.133
CAC (1994, 127) 0.973±0.092 0.920±0.118 1.848±0.055 1.281±0.069 2.662±1.096
PT (5875, 19) 0.976±0.069 0.940±0.074 0.984±0.101 0.576±0.181 0.651±0.306
CCPP (9568, 4) 0.365±0.040 0.352±0.042 1.345±0.085 −0.062±0.182 −0.062±0.200

Bold Count 3/11 11/11 0/11 7/11 8/11

experiments. We compare our method using local Gaussian approximation and local linearisation
against Monte Carlo (MC) sampling and a global linearised model (GLM, Immer et al., 2021b).
For MFVI, we adopt the IVON optimiser (Shen et al., 2024) to obtain the posterior approximation
with a diagonal covariance structure by default, which has been shown to be effective and scalable
to large-scale classification tasks. Here, we compare our method against MC sampling from the
posterior to make predictions as done in Shen et al. (2024). For the MFVI and LA sampling baselines,
we used 1, 000 MC samples in the regression and classification experiments in Sec. 4.1, and 50 MC
samples for the ViT and GPT-2 in Sec. 4.2. For our method, we fit an additional scaling factor on the FIX

(KRRC)predictive variance by minimising the NLPD on the validation set, similar to the pseudo-count used
in Ritter et al. (2018). FIX

(8AJz)Network architectures We experiment with one or two layer multi-layer perceptron (MLP) on
the UCI regression data sets with details given in App. B.1. For MNIST, FMNIST, OrganCMNIST
and OrganSMNIST, we use an MLP with layers containing 784 − 128 − 64 − C neurons, where
C is the number of classes. For CIFAR-10/100, DTD, RESISC and ImageNet-R, we fine-tune a
Vision Transformer (ViT) (Dosovitskiy et al., 2021) base model pre-trained on ImageNet-1k (Deng
et al., 2009). For the GPT model, we use the pre-trained GPT-2 base model from Hugging Face
Transformers (Wolf et al., 2019) and fine-tune it on the respective tasks.

Evaluation metrics For the regression experiments, we measure the negative log predictive density
(NLPD) and root-mean-square error (RMSE) for each method. In the classification experiments, we
use accuracy (ACC), NLPD, and expected calibration error (ECE) for comparing the methods. We
use a paired t-test with p = 0.05 to bold results with significant statistical difference when reporting
the results. For assessing out-of-distribution (OOD) robustness, we use a Gaussian kernel density
estimator with variance 0.25 on the histogram of the predictive entropy evaluated on the test set.

4.1 DOES OUR METHOD PROVIDE USEFUL UNCERTAINTY ESTIMATES?

Regression We experiment on a selection of data sets from the UCI repository and run a 5-fold
cross validation to report results for each data set. We use either MFVI and LA to obtain the posterior
approximation and separately compare our method against their corresponding prediction approaches.
Table 1 shows that our method achieves better NLPD in general than the predictions with sampling
for both MFI and LA. Moreover, our method performs on par with the GLM, even though our method
results in a locally linearised network w.r.t. the inputs. Similar conclusions are made inspecting
Table 8.

Classification Here, we assess our method on MNIST-like classification tasks. For the LA, we use
KFAC approximation of the covariance to reduce the memory overhead. In Table 2, we report the
ACC and NLPD with their standard errors and the ECE for each method. Our method achieves similar
ACC with the baselines, while outperforming them on the NLPD and ECE metrics. In App. B.2, we
assess our method on robustness to OOD data. We evaluate an MLP trained on MNIST on rotated
versions of the test set. Our method consistently reduces overconfidence on OOD data, cf., Fig. 8.

Ours vs. moment-matching To verify the viability of local linearisation, we compare our method
against moment-matching (MM) used in Wu et al. (2019). We apply MM instead of local linearisation

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance metrics on the MNIST-like data sets for each method with the standard error
for ACC and NLPD. Our method achieves better NLPD and ECE than the baselines.

Metrics Methods MNIST FMNIST ORGANCMNIST ORGANSMNIST
LA Sampling 0.972±0.002 0.868±0.004 0.734±0.008 0.591±0.010
LA GLM 0.975±0.002 0.882±0.003 0.824±0.007 0.634±0.009

ACC ↑ LA Ours 0.975±0.002 0.881±0.003 0.826±0.008 0.630±0.009
MFVI Sampling 0.974±0.002 0.843±0.004 0.620±0.010 0.467±0.010
MFVI Ours 0.974±0.002 0.842±0.004 0.630±0.010 0.454±0.010
LA Sampling 0.210±0.003 0.556±0.008 1.135±0.017 1.614±0.021
LA GLM 0.089±0.004 0.548±0.018 0.875±0.44 1.967±0.070

NLPD ↓ LA Ours 0.089±0.005 0.397±0.010 0.710±0.021 1.365±0.025
MFVI Sampling 0.179±0.014 2.010±0.051 4.775±0.140 6.095±0.141
MFVI Ours 0.086±0.005 0.529±0.011 1.492±0.026 1.895±0.022

ece

LA Sampling 0.122 0.151 0.292 0.261
LA GLM 0.009 0.078 0.038 0.170

ECE ↓ LA Ours 0.004 0.012 0.122 0.151

MFVI Sampling 0.018 0.144 0.251 0.385
MFVI Ours 0.003 0.013 0.145 0.067

Table 3: Performance comparison between our method and Moment-Matching (MM) on the MNIST-
like classification tasks. We report the ACC and NLPD with standard errors and the ECE. Our method
outperforms MM despite being simpler and more applicable to various distributions.

Metrics Methods MNIST FMNIST ORGANCMNIST ORGANSMNIST
MM 0.971±0.002 0.882±0.003 0.771±0.004 0.600±0.010

ACC ↑ Ours 0.975±0.002 0.881±0.003 0.816±0.004 0.614±0.010
MM 0.103±0.005 0.463±0.014 0.838±0.015 1.401±0.036

NLPD ↓ Ours 0.090±0.005 0.435±0.010 0.733±0.010 1.282±0.024
MM 0.014 0.051 0.023 0.110

ECE ↓ Ours 0.006 0.022 0.127 0.081

to our setting, assuming a diagonal posterior approximation from LA. In Table 3, we show the results
for our method against MM on MNIST-like classification tasks. Our approach outperforms MM across
the data sets and the metrics, except for the ECE on OrganCMNIST. Compared to MM, our method
is applicable to any differentiable activation function and any type of stable distribution (Petersen
et al., 2024), while MM requires tailored derivations for each case and, hence, is less plug-and-play.

4.2 IS OUR METHOD SCALABLE?

We demonstrate that our method is applicable to large-scale networks by experimenting with pre-
trained ViT and GPT-2 models. In particular, we experiment with applying our method on either
the attention layer or the MLP after the attention layer in the last two (ViT)/four (GPT) transformer
blocks. For each target data set, we fine-tune the layers we obtain the posterior approximation for.
We assume a diagonal posterior, to reduce the memory overhead. Table 5 shows the results when
fine-tuning ViT models and obtaining the posterior approximation from the attention layers. We
observe that our method achieves better or on par NLPD and ECE compared to the baselines for both
LA and MFVI across all data sets while maintaining similar ACC as the baselines.

Table 4: Performance on language understanding tasks.
Metrics Methods BOOLQ WIC MRPC

LA Sampling 0.383±0.009 0.500±0.020 0.335±0.011
ACC ↑ LA GLM 0.698±0.008 0.611±0.019 0.710±0.011

LA Ours 0.641±0.008 0.500±0.020 0.665±0.011
LA Sampling 0.814±0.006 0.858±0.024 1.219±0.018

NLPD ↓ LA GLM 0.650±0.014 0.730±0.027 0.660±0.023
LA Ours 0.684±0.001 0.719±0.010 0.629±0.009
LA Sampling 0.259 0.261 0.484

ECE ↓ LA GLM 0.086 0.126 0.145
LA Ours 0.129 0.118 0.054

In Table 4 we show the results for a
GPT-2 model with LA on the MLP
layers. We observe that our method
systematically outperforms sampling,
while achieving similar performance
to GLM in some cases. Thus indi-
cating that our method is applicable
to different application domains. We
present additional results for ViT mod-
els in App. B.

We also assess the robustness to out-of-distribution (OOD) data for our method and the baselines. In
particular, we take the ViT network fine-tuned on CIFAR-10 and evaluate its predictive entropy on
the SVHN data set (Netzer et al., 2011). Fig. 4 shows the kernel density of the predictive entropy
computed on the test sets of CIFAR-10 and SVHN, where the model should have high entropy for data

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Performance metrics using ViT with posterior approximation on the attention layers with
the standard error for ACC and NLPD. Our method achieves better NLPD and ECE in general and
achives similar ACC compared to the baselines.

Metrics Methods CIFAR-10 CIFAR-100 DTD RESISC IMAGENET-R
LA Sampling 0.971±0.002 0.882±0.003 0.715±0.010 0.892±0.004 0.731±0.012
LA GLM 0.976±0.002 0.879±0.003 0.718±0.010 0.891±0.004 0.739±0.012

ACC ↑ LA Ours 0.976±0.002 0.880±0.003 0.719±0.010 0.892±0.004 0.739±0.012
MFVI Sampling 0.975±0.002 0.880±0.003 0.732±0.010 0.867±0.004 0.730±0.012
MFVI Ours 0.975±0.002 0.880±0.003 0.734±0.010 0.867±0.004 0.728±0.012
LA Sampling 0.170±0.004 0.444±0.012 1.238±0.028 0.461±0.009 1.208±0.048
LA GLM 0.092±0.007 0.459±0.012 1.197±0.029 0.385±0.010 1.180±0.047

NLPD ↓ LA Ours 0.086±0.006 0.456±0.012 1.068±0.035 0.352±0.012 1.267±0.043
MFVI Sampling 0.133±0.011 0.641±0.022 1.091±0.048 1.010±0.041 1.577±0.083
MFVI Ours 0.088±0.006 0.468±0.013 1.007±0.035 0.617±0.019 1.234±0.052

ece

LA Sampling 0.006 0.022 0.197 0.129 0.070
LA GLM 0.011 0.024 0.155 0.053 0.057

ECE ↓ LA Ours 0.008 0.027 0.040 0.016 0.132

MFVI Sampling 0.015 0.070 0.075 0.079 0.118
MFVI Ours 0.008 0.025 0.042 0.017 0.036

0 1 2

0
5

1
0 LA MAP

Entropy

D
en

si
ty

0 1 2

LA GLM

Entropy
0 1 2

LA Ours

Entropy
0 1 2

MFVI Sampling

Entropy
0 1 2

MFVI Ours

Entropy

Figure 4: Kernel density plots over the predictive entropy from a ViT network finetuned on CIFAR-10
(blue, in-distribution) and data from SVHN (red, out-of-distribution). Our method results in a clear
separation between the in- and out-of-distribution data.

different from the training data. Although our method is slightly underconfident on the in-distribution
data, the entropy for in-distribution and OOD data is clearly separated, especially for MFVI.

4.3 CAN OUR METHOD ESTIMATE INPUT SENSITIVIES?

We demonstrate that our method can estimate sensitivities w.r.t. the inputs to the network. For this, we
use an 3-class MLP trained on the digits 0/6/8. Our goal is to estimate sensitivity maps by assuming
that the input images x ∼ N (x,Σ) are distributed according to a Gaussian centred at the pixel values
with diagonal covariance Σ. We optimise the input covariance of each image by minimising the loss

ℓ =
∑N

n=1 cross-entropy(f(xn), yn)−H(N (xn,Σn)). (11)

In words, we jointly minimise the cross-entropy loss, after analytically propagating the input distri-
bution through the network, while maximising the entropy H(N (xn,Σn)) of the input distribution.
The optimisation is stopped once the difference in NLPD between the current iteration and initial
condition is more than 0.1. Fig. 5 shows examples of the resulting sensitivity maps for a deterministic
MLP (MAP) and the same MLP with last-layer LA (Bayes). We observe that the largest sensitivity for
the digits 0 and 8 are generally in the middle, while for 6 in the upper right corner. The Bayes model
shows less spurious sensitivities across the pixels compared to the MAP model. Thus, indicating that
incorporating all sources of uncertainties can lead to a more interpretable sensitivity analysis.

5 DISCUSSION & CONCLUSION

In this work, we proposed to streamline Bayesian deep learning through local linearisation and
local Gaussian approximations of the network. For this, we discussed the propagation in different
neural network architectures and covariance structures. In particular, we discussed how to handle
Kronecker-factorised posterior covariances and transformer architectures. We showed through a
series of experiments that our method obtains high predictive performance, provides useful predictive
uncertainties, and can be used for sensitivity analysis. Our method helps in making BDL more useful
in practice and expands the use-cases and sources of uncertainties that can be considered.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

y = 0 y = 0 y = 6 y = 6 y = 8 y = 8

M
A

P
B

ay
es

Figure 5: Pixel sensitivity maps of an MLP trained on a subset of MNIST digits (classes 0/6/8).
The two rows show sensitivities to pixel perturbations for the MLP (MAP) and MLP with last-layer
Laplace approximation (Bayes). The sensitivities are visualised in range (0.5 1.0). The Bayes
MLP shows less spurious sensitivities across the pixels compared to MAP.

In future work, we aim to apply our approach to tasks with larger number of output classes, explore
additional use-case scenarios in which our streamlined approach can be beneficial, and scale to
even larger networks. Moreover, we aim to further investigate computational benefits obtained by
exploiting the posterior covariance structure and sparsity in the network. FIX

(8AJz)
&
(KRRC)

Limitations The local linearisation of activation functions induces an error that depends on both the
activation function as well as the location and scale of the distribution over the input to the activation
function. Moreover, we assume independence between the activations and model parameters for
the local Gaussian approximation in linear layers and residual connections, which may incur a
loss of information in the propagation. Especially, the independence assumption in residual block
is potentially harmful, and relaxing it would be a valuable future direction. Further, it would be
interesting to estimate the induced approximation error to identify potential failure modes. Finally, we
assume access to a validation set for fitting the scaling factor of the predictive posterior distribution,
which is currently done using a grid search. Interesting future step is the use of the marginal likelihood.

REFERENCES

Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. The need for uncertainty quantification
in machine-assisted medical decision making. Nature Machine Intelligence, 1(1):20–23, 2019. 1

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017. 2, 6

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In Proceedings of the 32th International Conference on Machine Learning
(ICML), volume 37 of Proceedings of Machine Learning Research, pp. 1613–1622. PMLR, 2015.
1, 2

Javier Burroni, Justin Domke, and Daniel Sheldon. Sample average approximation for black-
box variational inference. In Proceedings of the 40th Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 2024. 2

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017. 6

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3606–3613. IEEE Computer Society, 2014. 6

Beau Coker, Wessel P Bruinsma, David R Burt, Weiwei Pan, and Finale Doshi-Velez. Wide mean-
field bayesian neural networks ignore the data. In Proceedings of the twenty fifth International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 131 of Proceedings of
Machine Learning Research, pp. 5276–5333. PMLR, 2022. 1

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux - effortless bayesian deep learning. In Advances in Neural
Information Processing Systems (NeurIPS) 34, volume 34, pp. 20089–20103. Curran Associates,
Inc., 2021a. 1, 2, 3, 28

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian deep learning via subnetwork inference. In Proceedings of the 38th International
Conference on Machine Learning (ICML), volume 119 of Proceedings of Machine Learning
Research, pp. 2510–2521. PMLR, 2021b. 2, 6

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 248–255. IEEE Computer Society, 2009. 7

Nikita Dhawan, Sicong Huang, Juhan Bae, and Roger Baker Grosse. Efficient parametric approx-
imations of neural network function space distance. In Proceedings of the 40th International
Conference on Machine Learning ICML, Proceedings of Machine Learning Research, pp. 7795–
7812. PMLR, 2023. 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations (ICLR), 2021. 7

Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of laplace
approximations for improved post-hoc uncertainty in deep learning. In NeurIPS workshop on
Bayesian deep learning, 2021. 2

Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. On the expressiveness of approximate
inference in bayesian neural networks. In Advances in Neural Information Processing Systems
(NeurIPS) 33, volume 33, pp. 15897–15908. Curran Associates, Inc., 2020. 1

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W Ober, Florian Wenzel, Gunnar Rätsch, Richard E
Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited. In
International Conference on Learning Representations (ICLR), 2021. 1

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33th International Conference on Machine
Learning (ICML), volume 48 of Proceedings of Machine Learning Research, pp. 1050–1059.
PMLR, 2016. 1, 2

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In Proceedings of the 34th International Conference on Machine Learning (ICML), Proceedings of
Machine Learning Research, pp. 1183–1192. PMLR, 2017. 3

Yoav Gelberg, Tycho F. A. van der Ouderaa, Mark van der Wilk, and Yarin Gal. Variational inference
failures under model symmetries: Permutation invariant posteriors for bayesian neural networks. In
ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling,
2024. 1

Ryan Giordano, Martin Ingram, and Tamara Broderick. Black box variational inference with a
deterministic objective: Faster, more accurate, and even more black box. Journal of Machine
Learning Research, 25(18):1–39, 2024. 2

James-A Goulet, Luong Ha Nguyen, and Saeid Amiri. Tractable approximate gaussian inference for
bayesian neural networks. Journal of Machine Learning Research, 22(251):1–23, 2021. 2

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks for robust
prediction. In International Conference on Learning Representations (ICLR), 2021. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778. IEEE Computer Society, 2016. 2

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Kevin Zhao, Sebastian Basart, Jacob Steinhardt, and Dawn Song. The many faces
of robustness: A critical analysis of out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8340–8349. IEEE, 2021. 6

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad Emtiyaz.
Scalable marginal likelihood estimation for model selection in deep learning. In Proceedings of the
38th International Conference on Machine Learning (ICML), Proceedings of Machine Learning
Research, pp. 4563–4573. PMLR, 2021a. 3

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian neural
nets via local linearization. In Proceedings of the twenty forth International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 130 of Proceedings of Machine Learning Research,
pp. 703–711. PMLR, 2021b. 2, 3, 7

Peter JT Kampen, Gustav RS Als, and Michael Riis Andersen. Towards scalable bayesian transform-
ers: Investigating stochastic subset selection for nlp. In Proceedings of the 40th Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 2024. 2

Raymond Kan. From moments of sum to moments of product. Journal of Multivariate Analysis, 99
(3):542–554, 2008. 17

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning repository,
2023. URL: https://archive.ics.uci.edu. 6

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in relu networks. In Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 5436–5446.
PMLR, 2020. 2, 4

Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, and Vincent Fortuin. Promises and
pitfalls of the linearized laplace in bayesian optimization. In Fifth Symposium on Advances in
Approximate Bayesian Inference, 2023. 1

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Toronto, ON, Canada, 2009. 6

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems (NeurIPS) 30, volume 30, pp. 6402–6413. Curran Associates, Inc., 2017. 2

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 6

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao Xiang,
and Li Zhang. Soft: Softmax-free transformer with linear complexity. In Advances in Neural
Information Processing Systems NeurIPS 34, pp. 21297–21309. Curran Associates, Inc., 2021. 5

David JC MacKay. Information-based objective functions for active data selection. Neural computa-
tion, 4(4):590–604, 1992a. 2, 3

David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992b. 4

David JC MacKay. Bayesian methods for backpropagation networks. In Models of neural networks
III: association, generalization, and representation, pp. 211–254. Springer, 1996. 3, 6

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems (NeurIPS) 32, volume 32, pp. 13132–13143. Curran Associates, Inc., 2019. 1,
2

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
Proceedings of Machine Learning Research, pp. 2408–2417. PMLR, 2015. 6

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lassi Meronen, Martin Trapp, and Arno Solin. Periodic activation functions induce stationarity. In
Advances in Neural Information Processing Systems (NeurIPS) 34, volume 34, pp. 1673–1685.
Curran Associates, Inc., 2021. 1

Lassi Meronen, Martin Trapp, Andrea Pilzer, Le Yang, and Arno Solin. Fixing overconfidence in
dynamic neural networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 2680–2690, 2024. 2

Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin Gal, and Marta
Kwiatkowska. Uncertainty quantification with statistical guarantees in end-to-end autonomous
driving control. In 2020 IEEE international conference on robotics and automation (ICRA), pp.
7344–7350. IEEE, 2020. 1

Saralees Nadarajah and Tibor K Pogány. On the distribution of the product of correlated normal
random variables. Comptes Rendus. Mathématique, 354(2):201–204, 2016. 17

Eric Thomas Nalisnick. On priors for Bayesian neural networks. University of California, Irvine,
2018. 1

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, 2011. 8

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David B. Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan,
Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A. Osborne, Tim
G. J. Rudner, David Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, and Ruqi
Zhang. Position: Bayesian deep learning is needed in the age of large-scale ai. In Proceedings of
the 41st International Conference on Machine Learning (ICML), volume 235 of Proceedings of
Machine Learning Research. PMLR, 2024. 1

Felix Petersen, Aashwin Ananda Mishra, Hilde Kuehne, Christian Borgelt, Oliver Deussen, and
Mikhail Yurochkin. Uncertainty quantification via stable distribution propagation. In International
Conference on Learning Representations (ICLR), 2024. 2, 4, 8

Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncertainty
quantification in scientific machine learning: Methods, metrics, and comparisons. Journal of
Computational Physics, 477:111902, 2023. 1

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. 2

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In International Conference on Learning Representations (ICLR), 2018. 6, 7

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
university press, 2023. 4

Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Bazan Clement Emile Mar-
cel Raoul, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas
Möllenhoff. Variational learning is effective for large deep networks. In Proceedings of the 41st
International Conference on Machine Learning (ICML), volume 235 of Proceedings of Machine
Learning Research. PMLR, 2024. 2, 3, 7, 28

Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam Foster, and Tom
Rainforth. Prediction-oriented bayesian active learning. In Proceedings of the twenty sixth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine
Learning Research, pp. 7331–7348. PMLR, 2023. 3

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. All you need is a good
functional prior for bayesian deep learning. Journal of Machine Learning Research, 23(74):1–56,
2022. 1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS) 30, volume 30. Curran Associates, Inc., 2017. 5, 15, 20

Maxime Vono, Nicolas Dobigeon, and Pierre Chainais. High-dimensional gaussian sampling: a
review and a unifying approach based on a stochastic proximal point algorithm. SIAM Review, 64
(1):3–56, 2022. 3

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems (NeurIPS) 32,
volume 32, pp. 3266–3280. Curran Associates, Inc., 2019a. 6, 24

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations (ICLR), 2019b. 6, 24

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper
Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes posterior
in deep neural networks really? In Proceedings of the 37th International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 10248–10259.
PMLR, 2020. 1

Andrew Gordon Wilson. The case for bayesian deep learning. arXiv preprint arXiv:2001.10995,
2020. 1

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In Advances in Neural Information Processing Systems (NeurIPS) 33, volume 33,
pp. 4697–4708. Curran Associates, Inc., 2020. 1, 3

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.
7

Pierre Wolinski and Julyan Arbel. Gaussian pre-activations in neural networks: Myth or reality?
arXiv preprint arXiv:2205.12379, 2022. 4

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, José Miguel Hernández-Lobato,
and Alexander L. Gaunt. Deterministic variational inference for robust bayesian neural networks.
In International Conference on Learning Representations (ICLR), 2019. 1, 2, 7

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 6

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. In International Conference on Learning Representations (ICLR), 2024.
2

Jiancheng Yang, Rui Shi, Donglai Wei, Zeju Liu, Lin Zhao, Bilian Ke, Ziyang Shi, Yunzhu Li,
Xiaoyang Hu, Yang Gao, Ye Xu, Daniel L. Rubin, and Holger R. Roth. Medmnist v2: A large-scale
lightweight benchmark for 2d and 3d biomedical image classification. Scientific Data, 10(1):1–14,
2023. doi: 10.1038/s41597-023-02552-1. 6

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,
2018. 2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDICES

The appendices are structured as follows: App. A presents the derivations of our method in detail.
App. B describes the experimental setup and additional experimental results.

A DERIVATIONS

We derive how to propagate the distribution in a deterministic way in this section. See Table 6 for the
list of notation that will be used throughout this section.

We first derive the general result in App. A.1 where the posterior covariance has full structure in
linear layer and evaluate the quality of local Gaussian approximation in App. A.2. Next, in App. A.3
and App. A.4 we give the derivation for diagonal and KFAC covariance respectively. Then, App. A.5
shows the derivation for activation functions. Finally, App. A.6 describes how we apply our method
in a transformer network (Vaswani et al., 2017).

Table 6: Notation.

x lowercase bolder letter, vector
W uppercase bold letter, matrix
D set
xi ith element of x
Wki kth row, ith column of W
W [k, :] kth row of a matrix
k, l dimension of the output
i, j dimension of the input
d data feature dimension
n,N number of data points
C total number of classes
m layer index

A.1 DERIVATION FOR FULL COVARIANCE STRUCTURE

Denote the weight and bias of the mth linear layer as W (m) ∈ RDout×Din and b(m) ∈ RDout

respectively, and its input as a(m−1) ∈ RDin . The pre-activation is then given as h(m) =

W (m)a(m−1) + b(m) with its kth element being h
(m)
k =

∑Din
i=1 W

(m)
ki a

(m−1)
i + b

(m)
k .

We make the following assumptions to obtain a tractable distribution on the pre-activation:

• Assumption 1: We assume each a
(m−1)
i W

(m)
ki is a Gaussian distribution.

• Assumption 2: We assume that the activations of the previous layer a(m−1)i and parameters
of the mth layer are independent.

From assumption 1, because now a
(m−1)
i W

(m)
ki and b

(m)
k are all Gaussian distributions, h(m)

k will
follow Gaussian distribution as well. We call this local Gaussian approximation as we approximate
each local component a(m−1)i W

(m)
ki with a Gaussian. As now each h

(m)
k is a Gaussian, h(m) will be

jointly Gaussian. We derive its mean and covariance and drop the layer index if it is clear from the
context.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Derivation of mean As ai is assumed to be uncorrected with Wki, we have

E [hk] = E

[
Din∑

i=1

Wkiai + bk

]
(12)

=

Din∑

i=1

E [Wkiai + bk] (13)

=

Din∑

i=1

E [Wkiai] + E [bk] (14)

≈
Din∑

i=1

E [Wki]E [ai] + E [bk] . (Assumption 2)

Derivation of covariance The covariance between the kth and lth pre-activation can be written as

Cov [hk, hl] = Cov

[
Din∑

i=1

aiWki + bk,

Din∑

i=1

aiWli + bl

]
(15)

= Cov

[
Din∑

i=1

aiWki,

Din∑

i=1

aiWli

]
+ Cov

[
Din∑

i=1

aiWki, bl

]
+ Cov

[
Din∑

i=1

aiWli, bk

]

+ Cov [bk, bl] (16)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj] +
∑

1≤i≤Din

(Cov [aiWki, bl] + Cov [aiWli, bk])

+ Cov [bk, bl] (17)
We first derive the form of Cov[aiWki, aiWli]:
Cov [aiWki, ajWlj]

= E [(aiWki − E [aiWki])(ajWlj − E [ajWlj])] (18)

= E [aiWkiajWlj − aiWkiE [ajWlj]− E [aiWki] ajWlj + E [aiWki]E [ajWlj]] (19)

= E [aiajWkiWlj]− E [aiWki]E [ajWlj]− E [aiWki]E [ajWlj] + E [aiWki]E [ajWlj] (20)

≈ E [aiaj]E [WkiWlj]− E [ai]E [Wki]E [aj]E [Wlj] (Assumption 2)

= (E [ai]E [aj] + Cov [ai, aj])(E [Wki]E [Wlj] + Cov [Wki,Wlj])

− E [ai]E [Wki]E [aj]E [Wlj] (21)

= E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj] .
(22)

Then we drive the form of Cov[aiWki, bl]:
Cov [aiWki, bl] = E [(aiWki − E [aiWki])(bl − E [bl])] (23)

≈ E [(aiWki − E [ai]E [Wki])(bl − E [bl])] (Assumption 2)

= E [aiWkibl − aiWkiE [bl]− E [ai]E [Wki] bl + E [ai]E [Wki]E [bl]] (24)

= E [aiWkibl]− E [ai]E [Wki]E [bl] (25)

≈ E [ai]E [Wkibl]− E [ai]E [Wki]E [bl] (Assumption 2)

= E [ai] (E [Wki]E [bl] + Cov [Wki, bl])− E [ai]E [Wki]E [bl] (26)

= E [ai]Cov [Wki, bl] . (27)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Putting it together, we have Cov[hk, hl] =

∑

1≤i,j≤Din

Cov [aiWki, ajWlj] +

Din∑

i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] , (28)

where Cov[aiWki, ajWlj] =

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj] . (29)

Note that
∑

1≤i,j≤Din
Cov[aiWki, ajWlj] in Eq. (28) could be rewrite into the form of matrix multi-

plication for efficient implementation:

∑

1≤i,j≤Din

Cov [aiWki, ajWlj] (30)

=
∑

1≤i,j≤Din

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj] (31)

=
∑




E [a1]E [a1]Cov[Wk1,Wl1] . . . E [a1]E
[
aDin

]
Cov[Wk1,WlDin]

...
...

...
E
[
aDin

]
E [a1]Cov[Wk Din ,Wl1] . . . E [a1]E

[
aDin

]
Cov[Wk Din ,WlDin]


 (32)

⊙




Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin]

...
...

...
Cov[Wk Din ,Wl1] . . . Cov[Wk Din ,WlDin]


 (33)

+
∑




E [Wk1]E [Wl1] . . . E [Wk1]E
[
WlDin

]

...
...

...
E
[
Wk Din

]
E [Wl1] . . . E

[
Wk Din

]
E
[
WlDin

]


⊙




Cov[a1, a1] . . . Cov[a1, aDin]

...
...

...
Cov[aDin , a1] . . . Cov[aDin , aDin]


 (34)

+
∑




Cov[a1, a1] . . . Cov[a1, aDin]

...
...

...
Cov[aDin , a1] . . . Cov[aDin , aDin]


⊙




Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin]

...
...

...
Cov[Wk Din ,Wl1] . . . Cov[Wk Din ,WlDin]


 (35)

A.2 ERROR INDUCED THROUGH LOCAL GAUSSIAN APPROXIMATION

In this section we provide analysis of the error induced through the local Gaussian approximation.
Recall we made these two assumptions for the derivation:

• Assumption 1: We assume a
(m−1)
i W

(m)
ki is a Gaussian distribution.

• Assumption 2: We assume that the activations of the previous layer a(m−1)i and parameters
of the mth layer are independent.

We first examine the error induced by A2 on the moments for aiWki. Given two correlated univariate
Gaussian x1 and x2 with the joint being

[
x1

x2

]
∼ N

([
E [x1]
E [x2]

]
,

[
σ2
x1

Cov[x1, x2]
Cov[x1, x2] σ2

x2

])
, (36)

from Nadarajah & Pogány (2016); Kan (2008), although the distribution form of x1x2 is no longer
Gaussian and intractable, its mean and variance can be computed analytically as

E [x1x2] = E [x1]E [x2] + Cov [x1, x2] , (37)

Var [x1x2] = σ2
1σ

2
2 + σ2

1E [x2]
2
+ σ2

2E [x1]
2
+ (σ2

1σ
2
2 + 2E [x1]E [x2])Cov [x1, x2] . (38)

Applying the above result in our case, we have

E [aiWki] = E [ai]E [Wki] + Cov [ai,Wki] , (39)

Var [aiWki] = σ2
ai
σ2
Wki

+ σ2
ai
E [Wki]

2
+ σ2

Wki
E [ai]

2

+ (2E [ai]E [Wki] + σ2
ai
σ2
Wki

)Cov [ai,Wki] . (40)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

As Cov[ai,Wki] is intractable, in A2 we ignore the correlation between ai and Wki, which results in

E [aiWki] ≈ E [ai]E [Wki](((((((
+Cov [ai,Wki], (41)

Var [aiWki] ≈ σ2
ai
σ2
Wki

+ σ2
ai
E [Wki]

2
+ σ2

Wki
E [ai]

2

(((((((((((((((((((

+(2E [ai]E [Wki] + σ2
ai
σ2
Wki

)Cov [ai,Wki]. (42)

Note that in the case of diagonal posterior covariance, as each parameters are independent from each
other, A2 holds automatically. In this case we recover the correct mean and variance for aiWki.

Now, we examine the error induced by A1 and A2 through Monte-Carlo estimation. Fig. 6 provides a
simulation result illustrating the error induced by the local Gaussian approximation on aiWki. We
plot the results for weights with the largest absolute magnitude of a MLP trained on MNIST. We find
this approximation to work well in practice, but fail to capture potential skewness of the distributions.

−40 −20 0
pre-activation value

−50 −30 −10
pre-activation value

−40 −20 0
pre-activation value

−20 0 20
pre-activation value

−50 −30 −10
pre-activation value

Figure 6: Comparison between Monte-Carlo estimates of the distribution over aiWki and our
analytic Gaussian approximation .

A.3 DERIVATION FOR DIAGONAL COVARIANCE STRUCTURE

When the posterior has diagonal covariance, the mean E [hk] will still be the same.

For covariance, when k ̸= l we have Cov[hk, hl] =

∑

1≤i,j≤Din

Cov [aiWki, ajWlj] +

Din∑

i=1

(E [ai]Cov [Wki, bl] + E [ai]Cov [Wli, bk]) + Cov [bk, bl] (43)

=
∑

1≤i,j≤Din

Cov [aiWki, ajWlj] (44)

=
∑

1≤i,j≤Din

E [ai]E [aj]Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [ai, aj] + Cov [ai, aj]Cov [Wki,Wlj]

(45)

=
∑

1≤i,j≤Din

E [Wki]E [Wlj]Cov [ai, aj] . (46)

For k = l, we have Var[hk] =

∑

1≤i,j≤Din

Cov [aiWki, ajWkj] +

Din∑

i=1

(E [ai]Cov [Wki, bk] + E [ai]Cov [Wki, bk]) + Var [bk] (47)

=
∑

1≤i≤Din

Cov [aiWki, aiWki] + Var [bk] (48)

=
∑

1≤i≤Din

E [ai]
2 Var [Wki] + E [Wki]

2 Var [ai] + Var [ai]Var [Wki] + Var [bk] . (49)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Note that as

Var
[
h
(m)
k

]
=

∑

1≤i≤Din

E
[
a
(m−1)
i

]2
Var

[
W

(m)
ki

]
+ E

[
W

(m)
ki

]2
Var

[
a
(m−1)
i

]
(50)

+
∑

1≤i≤Din

Var
[
a
(m−1)
i

]
Var

[
W

(m)
ki

]
+ Var

[
b
(m)
k

]
, (51)

the variance of h
(m)
k will only rely on the variance of the activations of previous layers, i.e.,

Var[a(m−1)i]. In the case of element-wise activation functions, Var[a(m−1)i] will only rely on
Var[h(m−1)

i] as now the Jacobian of activation is diagonal. As a result, in the case where we only
need the variance of the input, we could drop the computation of Cov[hk, hl] and only compute the
variance for each layer, which will largely reduce the computation cost.

A.4 DERIVATION FOR KRONECKER COVARIANCE STRUCTURE

In KFAC, the Hessian is represented in Kronecker product form Hess = A⊗B. Denote the prior
precision as λ2, then the posterior covariance is

Σ = (Hess+ λ2I)−1 = (A⊗B + λ2I)−1 (52)

As there is no closed form for the inverse, to express the covariance in the form of Kronecker product
as well, we approximate the covariance as

Σ = (A⊗B + λ2I)−1 (53)

=
[
(UAΛAU

⊤
A)⊗(UBΛBU

⊤
B) + λ2I

]−1
(Eigen Decomposition)

≈
[
(UA(ΛA + λIA)U

⊤
A)⊗(UB(ΛB + λIB)U

⊤
B)

]−1
(54)

=
(
UA(ΛA + λIA)U

⊤
A

)−1

C

⊗
(
UB(ΛB + λIB)U

⊤
B

)−1

D

. ((A⊗B)−1 = A−1 ⊗B−1)

Recall for an efficient implementation for computing
∑

1≤i,j≤Din
Cov[aiWki, ajWlj] (Eq. (35)), we

need to retrieve the covariance between the kth row of weight and lth row of weight, which is a
Din ×Din matrix:

Cov [W [k, :],W [l, :]] =




Cov[Wk1,Wl1] . . . Cov[Wk1,WlDin]
...

. . .
...

Cov[WkDin ,Wl1] . . . Cov[WkDin ,WlDin]


 . (55)

As Σ ≈ C ⊗D where C ∈ Din ×Din and D ∈ Dout ×Dout, the posterior covariance is represented
by a total number of Din ×Din matrix with size Dout ×Dout. Retrieving a Din ×Din matrix from
it is not trivial. In the toy example as shown in Fig. 7, for a Din = 3 and Dout = 2 matrix W ,
its covariance is represented by a total number of 9 (Din ×Din) matrix I, II, . . . , IX with shape
2 × 2 (Dout ×Dout). To retrieve Cov[W [1, :],W [2, :]], we need to first decide which Kronecker
blocks contains it (in this case block II , III , V and V I) and reconstruct these Kronecker blocks.
Then, we retrieve Cov[W [1, :],W [2, :]] from the reconstructed blocks.

In general, the retrieval process consists of two steps: (1) identifying the block indices within the
Kronecker product matrix that correspond to the required covariance block, and (2) extracting the
covariance of interests from the constructed block

Identifying Block Indices We first identify the Kronecker blocks that contains the covariance of
interest. This is achieved by calculating the block indiced for C which is later used to construct
Kronecker blcoks. Specifically, the start and end positions of the covariance block corresponding to
rows k and l can be computed as:

row_start =
⌊
k ·Din

Dout

⌋
, (56)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

W11,W21 W11,W23 W11,W33 W11,W31 W11,W32 W11,W33

W12,W11 W12,W12 W12,W13 W12,W31 W12,W32 W12,W33

W13,W11 W13,W13 W13,W13 W13,W31 W13,W32 W13,W33

W21,W11 W21,W12 W21,W13 W21,W31 W21,W32 W21,W33

W22,W11 W22,W12 W22,W13 W22,W31 W22,W32 W22,W33

W23,W11 W23,W12 W23,W13 W23,W31 W23,W32 W23,W33







I II III

IV V VI

VII VIII IX

Cov[W] =

Figure 7: To retrieve the highlighted submatrix Cov[W [1, :],W [2, :]] of the covariance for W ∈
R2×3, we identify the Kronecker blocks that contain the covariance of interest (II, III, V, and VI),
explicate those blocks in memory, and then retrieve the relevant submatrix.

row_end =

⌈
(k + 1) ·Din

Dout

⌉
, (57)

col_start =
⌊
l ·Din

Dout

⌋
, (58)

col_end =

⌈
(l + 1) ·Din

Dout

⌉
. (59)

Then, we can construct the Kronecker blocks that contain the covariance of interest by C[row_start :
row_end, col_start : col_end]D.

Extract the Covariance Once we have C[row_start : row_end, col_start : col_end]D, as we know
the covariance we need to retrieve has shape Din ×Din, we only need to compute the start row and
column index, which can be computed as

select_row_start = (k ·Din) mod Dout, (60)

select_col_start = (l ·Din) mod Dout. (61)

A.5 DERIVATION FOR ACTIVATION LAYERS

For a = g(h) where h ∼ N (h;E [h] ,Σh) and g(·) is the activation function, we use local
linearisation to approximate the distribution of a. Specifically, we do a first-order Taylor expansion
on g(·) at E [h]:

a = g(h) (62)
≈ g(E [h]) + Jg|h=E[h](h− E [h]). (63)

Given that Gaussian distribution is closed under linear transformation, we have

h ∼N (E [h] ,Σh) (64)
h− E [h] ∼N (0,Σh) (65)

Jg|h=E[h](h− E [h]) ∼N (0,Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (66)

g(E [h]) + Jg|h=E[h](h− E [h]) ∼N (g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]) (67)

a ∼
approx

N (a; g(E [h]),Jg|h=E[h]
⊤
ΣhJg|h=E[h]). (68)

A.6 TRANSFORMER BLOCK

There are four components in each transformer block (Vaswani et al., 2017): (1) multi-head attention;
(2) MLP; (3) layer normalisation; and (4) residual connection. For MLP blocks, the propagation is the
same as described above. For layer normalisation and residual connection, as Gaussian distribution
is closed under linear transformation, push distribution over them is straightforward. We describe

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

how to push distribution through attention layers below. Note for computational reasons, we always
assume the input has diagonal covariance.

Given an input H ∈ RT×D where T is the number of tokens in the input sequence and D is the
dimension of each token, denote the query, key and value matrices as WQ ∈ RD×D, WK ∈ RD×D,
WV ∈ RD×D respectively, the key, query and value in an attention blocks are

Q = HWQ, K = HWK , V = HWV , (69)

and the output of attention block is

Attention(H) = Softmax(
QK⊤√

D
)V . (70)

When the input H is a distribution, Q, K and V will all be distributions as well. As pushing a
distribution over a softmax activation requires further approximation, we ignore the distribution over
Q and K for computational reasons and compute their value by using the mean of input:

Q = E [H]E [WQ] , K = E [H]E [WK] . (71)

For V , for simplicity we describe our approximation for a single token h whose value is v = WV h

with kth element being vk =
∑D

i=1 WVki
hi. Assuming h is a Gaussian, the covariance between the

kth and the lth value is

Cov [vk, vl] = Cov




D∑

i=1

WVki
hi,

D∑

j=1

WVlj
hj


 (72)

=

D∑

i=1

D∑

j=1

Cov
[
WVki

hi,WVlj
hj

]
. (73)

When treating WV deterministically, we have

Cov [vk, vl] =
D∑

i=1

D∑

j=1

Cov
[
WVki

hi,WVlj
hj

]
(definition)

=

D∑

i=1

D∑

j=1

WVki
WVlj

Cov [hi, hj] (WV deterministic)

≈
D∑

i=1

WVki
WVli

Var [hi] . (ignore correlation between h for computational reason)

When WV is a isotropic Gaussian, we have

Cov [vk, vl] =
∑

1≤i,j≤D
Cov

[
WVki

hi,WVlj
hj

]
(74)

≈
∑

1≤i,j≤D
(E [hi]E [hj] + Cov [hi, hj])Cov [Wki,Wlj] + E [Wki]E [Wlj]Cov [hi, hj]

(assumption A2)

=
∑

1≤i,j≤D
E [Wki]E [Wlj]Cov [hi, hj] (WV is isotropic Gaussian)

≈
∑

1≤i≤D
E [Wki]E [Wli]Var [hi] .

(ignore correlation between h for computational reason)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Var [vk] =
∑

1≤i,j≤D
Cov

[
WVki

hi,WVkj
hj

]
(definition)

≈
∑

1≤i,j≤D
(E [hi]E [hj] + Cov [hi, hj])Cov [Wki,Wkj] + E [Wki]E [Wkj]Cov [hi, hj]

(assumption A2)

=
∑

1≤i≤D
(E [hi]

2
+ Var [hi])Var [Wki] + E [Wki]

2 Var [hi] .

(WV is isotropic Gaussian)
(75)

Once we have the distribution over V , the distribution over Attention(H) becomes a distribution of
linear combination of Gaussian, which is tractable.

Then for multi-head attention, we assume each attention head’s output is independent, which allows
us to compute the distribution over the final output in tractable form. As we assume all input is
isotropic, here we only need to compute the variance for each dimension.

A.7 CONVOLUTIONAL NEURAL NETWORK

The derivation for convolutional layer is very similar to fully connected layer as convolution layer can
be considered as a shared weight fully connected layer. We first give the derivation for convolutional
layer, then discuss pooling layers in convolutional neural network.

Denote the pixel value at (i, j) of cin
th channel as acin [i, j], the cin

th channel of convolutional kernel
corresponding to cout

th output channel as Wcout,cin [i, j] and the pixel value at (k, l) of the cout
th output

channel as hcout [k, l]. Then suppose there are Cin channel in total and the kernel size is Kh ×Kw, we
can write convolutional layer as

hcout [k, l] =

Cin∑

cin=1

Kh∑

i=1

Kw∑

j=1

acin [k + i− 1, l + j − 1]Wcout,cin [i, j]. (76)

Derivation of mean Following our assumption that acin [k + i− 1, l + j − 1] is uncorrelated with
Wcout,cin [i, j], we have

E [hcout [k, l]] =

Cin∑

cin=1

Kh∑

i=1

Kw∑

j=1

E [acin [k + i− 1, l + j − 1]]E [Wcout,cin [i, j]] (77)

Derivation of covariance The covariance between pixels of the cout
th output channel are given as

Cov [hcout [k1, l1], hcout [k2, l2]] (78)

= Cov




Cin∑

cin,1=1

Kh∑

i1=1

Kw∑

j1=1

acin,1 [k1 + i1 − 1, l1 + j1 − 1]Wcout,cin [i1, j1] , (79)

Cin∑

cin,2=1

Kh∑

i2=1

Kw∑

j2=1

acin,2 [k2 + i2 − 1, l2 + j2 − 1]Wcout,cin [i2, j2]


 (80)

=

Cin∑

cin,1=1

Kh∑

i1=1

Kw∑

j1=1

Cin∑

cin,2=1

Kh∑

i2=1

Kw∑

j2=1

Cov
[
acin,1 [k1 + i1 − 1, l1 + j1 − 1]Wcout,cin [i1, j1] (81)

acin,2 [k2 + i2 − 1, l2 + j2 − 1]Wcout,cin [i2, j2]
]
. (82)

Using earlier result in Eq. (22), we have

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Cov [ain,1[k1 + i1 − 1, l1 + j1 − 1]Wcout,cin [i1, j1], ain,2[k2 + i2 − 1, l2 + j2 − 1]Wcout,cin [i2, j2]]
(83)

≈ E [ain,1[k1 + i1 − 1, l1 + j1 − 1]ain,2[k2 + i2 − 1, l2 + j2 − 1]]E [Wcout,cin [i1, j1]Wcout,cin [i2, j2]]
(84)

− E [ain,1[k1 + i1 − 1, l1 + j1 − 1]]E [ain,2[k2 + i2 − 1, l2 + j2 − 1]]E [Wcout,cin [i1, j1]]E [Wcout,cin [i2, j2]]
(85)

= E [ain,1[k1 + i1 − 1, l1 + j1 − 1]]E [ain,2[k2 + i2 − 1, l2 + j2 − 1]]Cov [Wcout,cin [i1, j1],Wcout,cin [i2, j2]]
(86)

+ E [Wcout,cin [i1, j1]]E [Wcout,cin [i2, j2]]Cov [ain,1[k1 + i1 − 1, l1 + j1 − 1], ain,2[k2 + i2 − 1, l2 + j2 − 1]]
(87)

+ Cov [ain,1[k1 + i1 − 1, l1 + j1 − 1], ain,2[k2 + i2 − 1, l2 + j2 − 1]]Cov [Wcout,cin [i1, j1],Wcout,cin [i2, j2]]
(88)

B ADDITIONAL EXPERIMENTS

B.1 REGRESSION

Table 7 gives the UCI regression data set information and the neural network structure we used. For
all neural networks, we use ReLU activation function. In Table 8 we report the Root Mean Square
Error (RMSE), our method results in matching or better performance compared with sampling and
GLM, indicating the effectiveness of our method. Note that as the mean of the posterior prediction
of our method is the same as the prediction made by setting the weights of the neural network to
be the mean of the posterior, we result in the same prediction as GLM of LA, and hence the same
performance.

Table 7: UCI regression experiment setup.

Data Set Name Shorthand (n, d) Network Structure

SERVO SERVO (167, 4) d-50-1
LIVER DISORDERS LD (345, 5) d-50-1
AUTO MPG AM (398, 7) d-50-1
REAL ESTATE VALUATION REV (414,6) d-50-1
FOREST FIRES FF (517, 12) d-50-1
INFRARED THERMOGRAPHY TEMPERATURE ITT (1020, 33) d-100-1
CONCRETE COMPRESSIVE STRENGTH CCS (1030, 8) d-100-1
AIRFOIL SELF-NOISE ASN (1503, 5) d-100-1
COMMUNITIES AND CRIME CAC (1994, 127) d-100-1
PARKINSONS TELEMONITORING PT (5875, 19) d-50-50-1
COMBINED CYCLE POWER PLANT CCPP (9568, 4) d-50-50-1

B.2 CLASSIFICATION

Table 9 gives the classification data sets information and the neural network structure we used for the
MLP experiment. We use ReLU activation for MLP.

OOD Experiments with MLP To test our method on out-of-distribution (OOD) data, we first
evaluate the MNIST-trained MLP on rotated versions of the test set as shown in Fig. 8. The rotation
degree interval is 10◦ from 0− 180◦. We observe that with increasing rotation degree, our method
achieves a lower NLPD compared to LA MAP and MFVI Sampling, while being close compared
with LA Sampling and GLM. Also, our method achieves similar NLPD for both LA and MFVI
posterior approximations across the rotation degrees. All methods perform on par on the ACC. In
Fig. 9, we show kernel density plots over the predictive entropy of an FMNIST-trained MLP evaluated
on MNIST. Our method can distinguish between in-distribution and OOD data better than the LA
MAP and MFVI Sampling. Although our method underfits on the in-distribution data, the separation
between is clear for the OOD data similar.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Root Mean Square Error ↓ on UCI regression data sets. Ours results in better or matching
performance compared with sampling and GLM, indicating the effectiveness of our method.

MFVI (Diag. Cov.) Laplace Approximation (Full Cov.)
(n, d) Sampling Ours Sampling GLM Ours

SERVO (167, 4) 0.749±0.147 0.740±0.143 1.632±0.233 0.658±0.141 0.658±0.141
LD (345, 5) 0.884±0.273 0.881±0.272 0.989±0.441 0.977±0.418 0.977±0.418
AM (398, 7) 0.415±0.115 0.417±0.113 0.505±0.105 0.371±0.103 0.371±0.103
REV (414, 6) 0.563±0.096 0.562±0.095 0.789±0.130 0.532±0.104 0.532±0.104
FF (517, 12) 0.874±1.123 0.874±1.124 0.910±0.824 0.852±0.792 0.852±0.792
ITT (1020, 33) 0.481±0.057 0.497±0.066 0.560±0.075 0.507±0.072 0.507±0.072
CCS (1030, 8) 0.472±0.102 0.476±0.106 0.494±0.102 0.301±0.057 0.301±0.057
ASN (1503, 5) 0.568±0.062 0.560±0.062 0.550±0.069 0.352±0.055 0.352±0.055
CAC (1994, 127) 0.571±0.105 0.585±0.092 1.481±0.167 0.703±0.101 0.703±0.101
PT (5875, 19) 0.601±0.067 0.590±0.068 0.479±0.081 0.410±0.076 0.410±0.076
CCPP (9568, 4) 0.241±0.038 0.241±0.038 0.358±0.041 0.224±0.037 0.224±0.037

Bold Count 8/11 10/11 2/11 11/11 11/11

Table 9: Classification experiment setup.
Data Set Name (n, d) Network Structure

MNIST (50000, 784) d-128-64-10
FMNIST (50000, 784) d-128-64-10
ORGANCMNIST (12975, 784) d-128-64-11
ORGANSMNIST (13932, 784) d-128-64-11

0 60 120 180

0
5

1
0

Rotation Degree

←
N

L
PD

LA GLM
LA Sampling
LA Ours
MFVI Sampling
MFVI Ours
MAP

0 60 120 180

0
.2

0
.4

0
.6

0
.8

1

Rotation Degree

A
C

C
→

LA GLM
LA Sampling
LA Ours
MFVI Sampling
MFVI Ours
MAP

Figure 8: NLPD and ACC for MNIST-trained MLP on rotated versions of the MNIST test set. The
rotation degree interval is 10◦ from 0− 180◦. Our method achieves similar NLPD for both LA and
MFVI posterior approximations.

0 1 2

0
5

1
0 LA MAP

Entropy

D
en

si
ty

0 1 2

LA GLM

Entropy
0 1 2

LA Ours

Entropy
0 1 2

MFVI Sampling

Entropy
0 1 2

IVON Ours

Entropy

Figure 9: Kernel density plots over the predictive entropy from an MLP trained on FMNIST (blue, in-
distribution) and data from MNIST (red, out-of-distribution). Our method results in a clear separation
between the in- and out-of-distribution data.

Our method applied to MLP in ViT In Table 10 we report the results for fine tuning the MLPS
after the attention layers in the last two transformer block in ViT and later treating them Bayesian.
We observe that our method achieves better or on par NLPD and ECE compared to the baselines for
both LA and MFVI across all data sets while maintaining similar ACC as the baselines.

We present results for GPT-2 on tasks from GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al.,
2019a) benchmark. These natural language understanding tasks could be turned into classification
tasks with the prompt shown in Table 11. We add a classification layer on top of the encoder and use
the embedding of the last token in each input to do classification.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: Performance metrics using ViT with posterior approximation on MLPs after the attention
layers with the standard error for ACC and NLPD. Our method achieves better NLPD and ECE in
general and achives similar ACC compared to the baselines.

Metrics Methods CIFAR-10 CIFAR-100 DTD RESISC IMAGENET-R
LA Sampling 0.971±0.002 0.855±0.004 0.656±0.011 0.812±0.005 0.589±0.013
LA GLM 0.974±0.002 0.873±0.003 0.714±0.010 0.886±0.004 0.687±0.012

ACC ↑ LA Ours 0.976±0.002 0.884±0.003 0.716±0.010 0.909±0.004 0.713±0.012
MFVI Sampling 0.978±0.001 0.896±0.003 0.727±0.010 0.870±0.004 0.733±0.012
MFVI Ours 0.978±0.001 0.895±0.003 0.720±0.010 0.868±0.004 0.732±0.012
LA Sampling 0.169±0.004 1.043±0.010 2.035±0.022 1.304±0.011 2.330±0.041
LA GLM 0.089±0.005 0.602±0.011 1.260±0.029 0.568±0.011 1.584±0.045

NLPD ↓ LA Ours 0.088±0.006 0.457±0.012 1.078±0.036 0.318±0.013 1.339±0.047
MFVI Sampling 0.124±0.011 0.480±0.018 1.277±0.060 1.098±0.043 1.489±0.081
MFVI Ours 0.080±0.005 0.437±0.013 1.146±0.040 0.651±0.020 1.206±0.053
LA Sampling 0.078 0.349 0.442 0.431 0.331
LA GLM 0.005 0.097 0.174 0.157 0.155

ECE ↓ LA Ours 0.006 0.031 0.055 0.019 0.087

MFVI Sampling 0.014 0.040 0.083 0.075 0.115
MFVI Ours 0.005 0.033 0.053 0.024 0.041

Table 11: Prompt templates for fine-tuning GPT-2 on natural language understanding tasks.

Task Prompt
MRPC Answer whether sentence 2 is equivalent to sentence 1.

Sentence 1: {sentence1}. Sentence 2: {sentence2}. Answer:
WiC Select whether word {word} has the same meaning in these two sentences.

Sentence 1: {sentence1}. Sentence 2: {sentence2}. Answer:
BoolQ Answer the question with only True or False.

Passage: {passage}. Question: {question}. Answer:

Lasy Layer Laplace Approximation on ViT In Table 12 we report the results for fine tuning only
the last classification layer in ViT base and later treating it Bayesian. We observe that our method (LL-
LA Ours) achieves better or on par NLPD and ECE compared to last layer Laplace approximation
(LL-LA GLM/Sampling) across all data sets while maintaining similar ACC. Compared to the
case where more layers are treated Bayesian (LA Ours) (results are taken from Table 5), last layer
approximations in general have lower accuracies and higher NLPD and ECE, which indicates the
benefits gained by treating more layers Bayesian. In Table 13 we report the wall-clock run times for FIX

(oXsH)last layer Laplace approximation on CIFAR-10 in milliseconds (see App. B.7 for the run time setting)
Our method has matching speed with MAP and slight speed improvements over GLM.

Table 12: Performance metrics using ViT with posterior approximation on last layer with the standard
error for ACC and NLPD. In last layer Laplace approximation (LL-LA), our method achieves better
NLPD and ECE in general and achives similar ACC compared to the baselines. Compared with the
case where more intermediate layers are treated Bayesian (LA Ours), last layer Laplace approximation
in general have lower accuracies and higher NLPD and ECE.

Metrics Methods CIFAR-10 CIFAR-100 DTD RESISC IMAGENET-R

ACC ↑
LL-LA GLM 0.965±0.002 0.825±0.004 0.681±0.006 0.506±0.012 0.592±0.013
LL-LA Sampling 0.966±0.002 0.827±0.004 0.025±0.002 0.509±0.012 0.604±0.013
LL-LA Ours 0.965±0.002 0.825±0.004 0.693±0.006 0.508±0.012 0.592±0.013
LA Ours 0.976±0.002 0.880±0.003 0.719±0.010 0.892±0.004 0.739±0.012

NLPD ↓
LL-LA GLM 0.115±0.005 0.889±0.018 1.500±0.021 2.574±0.026 2.034±0.051
LL-LA Sampling 0.118±0.005 0.924±0.021 7.341±0.065 2.456±0.030 2.000±0.058
LL-LA Ours 0.110±0.005 0.874±0.019 1.411±0.026 2.319±0.032 2.020±0.052
LA Ours 0.086±0.006 0.456±0.012 1.068±0.035 0.352±0.012 1.267±0.043

ECE ↓
LL-LA GLM 0.011 0.062 0.137 0.333 0.145
LL-LA Sampling 0.015 0.045 0.215 0.304 0.127
LL-LA Ours 0.007 0.029 0.026 0.233 0.135

LA Ours 0.008 0.027 0.040 0.016 0.132

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 13: Wallclock times for Last layer ViT base on CIFAR-10 in milliseconds.

Model Methods AVG. RUNTIME (± STD) ↓
MAP 3.732±0.091
LA Sampling 188.732±0.051

Last Layer ViT LA GLM 5.517±0.033
Ours 3.782±0.088

y = 0 y = 0 y = 0 y = 6 y = 6 y = 6 y = 8 y = 8 y = 8

M
A

P
B

ay
es

Figure 10: Pixel sensitivity of MLP classifiers trained on binary classification tasks (0/6/8) for
MNIST digits. The rows show the sensitivity of the MAP predictor to pixel perturbations, and the
pixel sensitivity for a last-layer Laplace approximation. The predictive distribution is approximated
analytically in both cases. We observe that the Bayesian model using a Laplace approximation has
less spurious sensitivities to pixel perturbations indicating that it is more robust to input perturbations.
The sensitivities are visualised in the range (0.5 1.0)

B.3 IMAGE PIXEL SENSITIVITY

We trained a 4 layer MLP classifier on MNIST digits zero and eight using a batch size of 64, learning
rate of 1e − 3, weight decay set to 1e − 5, and for 50 epochs. We used a subset of 0.1% of the
training data as held-out validation set and assumed a full covariance Gaussian distribution for each
input centred at the pixel values of the datum and with a fixed co-variance of 0.1. We then computed
the pixel sensitivities for the trained model by learning the pixel-wise input covariance matrices by
minimizing the negative log-likelihood of the held-out validation set and jointly maximizing the
entropy of the input distributions. The optimization was performed using Adam with a learning
rate of 5e − 3 until the validation loss dropped below a divergence to the intial loss of 1e − 1.
Doing so typically took around 900 iterations. Fig. 10 shows some additional examples with the
input-dependent sensitivties. Furthermore, we experiment with using an inter-class covariance shared
between the images containing the same digit with the loss

ℓ =
∑N

n=1 cross-entropy(f(xn), yn)−H(N (xn,Σc=yn
)), (89)

where Σc=yn
is the intra-class covariance for class c. Fig. 11 shows examples of the input sensitivities

when learning the intra-class covariance, where we observe that the input sensitivities are similar
between the determinisitic MLP (MAP) and the Bayes MLP.

B.4 EFFECT OF THE NUMBER OF MC SAMPLES ON PERFORMANCE FIX
(KRRC)We investigate the influence of number of samples on performance.

On regression tasks with small scale neural network (two layer MLP), we run experiments with the
range of [100, 500, 1000, 5000, 10000, 50000]. On classification tasks with medium scale neural net-
work (four layer MLP), we run experiments with the range of [100, 500, 1000, 5000, 10000, 25000].
On classification tasks with large scale neural network (ViT-Base), we run experiments with the range
of [10, 20, . . . , 100]. The results are reported in Figs. 12 to 14. The number of samples we used to
report results in the main paper is shown in the dashed line.

In Fig. 12 and Fig. 14, we observe that for regression on small scale network and classification
on large scale network, the performance saturates when set the number of samples to 50 samples
(classification with ViT-Base) or 1000 samples (regression with two layer MLP). In Fig. 13, the
performance saturates with 1000 samples with LA. For MFVI the performance saturates with 5000

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

y = 0 y = 0 y = 0 y = 6 y = 6 y = 6 y = 8 y = 8 y = 8

M
A

P
B

ay
es

Figure 11: Per-class pixel sensitivities for MLP classifiers trained on classification tasks (0/6/8)
where we learn an intra-class covariance. The sensitivities are visualised in the range (0.5 1.0)

samples, as the improvement gained on NLPD is marginal (from 2.13 to 2.11) from 1000 samples to
5000 samples, in experiment we set the number of samples as 1000 for MFVI as well.

20 40 60 80 100

0.
13
0

0.
14
0

0.
15
0

←
N

L
PD

MFVI on CIFAR-10 dataset

20 40 60 80 100

0.
17
0

0.
17
5

0.
18
0

LA on CIFAR-10 dataset

20 40 60 80 100

0.
97
4

0.
97
5

A
C

C
→

20 40 60 80 100

0.
96
6

0.
96
8

0.
97
0

0.
97
2

20 40 60 80 100

20

40

60

Number of MC samples

Ti
m

e
(m

in
)

20 40 60 80 100

5

10

15

20

Number of MC samples

Figure 12: Effects of the number of MC samples on performance for LA and MFVI on CIFAR-10
with ViT-Base model. In the results reported in main paper, we set the number of MC samples to 50
(dashed line).

B.5 ESTIMATING DEGREE OF LOCAL LINEARITY FIX
(tEnH)We performed an additional experiment to assess the degree of local linearity of a trained MLP

with ReLU activation functions. In particular, for trained MLP f(·), we are estimating the expected
absolute error

δLin = Ez∼p(z) [|f(z(1± ϵ))− f(z)(1± ϵ)|] , (90)

where ϵ ≥ 0 and δLin is zero for any ϵ if f(·) is linear around each z.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

102 103 104 2.5 · 104

2.
10
0

2.
15
0

2.
20
0

←
N

L
PD

MFVI on FMNIST dataset

102 103 104 2.5 · 104
0.
58
0

0.
60
0

0.
62
0

LA on FMNIST dataset

102 103 104 2.5 · 104

0.
83
1

0.
83
2

A
C

C
→

102 103 104 2.5 · 104
0.
85
6

0.
85
8

0.
86
0

0.
86
2

0.
86
4

102 103 104 2.5 · 104
0.
00
0

10
.0
00

20
.0
00

30
.0
00

Number of MC samples

Ti
m

e
(m

in
)

102 103 104 2.5 · 104
0.
00
0

2.
00
0

4.
00
0

6.
00
0

Number of MC samples

Figure 13: Effects of the number of MC samples on performance for LA and MFVI on FMNIST. In
the results reported in main paper, we set the number of MC samples to 1000 (dashed line).

In our experiments we vary ϵ in the range of ϵ ∈ [1e−6, 1e−5, . . . , 1] for a fully connected ReLU
MLP with layers with sizes [784, 128, 64, 10] trained on MNIST digits. After training, we removed
the softmax operation on the last layer and measure the local linearisation error on the logits. We
estimated the error on a random subset of 124 validation data points and estimated the range of the
inputs and the function outputs on the same subset. The range of input values is 3.246 and the range
of the function outputs varies between 153.072 and 291.168. Fig. 15 shows the results for each of
the ten output dimensions scaled relative to their respective range. We observe that the trained ReLU
MLP obtains low expected absolute error and behaves locally linear to a certain degree.

B.6 COMPARISON OF VALUE COVARIANCE IN TRANSFORMERS

One way to improve efficiency in transformer is dropping the correlation between values, i.e., drop
the correlation Cov[vk, vl] given in Eq. (74). We compare the performance of both approximation
and the results are given in Tables 14 to 16. Both approximation results in almost the same results for
NLPD, ACC and ECE.

B.7 RUNTIME EXPERIMENT

We compared the runtime of our method against sampling (using the ‘torch-laplace’ library Daxberger
et al. (2021a) for Laplace and the IVON Shen et al. (2024)) and the GLM implementation of the
‘torch-laplace’ library for diagonal posterior covariances. For our streamlined approach on ViT,
we assessed two cases: (i) propagating Cov[vk, vl] covariance terms (cf., Eq. (74)) through the
transformer (+Cov), and (ii) ignoring Cov[vk, vl] covariance terms. We used a pre-trained ViT base
model on CIFAR-10 and a pre-trained MLP on MNIST. For comparision we also list the runtime
for a single forward pass. For this, we ran experiments on an NVIDIA H100 80GB GPU for 400

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

102 103 104 5 · 104
0.
36
2

0.
36
3

0.
36
3

0.
36
4

←
N

L
PD

MFVI on CCPP regression dataset

102 103 104 5 · 104

1.
80
0

1.
85
0

LA on CCPP regression dataset

102 103 104 5 · 104
0.
23
7

0.
23
8

0.
23
8

0.
23
9

R
M

SE
←

102 103 104 5 · 104
0.
20
0

0.
40
0

0.
60
0

102 103 104 5 · 104
0.
00
0

5.
00
0

10
.0
00

15
.0
00

Number of MC samples

Ti
m

e
(m

in
)

102 103 104 5 · 104
0.
00
0

2.
00
0

4.
00
0

6.
00
0

8.
00
0

Number of MC samples

Figure 14: Effects of the number of MC samples on performance for LA and MFVI on regression
tasks. In the results reported in main paper, we set the number of MC samples to 1000 (dashed line).

10−6 10−5 10−4 10−3 10−2 10−1 100

0

0.002

0.004

0.006

0.008

0.01

Value of ϵ

E
px

ec
te

d
A

bs
ol

ut
e

E
rr

or
:δ

L
in

Figure 15: Estimated divergence from a locally linear function as a function of ϵ. Note that a value of
zero means that the function behaves locally like a linear function.

data points, batchsize of one, and for each data point we repeated the measurement ten times. To
account for code compilation overheads, we droped the first run on each data point. We report the
mean and standard deviation of the runtime (in milliseconds) over the remaining nine runs and all
400 data points. The results are shown in Table 17. For ViT, we can see that our method without
Cov[vk, vl] covariance terms has a comparable runtime to a single forward pass in the deterministic
model. When additionally accounting for covariance terms, we obtain slight speed improvements
over GLM but overall comparable performance. Note that our implemention is not optimised for
speed and larger speedups may be obtained by optimising the code. For MLP, we obtain slight speed
improvements over LA GLM but overall comparable performance.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 14: Negative Log Predictive Density (NLPD) for ViT with posterior approximation n the
attention layers. We compare only considering variance for value V and considering full covariance.
For MFVI and LA, both approximation results in almost the same result.

Mean Field Variational Inference Laplace Approximation
Dataset Full Covariance Only Variance Full Covariance Only Variance

CIFAR-10 0.088± 0.006 0.088± 0.006 0.086± 0.006 0.086± 0.006
CIFAR-100 0.468± 0.013 0.467± 0.012 0.456± 0.012 0.456± 0.012
DTD 1.007± 0.035 1.007± 0.035 1.068± 0.035 1.068± 0.035
RESISC 0.617± 0.019 0.616± 0.019 0.352± 0.012 0.352± 0.012
IMAGENET-R 1.234± 0.052 1.233± 0.052 1.267± 0.043 1.267± 0.043

Table 15: Accuracy (ACC) for ViT with posterior approximation n the attention layers. We compare
only considering variance for value V and considering full covariance. For MFVI and LA, both
approximation results in almost the same result.

Mean Field Variational Inference Laplace Approximation
Dataset Full Covariance Only Variance Full Covariance Only Variance

CIFAR-10 0.975± 0.002 0.975± 0.004 0.976± 0.002 0.976± 0.004
CIFAR-100 0.880± 0.003 0.880± 0.009 0.880± 0.003 0.880± 0.009
DTD 0.734± 0.010 0.734± 0.012 0.719± 0.010 0.719± 0.012
RESISC 0.867± 0.004 0.867± 0.009 0.892± 0.004 0.892± 0.008
IMAGENET-R 0.728± 0.012 0.728± 0.012 0.739± 0.012 0.739± 0.012

Table 16: Expected Calibration Error (ECE) for ViT with posterior approximation n the attention
layers. We compare only considering variance for value V and considering full covariance. For
MFVI and LA, both approximation results in almost the same result.

Mean Field Variational Inference Laplace Approximation
Dataset Full Covariance Only Variance Full Covariance Only Variance

CIFAR-10 0.008 0.008 0.008 0.008
CIFAR-100 0.027 0.026 0.025 0.023
DTD 0.040 0.040 0.042 0.043
RESISC 0.016 0.016 0.017 0.020
IMAGENET-R 0.132 0.132 0.036 0.039

Table 17: Wallclock times for ViT base on CIFAR-10 and MLP on MNIST in milliseconds.

Model Methods AVG. RUNTIME (± STD) ↓
MAP 3.737±0.093
LA Sampling 190.806±0.137
LA GLM 17.191±0.734

ViT MFVI Sampling 207.854±0.307
Ours (+ Cov) 14.728±0.144
Ours 4.350±0.079
MAP 0.069±0.001
LA Sampling 98.584±3.737
LA GLM 1.656±0.049

MLP MFVI Sampling 190.302±0.466
Ours 0.542±0.073

30

	Introduction
	Related Work
	Method: Streamlining Bayesian Deep Learning
	Streamlining Computations with Local Approximations
	Architecture Choices
	Covariance Structure

	Experiments
	Does our Method Provide Useful Uncertainty Estimates?
	Is our Method Scalable?
	Can our Method Estimate Input Sensitivies?

	Discussion & Conclusion
	Derivations
	Derivation for Full Covariance Structure
	Error Induced Through Local Gaussian Approximation
	Derivation for Diagonal Covariance Structure
	Derivation for Kronecker Covariance Structure
	Derivation for Activation Layers
	Transformer Block
	Convolutional Neural Network

	Additional Experiments
	Regression
	Classification
	Image Pixel Sensitivity
	Effect of the Number of MC Samples on Performance
	Estimating Degree of Local Linearity
	Comparison of Value Covariance in Transformers
	Runtime Experiment

