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ABSTRACT
Self-gravitating bosonic fields can support stable and localized (solitonic) field configurations.
Such solitons should be ubiquitous in models of axion dark matter, with their characteristic
mass and size depending on some inverse power of the axion mass, ma. Using a scaling
symmetry and the uncertainty principle, the soliton core size can be related to the central
density and axion mass in a universal way. Solitons have a constant central density due to
pressure support, unlike the cuspy profile of cold dark matter (CDM). Consequently, solitons
composed of ultralight axions (ULAs) may resolve the ‘cusp–core’ problem of CDM. In
dark matter (DM) haloes, thermodynamics will lead to a CDM-like Navarro–Frenk–White
(NFW) profile at large radii, with a central soliton core at small radii. Using Monte Carlo
techniques to explore the possible density profiles of this form, a fit to stellar kinematical data
of dwarf spheroidal galaxies is performed. The data favour cores, and show no preference
concerning the NFW part of the halo. In order for ULAs to resolve the cusp–core problem
(without recourse to baryon feedback, or other astrophysical effects) the axion mass must
satisfy ma < 1.1 × 10−22 eV at 95 per cent C.L. However, ULAs with ma � 1 × 10−22 eV are
in some tension with cosmological structure formation. An axion solution to the cusp–core
problem thus makes novel predictions for future measurements of the epoch of reionization.
On the other hand, improved measurements of structure formation could soon impose a Catch
22 on axion/scalar field DM, similar to the case of warm DM.

Key words: elementary particles – galaxies: dwarf – galaxies: haloes – cosmology: theory –
dark matter.

1 IN T RO D U C T I O N

Dark matter (DM) is known to comprise the majority of the matter
content of the universe (e.g. Planck Collaboration XVI 2014; Planck
Collaboration XIII 2015). The simplest and leading candidate is
cold dark matter (CDM). CDM has vanishing equation of state
and sound speed, w = c2

s = 0, and clusters on all scales. Popular
CDM candidates are O(GeV) mass thermally produced supersym-
metric weakly interacting massive particles (SUSY WIMPs; e.g.
Jungman, Kamionkowski & Griest 1996), and the O(μeV) mass
non-thermally produced quantum chromodynamics (QCD) axion
(Peccei & Quinn 1977; Weinberg 1978; Wilczek 1978). The free-
streaming and decoupling lengths of a WIMP and the Jeans scale
of the QCD axion are both extremely small (i.e. subsolar on a mass
scale; see e.g. Loeb & Zaldarriaga 2005).

It is well known, however, that CDM faces a number of ‘small-
scale’ problems related to galaxy formation: ‘missing satellites’
(Klypin et al. 1999; Moore et al. 1999), ‘too-big-to-fail’ (Boylan-
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Kolchin, Bullock & Kaplinghat 2011), and ‘cusp–core’ (reviewed
in Wyse & Gilmore 2008), to name a few. Baryonic physics,
for example feedback or dynamical friction, offers possibilities
to resolve some or all of these problems within the framework
of CDM (e.g. Del Popolo 2009; Governato et al. 2012; Pontzen
& Governato 2014, and references therein). Modifying the par-
ticle physics of DM so that it is no longer cold and collision-
less also provides an attractive and competitive solution (e.g. Hu,
Barkana & Gruzinov 2000; Peebles 2000; Spergel & Steinhardt
2000; Bode, Ostriker & Turok 2001; Boehm, Fayet & Schaeffer
2001; Marsh & Silk 2013; Elbert et al. 2014). Modified grav-
ity has also been considered in this context (e.g. Lombriser &
Peñarrubia 2015).

There is no compelling theoretical reason, however, that the DM
should be cold or indeed thermal. From a pragmatic point of view,
then, possible signatures of the particle nature of DM on galactic
scales provide a useful tool to constrain or exclude models. The
small-scale problems provide a useful way to frame our tests of
DM using clustering. If the small-scale problems are resolved by
baryon physics, then this removes one ‘side’ of particle physics
constraints derived from them. However, the other side is left
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intact: a particle physics solution cannot ‘oversolve’ the problem
(e.g. too little structure or too large cores).

Thermal velocities and degeneracy pressure can support cores if
the DM is warm (WDM; e.g. Bond, Szalay & Turner 1982; Bode
et al. 2001). However, mass ranges allowed by large-scale structure
constraints, mW � O(fewkeV) limit core sizes to be too small (e.g.
Macciò et al. 2012; Schneider et al. 2014). Particle physics candi-
dates for WDM include sterile neutrinos, or the gravitino. Another
promising solution is offered by ultralight (pseudo) scalar field DM
with ma ∼ 10−22 eV (Hu, Barkana & Gruzinov 2000; Marsh & Silk
2013; Schive, Chiueh & Broadhurst 2014a), which may be in the
form of axions arising in string theory (Svrcek & Witten 2006;
Arvanitaki et al. 2010) or other extensions of the standard model
of particle physics (see Kim 1987, for a historic review). In this
model, cores are supported by quantum pressure arising from the
axion de Broglie wavelength. Axions with ma > 10−23 eV are con-
sistent with large-scale structure constraints (Bozek et al. 2015) and
can provide large cores (Hu et al. 2000; Marsh & Silk 2013; Schive
et al. 2014a,b). Such ultralight axions (ULAs) may therefore offer
a viable particle physics solution to the small-scale problems.

If the small-scale problems are in fact resolved by ULAs, then
forthcoming experiments, such as ACTPol (Calabrese et al. 2014),
the James Webb Space Telescope (JWST; Windhorst et al. 2006), and
Euclid (Laureijs et al. 2011; Amendola et al. 2013), will find novel
signatures incompatible with CDM. These include a truncated and
delayed reionization history (Bozek et al. 2015), a dearth of high-z
galaxies (Bozek et al. 2015), and a lack of weak lensing shear power
on small scales (by analogy to WDM; e.g. Smith & Markovic 2011).
If these observations are consistent with CDM, however, then ULAs
will be excluded from any relevant role in the small-scale crises.

We note that there is no consensus on the preference for cores
versus cusps in dwarf density profiles (e.g. Breddels & Helmi 2013;
Richardson & Fairbairn 2014; Strigari, Frenk & White 2014). If
dwarfs are in fact cuspy, then no baryon feedback or dynamical fric-
tion is necessary, and light DM providing cores would be excluded.
In this work, we use the data of Walker & Peñarrubia (2011, here-
after WP11), who report that their measurements exclude Navarro–
Frenk–White (NFW)-like cuspy profiles at a confidence level of
95.9 per cent for Fornax and 99.8 per cent for Sculptor.

The nature of axion clustering on small scales is a fascinating
topic regardless of their role or otherwise in the small-scale crises.
There has been much discussion in the literature (e.g. Sikivie &
Yang 2009; Davidson & Elmer 2013; Guth, Hertzberg & Prescod-
Weinstein 2014; Banik & Sikivie 2015; Davidson 2015, and ref-
erences therein) concerning whether axions, including the QCD
axion, undergo Bose–Einstein condensation and display long-range
correlation. This question is of more than theoretical importance
and can greatly affect the direct detection prospects for the axion,
for example by Axion Dark Matter Experiment (ADMX; Duffy
et al. 2006; Hoskins et al. 2011). The density solitons that we study
here are the same ground-state solutions studied in the context of
the QCD axion by Guth et al. (2014), and display only short-range
order. For ULAs, these solitons are kpc scale, while for the QCD
axion they are closer to km scale.

DM composed of axions of any mass, be it the QCD axion or
ULAs, possesses a characteristic scale and DM clustering should
be granular on some scale (Schive et al. 2014a). This scale is set
by the axion Jeans scale, which varies with cosmic time, making
structure formation non-hierarchical (Marsh & Silk 2013; Bozek
et al. 2015). This departure from CDM on small scales makes the
study of axion clustering on these scales impossible using standard
N-body techniques, and we must ask many basic questions afresh.

What fraction of the DM in the Milky Way is smooth, and what is in
solitons? What is the power spectrum on small scales? What is the
mass function of solitons and subhaloes? Answering these questions
in detail will be the subject of future work, with the present work
taking some small steps in this direction. The scale symmetry of the
relevant equations for axion DM makes answers to these questions
universal, and equally applicable to ULAs and the QCD axion.

In this paper, we study the soliton solutions of axion DM, clarify-
ing the core formation mechanism. The stability of this profile and
its validity outside the spherically symmetric case is supported by
pre-existing evidence from simulation. Our proposal for a complete
density profile matching to NFW on large scales is phenomenolog-
ical, and new to this work. We apply this to the dwarf spheroidal
(dSph) galaxies, finding limits on the axion mass for a solution to
the cusp–core problem. Our choice of data sets and methodology
applied to the axion core model is entirely new to this work, and
makes concrete links to cosmological limits. While we refer explic-
itly to our work as on ‘axion DM’, the results are more generally
applicable to any non-thermal scalar DM candidate. We hope that
the conclusions we draw inspire further study of these models within
the community.

We begin in Section 2 with discussion of some intuitive aspects of
the soliton profile and the relation between the central density, axion
mass, and core radius. In Section 3.1 we provide a complete model
for the halo density profile for axion DM with explicit formulae. We
use these formulae in Section 3.2 to find limits on the axion mass
based on stellar kinematical data for Fornax and Sculptor dSph
galaxies taken from WP11. We conclude in Section 4. Derivations,
pedagogical notes, and certain numerical aspects are relegated to
the appendix.

2 SO L I TO N C O R E S FO R S C A L A R D M

Quantum and wave mechanical properties of axion DM allow for
pressure support. Bose–Einstein condensation, if it occurred, could
also lead to large correlation lengths. Neither phenomenon will
occur if the axion is modelled as pressureless dust with classi-
cal gravitational interactions. Although from the particle point of
view, possible Bose condensation of the axion field is a quantum
phenomenon, from the field point of view it can be studied classi-
cally (Guth et al. 2014). The classical analysis also allows one to
derive the axion sound speed and resulting Jeans scale (Khlopov,
Malomed & Zeldovich 1985). Indeed, the characteristic wavelength
for the Bose–Einstein condensate, the scale over which thermaliza-
tion occurs and gravitational growth is suppressed, is none other
than the Jeans scale in the fluid description of the classical field
under linear density perturbations.

2.1 Schrödinger–Poisson system and ground state solitons

We work in the non-relativistic approximation, where the
full Einstein–Klein–Gordon (EKG) equations reduce to the
Schrödinger–Poisson (SP) system (Seidel & Suen 1990; Widrow
& Kaiser 1993):

i�
∂ψ

∂t
= − �

2

2ma
∇2ψ + maV ψ,

∇2V = 4πGψψ∗. (1)

The axion mass is ma, and the field ψ is related to the WKB ampli-
tude of the axion field, φ (see Appendix A1).
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The soliton solutions of this system, and their relativistic com-
pletion, were first studied by Ruffini & Bonazzola (1969), who
identified the scaling symmetry, and the maximum stable mass.
High-resolution cosmological simulations of the Schrödinger pic-
ture for DM by Schive et al. (2014a) using an adaptive mesh
refinement scheme powered by GPU acceleration have pro-
vided evidence that ultralight (ma ∼ 10−22 eV) scalar DM haloes
form kpc scale soliton cores that are stable on cosmological
time-scales.

Consider stationary wave solutions of the form1

ψ(r, t) = e−iγ tχ (r) (2)

for a function χ (r) which depends on the radial coordinate r, but
does not vary with time. Taking ∂rγ = 0 assumes phase coherence
and zero fluid velocity. We expect loss of phase coherence at large
distances in real systems, and expect that this is related to the
transition from soliton to NFW profile discussed in Section 3.1.
Indeed, phase coherence is lost outside of the density cores in the
simulations of Schive et al. (2014a).

In spherical coordinates we have the following system of ordinary
differential equations (ODEs):

χ ′′ + 2χ ′

r
= 2(V − γ )χ,

V ′′ + 2V ′

r
= χ2, (3)

where V, χ , r, and γ are all dimensionless quantities defined in
Appendix A2. The solutions χ (r) are a special type of soliton known
as an oscillaton (see Appendix B for clarification of terminology) in
the axion field φ, with soliton profile χ , and density profile ρ = χ2.

In the stationary wave solution, equation (2), it is important to note
that γ is a parameter to be solved for, related to the total energy. The
ground state is the state of lowest energy and depends on only one
length scale. It also has no nodes, and with fixed central density this
allows us to find the unique value of γ numerically. The stationary
wave solution must obey the condition |mψ | � |�ψ̇ | (first order
WKB approximation; see Appendix A1), which translates to γ � 1
in dimensionless variables. This must be satisfied if solutions to
equations (3) are consistent non-relativistic limits of the solutions
to the full EKG equations.

The soliton density profile must have the properties ρ̃(0) = const.
and ρ̃(r → ∞) = 0, such that ρ̃ is the solution of the boundary value
problem (BVP) in Appendix A5. We write the density profile as

ρ̃sol(r) = f (αr), (4)

where f (y) has no explicit scales and has the correct asymptotic
behaviour. Restoring units:

ρsol(r) = 2m2
aM

2
plf (r/rsol), (5)

rsol : = 1

αma
. (6)

Solutions to equations (3) possess a scaling symmetry (Ruffini
& Bonazzola 1969), as discussed in Appendix A3, which is used to
fix the appropriate scale for astrophysical systems. Upon applying

1 Separating the function ψ(r, t) into polar coordinates in this way is some-
times referred to as the Madelung transformation (Madelung 1926).

a rescaling by λ, all dimensionful quantities2 are affected, so that
r → r/λ and rsol → rsol/λ. The density must scale as ρ → λ4ρ.
Rewriting

ρsol(r)

ρcrit
= δsolf (r/rsol), (7)

we find the relationship between the soliton density parameter, δsol,
and its characteristic radius, rsol:

δs =
(

5 × 104

α4

) (
h

0.7

)−2 ( ma

10−22 eV

)−2
(

rsol

kpc

)−4

. (8)

The value of α is fixed from numerical fits in Appendix A6.
A rescaling of the density profile is seen to affect only δsol

→ λ4δsol, with the relationship between the central density, the
scale radius, and the mass completely being fixed. The numeri-
cal value of α depends on the choice of the functional form of
f(αr). Choosing a different definition for rsol, e.g. the half-density
radius used by Schive et al. (2014a,b), or even a completely dif-
ferent functional form for f will only change the numerical co-
efficient in equation (8) and not the functional relationship be-
tween δsol and rsol, or their dependence on the axion mass. These
features are universal. In Appendix A5, we fit the form of f(αr)
from numerical solutions, and fix the value of α for our chosen
fit.

The axion mass can be re-expressed in terms of the linear Jeans
scale, rJ, lin/kpc ∝ (ma/10−22 eV)−1/2 (Hu et al. 2000). Substituting
into equations (7) and (8), the scale radius of any soliton with central
density ρsol(0) is given by

rsol ∝
(

ρsol(0)

ρcrit

)−1/4

rJ,lin. (9)

This simple result fixes the scaling properties of axion density cores
using only the scaling symmetry of the SP system. The existence
of the scale in the ground state was guaranteed by the uncertainty
principle, which holds by virtue of the large occupation numbers
and the classical wave mechanical description of the axion field. The
scaling symmetry occurs because in the non-relativistic limit there
is no scale in the SP system. Such a scaling should therefore hold
for all large occupation number, non-relativistic axion/scalar DM
density configurations in the small-radius and long-time limits. That
is, soliton cores with this scaling property are universal features of
such DM models.

2.2 Soliton core radius

We now consider the relation of the soliton radius to the de Broglie
wavelength. Consider a particle of mass ma on a circular orbit around
the soliton core. Its velocity is given by

v2 = GM(< r)

r
. (10)

The uncertainty principle requires

p r ≥ �. (11)

The de Broglie scale is the point where p rdB = �, and thus

rdBma

√
GM(< rdB)

rdB
= � (12)

2 Except the axion mass, which does not appear explicitly in equation (3),
and hence only sets the units.
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Figure 1. Solving equation (13). Blue: left-hand side, the mass of the soliton
as a function of radius for some representative dwarf galaxy parameters.
Green: right-hand side, the intersection solves for the de Broglie radius
thus defined. The red dot shows the core radius as defined by Schive et al.
(2014a), r1/2, while the green dot shows the de Broglie radius obtained
from the uncertainty principle. Because of the steeply falling soliton profile
outside of the core, neither definition of core radius fixes the density of the
point of transition to NFW accurately (Schive et al. 2014a,b).

⇒ M(< rdB) = �
2

m2
aG

1

rdB
. (13)

In Fig. 1 we solve this equation graphically for some typical dwarf
galaxy parameters and find rdB = 1.04 kpc. The de Broglie wave-
length found in this way is close to the core radius at half central
density, r1/2, where ρsol(r1/2) = ρsol(0)/2.

The form of the scaling in equation (9) is the same as for the
halo Jeans scale extrapolated from linear theory (Hu et al. 2000;
Marsh & Silk 2013; Guth et al. 2014). Both follow from the scale
symmetry and dimensional analysis, and thus their interpretation as
related to the de Broglie scale remains the same (see also Hlozek
et al. 2015). Beyond scaling alone, how exactly are the linear Jeans
scale and the soliton size related numerically? Can this be used
to predict properties of axion haloes, including the core-size/mass
relation, and the transition to NFW?

The simulation results of Schive et al. (2014a) indicate a soliton
core connecting to an NFW profile at larger radii. No prescrip-
tion for the matching radius is provided, however. In a follow up
paper (Schive et al. 2014b), the same authors assessed halo for-
mation in this model as the gravitational collapse of a system of
solitons. Using the uncertainty principle and the virial theorem
they motivated a relationship between the total halo mass, Mh, the
soliton core mass M(< r1/2), and the minimum halo mass, Mmin:
M(< r1/2) ∝ (Mh/Mmin)1/3Mmin.

Hu et al. (2000) and Marsh & Silk (2013) related the core radius
to the halo Jeans scale. Can the same quantity be used to define
a matching point between soliton and NFW? With respect to the
linear Jeans scale rJ, the halo Jeans scale, rJ, h, satisfies

ρ(rJ,h)

ρcrit
=

(
rJ

rJ,h

)4

. (14)

In order for this relation to define a matching point between
soliton and NFW profiles, both profiles must provide a solution to
this equation at the same radius. The logarithmic slope, �, of the
NFW profile is in the range −3 < � < −1 and so there is always

a single unique solution for rJ, h. However, the slope of the soliton
profile is zero at the origin, decreasing to � < −4 at large radius.
For the soliton, there can be either zero, one, or two solutions for
rJ, h, with a single unique solution at the point where � = −4. Using
the relationship in equation (8) it is possible to show that solutions
only occur for δs � 1. Haloes, on the other hand, correspond to non-
linear density perturbations with δs � 1. Therefore, the transition
from soliton to NFW profile in a halo must occur on radii smaller
than the linear Jeans scale extrapolated using the local density, i.e.
on r < rJ, h defined by equation (14). This implies that soliton cores
are more compact than expected from linear theory. This will turn
out to have important implications for a possible solution to the
cusp–core problem using ULAs/scalar field DM.

3 A X I O N H A L O D E N S I T Y PRO F I L E S
A N D DWA R F G A L A X Y C O R E S

In this section we will first define our proposal for the complete halo
density profile of axion /scalar-field DM. We then go on to estimate
the parameters in this profile using the Fornax and Sculptor dSph
density profile slopes as measured by WP11. We introduce this
measurement and the approximations it uses, define a likelihood
from this, and perform a Monte Carlo Markov chain (MCMC)
analysis. The results are all contained in Table 3 and Figs 2 and 3.

3.1 Defining the density profile

The halo density profiles for ultralight scalar DM observed in the
simulations of Schive et al. (2014a,b) consist of an NFW-like outer
region, with a prominent solitonic core. The observed transition is
sharp, and we model it as a step function:

ρ(r) = �(rε − r)ρsol(r) + �(r − rε)ρNFW(r). (15)

The transition to an NFW profile at some radius is expected on
a number of physical grounds. Axion/scalar field DM is indistin-
guishable from CDM on large scales, and this is the basis of the
Schrödinger approach to simulating CDM (Widrow & Kaiser 1993;
Uhlemann, Kopp & Haugg 2014). Thus, on scales much larger than
the de Broglie wavelength, the scalar field haloes should resemble
those found in N-body simulations, i.e. NFW. Furthermore, no long
range correlation should occur; the smallest objects are solitons,
with a characteristic granularity fixed by the Jeans scale (Guth et al.
2014; Schive et al. 2014a,b). On large scales, phase decoherence
should occur, violating the assumption in our soliton ansatz that
∂rγ = 0.

The dynamics will be that of an interacting gas of solitons in
a decoherent scalar field background. On length scales larger than
the soliton radius the usual thermodynamic arguments relating to
dust (Binney & Tremaine 2008) will apply, leading to an NFW-like
profile (on large scales this equivalence between the Schrödinger
picture and dust thermodynamics can be derived using the Wigner
distribution; e.g. Widrow & Kaiser 1993; Uhlemann et al. 2014).
The transition in behaviour from soliton to NFW governed by the
decoherence scale, and the mass function of solitons in the outer halo
are all interesting questions, and will be the subjects of forthcoming
papers. The NFW density profile is given by (Navarro, Frenk &
White 1997)

ρNFW(r)

ρcrit
= δchar

(r/rs)(1 + r/rs)2
. (16)
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Figure 2. Two and one-dimensional marginalized posteriors on the constrained density profile parameters for the HUDF mass prior (see Table 2). Contour levels
show [0.5, 1.0, 1.5, 2.0]σ preferred regions. Vertical dashed lines show [0.05, 0.5, 0.95] percentiles. This plot is made using TRIANGLEPLOT (Foreman-Mackey
2014).

We fit for the soliton density profile in Appendix A6:

ρsol(r)

ρcrit
= δs

(1 + (r/rsol)2)8
. (17)

We take δs as a free parameter and rsol is fixed in terms of it by
equation (8) using α = 0.230. The rescaling parameter, λ, can
then be found by setting rsol = (λαma)−1. We recall that consistent
solutions with |γ /m| � 1 require λ < 1, which also guarantees
φ(0) � 0.3Mpl and the stability of the soliton (Seidel & Suen 1990).

We match the soliton and NFW profiles at a fixed value of the
overdensity, δ = εδs, defining the matching radius rε . Since we have
not been able to find an accurate estimate that fixes ε analytically,
we take it as a free parameter.3 Continuity of the density at this point
fixes one of the two free parameters in the NFW profile. We choose
this to be δchar and take the scale radius to be a free parameter. For a
given ULA mass, our halo density profile thus has three additional
free parameters:

{δs, ε, rs}. (18)

We emphasize again that a theoretical model for the value of
ε, which could depend on redshift, central density, and/or particle

3 An order of magnitude estimate for the matching radius based on the de
Broglie scale will not be enough. The soliton density falls rapidly for r > rdB

and so O(1) numerical coefficients have a large effect on the estimate for ε.

mass, could perhaps be derived. In this case, the density profile has
just as many free parameters as an NFW profile. Thus, in any given
halo, a core measurement would predict the point of transition to
NFW, and a measurement of the outer halo fixing concentration and
scale radius would predict the corresponding inner core size.

The data we use imply cored profiles on the observed radii, and
so in our phenomenological model with free ε we will find that the
NFW parameters ε and rs are unconstrained. This shows that the
data prefer soliton cores to NFW profiles. For a complete Bayesian
analysis, we include and marginalize over the NFW parameters in
our constraints, as described in the next subsection.

3.2 Fitting to Fornax and Sculptor

While there are several ways of analysing the observed data, we
will focus on the method used by WP11 who measured the slopes
of dSph mass profiles directly from stellar spectroscopic data. They
use the fact that some dSphs have been shown to have at least
two stellar populations that are chemodynamically distinct (see e.g.
Tolstoy et al. 2004; Battaglia et al. 2006, 2011). Measuring the
half-light radii and velocity dispersions of two such populations in
a dSph allows one to infer the slope of the mass profile. The method
of WP11 has the advantage that it does not need to adopt any DM
halo model a priori. Therefore the data can be used to test theoret-
ical density profile models without having to run computationally
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2484 D. J. E. Marsh and A.-R. Pop

Figure 3. Velocity dispersions are estimated at the stellar half-light radii from M(< rh), equation (19). We show velocity dispersions and density profiles of
200 random samples from our MCMC using the HUDF mass prior (see Table 2). The large core in Fornax favours low axion masses. Consistency with HUDF
predicts a rapid turnover in the density slope at radii slightly larger than those observed, caused by the transition from soliton to NFW. Data from WP11, quoted
in Table 1.

Table 1. Data used in this work, taken from WP11. We approxi-
mate the likelihoods to be two-dimensional uncorrelated Gaussians
in log10(r, σ ) for each data point.

dSph log10(σ 2/km2 s−2) Error log10(r/kpc) Error

Fornax 2.00 0.05 −0.26 0.04
2.32 0.04 −0.05 0.04

Sculptor 1.62 0.06 −0.78 0.04
2.13 0.05 −0.52 0.04

expensive fits to the full stellar data for each value of the theoretical
parameters.

We model the results of WP11 as providing two-dimensional
Gaussian distributions for the half-light radii, rh, i, and velocity
dispersions, σ (rh, i), for each of the two stellar populations, i, in
Fornax and Sculptor. While the exact results display some covari-
ance between σ and rh the Gaussian approximation is far simpler
to analyse, and accurate enough for the purposes of this study. This
follows the approach taken by Lombriser & Peñarrubia (2015) for
testing chameleon gravity using dSphs. The data we use are given
in Table 1.

For our density profile the mass internal to any radius, M(< r),
can be computed analytically (and so can the derivative of the mass,
dM/dr). These are the only ingredients necessary in analysing this
simplified version of the stellar kinematic data. The velocity dis-
persion at the stellar half-light radius obeys the following empirical
relationship:

σ 2(rh) = 2 GM(< rh)

5rh
. (19)

This relationship is related to the virial theorem, and is found by
solving the Jeans equation and finding a ‘sweet spot’ where a wide
variety of density and velocity profiles agree (including projection

and anisotropy effects). In this work we do not perform a full Jeans
analysis and use only this analytic relationship and the derived errors
on it, following WP11.

The two-dimensional nature of the (r, σ ) data can be accounted
for using an effective one-dimensional error (e.g. Ma, Hinshaw &
Scott 2013). If the data have central values (x̄, ȳ) and standard
deviations (�x, �y), then for a given model y = f(x) the effective
one-dimensional error is given by

�2
eff = �2

y +
(

df (x̄)

dx

)2

�2
x . (20)

The likelihood, L, can then be approximated as

L ∝ exp

[−(f (x̄) − ȳ)2

2�2
eff

]
. (21)

We use the data for Fornax and Sculptor with equal weight in
the combined likelihood. The axion mass, ma, is a global parameter
which is the same for both Fornax and Sculptor. Our final model
thus has seven parameters in total:{

ma, δ
F
s , δS

s , rF
s , rS

s , εS, εF
}

, (22)

with F and S labelling Fornax and Sculptor, respectively.
The priors on these parameters are given in Table 2. We take

Jeffreys’, or ‘least information’, priors in a fixed range for all pa-
rameters. We will discuss our results in detail shortly, but mention
here those aspects relevant to priors. We find that the NFW pa-
rameters (ε, rs) are unconstrained. The priors on these parameters
are therefore irrelevant in quoting marginalized constraints on other
parameters and we take them extremely wide to explore all possi-
bilities. We impose an upper bound on the ε prior of ε = 0.5, so
that the match must occur outside the half-density radius, consistent
with the simulation results of Schive et al. (2014a). As already men-
tioned, the fact that these parameters are unconstrained has physical
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Table 2. Priors on our density profile parameters,
where U(a, b) is the uniform distribution on [a, b].
The lower bound on the mass prior, X is given two
different values: XCMB = −25 (Hlozek et al. 2015)
and XHUDF = −23 (Bozek et al. 2015), referred to as
CMB and HUDF priors, respectively.

Parameter Prior

log10(ma/eV) U(X, −19)

log10 δF,S
s U(0, 10)

log10ε
F, S U( − 5, log100.5)

log10(rF,S
s /kpc) U(−1, 2)

Table 3. Posteriors on the constrained density
profile parameters. The mass constraint is quoted
for both the CMB and HUDF priors (see Table 2).
Upper and lower errors on the central densities
are given as the 16th and 84th percentiles and
are quoted for the HUDF prior only (see text for
discussion). The upper bound on the axion mass
reflects the minimum core size consistent with
observations.

Parameter Posterior

(ma/eV)HUDF <1.1 × 10−22 (95 per cent C.L.)

(ma/eV)CMB <1.0 × 10−22 (95 per cent C.L.)

log10 δF
s 5.55+0.06

−0.08

log10 δS
s 6.19 ± 0.05

meaning: our MCMC finds no peak corresponding to an NFW pro-
file, and thus the data prefer soliton cores to NFW cusps. The central
densities are well constrained and so the results are independent of
the prior.

We find a one-sided constraint on the axion mass, and so the
percentiles quoted depend on the prior for the lower bound. We
take two such priors. The first uses the results of Hlozek et al.
(2015), which place an approximate lower bound on ULAs to be
all of the DM of ma > 10−25 eV. This is a very conservative lower
bound and relies only on linear constraints from the cosmic mi-
crowave background (CMB). It is thus extremely reliable. Our al-
ternative prior uses the results Bozek et al. (2015), which constrains
ma > 10−23 eV at more than 8σ significance using Hubble Ultra-
Deep Field (HUDF). While this is a very strong bound, it relies
on more assumptions about the astrophysics of reionization and on
the non-linear structure formation of ULAs. This HUDF bound is,
however, still rather conservative compared to other constraints to
ULAs using non-linear scales (e.g. Lyman α forest; Amendola &
Barbieri 2006).

We evaluate the likelihood using EMCEE, an affine-invariant
MCMC ensemble sampler (Foreman-Mackey et al. 2013). We use
200 ‘walkers’. Convergence is tested by evaluating the autocorre-
lation time, which is found to be O(80) for each parameter. With
5000 steps per walker the likelihood is thus evaluated over many
correlation times, giving many independent samples. We have used
an ‘MCMC hammer’ (Foreman-Mackey et al. 2013) to crack a very
simple parameter constraint nut, but this gives us a high degree
of confidence in our results, and allows us to present them in a
completely Bayesian fashion.

Our results are presented in Table 3, and shown for the HUDF
priors in Fig. 2. As already mentioned, the NFW parameters (rs, ε)

are unconstrained, and so we do not show them. A weak constraint
could be found on these parameters if one were to solve the full Jeans
equation to fit the stellar kinematic data, rather than using only the
empirical relationship equation (19). The constraint is caused by
requiring a fixed enclosed mass at large radius. This consequently
also imposes a weak lower bound on the axion mass to give a finite
core radius, as in Schive et al. (2014a). Such an analysis is beyond
the scope of this paper. Information about the total halo virial mass
could also allow one to impose the core–halo relation of Schive
et al. (2014b), introducing a degeneracy between rs and ε.

For the central densities, shifts in the central values using the
CMB prior compared to the HUDF prior are smaller than 1σ for
Fornax and Sculptor, with comparable errors in both cases. The
shift for Fornax is ever-so-slightly larger due to the degeneracy
between δs and ma enforced by equation (8) having an effect when
marginalizing over ma with a different prior in the unconstrained,
low-mass region. The degeneracy between these parameters is more
pronounced for Fornax as it is less cored than Sculptor. This same
effect is the cause of the non-Gaussianity in the one-dimensional
central density distribution for Fornax.

Random samples from our EMCEE runs showing the density and
velocity profiles colour coded by axion mass are shown in Fig. 3
for the HUDF prior. This makes one clear point: since the HUDF
prior already restricts the mass, cores cannot be too large. Therefore,
if ULAs are responsible for dSph cores, velocity dispersions and
density profiles must turn over quite rapidly on radii just larger than
those observed. This is, in principle, a falsifiable prediction of the
ULA model for cores.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we have investigated stable solitonic density profiles,
which are expected to be the smallest structures formed in models
of axion/scalar field DM. We found these objects via numerical
solution of the BVP in the Schrödinger approach to DM. Via use
of a scaling symmetry we found a universal relationship between
the central density of the soliton, the soliton radius, and the DM
particle mass. We further explained the soliton size by recourse to
the uncertainty principle. The standard thermodynamic arguments
for dust, and the formal equivalence between the Schrödinger pic-
ture and dust on large scales, further supported by evidence from
simulation, lead us to consider solitons as the central cores in NFW
haloes. We presented a new phenomenological model for such a
density profile.

If the DM is ultralight, then solitons may be responsible for
the density cores observed in dSph galaxies, with soliton den-
sity profiles in the inner regions, and an outer NFW profile. We
investigated the validity of this claim by performing an MCMC
analysis of the simplified stellar kinematic data of WP11 for For-
nax and Sculptor. This data shows a preference for cores over
cusps, but other studies prefer cusps (e.g. Breddels & Helmi 2013;
Richardson & Fairbairn 2014). The preference of the WP11 data for
large cores shows up as an upper bound on the axion DM mass of
ma < 1.1 × 10−22 eV at 95 per cent C.L., leaving the NFW param-
eters unconstrained and marginalized over. The axion mass bound
applies only if the dSph cores are solitonic, and not if they are caused
by baryonic effects for standard CDM (be it composed of heavier
axions, WIMPs, etc.). This bound is consistent with the best-fitting
mass ma = 8.1+1.6

−1.7 × 10−23 eV (an approximate 95 per cent C.L. re-
gion 0.47 � ma/10−22 eV � 1.13) of Schive et al. (2014a) found by
solving a simplified version of the full Jeans equations for a single
stellar subcomponent in Fornax alone. Schive et al. (2014a) also
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checked the (rough) consistency of their results with density profile
slope measurements, but our analysis is the first to use these data
together in a complete and Bayesian manner. In future we hope
to conduct a full Jeans analysis for our model, following the sim-
ilar analysis for self-interacting scalar field DM by Diez-Tejedor,
Gonzales-Morales & Profumo (2014).

The existence of an upper bound on the DM particle mass in
the axion model has a number of interesting consequences. Structure
formation in this model is substantially different from CDM due to
the cut-off in the power spectrum on small scales caused by the
axion sound speed and resulting Jeans scale. Bozek et al. (2015)
found that, if the DM is composed entirely of ultralight axions,
ma = 10−22 eV is just consistent with HUDF. Our upper bound is
right on the edge of this limit, and suggests two possible outcomes
warranting further study.

(i) Pessimistic. Structure formation and the requirement of dSph
cores put conflicting demands on axion DM. This places the model
in a ‘Catch 22’ analogous to WDM.4 This particle physics model is
no longer a catch-all solution to the small-scale crises, and additional
mechanisms are required for its consistency.

(ii) Optimistic. Ultralight axions are responsible for dSph cores.
The cut-off in the power spectrum is just outside current observa-
tional reach. Near-future experiments will turn up striking evidence
for axions in structure formation and in study of the high-z universe.

In the pessimistic case, axions have nothing to do with core for-
mation in dSph galaxies, and another mechanism is needed to form
the cores. The DM can still be composed of axions, but there is
now no limit on the mass based on the dSph observations. Cores
may be formed by baryonic processes, putting axion DM in the
same situation as any other DM model, e.g. WIMPs. Cores could
also be formed by adding strong self-interactions for CDM or for
axions. One could also modify gravity, for example if the modulus
partner of the axion played the role of a chameleon field (Khoury &
Weltman 2004; Lombriser & Peñarrubia 2015). Another alternative
would be to keep cores from axion solitons, but compensate struc-
ture formation by a boost in the primordial power or some other
alteration to cosmology. A compensation based on a mixed DM
model, however, is unlikely to succeed (Marsh & Silk 2013).

There are still opportunities to discover evidence for axion DM
in the pessimistic case. We briefly outline some of these for the
‘most pessimistic’ case (from a particle physics view point) that
cores are formed entirely by baryonic processes, and consider only
searches influenced in some way by the Jeans scale or solitons, i.e.
by non-trivial gravitational behaviour. For 10−22 � ma � 10−20 eV
axions are consistent with current constraints from cosmology, but
the cut-off in the power spectrum may still be observable using
measurements of the weak lensing or 21-cm power spectra. Axions
can further be evidenced by their effect on black holes via the
super-radiant instability (Arvanitaki & Dubovsky 2011). Spinning
supermassive black holes indirectly probe/constrain masses in the
range 10−19 � ma � 10−18 eV (Pani et al. 2012; Brito, Cardoso &
Pani 2014). More direct signatures in gravitational wave detection
may come from solar mass black holes for axions in the range
10−13 � ma � 10−10 eV (Arvanitaki, Baryakhtar & Huang 2015).

Axion DM of any mass will contain solitons somewhere in the
mass spectrum at some point in cosmic history. This could have a
number of consequences relevant to both the optimistic and pes-
simistic scenarios outlined above. This model predicts small and

4 Phrase coined by Macciò et al. (2012). For ULAs, one might call it a
Catch 10−22.

dense cores in all DM haloes, with core size inversely related to
central density and halo mass (equation 8; Schive et al. 2014b).
Such cores may provide seeds for high-z quasars (Schive et al.
2014b). The granular nature of DM composed of solitons could be
detected by measures of substructure (which we discuss further be-
low). DM composed entirely of solitons/oscillons/boson stars may
have a number of interesting features for gravitational wave obser-
vations, as discussed in, e.g. Evslin & Bjarke Gudnason (2012) and
Macedo et al. (2013), that distinguish soliton DM from an equivalent
model with black holes, due to the absence of a horizon. The soliton
content of an axion DM halo will also impact the direct detection
prospects (Hoskins et al. 2011), while the evaporation of solitons
from axion self-interactions enhanced by the high number densities
could have indirect signatures. Other signatures of the soliton com-
ponents of an axion halo, e.g. in precision time-delay experiments
with atomic clocks, may be similar to those with topological defect
DM (Pospelov et al. 2013; Derevianko & Pospelov 2014; Stadnik
& Flambaum 2014).

There are also ‘intermediate’ cases to consider. ULAs with
ma � 10−23 eV could be detected as a subdominant component
of the DM with high precision studies (Hlozek et al. 2015). A
subdominant component at these masses is likely the expectation
based on string models with sub-Planckian axion decay constants
(although see Bachlechner, Long & McAllister 2014). ULAs with
ma > 10−22 eV as the dominant DM could also play some role in
core formation alongside inefficient baryonic processes.

Finally, we turn to discussion of the optimistic case, where axions
at the edge of our allowed region in mass are solely responsible for
dSph cores. In this case, soliton cores have a large massO(108 M�)
and large radial extent O(1 kpc), and the cut-off in the halo mass
function (in the field) occurs at M ∼ 108 M� (the z = 0 Jeans mass;
Marsh & Silk 2013; Bozek et al. 2015).

We have demonstrated the ability of soliton cores to fit the dSph
observations, and suggested a complete density profile including
the NFW piece. This density profile could be fit to many other ob-
servations, including rotation curves (de Blok et al. 2001; Robles &
Matos 2012) and stellar clump survival (Lora & Magaña 2014). We
argue that further study of this model should use the density profiles
we advocate in this work, and not ‘multistate’ or other adaptations
of the scalar field DM model. The outer NFW piece obviates the
need for such additions, and is consistent with many lines of rea-
soning. Further study should, as we have in this work, account for
consistency of the cosmology, as well as between different density
profile constraints. Consistency with cosmology and our core size
fits in this work suggest that density profiles just outside 1 kpc
should be much steeper than cores and make a transition to NFW
shortly thereafter. It should also be investigated whether the scale
symmetry for soliton cores can be used to explain the observed scal-
ing relationships in dwarf galaxies (Kormendy & Freeman 2014;
Burkert 2015).

While density profiles provide the motivation for ma ∼ 10−22 eV,
cosmology suggests that the most striking evidence for such a model
will be found in substructure and high-z galaxy formation. Mea-
sures of substructure from mililensing (Dalal & Kochanek 2002),
tidal tails (Johnston, Spergel & Haydn 2002), and strong lensing
(Hezaveh et al. 2014) should be sensitive to the absence of small-
scale structure predicted by an axion solution to the cusp–core
problem. Further study is required to formulate the predictions of
the axion model in this regard. This should come from simulation,
but also from semi-analytic study of the conditional mass function
and extended Press–Schecter formalism (Lacey & Cole 1993). This
study will further address the questions of whether axion DM can
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provide a consistent solution to other small-scale crises like ‘miss-
ing satellites’.

A final set of ‘smoking gun’ signatures in the optimistic sce-
nario is suggested by the results of Bozek et al. (2015). Since
ma ∼ 10−22 eV is just consistent with the HUDF ultraviolet (UV)
luminosity function, and also just able to provide a dSph core, this
makes the prediction that a JWST measurement of the UV lumi-
nosity function sensitive to fainter magnitudes will only see a value
consistent with HUDF, and not the larger value predicted by CDM.
The cut-off in the mass function also makes predictions about reion-
ization that are less sensitive to astrophysical uncertainties than in
CDM. An axion solution to the cusp–core problem predicts that
CMB polarization experiments (Calabrese et al. 2014) should mea-
sure: a low value of τ ∼ 0.05,5 a low redshift of reionization zre ∼ 7,
and thin width of reionization δzre ∼ 1.5. These effects on reion-
ization, caused by the rapid build up of massive structures at the
mass function cut-off, should also turn up striking effects in the
21-cm power spectrum (building on Kadota et al. 2014; Sitwell
et al. 2014). Further study of all of these signatures is underway.
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for help using the data from Walker & Peñarrubia (2011), the Royal
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A P P E N D I X A : TH E S C H RÖ D I N G E R – P O I S S O N
SYSTEM

A1 Derivation

We begin by deriving our workhorse system, the Schödinger–
Poisson (SP) form of the field equations, following Widrow &
Kaiser (1993). Further reading on this formalism can be found
in Coles (2003), Coles & Spencer (2003), Johnston, Lasenby &
Hobson (2010), and references therein.6 The SP system can be
viewed as a fundamental picture of structure formation for axions
or other scalar DM, or as a numerical procedure to model and study
CDM with a suitable cut-off, having certain advantages over N-body
simulations (Uhlemann et al. 2014).

The Klein–Gordon (KG) equation for a free homogeneous scalar
field φ of mass ma, in an expanding universe with Hubble rate H,
is

φ̈ + 3Hφ̇ + c4m2
a

�2
φ = 0. (A1)

From this point onwards, we will set c = 1, but keep factors of �

for now. In the regime H � m (valid at late times, when the axion

6 Here, we are using a Schrödinger system as a change of variables to
understand a classical wave equation, which also has a fluid description.
Similarly, an understanding of classical fluids can help in understanding
aspects of quantum mechanics. See Park (1979) for further discussion.

field is oscillating and behaving as DM) the equation above can be
solved by WKB methods,

φ = �√
2 ma

(ψ e−imt/� + ψ∗eimt/�), (A2)

for the function ψ that is slowly varying with time, i.e. |m ψ | �
|� ψ̇ |.

The time–time metric component is (in the Newtonian gauge and
in physical time)

g00 = −[1 + 2V (r)], (A3)

where V(r) is the Newtonian potential. Treating this perturbatively,
the KG equation for the inhomogeneous field becomes

1√−g
∂μ

[√−ggμν∂ν

]
φ − m2

a

�2
φ = 0, (A4)

φ̈ + 3Hφ̇ − ∂i∂iφ + (1 + 2V )
m2

a

�2
φ = 0. (A5)

In the non-relativistic limit, this equation has the same ansatz so-
lution as the homogeneous field equation. Plugging in our ansatz
and neglecting terms of order O(ψ̈), since ψ is a slowly varying
function of time, we find

φ̈ =
√

2i
(−ψ̇e−imat/� + ψ̇∗eimat/�

)
− m√

2�

(
ψ e−imat/� + ψ∗eimat/�

)
, (A6)

∇2φ = �√
2ma

(∇2ψ e−imat/� + ∇2ψ∗eimat/�
)
. (A7)

In the regime H � m, the second term in equation (A5) can be
neglected. This gives
√

2 i (−ψ̇ e−imat/� +ψ̇∗eimat/�)

− �√
2m

(∇2ψ e−imat/� +∇2ψ∗eimat/�
)

+2V
m√
2�

(
ψ e−imat/� + ψ∗eimat/�

) = 0. (A8)

Multiplying the equation above by �/
√

2 and identifying all terms
with the same exponential factor, we find the familiar Schrödinger
equation:

i�ψ̇ = − �
2

2m
∇2ψ + maV ψ. (A9)

In the subhorizon, non-relativistic limit, in any gauge, the Poisson
equation is

∇2V = 4πGρ = 4πGψψ∗. (A10)

Equations (A9) and (A10) form the coupled SP system for inhomo-
geneous scalar fields, give as equation (1). The non-relativistic limit
in this case caused us to drop the gradient energy from the right-
hand side of the Poisson equation, setting ρ = |ψ |2. This is valid in
the limit that k/ma � 1 for wavenumber k, i.e. ∂xφ/(Mplma) �
1. Consistent solutions to the SP system must respect this
limit.

In deriving this form of the field equations, the only quantity
that has been treated perturbatively is the potential, V, i.e. we are
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working in the weak-field, Newtonian limit of general relativity. We
have not treated the field, φ, or the density, ρ, perturbatively, and
therefore our results will be valid in the non-linear (in terms of den-
sity fluctuations about the critical density) regime of gravitational
collapse. The only clear limitation of our solutions will be instability
to black hole formation: the Jeans limit (for boson stars, this is the
analogue of the Chandrasekhar limit; see Ruffini & Bonazzola 1969;
Khlopov et al. 1985; Seidel & Suen 1990; Choptuik 1993, for more
details).

The SP system is simply another way of rewriting the KG equa-
tion, and is related to the more familiar fluid treatment of scalar
fields in cosmology (e.g. Hu 1998). The standard fluid picture is
most useful for studying linear perturbations in Fourier space via
the sound speed and Jeans instability (e.g. Hwang & Noh 2009;
Noh, Park & Hwang 2013; Hlozek et al. 2015; Alcubierre et al.
2015). We will find the Schrödinger picture to be more intuitive and
useful for applications in real space relevant to non-linear densities
in haloes.

A2 Dimensionless variables

Plugging the soliton ansatz, equation (2), into the SP system, equa-
tions (1), yields

∇2χ = 2m2
a

�2

(
V − �

γ

ma

)
χ,

∇2V = 4πGχ2. (A11)

From equation (A2), we know the dimension of [χ ] = [ψ] =
[ma][φ] = [ma]2, and we will now replace χ , r, and γ by the
dimensionless variables χ̃ , r̃ , and γ̃ :

χ → χ̃ maMpl

√
2

( c

�

)3/2
→ χ̃ma

c2

�

1√
4πG

,

r → r̃ �/mac,

γ → γ̃ ma/�. (A12)

In these dimensionless variables the SP system is

∇̃2χ̃ = 2 (V − γ̃ ) χ̃ , (A13)

∇̃2V = χ̃2. (A14)

Tildes can then be dropped.

A3 Scaling relations

The SP system of equations (3) obeys a scaling relation (r, χ , V,
γ ) → (r/λ, λ2χ , λ2V, λ2γ ) for scale factor λ (Ruffini & Bonazzola
1969). This is easy to check:

∇2χ = Y
1

λ2
∇2χ̃ = 1

λ4
∇̃2χ̃ ,

2(V − γ )χ = 2
(Ṽ − γ̃ )

λ2

χ̃

λ2
,

∇2χ = 2(V − γ )χ,

⇔ 1

λ4
∇̃2χ̃ = 2

λ4
(Ṽ − γ̃ )χ̃ ,

⇔ ∇̃2χ̃ = 2(Ṽ − γ̃ )χ̃ .

We can also extend this scaling relation to include the mass of the
soliton:

Ms =
∫ rs

0
4πr2ρ dr =

∫ rs

0
4πr2|χ |2dr

=
∫ r̃s

0
4πr2 |χ̃ |2

λ4
λ3dr̃ = M̃s

λ
, (A15)

and the density of the soliton:

ρsol = |χ |2 = 1

λ4
|χ̃ |2 = ρ̃sol

λ4
. (A16)

Therefore, we can summarize the scaling relation as

(r, χ, V , γ, Ms, ρs) → (r/λ, λ2χ, λ2V , λ2γ, λMs, λ
4ρs). (A17)

This scaling symmetry is very powerful, and makes results about
the small-scale clustering of axion/scalar-field DM have a universal
character. The scaling can be used to find the density profiles on
different length and density scales at fixed axion mass, ma, but
can also be used to rescale the mass at fixed length scale. The
scaling symmetry will be useful to us in Appendix A5, where we
numerically find soliton solutions with arbitrary central density ρ

and then scale them to astrophysical densities.
For the SP system to be used as a model for the gravitational

collapse of non-relativistic DM axions, its solutions must be con-
sistent limits of the full KG equation satisfying γ � 1 and k/m � 1.
Solutions to the SP system for a fixed scaling are formally solutions
regardless of the value of γ and need not satisfy these constraints.
However, when we fix the scaling for real astrophysical systems,
the rescaled values must satisfy these constraints. In typical DM
haloes, the virial velocity is v ∼ 100 km s−1 � c. Since both γ and
k are related to the kinetic energy, we therefore expect to find these
limits satisfied in astrophysical objects. In our explicit examples of
density profiles for dSphs this is indeed the case.

A4 Power-law solutions

In this subsection, we are especially interested in the oscillaton
profile at small radii. In the limit r → 0, we can assume that the
dominant term in the series expansion of the solution χ (r) is of
the form χ = Crβ , for a given constant C and exponent β to be
determined below.

In the case β �= {−1, 0} the Schrödinger equation implies:

χ ′′ + 2
χ ′

r
= β(β + 1)Crβ−2,

= 2(V − γ )Crβ. (A18)

Therefore, as r → 0, we find that V(r) obeys the equation:

V − γ = β(β + 1)

2r2
. (A19)

Substituting into the Poisson equation:

V ′′ + 2
V ′

r
= C2r2β,

3β
(β + 1)

r4
− 2β

(β + 1)

r4
= C2r2β,

β(β + 1) = C2r2β+4,

we find that the SP system has a solution for β = −2. This implies
a steeply increasing central density profile:

ρ(r) = χ2(r) ∼ r−4. (A20)
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However, in this case, we can see that the mass within any radius rc

diverges:

M =
∫ rc

0
ρ(r)4πr2dr ∼ 4π

(
−1

r

) ∣∣∣∣∣
rc

0

→ ∞. (A21)

Therefore, the requirement that the central mass is finite excludes
the case β = −2 .

Next we check the cases β = 0 and β = −1 separately.
For β = −1, we have that χ = C/r, χ ′ = −C/r2, χ ′′ = 2C/r3,

and thus

χ ′′ + 2
χ ′

r
= 2

C

r3
− 2

C

r3
= 0 = 2(V − γ )

C

r
.

This expression must be true as r → 0, and therefore, it imposes
that limr → 0V = γ . In this case, the Poisson equation becomes

V ′′ + 2
V ′

r
= C2

r2
,

with V = log(r) a solution of the equation, for a constant C = √
3.

Thus, the SP system allows solutions with β = −1, i.e. solutions
of the form limr→0 χ = √

3/r . Unlike the β = −2 case, these solu-
tions will have a finite mass. Nevertheless, solutions with β = −1
are non-physical because they correspond to infinite total energy:

E =
∫ rc

0
(∇χ )24πr2dr

=
∫ rc

0

3

r4
4πr2dr ∼ 12π

(
−1

r

) ∣∣∣∣∣
rc

0

→ ∞.

Finally, for β = 0, we must also consider the next terms in the
expansion of χ (r) at small radii (i.e. χ (r) = C0 + C1r

β1 + · · · with
β i > 0). If all the coefficients of terms with positive powers of
r are zero, we recover the trivial solution χ (r) = C at all radii.
This trivial homogeneous solution corresponds to the background
density and the global ground state. We can also have non-trivial
solutions for which the dominant term in the expansion at r → 0 is a
constant and the higher order terms have non-zero coefficients. The
numerical solution to the boundary value problem (BVP) with V(r
→ ∞) = χ (r → ∞) = 0 found in Appendix A5 is such a solution. It
has limr → 0χ

′ = 0 , while the boundary conditions forbid the global
ground state and enforce limr → 0χ

′′ < 0 .
The solutions with β = −1 and β = −2 are clearly not solu-

tions that minimize the total energy, so they cannot represent the
local ground state. Also, each violates the non-relativistic condition,
k/m � 1, which in dimensionless variables and spherical coordi-
nates reads ∂rχ � 1. These solutions are not consistent limits of
the fundamental EKG equations. The existence of these solutions
does, however, point to the instability of the r0 flat-core (pseudo)
soliton. The instability, however, is a relativistic one, and the SP
system is not suitable to analyse it. The solutions become relativis-
tic before the β = −1 or β = −2 solutions are ever found, and a
black hole will form for finite mass and energy. The flat-core soliton
solution is unstable to black hole formation when the central field
value exceeds φ(0) � 0.3Mpl (Seidel & Suen 1990). This fixes the
maximum, Chandrasekhar-like, soliton mass as a function of ma

(Ruffini & Bonazzola 1969).
The result that the consistent, non-relativistic density profiles

are flat as r → 0 is not surprising given that we were analysing
solitons, which are by definition spatially confined, non-dispersive
and non-singular solutions of a non-linear field theory.

A5 Numerical solutions

The SP system found in equation (3) does not have an analytic
solution. We devote this section to finding the soliton profile for the
SP system numerically.

A5.1 Boundary conditions

We begin by noting that the SP system consists of two second-order
ODEs with an additional unknown parameter γ , and thus we need
to set five boundary conditions such that the system is uniquely
determined. In Section A4 for χ ∼ rβ as r → 0 we found that
β = 0 and therefore, χ ′(0) = 0. In addition, we are always free to
normalize χ such that χ (0) = 1, and then later restore units and
use the scaling symmetry to ensure that χ (0)2 matches the desired
central density. Two additional boundary conditions can be set by
imposing a vanishing density and potential far away from the core
(i.e. χ (r → ∞) = 0 and V(r → ∞) = 0). Thus, the first four
boundary conditions arise naturally, and we are only left with the
task of finding one more. This last condition arises from the fact
that χ ′(0) = χ ′′(0) = 0 when we have a flat core (i.e. β = 0). Then,
by differentiating the Schrödinger equation with respect to r, we
have

χ ′′′ + 2
χ ′′

r
− 2

χ ′

r2
= 2V ′ + 2(V − γ )χ ′ (A22)

⇒ V ′(r → 0) = 0. (A23)

Thus, in order to find the soliton profile, we need to solve the
BVP:

χ ′′ + 2χ ′

r
= 2(V − γ )χ, (A24)

V ′′ + 2V ′

r
= χ2, (A25)

with boundary conditions:

χ (0) = 1, (A26)

χ ′(0) = 0, (A27)

χ (∞) = 0, (A28)

V ′(0) = 0, (A29)

V (∞) = 0. (A30)

BVPs which have one or more of the boundary conditions set at
infinity are inherently difficult to solve numerically. One can attempt
to replace the boundary at infinity by a boundary at r = R � 1,
but this method will be very sensitive to the choice of R and, in
most cases, will fail to converge to the exact solution of the BVP.
Instead, we note that χ (r → ∞) = 0 and V (r → ∞) = 0, and by
assuming that γ is not too small (i.e. V(R) � |γ | for R � 1), we
can approximate the SP system as follows:

χ ′′ + 2
χ ′

r
= 2(V − γ )χ, (A31)

χ ′′(R � 1) ≈ −2 γ χ (R � 1), (A32)

so at large values of R,

χ (R) ∝ e−√−2γR for γ < 0. (A33)
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We expect γ < 0 because χ must decay at large distances, whilst
for positive values of γ , χ would have an oscillatory behaviour. If
we replace this expression for χ (R) in the Poisson equation, (A25),
we find

V ′′(R) + 2
V ′(R)

R
∝ e−2

√−2γR, (A34)

introducing the notation U ≡ V ′:

U ′(R) + 2
U (R)

R
∝ e−2

√−2γR, (A35)

dU

Ce−2
√

2γR − 2 U
R

= dR (A36)

− dU

2U
� dR

R
, forR � 1. (A37)

This gives the behaviour of the potential at large distances:

U (R) = V ′(R) ∝ R−2, (A38)

V (R) ∝ − 1

R
. (A39)

Using the approximations of equations (A33) and (A39), we can
now replace the two boundary conditions at infinity (i.e. χ (∞) = 0
and V(∞) = 0) by

χ ′(R) = −
√

−2γ χ (R), (A40)

V ′(R) = −V (R)

R
(A41)

for a large value of R. In practice, we will test different values of R
and find the smallest value for which the solution still converges.

A5.2 Solution of the boundary value problem

To solve the BVP, convert the system of two second-order ODEs
into a system of four first-order ODEs, by introducing the quantities
X ≡ χ ′ and V ≡ V ′:

y =

⎛
⎜⎜⎝

χ

X
V

V

⎞
⎟⎟⎠ , (A42)

y′ =

⎛
⎜⎜⎝

χ ′

X ′

V ′

V ′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

X
−2X

r
+ 2(V − γ )χ

V
−2V

r
+ χ2

⎞
⎟⎟⎠ , (A43)

with the following five boundary conditions (noting again that the
fifth boundary condition arises due to the presence of the unknown
parameter γ ):

χ (0) = 1,

χ ′(0) = 0,

V ′(0) = 0,

χ ′(R) = −
√

−2γ χ (R),

V ′(R) = −V (R)/R. (A44)

This system does not have a unique solution (y, γ ). Instead, it
can be viewed as an eigenvalue problem with unique solutions
(yi , γi) for each eigenvalue λi or number of nodes ni. Over time, the

Figure A1. Zero-node soliton profile χ (r) found by solving the BVP system
in equation (A25).

Figure A2. In blue is depicted the density profile obtained from the zero-
node soliton solution, scaled to typical dwarf galaxy parameters, while in
red we show the fit of equation (A52). This provides a good fit to the BVP
solution up to radius r ≈ 3.2 kpc.

system will relax into the stable state of minimum energy, which
corresponds to a soliton with zero nodes (i.e. the ground state).
Thus, we look not only for a solution of the BVP that converges,
but also for the exact solution (y, γ ) which has zero nodes.

The zero-node soliton profile χ (r) is depicted in Fig. A1. We find
that the zero-node solution presented in this figure corresponds to

γ = −0.692, (A45)

V (r = 0) = −1.341. (A46)

These values are in agreement with those reported in table II of
Guzman & Urena-Lopez (2004), who studied an equivalent system.
We note that our soliton solution has |γ | < 1 and |∂rχ | < 1 ∀r . They
are consistent limits of the EKG equations. The scale parameter
λ < 1 that takes them to astrophysical systems after restoring units
reduces these values further and improves the validity of the non-
relativistic, Newtonian limit.
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A6 Fitting the soliton density profile

We fit the ground state soliton density profile, ρ̃ = f (αr), for dif-
ferent functional forms. We begin with the form used by Schive
et al. (2014a):

f (αr) = 1

(1 + α2r2)8
. (A47)

In Schive et al. (2014a,b) the soliton–NFW transition generally
occurs for ρ ∼ 0.01ρ(0). Therefore we perform a best fit for the
value of α with r chosen so that ρ̃ ∈ [0.01, 1]. For this range of r
we find α = 0.230. The fit is shown in Fig. A2.

The fit equation (A48) has a number of advantages. It gives
an analytic expression for the mass integrated out to any radius.
Assuming this form for the density, one can also find an analytic
solution for the Newtonian potential V(r) from the Poisson equation,
and the combined solution can be shown to give an accurate solution
to the full SP system. Allowing the exponents in the fit to vary can
improve the fit slightly at large radius, but loses these computational
advantages. In our complete profile the large radius region occurs
after the transition to NFW and improving the soliton fit here does
not have any effect.

We also investigate a Gaussian fit:

f (αr) = exp

[
− r2

2σ 2

]
, (A48)

and find σ = α−1/
√

2 = 1.22. This form of the density profile also
gives analytic results for the soliton mass, and of slightly simpler
form than for the polynomial fit. However, we find that the Gaussian
profile always gives a worse fit than the polynomial, and consider
it no further.

Schive et al. (2014a) solved the system of ODEs in equation (3)
using the shooting method and the boundary conditions of Guzmán
& Ureña-López (2006):

φ(0) = ∂rφ(0) = 0, (A49)

φ(r → ∞) = 0, (A50)

V (∞) = 0. (A51)

Schive et al. (2014a)’s fit for the soliton density profile is

ρsol(r) � 1.9 (mB/10−23 eV)−2(r1/2/kpc)−4

[1 + 9.1 × 10−2(r/r1/2)2]8
M� pc−3, (A52)

where they define r1/2 such that ρsol(r1/2) = ρsol(0)/2. This fixes
the factor 9.1 × 10−2 and the value of α is found by normalizing
the central density. Restoring units using the scaling symmetry, as
outlined in Section 2.2, shows good agreement between this fit and
ours.

A P P E N D I X B : A N OT E O N S O L I TO N S

We have considered spherically symmetric soliton solutions to equa-
tions (1). In this model, the non-linearity necessary to support soli-
tons comes purely from gravity. Real fields such as axions form
a class of solitons known as oscillons, which, being unprotected
by a charge, are technically pseudo-solitons. Oscillatons are oscil-
lons including self-gravity. The solutions we study evade Derrik’s
theorem that otherwise forbids solitons in three spatial dimensions
because they are time dependent and include self-gravity. Scalar
field solitons known as boson stars are formed for complex fields,
where stability is guaranteed by the charge. For more discussion
of solitons, oscillons, and boson stars in various contexts, see e.g.
Ruffini & Bonazzola (1969), Liddle & Madsen (1992), Liebling &
Palenzuela (2012), Amin et al. (2012), Amin (2013) and Lozanov
& Amin (2014).

We considered the ground state solitons. An isolated system re-
laxes to the ground state via the emission of scalar waves to infinity,
a process of ‘gravitational cooling’ (Seidel & Suen 1994; Guzmán
& Ureña-López 2006). Stable solutions are the non-linear density
profiles that form the end-point of spherical collapse in axion DM
haloes below the threshold for black hole formation. These solu-
tions are pressure supported. By analogy to stars, this justifies the
use of spherical symmetry, as we expect the relaxation time for
non-spherical perturbations to be on the same time-scale as the re-
laxation time to the ground state. The simulations of Schive et al.
(2014a) show that these ground state solitons form and are stable
on cosmological time-scales.

During cosmological structure formation, such ground state so-
lutions will only be found locally if the relaxation time is shorter
than the age of the universe, with the relaxation time being shorter
for denser objects. These solitons will possess a characteristic size
related to their formation time. CDM-like structure will form on
larger scales due to the Jeans instability (Khlopov et al. 1985).
Furthermore, in bound states such as haloes, scalar waves may not
escape to infinity and may contribute to the outer parts of a halo. De-
tailed questions about the non-linear dynamics can only be solved
by simulation and will be the subject of future work.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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