
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORING FEDERATED PRUNING FOR LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM pruning has emerged as a promising technology for compressing LLMs, en-
abling their deployment on resource-limited devices. However, current method-
ologies typically require access to public calibration samples, which can be chal-
lenging to obtain in privacy-sensitive domains. To address this issue, we intro-
duce FedPrLLM, a comprehensive federated pruning framework designed for
the privacy-preserving compression of LLMs. In FedPrLLM, each client only
needs to calculate a pruning mask matrix based on its local calibration data and
share it with the server to prune the global model. This approach allows for col-
laborative pruning of the global model with the knowledge of each client while
maintaining local data privacy. Additionally, we conduct extensive experiments to
explore various possibilities within the FedPrLLM framework, including differ-
ent comparison groups, pruning strategies, and the decision to scale weights. Our
extensive evaluation reveals that one-shot pruning with layer comparison and no
weight scaling is the optimal choice within the FedPrLLM framework. We hope
our work will help guide future efforts in pruning LLMs in privacy-sensitive fields.
Our code is available at https://anonymous.4open.science/r/FedPrLLM-15594.

1 INTRODUCTION

Large Language Models (LLMs) (Brown, 2020; Touvron et al., 2023a; Achiam et al., 2023) have
revolutionized the field of natural language processing by demonstrating remarkable capabilities
across various tasks. However, their increasing size leads to significant hardware requirements,
limiting real-world deployment. To address this, research has focused on compact LLMs through
compression techniques, such as pruning (Ma et al., 2023; Frantar & Alistarh, 2023; Sun et al.,
2024), knowledge distillation (Gu et al., 2024; Xu et al., 2024b), quantization (Xiao et al., 2023;
Shao et al., 2023), and low-rank factorization (Zhao et al., 2024; Saha et al., 2023). Among these,
pruning has emerged as a promising method to reduce resource demands by selectively removing
redundant parameters while preserving performance (Ma et al., 2023; Frantar & Alistarh, 2023).
Typically, LLM pruning methods can be broadly classified into structured pruning, which removes
entire substructures within LLMs, such as neurons (Ma et al., 2023; Li et al., 2023; Ashkboos et al.,
2024), layers (Xia et al., 2024), or even entire transformer blocks (Gromov et al., 2025), and un-
structured pruning, which removes individual weights from the model’s weight matrices based on
certain criteria (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang et al., 2024b; Yin et al., 2024; Xu
et al., 2024a). This work focuses on unstructured pruning, as it tends to achieve higher compression
rates and maintain better model performance compared to structured pruning (Frantar & Alistarh,
2023; He et al., 2024; Xia et al., 2024; Zhang et al., 2024b).

Despite advances in LLM unstructured pruning methods, these approaches usually rely on access
to public calibration data to guide the pruning process (Frantar & Alistarh, 2023; Sun et al., 2024;
Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a). Specifically, they require calibration sam-
ples to evaluate the importance of the model weights in order to determine the pruning mask matrix
for pruning models. However, in many real-world scenarios, such as healthcare, finance, and per-
sonalized services, the data used for pruning might be private and cannot be shared due to privacy
regulations and concerns. Federated Learning (FL) (McMahan et al., 2017; Zhang et al., 2024a;
Zeng et al., 2024; Guo et al., 2025b;a), which utilizes collaborative and decentralized training of
models across multiple institutions without sharing personal data externally, offers a promising so-
lution to this challenge.

1

https://anonymous.4open.science/r/FedPrLLM-15594

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Integrating FL with LLM pruning allows each client to calculate a local pruning mask matrix based
on its private calibration data and share it with the server. The server then aggregates these mask
matrices into an aggregated mask matrix and selects the top-k values (the most clients want to prune)
to derive a final pruning mask matrix for pruning the global model. Despite its ability to protect data
privacy, three unresolved challenges within this framework hinder practical deployment.

Challenge 1: How to compare parameters? When selecting the top-k values, a critical ambiguity
arises: Should parameter importance be compared across the entire layer or within each respective
row or column (corresponding to layer, row, and column comparisons, respectively)? Previous
centralized LLM pruning work (Sun et al., 2024) has highlighted the importance of using a proper
comparison group for pruning LLMs, yet no study explores this in federated scenarios.

Challenge 2: To scale or not scale for retained parameters. Beyond simply determining which
parameters to prune via majority voting (i.e., selecting top-k values), the FL aggregated mask matrix
reveals a critical hidden signal: how strongly each parameter is disfavored across clients. Consider
two surviving parameters - one narrowly retained (pruned by 10/100 clients) and another unani-
mously preserved (pruned by 0/100 clients). Traditional pruning treats both equally, maintaining
their original magnitudes despite their differing consensus levels. However, this ignores a critical
insight: the former parameter, though retained, exhibits weaker consensus across clients. This ob-
servation raises a fundamental question: Rather than simply employing binary masking, could we
leverage the FL aggregated mask matrix to guide continuous weight adjustment, where retained
parameters are scaled down proportionally based on their pruning frequency?

Challenge 3: Is iterative pruning worth the cost? LLM pruning is typically performed layer-
by-layer recursively to avoid error accumulation (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang
et al., 2024b). As a result, in FL, this necessitates either one-shot pruning (clients compute all layer
mask matrices and share them with the server in one go) or iterative pruning (clients send the mask
matrices to the server layer by layer in an iterative manner). While iterative pruning allows for
refining the local model promptly, it incurs prohibitive communication costs for deep LLMs. This
raises an unstudied question: Does iteratively refining the local model improve accuracy enough to
justify its massive communication overhead?

To address these challenges, we formalize the first systematic and comprehensive empirical study of
the fundamental design space of federated LLM pruning and empirically evaluate three core design
choices through a unified FedPrLLM framework (Figure 1):

Q1. Comparison Group: Which comparison group is more effective: layer, row, or column?

Q2. Weight Scaling: Should we scale the model weights of the retained parameters?

Q3. Pruning Strategy: Does iterative pruning outperform one-shot pruning?

We dedicated thousands of GPU hours to benchmark federated pruning for LLMs, conducting ex-
tensive experiments across 6 open-source LLMs, 4 local pruning methods, 3 sparsity ratios, 3 com-
parison groups, 2 pruning strategies on 10 common datasets. From these efforts, we have developed
a practical list of key insights for federated pruning of LLMs:

1). Layer comparison is simple yet effective. Among the three comparison groups—layer,
row, and column comparisons—layer comparison stands out as the simplest and most ef-
fective method, regardless of the local pruning method’s comparison group.

2). Scaling weights performs worse than expected. Though the FL aggregated mask matrix,
which reveals how strongly each parameter is disfavored across clients, could be used to
scale the retained parameters for continuous weight adjustment, its performance is inferior
to that of not scaling them.

3). Iterative pruning offers no benefit. While iterative pruning allows for prompt refinement
of the local model, it incurs significant communication overhead, and its performance is
comparable to that of one-shot pruning, offering no additional advantages.

We hope our findings will help guide future efforts in federated pruning for LLMs and inform best
practices for deploying LLMs under federated scenarios in real-world applications. We summarize
our contributions as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

C
lie

nt
 1

Dense Model Mask Matrix

Aggregated Mask
Matrix

2 2 1 1
3 1 2 0
0 3 1 2
2 1 2 1

1 1 0 0
1 0 1 0
0 1 0 1
1 0 1 0

Mask Matrix Pruned Model

PruneLocally
Prune

C
lie

nt
 2

Dense Model Mask Matrix

1 0 0 1
1 1 0 0
0 1 0 1
0 0 1 1

C
lie

nt
 3

Dense Model Mask Matrix

0 1 1 0
1 0 1 0
0 1 1 0
1 1 0 0

1 1 0 0
1 0 1 0
0 1 0 1
1 0 1 0

2 2 1 1
3 1 2 0
0 3 1 2
2 1 2 1

Mask Matrix

1 1 0 0
1 0 1 0
0 1 0 1
1 0 1 0

2 2 1 1
3 1 2 0
0 3 1 2
2 1 2 1

Mask Matrix

1 1 0 1
1 0 1 0
0 1 0 1
0 0 1 0

Pruned Model

Pruned Model

Prune

Prune

Column Comparison

Row Comparison

Layer Comparison

1

1

2

2

2

3

4

4

4

5

5

5

7

7

7

Server

Research
Questions:

Q1. Comparison Group: layer, row, or column?
Q2. Weight Scaling: Yes or Not?
Q3. Pruning Strategy: one-shot or iterative?

FedPrLLM
6 open-source LLMs, 4 local pruning methods,

3 sparsity ratios, 3 comparison groups,
2 pruning strategies, 10 common datasets.

Extensive
Evaluation:

Locally
Prune

1
Locally
Prune

Weight
Scaling

6

Weight
Scaling

6

Weight
Scaling

62 2 1 1
3 1 2 0
0 3 1 2
2 1 2 1

Figure 1: Top). Research questions alongside the corresponding findings and experimental scenar-
ios. Bottom). The FedPrLLM framework. 1⃝ Each client calculates a pruning mask matrix Mi

using its calibration dataset Di. 2⃝ Clients send the mask matrices Mi to the server. 3⃝ The server
aggregates these mask matrices Mi to obtain an aggregated mask matrix M̂ =

∑m
i=1 Mi. 4⃝ Top-k

values are selected from the aggregated mask matrix Ŵ to derive the final mask matrix M. 5⃝
Prune the global model W using the mask matrix M as follows: Ŵ = W ⊙ (1 − M), where ⊙
denotes element-wise multiplication. 6⃝ Scale the model weights of the retained parameters using
the aggregated mask matrix M̂ as follows: Ŵ ⊙ (m−M̂)

m (if needed). 7⃝ The server broadcasts the
mask matrix M to each client (for iterative pruning). The dashed arrow indicates that this operation
is optional; step 6⃝ is used for weight scaling, while 7⃝ is used for iterative pruning. Note that this
visualization is primarily for one-shot pruning, which requires only one communication round. For
iterative pruning, multiple communication rounds will occur between steps 2⃝ and 7⃝, and the layer
index is omitted here.

• We introduce FedPrLLM, a comprehensive federated pruning framework designed for
the privacy-preserving compression of LLMs, which incorporates various possibilities for
integrating FL with LLM pruning.

• We conduct an extensive evaluation of FedPrLLM, providing practical insights into effec-
tive federated pruning techniques for LLMs, based on thousands of GPU hours invested in
multiple open-source LLMs, various sparsity ratios, comparison groups, and datasets.

• We identify that layer comparison is simple yet effective, scaling weights offers no benefits
and may worsen performance, and that one-shot pruning is as effective as iterative pruning
while reducing communication costs.

2 PRELIMINARIES

In this section, we review some concepts related to LLM pruning. LLM pruning can be broadly
classified into structured pruning (Ma et al., 2023; Li et al., 2023; Ashkboos et al., 2024; Xia et al.,
2024; Gromov et al., 2025) and unstructured pruning (Frantar & Alistarh, 2023; Sun et al., 2024;
Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a), and in this work, we focus on the latter.
Unstructured pruning involves removing individual weights from the model’s weight matrices based
on certain criteria while maintaining its performance as much as possible (Frantar & Alistarh, 2023;
Sun et al., 2024; Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a). It is usually achieved
by minimizing the discrepancy square error between the dense and pruned model layer-by-layer
recursively. Specifically, for an uncompressed linear layer with weights Wl ∈ Rd×r, the objective
for unstructured pruning can usually be formulated as:

argmin
Ml

∥WlXl − (Wl ⊙ (1−Ml))Xl∥22 s.t. ∥Ml∥0=k, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Xl is the input to l-th linear layer (also referred to as calibration data), Ml ∈ {0, 1}d×r is the
pruning mask matrix we aim to derive, ⊙ denotes element-wise multiplication, ∥ · ∥0 is the l0-norm
(e.g., the number of non-zero elements), and k represents the number of pruned weights determined
by the pruning ratio.

The differences between previous pruning methods primarily lie in the design of the pruning metrics
and the comparison groups used to derive the pruning mask matrix (Frantar & Alistarh, 2023; Sun
et al., 2024; Zhang et al., 2024b). Pruning metrics refer to how the importance of each model weight
is identified, while comparison groups denote the selection of groups for comparing these weights,
including layer comparison, row comparison, and column comparison. For example, SparseGPT

(Frantar & Alistarh, 2023) utilizes the Hessian Matrix inverse, i.e.,
[

|W|2

diag((XTX+λI)−1)

]
ij

, as the

pruning metric, employing layer comparison to determine the pruning mask matrix for pruning,
along with subsequent weight scaling. Wanda (Sun et al., 2024) adopts the magnitudes of model
weights multiplied by the corresponding input activations, i.e., |Wij | · ∥Xj∥2, as the pruning metric
and chooses row comparison.

3 FEDERATED PRUNING FOR LLMS

3.1 PROBLEM FORMULATION

In the federated pruning scenario for LLMs, multiple clients aim to collaboratively prune an LLM
while ensuring that their local calibration data remains private. Formally, let W represent the model
parameters of the LLM that we aim to prune. Each client i possesses a private calibration dataset
denoted as Di, which is used for calculating the pruning mask matrices during the local pruning
process. These mask matrices are then shared with the server to prune the LLM.

3.2 FEDPRLLM

In this section, we first introduce the overall workflow of the comprehensive FedPrLLM frame-
work, as illustrated at the bottom of Figure 1, and then discuss the various possibilities within it.
Specifically, during local pruning, each client calculates a pruning mask matrix Mi ∈ {0, 1}|Wi|

using its calibration dataset Di (step 1⃝). This mask matrix determines which weights are pruned
(Mij = 1) and which are retained (Mij = 0). The decision on which weights to prune or retain is
based on an importance criterion derived from the calibration data, such as the magnitudes of model
weights multiplied by the corresponding input activations used in Wanda (Sun et al., 2024) or other
pruning methods.

After calculating the pruning mask matrix, each client i shares only the mask matrix Mi with the
central server (step 2⃝). This approach ensures that no local model parameters or private calibra-
tion data are transmitted, thereby minimizing communication overhead and preserving data privacy.
Upon receiving the pruning mask matrices Mi from all clients, the server sums them to obtain an
aggregated mask matrix M̂ =

∑m
i=1 Mi (step 3⃝) and then selects the top-k values to create the final

mask matrix M (step 4⃝)1 for pruning the global model (step 5⃝). In the following, we will discuss
various possibilities within the FedPrLLM framework, including different comparison groups, the
decision to perform weight scaling, and the choice between one-shot and iterative pruning.

3.2.1 COMPARISON GROUP

When selecting the top-k values from the aggregated mask matrix M̂ to derive the final pruning mask
matrix M, three comparison groups can be considered (step 4⃝): layer comparison, row comparison,
and column comparison. In layer comparison, the comparison group consists of all elements within a
layer, allowing us to choose the top-k values across the entire layer. Conversely, in row (or column)
comparison, the comparison group is defined by each individual row (or column), enabling the
selection of the top-k values within each respective row (or column). The visualization of these
comparison groups is shown in Figure 1. Thus, given that multiple comparison groups could be
chosen, which comparison group is more effective for federated pruning of LLMs?

1The rationale behind such voting mechanism is shown in Section A in Appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 WEIGHT SCALING

After obtaining the final mask matrix M, it can be used to effectively prune the dense model W using
W⊙ (1−M), where ⊙ denotes element-wise multiplication (step 5⃝). This operation removes the
weights corresponding to the masked parameters (i.e., Mij = 1), resulting in a sparser model Ŵ.

Then, beyond merely determining which parameters to prune via majority voting (i.e., selecting
top-k values), the aggregated mask matrix M̂ reveals a critical hidden signal: how strongly each
parameter is disfavored across clients. Consider two surviving parameters - one narrowly retained
(pruned by 10/100 clients) and another unanimously preserved (pruned by 0/100 clients). Traditional
pruning treats both equally, maintaining their original magnitudes despite their differing consensus
levels. However, this ignores a critical insight: the former parameter, though retained, exhibits
weaker consensus across clients. To this end, the aggregated mask matrix M̂ could be further
applied to scale down the retained parameters using the formula Ŵ ⊙ (m−M̂)

m (step 6⃝, if needed).
This approach corresponds to locally pruning the model and then sharing the pruned model with the
server, which aggregates them using the FedAvg algorithm (McMahan et al., 2017). However, will
the weight scaling improve the performance of federated pruning for LLMs?

3.2.3 ONE-SHOT VS. ITERATIVE PRUNING

Since LLMs are usually pruned layer-by-layer recursively (Frantar & Alistarh, 2023; Sun et al.,
2024; Zhang et al., 2024b), federated pruning for LLMs can be naturally categorized into two types:
one-shot pruning and iterative pruning. In one-shot pruning, each client calculates the pruning mask
matrices for all layers and then sends them to the server, resulting in only one communication round.
In contrast, iterative pruning involves sending the pruning mask matrices to the server layer by layer.
Specifically, after calculating the pruning mask matrix for one layer, it is uploaded to the server for
aggregation. The server then combines these matrices into a global mask matrix for pruning the
model at that layer and broadcasts the global mask matrix back to each client for local pruning
of that layer (step 7⃝, the layer index is omitted here). This process is carried out layer by layer
and involves multiple communication rounds, resulting in higher communication costs compared
to one-shot pruning. Therefore, given the significant communication costs associated with iterative
pruning, will iterative pruning outperform one-shot pruning?

One-shot and iterative pruning differ because, when calculating the pruning mask matrix for layer
l+ 1 locally, the calibration data Xl+1 is derived from the output of layer l, which has already been
pruned. Since the weights of the local pruned model for layer l vary between using Mi (one-shot
pruning) and M (iterative pruning), this leads to different outputs for layer l and, consequently,
varying calibration data Xl+1, resulting in distinct pruning mask matrices for layer l + 1.

4 EXPERIMENTS

Our experiments are designed to answer the following research questions that are important for the
practical pruning of LLMs under a federated scenario.

• Q1. Which comparison group is more effective: layer, row, or column?

• Q2. Should we scale the model weights of the retained parameters?

• Q3. Does iterative pruning outperform one-shot pruning?

4.1 EXPERIMENTAL SETUP

We implement FedPrLLM in PyTorch (Paszke et al., 2019) and use the Hugging Face Transform-
ers library (Wolf et al., 2019) to handle models and datasets. We evaluate the FedPrLLM on the
three most widely adopted LLM model families: LLaMA 7B/13B/30B (Touvron et al., 2023a),
LLaMA-2 7B/13B (Touvron et al., 2023b) and LLaMA-3 8B (Meta, 2024). For each model under
consideration, we focus on pruning the linear layers (skipping the first embedding layer and the
final classification head), which account for around 99% of the total LLM parameters. We employ
unstructured sparsity and impose a uniform sparsity ratio for all linear layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For the calibration data, following (Frantar & Alistarh, 2023; Sun et al., 2024; Xu et al., 2024a;
Zhang et al., 2024b), we use 128 samples from the C4 dataset (Raffel et al., 2020), with each sample
containing 2048 tokens. For FedPrLLM, we set the number of clients to 64, resulting in each client
having only 2 calibration samples. For each client, we adopt Wanda (Sun et al., 2024) SparseGPT
(Frantar & Alistarh, 2023), OWL (Yin et al., 2024), and BESA (Xu et al., 2024a) to perform local
pruning and calculate the pruning mask matrix.

Apart from the proposed FedPrLLM framework, we further implement two baselines for compari-
son: (1) Local-only, where each client prunes the model locally using its private calibration data,
and (2) Centralized, where the server prunes the model with all calibration data, which could be
considered as an upper bound for the pruning performance under FL setting.

Following previous works on LLM compression (Frantar & Alistarh, 2023; Xu et al., 2024a; Zhang
et al., 2024b), we measure the performance of pruned models in language modeling and evaluate
their perplexity on the held-out WikiText2 (Merity et al., 2017) validation set, C4 (Raffel et al., 2020)
validation data, and PTB (Marcus et al., 1994). For further evaluation, we also assess the pruned
models on seven zero-shot tasks from lm-evaluation-harness2: BoolQ (Clark et al., 2019), RTE
(Wang et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC
Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). The evaluation
metric is accuracy.

4.2 MAIN RESULTS

To answer the research questions above, we conducted extensive experiments to evaluate FedPrLLM
along with two baselines across 6 open-source LLMs, 4 local pruning methods, 3 sparsity ratios, 3
comparison groups, 2 pruning strategies on 10 common datasets. The experimental results using
Wanda as the local pruning method for the 50% sparsity ratio on the WikiText2 dataset are shown
in Table 1, while results for higher sparsity ratios (e.g., 60% and 70%) and other datasets (e.g., C4
and PTB) are shown in Tables 6, 7, and 8 in Appendix. More results using SparseGPT, OWL, and
BESA as the local pruning method and evaluation on the zero-shot tasks are shown Tables 10, 11,
12, and 13 in Appendix.

Table 1: WikiText2 perplexity of pruned LLMs under 50% sparsity ratio using Wanda as the local
pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3

Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B

Dense - - - 5.67 5.09 4.10 5.11 4.57 7.46

Centralized - - - 7.25 6.15 5.24 6.46 5.58 11.00
Local-only - - - 7.44 6.33 5.34 6.63 5.72 11.39

FedPrLLM

Layer One-shot ✗ 7.32 6.19 5.24 6.48 5.61 11.02
Row One-shot ✗ 7.30 6.20 5.25 6.48 5.61 11.02
Column One-shot ✗ 1524.28 9282.09 501.88 20528.41 5309.48 311468.53
Layer Iterative ✗ 7.30 6.19 5.24 6.48 5.62 11.12
Row Iterative ✗ 7.30 6.20 5.24 6.48 5.61 11.11
Column Iterative ✗ 1822.89 6884.15 996.57 77245.84 5430.81 189134.78
Layer One-shot ✓ 7.48 6.36 5.35 6.67 5.75 11.75
Row One-shot ✓ 7.47 6.36 5.35 6.67 5.75 11.75
Column One-shot ✓ 1708.41 10819.42 824.50 18084.02 5914.91 276031.34
Layer Iterative ✓ 7.46 6.35 5.34 6.67 5.75 11.86
Row Iterative ✓ 7.46 6.35 5.34 6.67 5.74 11.87
Column Iterative ✓ 1985.40 6692.91 939.62 66911.49 5268.71 41996.95

4.2.1 WHICH COMPARISON GROUP IS MORE EFFECTIVE?

As discussed above, various comparison groups can be used to select top-k values from the aggre-
gated mask matrix to derive the final mask matrix for pruning the global model, including layer
comparison, row comparison, and column comparison. Thus, which comparison group is the most
effective?

2https://github.com/EleutherAI/lm-evaluation-harness

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

According to the results in Table 1, we observe that layer comparison and row comparison achieve
comparable performance, both significantly surpassing column comparison. Results on higher spar-
sity ratios and other datasets (Tables 6, 7, and 8 in Appendix), using other local pruning methods
(Table 10 in Appendix), and results on zero-shot tasks (Table 12 in Appendix) show a similar phe-
nomenon. To investigate why column comparison performs much worse than the others, we noted
that the local pruning methods we used adopts row comparison, meaning the local pruning mask
matrix Mi derived from each client is based on row comparison. We hypothesize that this is the rea-
son for the poorer performance of column comparison, as the comparison group used in FedPrLLM
conflicts with that of the local pruning method.

Table 2: WikiText2 perplexity of pruned LLMs under 50% sparsity ratio when changing the com-
parison group for the local pruning method (i.e., Wanda). FedPrLLM adopts one-shot pruning and
no weight scaling.

Local Compar. Compar. LLaMA LLaMA-2 LLaMA-3

Group Method Group 7B 13B 30B 7B 13B 8B

Layer

Centralized - 7.94 6.57 5.47 7.38 5.92 12.04
Local-only - 8.16 6.74 5.58 7.56 6.06 12.43

FedPrLLM
Layer 7.98 6.60 5.48 7.38 5.95 12.09
Row 31.85 10.08 11.33 39.07 124.08 17.51
Column 1749.59 10183.32 541.62 25258.16 5503.91 336255.96

Column

Centralized - 8.86 7.68 5.67 10.41 6.38 83.67
Local-only - 8.86 7.68 5.67 10.41 6.38 83.67

FedPrLLM
Layer 8.86 7.68 5.67 10.41 6.38 83.67
Row 138.54 100.80 49.17 764.32 2580.88 400.95
Column 8.86 7.68 5.67 10.41 6.38 83.67

To validate this, we further change the comparison group in the local pruning method (i.e., Wanda
(Sun et al., 2024), SparseGPT (Frantar & Alistarh, 2023), OWL (Yin et al., 2024), and BESA (Xu
et al., 2024a)) to layer comparison and column comparison to evaluate the performance of the Fed-
PrLLM framework with one-shot pruning and no weight scaling. The results on WikiText2 are
shown in Table 2, while results for other datasets are presented in Table 9 in Appendix. More results
using other local pruning methods and results on the zero-shot tasks are shown in Tables 11 and 13 in
Appendix. From these results, we see that when the comparison group in the local pruning method
is changed to layer comparison, only the layer comparison used in FedPrLLM performs well, while
row comparison performs poorly and column comparison performs even worse. Similarly, when
the local pruning method’s comparison group is changed to column comparison, only the layer and
column comparisons perform normally, while row comparison performance is poor. Note that when
the comparison group in the local pruning method is changed to column comparison, it degrades to
the magnitude-based pruning method, rendering the performance irrelevant to calibration samples,
which results in the performance of Centralized and Local-only being the same (Sun et al., 2024).
These results demonstrate our hypothesis that the conflict between the local and server compari-
son groups leads to worse performance, while the layer comparison used in FerPrLLM consistently
achieves good results, regardless of the comparison group used for the local pruning method. The
reason for this phenomenon may be due to the mismatch between the local and server comparison
groups, which renders the aggregated mask matrix “meaningless”. We know that the aggregated
mask matrix can be considered a “weight importance matrix” for conducting pruning on the server
side. Note that these importance values are only meaningful under the local comparison group and
will be meaningless under a mismatched comparison group. Therefore, when the comparison group
used on the server mismatches the local group (e.g., local-row and server-column), the aggregated
mask matrix will be meaningless and cannot be used to determine which weights are important,
leading to poor pruning results. However, the layer comparison used on the server can avoid this
issue since the comparisons within the whole layer will also take the local comparison group into
consideration. Thus, regardless of the local comparison group used on the client side, the layer
comparison used on the server can achieve good results. Therefore, we conclude that:

Takeaway 1: Layer comparison is simple yet effective.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2.2 SHOULD WE SCALE THE MODEL WEIGHTS OF THE RETAINED PARAMETERS?

The aggregated mask matrix M̂ indicates the number of clients that wish to prune a parameter,
which allows it to be used for scaling the model weights of the retained parameters to (m−M̂)

m .
This approach corresponds to locally pruning the model and then sharing the pruned model with the
server, which aggregates them using the FedAvg algorithm (McMahan et al., 2017). However, will
weight scaling be beneficial for the federated pruning of LLMs?

From the results in Table 1, we observe that the performance with weight scaling is worse than
that without weight scaling across all comparison groups and pruning strategies. Results on higher
sparsity ratios and more datasets (Tables 6, 7, and 8 in Appendix), using other local pruning meth-
ods (Table 10 in Appendix), and results on zero-shot tasks (Table 12 in Appendix) show a similar
phenomenon. It indicates that scaling weights offers no benefit and may even worsen performance.
This may be due to the fact that locally pruned models do not perform well, and applying the Fe-
dAvg algorithm (McMahan et al., 2017) to aggregate these pruned model weights leads to subpar
performance. Therefore, we conclude that:

Takeaway 2: Scaling weights performs worse than expected.

4.2.3 DOES ITERATIVE PRUNING OUTPERFORM ONE-SHOT PRUNING?

Since LLMs are usually pruned layer-by-layer recursively (Frantar & Alistarh, 2023; Sun et al.,
2024; Zhang et al., 2024b), federated pruning for LLMs can be naturally categorized into two types:
one-shot pruning and iterative pruning. Given the significant communication costs associated with
iterative pruning, will it outperform one-shot pruning?

Table 3: Communication cost for one-shot and iterative pruning. The unit is the number of parame-
ters and “B” denotes billions.

LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B

one-shot pruning 6.476B 12.688B 32.102B 6.476B 12.688B 6.979B
iterative pruning 12.952B 25.376B 64.204B 12.952B 25.376B 13.958B

The comparison results are provided in Table 1, More results on higher sparsity ratios and other
datasets are shown in Tables 6, 7, and 8 in Appendix. Results using other local pruning methods are
shown in Table 10 in Appendix, and results on zero-shot tasks are shown in Table 12 in Appendix.
These results indicate that the performance of iterative pruning and one-shot pruning is compara-
ble, regardless of the comparison groups and pruning strategies. However, since iterative pruning
introduces significant communication costs (Table 3) without any performance improvement (see
Section D in Appendix for more comparisons in terms of efficiency), we conclude that:

Takeaway 3: Iterative pruning offers no benefit.

4.3 EXTENSION TO NON-IID SCENARIOS

To validate the generalizability of our findings, we further conduct experiments under non-IID con-
ditions. Specifically, we extract 8 samples from the training data of WikiText2 (Merity et al., 2017),
C4 (Raffel et al., 2020), and PTB (Marcus et al., 1994) to form a global calibration dataset (i.e., 24
samples in total). We then use the Dirichlet distribution with a concentration parameter of α = 5
to split the global calibration dataset into 12 non-IID local calibration datasets, each assigned to one
client (i.e., 2 samples per client). We choose Wanda as the local pruning method and use LLaMA-7B
to conduct experiments with 50% sparsity pruning. The experimental results under non-IID condi-
tions are shown in Tables 4 and 5. As shown in these results, our proposed “Best Recipe”—using
one-shot pruning, layer-wise comparison, and no weight scaling—consistently outperforms other
configurations under the non-IID scenario, confirming that our findings are generalizable.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Perplexity (WikiText2 / C4 / PTB) of
pruned LLMs under 50% sparsity ratio using
Wanda as the local pruning method under non-
IID conditions.

Compar. Prune Weight
Method Group Stra. Scaling LLaMA-7B

Centralized - - - 7.06 / 9.27 / 65.72
Local-only - - - 7.16 / 9.42 / 71.54

FedPrLLM

Layer One-shot ✗ 7.06 / 9.30 / 67.54
Row One-shot ✗ 7.06 / 9.30 / 67.28
Column One-shot ✗ 2923.46 / 1813.31 / 6736.30
Layer Iterative ✗ 7.06 / 9.31 / 68.09
Row Iterative ✗ 7.06 / 9.30 / 67.34
Column Iterative ✗ 3219.96 / 2294.87 / 6812.14
Layer One-shot ✓ 7.17 / 9.47 / 72.33
Row One-shot ✓ 7.17 / 9.47 / 72.16
Column One-shot ✓ 2723.30 / 1554.46 / 6364.29
Layer Iterative ✓ 7.17 / 9.48 / 73.40
Row Iterative ✓ 7.17 / 9.48 / 72.92
Column Iterative ✓ 3182.52 / 1795.12 / 5808.61

Table 5: Perplexity (WikiText2 / C4 / PTB) of
pruned LLMs under 50% sparsity ratio when
changing the comparison group for the local
pruning method (i.e., Wanda) under non-IID
conditions. FedPrLLM adopts one-shot pruning
and no weight scaling.

Local Compar. Group Method Compar. Group LLaMA-7B

Layer

Centralized - 7.67 / 10.07 / 83.20
Local-only - 7.76 / 10.26 / 85.16

FedPrLLM
Layer 7.62 / 10.10 / 81.70
Row 43.54 / 46.29 / 348.41
Column 2324.40 / 1434.18 / 6026.79

Column

Centralized - 8.86 / 14.10 / 108.37
Local-only - 8.86 / 14.10 / 108.37

FedPrLLM
Layer 8.86 / 14.10 / 108.37
Row 138.54 / 155.15 / 1060.99
Column 8.86 / 14.10 / 108.37

4.4 SENSITIVITY ANALYSIS

In this section, we conduct sensitivity analyses on the number of clients and calibration samples in
FedPrLLM to better understand its effectiveness in pruning LLMs within a federated scenario. We
utilize Wanda as the local pruning method and use FedPrLLM, which employs layer comparison,
one-shot pruning, and no weight scaling, to conduct the analysis under a 50% sparsity ratio.

It is worth noting that the number of clients influences the performance of FL algorithms (Guo et al.,
2025b;c). In this section, we investigate the effect of client numbers on the federated pruning of
LLMs. We use a total of 128 calibration samples and vary the number of clients from 64 to 2,
resulting in an increase in the calibration samples allocated to each client. Specifically, when the
number of clients is 64, each client has only 2 calibration samples; when the number of clients is
reduced to 2, each client has 64 calibration samples. The experimental results are shown in Figure
2. From this figure, we observe that FedPrLLM consistently outperforms Local-only pruning across
various numbers of clients, demonstrating the effectiveness of the federated pruning algorithm.

2 4 8 16 32 64
Client Numbers

7.25

7.30

7.35

7.40

7.45

Pe
rp

le
xi

ty

LLaMA 7B
Centralized
Local-only
FedPrLLM

(a) WikiText2

2 4 8 16 32 64
Client Numbers

9.35

9.40

9.45

9.50

9.55

9.60

Pe
rp

le
xi

ty

LLaMA 7B
Centralized
Local-only
FedPrLLM

(b) C4

2 4 8 16 32 64
Client Numbers

80

82

84

86

Pe
rp

le
xi

ty

LLaMA 7B
Centralized
Local-only
FedPrLLM

(c) PTB

Figure 2: The effect of different client numbers on federated pruning LLMs.

We further investigate the impact of pruning LLMs in a federated scenario with varying numbers of
calibration samples, as shown in Figure 3. Specifically, we change the total number of calibration
samples from 128 to 4 while keeping the number of clients equal to half of that. As shown in Figure
3, we observe that with different numbers of calibration samples, FedPrLLM consistently outper-
forms Local-only pruning, which again shows the effectiveness of the federated pruning method.

4.5 PRIVACY AND LEAKAGE ANALYSIS

In this section, we conduct a detailed privacy analysis to formally and empirically assess the privacy
leakage of our framework for the LLaMA-7B model, covering both theoretical limits and practical
attack simulations.

To measure maximum information leakage, we conduct an information entropy analysis revealing
that a binary mask at 50% sparsity holds only 1.0 bit of information, compared to 13.75 bits for stan-
dard Float16 model weights, indicating a 92.7% reduction in information. This substantial reduction

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 8 16 32 64 128
Calibration Samples

7.25

7.30

7.35

7.40

7.45

7.50

Pe
rp

le
xi

ty

LLaMA 7B

Centralized
Local-only
FedPrLLM

(a) WikiText2

4 8 16 32 64 128
Calibration Samples

9.35

9.40

9.45

9.50

9.55

9.60

Pe
rp

le
xi

ty

LLaMA 7B

Centralized
Local-only
FedPrLLM

(b) C4

4 8 16 32 64 128
Calibration Samples

80

82

84

86

88

Pe
rp

le
xi

ty

LLaMA 7B

Centralized
Local-only
FedPrLLM

(c) PTB

Figure 3: The effect of the number of calibration samples on federated pruning LLMs.

enhances security by making attacks more challenging. We further investigate our mask-sharing
method through practical experiments, finding that masks generated with Wanda from randomly
seeded calibration data are over 95% identical, which suggests they are primarily determined by
the public pre-trained model, thus separating shared information from private data. Our Differential
Privacy (Dwork, 2006) sensitivity analysis shows that altering a single dataset sample results in only
a 4.96% change in the mask, providing strong privacy protection equivalent to a formal privacy bud-
get of ϵ ≈ 0.05 without added noise. We also simulate targeted attacks to assess privacy leakage,
including Membership Inference Attacks (Shokri et al., 2017), where the difference in masks—with
and without a target sample—yields only a 3.23% Hamming distance, making it difficult to distin-
guish between signals and noise. Finally, in Gradient Inversion Attacks (Zhu et al., 2019; Fredrikson
et al., 2015), the attacker also fails to reconstruct original training data, recovering less than 2% of
tokens and generating nonsensical text. See Section C in Appendix for more details.

Therefore, by sharing only low-information binary masks, our framework fundamentally reduces
privacy risks and offers strong, practical privacy protection.

5 RELATED WORK

There is one work that attempts to conduct LLM pruning in an FL scenario, i.e., FedSpaLLM (Bai
et al., 2024). It enables clients to collaboratively prune an LLM by introducing an ℓ0-norm ag-
gregation function, an adaptive mask expansion technique, and a layer sampling strategy. While
FedSpaLLM proposes a specific and novel algorithm for federated LLM pruning, our paper provides
the first systematic and comprehensive empirical study of the fundamental design space of federated
LLM pruning. Our primary goal is not to introduce another single algorithm, but to establish a set
of generalizable “best practices” and a “recipe” that can guide future research and applications in
this domain. Moreover, FedSpaLLM’s core operation can be mapped to a specific configuration
within our comprehensive FedPrLLM framework. Specifically, it enables clients to locally prune
their models based on private data and send the pruned models to the server for aggregation. The
server averages the pruned models using the FedAvg algorithm (McMahan et al., 2017) and prunes
the model to satisfy the predefined sparsity rate based on an aggregated mask matrix. This method
can be viewed as a specific case within our FedPrLLM framework, i.e., iterative pruning with weight
scaling. However, our extensive evaluations reveal that this approach is not optimal.

6 CONCLUSION

In this work, we introduce FedPrLLM, a comprehensive federated pruning framework designed for
the privacy-preserving compression of LLMs, incorporating various possibilities for integrating FL
with LLM pruning. To identify the optimal operation within this framework, we invested thousands
of GPU hours exploring these possibilities, including different comparison groups, pruning strate-
gies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with
layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We
hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields.

Future Work. This work currently focuses on unstructured pruning of LLMs in a federated sce-
nario. Future work could explore structured pruning within the FedPrLLM framework, which may
be more suitable for certain real-world applications due to its hardware efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. SliceGPT: Compress large language models by deleting rows and columns.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=vXxardq6db.

Guangji Bai, Yijiang Li, Zilinghan Li, Liang Zhao, and Kibaek Kim. Fedspallm: Federated pruning
of large language models. arXiv preprint arXiv:2410.14852, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC confer-
ence on computer and communications security, pp. 1322–1333, 2015.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The
unreasonable ineffectiveness of the deeper layers. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
ngmEcEer8a.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
language models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=5h0qf7IBZZ.

Pengxin Guo, Runxi Wang, Shuang Zeng, Jinjing Zhu, Haoning Jiang, Yanran Wang, Yuyin Zhou,
Feifei Wang, Hui Xiong, and Liangqiong Qu. Exploring the vulnerabilities of federated learning:
A deep dive into gradient inversion attacks. arXiv preprint arXiv:2503.11514, 2025a.

Pengxin Guo, Shuang Zeng, Wenhao Chen, Xiaodan Zhang, Weihong Ren, Yuyin Zhou, and
Liangqiong Qu. A new federated learning framework against gradient inversion attacks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 16969–16977, 2025b.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selective
aggregation for low-rank adaptation in federated learning. In The Thirteenth International Con-
ference on Learning Representations, 2025c. URL https://openreview.net/forum?
id=iX3uESGdsO.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
is needed. arXiv preprint arXiv:2406.15786, 2024.

11

https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=ngmEcEer8a
https://openreview.net/forum?id=ngmEcEer8a
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=iX3uESGdsO
https://openreview.net/forum?id=iX3uESGdsO

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate argument structure.
In Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey,
March 8-11, 1994, 1994.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix compression via randomized low rank
and low precision factorization. Advances in Neural Information Processing Systems, 36, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PxoFut3dWW.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

12

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=PxoFut3dWW

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerat-
ing language model pre-training via structured pruning. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
09iOdaeOzp.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient
sparsity allocation. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=gC6JTEU3jl.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024b.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR
JAISWAL, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei
Liu. Outlier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to
high sparsity. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=ahEm3l2P6w.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Shuang Zeng, Pengxin Guo, Shuai Wang, Jianbo Wang, Yuyin Zhou, and Liangqiong Qu. Tackling
data heterogeneity in federated learning via loss decomposition. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pp. 707–717. Springer, 2024.

Junyuan Zhang, Shuang Zeng, Miao Zhang, Runxi Wang, Feifei Wang, Yuyin Zhou, Paul Pu Liang,
and Liangqiong Qu. Flhetbench: Benchmarking device and state heterogeneity in federated learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12098–12108, 2024a.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations, 2024b.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
Conference on Machine Learning, pp. 61121–61143. PMLR, 2024.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019.

13

https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=ahEm3l2P6w
https://openreview.net/forum?id=ahEm3l2P6w

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE RATIONALE OF VOTING MECHANISMS

In this section, we provide theoretical analysis to demonstrate the rationale behind the voting mech-
anism for deriving the final pruning mask on the server side. Let {M1, . . . ,Mm} be m independent
d× r binary mask matrices (with 50% sparsity) where each matrix satisfies:

d∑
p=1

r∑
q=1

Mi[p, q] =
dr

2
. (2)

The voting mechanism procedure produces M via: 1) Element-wise sum: M̂ =
∑m

i=1 Mi; 2) Set
the largest dr

2 entries in M̂ to 1, others to 0.

Let M∗ be the optimal mask defined by:

M∗[p, q] = I (ppq ≥ τ∗) , (3)

where ppq = P (Mi[p, q] = 1) and τ∗ is chosen such that
∑

p,q M
∗[p, q] = dr

2 .

Then, the error between M and M∗ can be defined as:

ϵ =
1

dr

d∑
p=1

r∑
q=1

I (M[p, q] ̸= M∗[p, q]) . (4)

There are two situations for M∗[p, q]: 1 or 0.

Case 1: M∗[p, q] = 1 (i.e., ppq ≥ τ∗). In this case, M[p, q] = 0 implies M̂[p,q]
m < τ∗. Thus:

ppq −
M̂[p, q]

m
> ppq − τ∗ = δpq (since δpq = |ppq − τ∗| = ppq − τ∗), (5)

which simplifies to:

|M̂[p, q]

m
− ppq| > δpq (6)

Case 2: M∗[p, q] = 0 (i.e., ppq < τ∗). In this case, M[p, q] = 1 implies M̂[p,q]
m ≥ τ∗. Thus:

M̂[p, q]

m
− ppq ≥ τ∗ − ppq = δpq (since δpq = τ∗ − ppq), (7)

which simplifies to: ∣∣∣∣∣M̂[p, q]

m
− ppq

∣∣∣∣∣ ≥ δpq (8)

Let: Event A: M[p, q] ̸= M∗[p, q]; Event B:
∣∣∣M̂[p,q]

m − ppq

∣∣∣ ≥ δpq
2 . Then A ⊆ B, and we have:

P (M[p, q] ̸= M∗[p, q]) ≤ P

(∣∣∣∣∣M̂[p, q]

m
− ppq

∣∣∣∣∣ ≥ δpq
2

)
≤ 2 exp

(
−
mδ2pq
2

)
, (9)

This implies:

E[ϵ] ≤ 2

dr

∑
p,q

exp

(
−
mδ2pq
2

)
. (10)

This shows that the error between M (which is obtained by voting) and M∗ is bounded by some
value, which demonstrates the rationale behind the voting mechanism.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 MORE RESULTS UNDER HIGHER SPARSITY RATIOS

The experimental results using Wanda as the local pruning method for higher sparsity ratios (i.e.,
60% and 70%) are shown in Tables 6, 7, and 8.

Table 6: WikiText2 perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda
as the local pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3

Sparsity Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B

0% Dense - - - 5.67 5.09 4.10 5.11 4.57 7.46

50%

Centralized - - - 7.25 6.15 5.24 6.46 5.58 11.00
Local-only - - - 7.44 6.33 5.34 6.63 5.72 11.39

FedPrLLM

Layer One-shot ✗ 7.32 6.19 5.24 6.48 5.61 11.02
Row One-shot ✗ 7.30 6.20 5.25 6.48 5.61 11.02
Column One-shot ✗ 1524.28 9282.09 501.88 20528.41 5309.48 311468.53
Layer Iterative ✗ 7.30 6.19 5.24 6.48 5.62 11.12
Row Iterative ✗ 7.30 6.20 5.24 6.48 5.61 11.11
Column Iterative ✗ 1822.89 6884.15 996.57 77245.84 5430.81 189134.78
Layer One-shot ✓ 7.48 6.36 5.35 6.67 5.75 11.75
Row One-shot ✓ 7.47 6.36 5.35 6.67 5.75 11.75
Column One-shot ✓ 1708.41 10819.42 824.5 18084.02 5914.91 276031.34
Layer Iterative ✓ 7.46 6.35 5.34 6.67 5.75 11.86
Row Iterative ✓ 7.46 6.35 5.34 6.67 5.74 11.87
Column Iterative ✓ 1985.40 6692.91 939.62 66911.49 5268.71 41996.95

60%

Centralized - - - 10.71 8.74 6.55 10.03 7.92 25.81
Local-only - - - 11.70 9.38 6.96 10.84 8.55 27.47

FedPrLLM

Layer One-shot ✗ 10.76 8.80 6.65 10.08 8.01 25.48
Row One-shot ✗ 10.77 8.80 6.64 10.08 8.03 25.64
Column One-shot ✗ 2861.56 11190.34 1047.94 14737.65 5385.33 382319.37
Layer Iterative ✗ 10.87 8.88 6.65 10.17 8.05 26.21
Row Iterative ✗ 10.85 8.90 6.64 10.18 8.05 25.98
Column Iterative ✗ 3154.68 7824.46 2250.97 18849.20 6556.50 65475.84
Layer One-shot ✓ 12.14 9.77 7.10 11.53 8.98 30.34
Row One-shot ✓ 12.16 9.77 7.09 11.53 9.00 30.44
Column One-shot ✓ 3785.85 17163.16 1770.89 15180.33 5401.19 608169.33
Layer Iterative ✓ 12.27 9.85 7.12 11.90 9.07 30.94
Row Iterative ✓ 12.24 9.86 7.13 11.87 9.06 31.08
Column Iterative ✓ 2189.53 6032.71 2626.57 16081.73 6227.41 165510.73

70%

Centralized - - - 87.42 53.48 17.30 72.38 45.94 92.20
Local-only - - - 104.15 67.13 23.29 80.39 51.79 108.35

FedPrLLM

Layer One-shot ✗ 83.12 55.92 18.73 70.92 44.98 102.88
Row One-shot ✗ 81.97 56.99 18.67 70.61 44.66 102.13
Column One-shot ✗ 17281.43 13045.16 2670.43 31238.51 12206.74 458666.00
Layer Iterative ✗ 89.25 55.48 18.65 79.27 45.89 100.37
Row Iterative ✗ 92.29 57.18 18.23 72.60 45.68 93.13
Column Iterative ✗ 19791.05 10323.63 3935.54 23090.20 7857.41 355916.56
Layer One-shot ✓ 136.50 94.90 31.62 93.89 64.34 123.92
Row One-shot ✓ 136.09 95.86 31.48 93.36 63.98 124.65
Column One-shot ✓ 20505.56 11695.06 3032.65 31485.38 10875.86 831352.18
Layer Iterative ✓ 174.95 102.78 31.12 94.49 62.07 116.97
Row Iterative ✓ 182.73 99.32 30.87 96.37 62.51 120.19
Column Iterative ✓ 8607.36 11707.00 3145.32 36254172.00 9604.48 1034635.56

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: C4 perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda as the
local pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3

Sparsity Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B

0% Dense - - - 7.34 6.79 6.12 7.03 6.51 12.34

50%

Centralized - - - 9.34 8.14 7.28 8.94 8.03 18.38
Local-only - - - 9.59 8.37 7.52 9.16 8.31 18.92

FedPrLLM

Layer One-shot ✗ 9.43 8.22 7.39 9.01 8.18 18.32
Row One-shot ✗ 9.43 8.22 7.39 9.01 8.19 18.32
Column One-shot ✗ 893.05 10616.94 612.27 9631.37 5075.92 200257.70
Layer Iterative ✗ 9.44 8.22 7.39 9.01 8.19 18.43
Row Iterative ✗ 9.44 8.22 7.39 9.02 8.18 18.38
Column Iterative ✗ 1050.26 8567.66 779.01 11658.80 4804.46 112192.42
Layer One-shot ✓ 9.64 8.40 7.57 9.21 8.39 19.45
Row One-shot ✓ 9.64 8.40 7.57 9.21 8.39 19.45
Column One-shot ✓ 887.34 13744.66 895.18 11440.51 5189.73 90476.94
Layer Iterative ✓ 9.64 8.41 7.57 9.22 8.39 19.58
Row Iterative ✓ 9.65 8.41 7.57 9.22 8.39 19.60
Column Iterative ✓ 1242.31 6860.69 724.28 10355.87 4657.88 44469.52

60%

Centralized - - - 13.72 11.22 9.16 13.64 11.39 43.02
Local-only - - - 14.69 11.91 9.58 14.68 12.17 45.25

FedPrLLM

Layer One-shot ✗ 13.80 11.23 9.29 13.77 11.40 42.61
Row One-shot ✗ 15.26 12.24 9.79 15.60 12.75 50.37
Column One-shot ✗ 2149.09 11488.68 993.56 12252.16 4606.43 837570.62
Layer Iterative ✗ 13.92 11.37 9.32 13.84 11.52 44.24
Row Iterative ✗ 13.86 11.38 9.30 13.85 11.53 43.77
Column Iterative ✗ 2981.52 10375.02 1752.73 16673.62 5289.35 62234.32
Layer One-shot ✓ 15.24 12.24 9.80 15.61 12.74 50.28
Row One-shot ✓ 15.26 12.24 9.79 15.60 12.75 50.37
Column One-shot ✓ 3336.72 19430.46 1520.32 14613.11 4547.54 622715.25
Layer Iterative ✓ 15.46 12.54 9.86 16.15 13.01 51.47
Row Iterative ✓ 15.42 12.54 9.87 16.10 13.01 51.48
Column Iterative ✓ 1825.82 6669.63 1865.50 16167.12 5057.57 145341.28

70%

Centralized - - - 85.84 53.35 18.80 84.16 58.56 136.66
Local-only - - - 96.47 63.61 22.48 82.96 67.09 161.86

FedPrLLM

Layer One-shot ✗ 81.95 52.55 19.24 81.40 59.87 158.08
Row One-shot ✗ 82.02 53.51 19.22 81.59 59.97 157.87
Column One-shot ✗ 15276.62 14041.01 2059.83 39339.21 11306.11 398674.93
Layer Iterative ✗ 83.52 57.22 19.15 92.51 60.46 162.29
Row Iterative ✗ 86.77 55.98 19.20 84.99 60.86 144.71
Column Iterative ✗ 18149.76 13537.18 2874.83 21704.32 7166.78 346598.5
Layer One-shot ✓ 116.61 77.99 26.30 104.86 79.82 184.11
Row One-shot ✓ 117.29 78.84 26.29 104.51 79.76 184.11
Column One-shot ✓ 19380.0 10934.98 2336.68 32034.07 11360.57 345798.53
Layer Iterative ✓ 142.08 85.91 27.17 103.02 79.25 177.97
Row Iterative ✓ 145.15 84.68 27.00 102.61 79.41 182.36
Column Iterative ✓ 7664.62 15985.50 2685.76 27805842.0 8041.09 1031318.56

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: PTB perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda as the
local pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3

Sparsity Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B

0% Dense - - - 41.15 28.09 23.51 50.20 56.51 13.30

50%

Centralized - - - 80.12 36.41 26.64 96.99 86.83 20.69
Local-only - - - 86.25 37.57 27.13 108.66 91.92 21.43

FedPrLLM

Layer One-shot ✗ 80.31 36.57 26.69 102.71 88.26 20.56
Row One-shot ✗ 80.71 36.61 26.64 101.85 88.31 20.55
Column One-shot ✗ 4463.92 22138.56 713.56 14256.86 7392.64 407313.84
Layer Iterative ✗ 81.22 36.54 26.68 102.72 88.38 20.55
Row Iterative ✗ 81.26 36.55 26.64 103.66 88.94 20.60
Column Iterative ✗ 4061.96 17610.52 1158.75 13401.63 6941.72 168643.04
Layer One-shot ✓ 87.97 37.70 27.27 112.52 92.90 22.21
Row One-shot ✓ 88.35 37.72 27.25 112.17 93.07 22.21
Column One-shot ✓ 4557.48 29140.28 982.59 12021.08 7801.23 264723.12
Layer Iterative ✓ 87.28 37.69 27.27 112.95 92.58 22.39
Row Iterative ✓ 87.61 37.60 27.27 113.32 92.61 22.41
Column Iterative ✓ 6929.83 15189.83 1178.40 10208.03 5220.64 39172.53

60%

Centralized - - - 193.10 71.66 34.94 363.71 220.81 52.42
Local-only - - - 208.48 82.24 37.27 409.47 271.49 55.39

FedPrLLM

Layer One-shot ✗ 187.00 74.66 35.38 339.79 241.14 52.61
Row One-shot ✗ 186.10 74.64 35.47 337.69 242.96 52.61
Column One-shot ✗ 5604.92 31222.37 1338.25 28046.95 7553.32 322022.84
Layer Iterative ✗ 191.22 72.90 35.83 368.87 237.45 53.78
Row Iterative ✗ 190.60 73.74 35.77 367.56 235.51 53.25
Column Iterative ✗ 6785.79 13234.02 1903.66 24022.75 8125.57 46139.19
Layer One-shot ✓ 216.09 91.63 38.22 429.58 293.11 60.49
Row One-shot ✓ 215.50 91.60 38.25 428.87 294.44 60.48
Column One-shot ✓ 7600.58 41079.65 1910.36 18249.40 7601.34 416094.71
Layer Iterative ✓ 220.22 90.60 38.79 427.12 283.34 61.25
Row Iterative ✓ 220.16 90.58 38.74 428.36 282.20 61.55
Column Iterative ✓ 4242.84 11345.68 2133.62 29512.89 7113.24 133467.18

70%

Centralized - - - 698.79 299.42 110.70 1902.56 735.73 131.13
Local-only - - - 782.42 412.24 144.90 1780.26 863.50 152.97

FedPrLLM

Layer One-shot ✗ 737.07 366.28 120.33 1521.25 793.55 156.63
Row One-shot ✗ 718.37 369.65 118.24 1557.08 792.08 154.72
Column One-shot ✗ 18649.81 18136.88 3180.23 49646.82 12010.97 466632.84
Layer Iterative ✗ 721.31 355.21 113.31 1675.79 775.69 146.27
Row Iterative ✗ 734.43 349.63 113.65 1757.10 767.13 133.92
Column Iterative ✗ 28179.23 17249.42 3967.48 29254.5 10233.18 314505.62
Layer One-shot ✓ 839.42 484.11 188.18 1633.85 890.27 174.11
Row One-shot ✓ 830.33 483.58 187.11 1641.92 891.27 172.74
Column One-shot ✓ 26556.95 21627.29 3383.87 54429.17 14951.70 239612.84
Layer Iterative ✓ 887.36 469.70 173.86 1789.42 858.48 162.24
Row Iterative ✓ 896.85 454.31 172.48 1740.04 879.50 168.51
Column Iterative ✓ 8660.95 18472.69 3246.05 11427895.00 8037.55 738685.56

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 MORE RESULTS ON THE COMPARISON GROUP FOR LOCAL PRUNING

The results of changing the comparison group for the local pruning method (i.e., Wanda) are shown
in Table 9.

Table 9: Perplexity of pruned LLMs under 50% sparsity ratio when changing the comparison group
for the local pruning method (i.e., Wanda). FedPrLLM adopts one-shot pruning and no weight
scaling.

Local Compar. Compar. LLaMA LLaMA-2 LLaMA-3

Group Dataset Method Group 7B 13B 30B 7B 13B 8B

Layer

WikiText2

Centralized - 7.94 6.57 5.47 7.38 5.92 12.04
Local-only - 8.16 6.74 5.58 7.56 6.06 12.43

FedPrLLM
Layer 7.98 6.60 5.48 7.38 5.95 12.09
Row 31.85 10.08 11.33 39.07 124.08 17.51
Column 1749.59 10183.32 541.62 25258.16 5503.91 336255.96

C4

Centralized - 10.28 8.63 7.59 10.24 8.49 19.18
Local-only - 10.56 8.90 7.86 10.52 8.76 19.64

FedPrLLM
Layer 10.34 8.71 7.72 10.32 8.63 19.09
Row 34.90 12.35 12.75 29.79 207.57 28.05
Column 975.75 12605.58 553.85 13950.23 4899.58 129415.62

PTB

Centralized - 92.84 43.47 27.25 306.71 119.17 23.14
Local-only - 99.13 45.34 27.87 338.70 136.88 23.69

FedPrLLM
Layer 91.99 43.59 27.25 305.79 124.27 22.85
Row 284.19 109.14 110.46 1886.94 480.24 44.71
Column 3976.21 28144.48 711.16 14131.82 7134.88 293147.84

Column

WikiText2

Centralized - 8.86 7.68 5.67 10.41 6.38 83.67
Local-only - 8.86 7.68 5.67 10.41 6.38 83.67

FedPrLLM
Layer 8.86 7.68 5.67 10.41 6.38 83.67
Row 138.54 100.80 49.17 764.32 2580.88 400.95
Column 8.86 7.68 5.67 10.41 6.38 83.67

C4

Centralized - 14.10 11.20 8.06 17.90 9.57 30.88
Local-only - 14.10 11.20 8.06 17.90 9.57 30.88

FedPrLLM
Layer 14.10 11.20 8.06 17.90 9.57 30.88
Row 155.15 87.03 48.19 222.47 5135.37 327.77
Column 14.10 11.20 8.06 17.90 9.57 30.88

PTB

Centralized - 108.37 47.17 29.22 4567.49 115.68 240.14
Local-only - 108.37 47.17 29.22 4567.49 115.68 240.14

FedPrLLM
Layer 108.37 47.17 29.22 4567.49 115.68 240.14
Row 1060.91 394.57 239.91 21323.02 1075.71 928.73
Column 108.37 47.17 29.22 4567.49 115.68 240.14

B.3 MORE RESULTS ON OTHER LOCAL PRUNING METHODS

In this section, we provide additional experimental results using SparseGPT (Frantar & Alistarh,
2023), OWL (Yin et al., 2024), and BESA (Xu et al., 2024a) as the local pruning method to further
validate the generality of our findings. For SparseGPT, we utilize the pruning metric proposed in
SparseGPT (Frantar & Alistarh, 2023) and do not perform the weight update procedure (also adopted
in Wanda (Sun et al., 2024); see Table 7 in (Sun et al., 2024)).

The experimental results of using other local pruning methods are shown in Tables 10 and 11. These
results show a trend similar to those obtained using Wanda as the local pruning method and further
demonstrate the generality of our findings.

B.4 MORE RESULTS ON ZERO-SHOT TASKS

The experimental results on seven zero-shot tasks are shown in Tables 12 and 13. These results show
a trend similar to those on the language modeling tasks and further demonstrate the generality of our
findings.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Perplexity (WikiText2 / C4 / PTB) of pruned LLaMA-7B under 50% sparsity ratio using
other local pruning methods.

Compar. Prune Weight SparseGPT OWL BESA
Method Group Stra. Scaling (Frantar & Alistarh, 2023) (Yin et al., 2024) (Xu et al., 2024a)

Centralized - - - 7.40 / 9.54 / 76.18 7.21 / 9.31 / 67.44 7.27 / 9.34 / 78.74
Local-only - - - 8.11 / 10.44 / 95.12 7.43 / 9.55 / 70.11 7.44 / 9.60 / 86.19

FedPrLLM

Layer One-shot ✗ 8.04 / 10.37 / 93.52 7.24 / 9.38 / 67.52 7.31 / 9.43 / 80.28
Row One-shot ✗ 8.05 / 10.37 / 93.15 7.23 / 9.39 / 67.56 7.31 / 9.43 / 80.38
Column One-shot ✗ 4279.74 / 4868.07 / 11451.43 1408.46 / 914.26 / 3338.93 1548.53 / 932.58 / 4683.50
Layer Iterative ✗ 8.04 / 10.37 / 94.09 7.23 / 9.40 / 67.77 7.30 / 9.43 / 81.31
Row Iterative ✗ 8.06 / 10.37 / 93.15 7.23 / 9.39 / 67.62 7.30 / 9.44 / 81.88
Column Iterative ✗ 2562.72 / 4263.29 / 5643.11 1171.66 / 905.47 / 2100.39 1823.51 / 983.13 / 4909.44
Layer One-shot ✓ 8.17 / 10.52 / 97.55 7.65 / 9.87 / 86.91 7.47 / 9.63 / 87.92
Row One-shot ✓ 8.18 / 10.53 / 97.32 7.64 / 9.87 / 86.30 7.47 / 9.64 / 88.18
Column One-shot ✓ 6524.84 / 7887.48 / 9790.79 1433.32 / 994.49 / 3598.38 1693.96 / 891.77 / 4662.56
Layer Iterative ✓ 8.16 / 10.51 / 97.72 7.41 / 9.57 / 71.36 7.46 / 9.64 / 87.44
Row Iterative ✓ 8.17 / 10.52 / 97.14 7.42 / 9.57 / 71.24 7.46 / 9.64 / 87.64
Column Iterative ✓ 2741.71 / 3998.72 / 6088.04 1455.31 / 939.69 / 2790.60 2178.33 / 1147.38 / 8064.72

Table 11: Perplexity (WikiText2 / C4 / PTB) of pruned LLaMA-7B under 50% sparsity ratio when
changing the comparison group for the local pruning method. FedPrLLM adopts one-shot pruning
and no weight scaling.

Local Compar. Compar. SparseGPT OWL BESA
Group Method Group (Frantar & Alistarh, 2023) (Yin et al., 2024) (Xu et al., 2024a)

Layer

Centralized - 7.91 / 10.21 / 83.25 7.61 / 9.88 / 71.59 7.94 / 10.28 / 92.81
Local-only - 8.89 / 11.58 / 108.47 7.84 / 10.12 / 76.15 8.16 / 10.56 / 99.17

FedPrLLM
Layer 8.83 / 11.50 / 106.83 7.80 / 10.12 / 71.76 7.98 / 10.34 / 92.26
Row 183.63 / 134.18 / 913.14 10.54 / 13.40 / 124.99 32.54 / 35.30 / 291.07
Column 4623.88 / 4722.64 / 12115.99 1115.07 / 780.56 / 2480.77 1767.87 / 966.04 / 3964.13

Column

Centralized - 8.86 / 14.10 / 108.37 7.89 / 10.82 / 72.35 8.23 / 11.64 / 100.07
Local-only - 8.86 / 14.10 / 108.37 7.91 / 10.86 / 73.27 8.89 / 14.19 / 109.73

FedPrLLM
Layer 8.86 / 14.10 / 108.37 7.91 / 10.84 / 73.02 8.86 / 14.12 / 108.12
Row 138.54 / 155.15 / 1060.91 32.24 / 46.92 / 645.47 138.87 / 154.99 / 1064.28
Column 8.86 / 14.10 / 108.37 7.91 / 10.83 / 73.02 8.86 / 14.10 / 108.14

Table 12: Accuracies (%) on seven zero-shot tasks of pruned LLaMA-7B model under 50% sparsity
ratio using Wanda as the local pruning method.

Method Compar. Group Prune Stra. Weight Scaling HellaSwag WinoGrande OBQA RTE BoolQ ARC-c ARC-e Mean

Dense - - - 56.96 70.09 34.20 66.43 75.11 41.89 75.29 59.99

Centralized - - - 51.89 66.54 28.60 55.60 71.16 36.86 69.44 54.30
Local-only - - - 51.52 66.23 28.55 55.37 70.85 36.49 69.13 54.02

FedPrLLM

Layer One-shot ✗ 51.93 66.61 29.80 53.49 71.22 37.03 69.49 54.22
Row One-shot ✗ 51.84 66.61 30.20 53.07 71.16 36.77 69.61 54.18
Column One-shot ✗ 26.24 50.51 13.60 52.35 38.01 20.65 30.56 33.13
Layer Iterative ✗ 51.93 66.46 29.20 54.15 71.13 36.95 69.61 54.20
Row Iterative ✗ 51.90 66.54 29.40 54.33 71.13 36.69 69.44 54.20
Column Iterative ✗ 26.28 49.96 11.60 52.35 40.55 21.25 31.44 33.35
Layer One-shot ✓ 51.42 66.51 30.20 53.07 71.19 36.60 68.98 54.00
Row One-shot ✓ 51.80 66.33 30.20 53.79 71.10 36.30 69.16 54.09
Column One-shot ✓ 25.92 50.12 12.00 51.26 38.62 20.14 29.46 32.50
Layer Iterative ✓ 51.90 66.14 28.80 53.79 71.07 36.77 69.40 53.98
Row Iterative ✓ 51.89 66.54 29.60 54.11 71.15 36.20 69.10 54.08
Column Iterative ✓ 26.20 49.57 11.80 53.43 38.81 21.42 31.86 33.30

B.5 RESULTS ON ULTRA-LOW CALIBRATION DATA REGIME

To further explore the performance of our FedPrLLM framework in scenarios with extremely limited
calibration data (e.g., 1 sample/client), we conduct additional experiments using only 1 sample per
client for calibration. We ran this challenging experiment on LLaMA-7B and LLaMA-2-7B with
128 clients (each holding only a single calibration sample) at 50% sparsity. For FedPrLLM, we use
our recommended configuration of layer comparison, one-shot pruning, and no weight scaling. The
results are presented in Table 14.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Accuracies (%) on seven zero-shot tasks of pruned LLaMA-7B model under 50% sparsity
ratio when changing the comparison group for the local pruning method (i.e., Wanda). FedPrLLM
adopts one-shot pruning and no weight scaling.

Local Compar. Group Method Compar. Group HellaSwag WinoGrande OBQA RTE BoolQ ARC-c ARC-e Mean

Layer

Centralized - 50.00 66.85 28.40 50.18 69.69 36.60 67.13 52.69
Local-only - 49.59 66.33 27.57 50.07 68.58 35.56 67.11 52.12

FedPrLLM
Layer 50.04 65.59 27.80 49.82 68.72 36.09 67.93 52.28
Row 44.34 64.01 26.40 51.62 56.51 30.55 66.08 48.50
Column 25.78 50.91 12.20 52.35 37.95 20.82 27.86 32.55

Column

Centralized - 48.92 65.82 26.20 56.68 65.11 34.56 66.79 52.01
Local-only - 48.92 65.82 26.20 56.68 65.11 34.56 66.79 52.01

FedPrLLM
Layer 48.92 65.82 26.20 56.68 65.11 34.56 66.79 52.01
Row 35.60 56.20 20.80 53.43 50.95 26.28 60.23 43.35
Column 48.92 65.82 26.20 56.68 65.11 34.56 66.79 52.01

Table 14: Perplexity (WikiText2 / C4 / PTB) of pruned LLMs under 50% sparsity ratio in the ultra-
low data regime (1 sample per client).

Method LLaMA-7B LLaMA-2-7B

Centralized 7.25 / 9.34 / 80.12 6.46 / 8.94 / 96.99
Local-only 7.58 / 9.73 / 89.22 6.77 / 9.30 / 116.60

FedPrLLM 7.31 / 9.46 / 82.33 6.49 / 9.04 / 103.24

As shown in Table 14, FedPrLLM consistently outperforms the Local-only baseline even in this
ultra-low data regime. These results highlight the core strength of FedPrLLM: it effectively aggre-
gates 128 individual masks into a single robust global mask, thereby overcoming the instability that
severely impacts the Local-only approach.

C PRIVACY AND LEAKAGE ANALYSIS

To formally and empirically assess the privacy leakage of our framework, we conduct a detailed
privacy analysis on the LLaMA-7B model, covering both theoretical limits and practical attack
simulations.

To measure the maximum possible information leakage, we first perform an information entropy
analysis. This tells us the theoretical limit of how much data a message can hold. Our analysis
shows that a binary mask (at 50% sparsity) holds only 1.0 bit of information, while standard Float16
model weights hold 13.75 bits 3. This means the mask contains only 7.3% of the information found
in the weights—a 92.7% reduction. This massive reduction acts as a primary defense, making attack
much harder because there is simply very little information available to leak.

Building on this theory, we test our mask-sharing method with a series of practical experiments.
First, we check mask similarity to see if a mask is uniquely tied to the private data used to create it.
We find that masks generated with Wanda using completely different, randomly seeded calibration
data are over 95% identical (4.96% Hamming distance). This high similarity proves that the mask
matrices are mostly determined by the public pre-trained model’s weight, not the private data. This
effectively separates the shared information from the private data. Next, our Differential Privacy
(DP) (Dwork, 2006) sensitivity analysis shows that changing just one sample in the dataset causes
a very small change in the mask matrices (∼4.96% Hamming distance). Specifically, we create
two datasets that differ by only one sample and measure the difference (i.e., Hamming distance)
between their masks. This extremely low sensitivity means our method naturally provides strong
privacy protection (equivalent to a formal privacy budget of ϵ ≈ 0.05) without needing to add extra
noise.

3As calculating entropy across all model parameters is computationally prohibitive, this analysis compares
data from a single sub-layer (q proj) within the first transformer block.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We also simulate targeted attacks to test for privacy leakage. To test for Membership Inference At-
tacks (MIA) (Shokri et al., 2017), where an attacker tries to guess if a specific data record was used,
we simulate a metric-based attack scenario. Since standard MIA relies on confidence scores (which
our binary masks don’t have), we measure the “signal strength”—the specific influence of a target
sample on the final mask. We find that the difference in masks generated with and without a specific
target sample is only 3.23% Hamming distance. This variation is smaller than the natural differences
caused by using different datasets (∼4.96%), making it difficult for an attacker to tell the difference
between a real signal and random noise. This implies that any complex attack models would likely
fail because the signal is too weak (Shokri et al., 2017; Dwork et al., 2006). Finally, we simulate
a Gradient Inversion Attacks (Zhu et al., 2019; Fredrikson et al., 2015), where an attacker (e.g., an
honest-but-curious server) with full knowledge of the model tries to reconstruct the original training
data via gradient-based optimization. The attacker starts with a random noise tensor as input data
and iteratively optimizes it to generate a mask that matches the target mask shared by the client.
The loss function is the Hamming distance between the generated mask and the target mask. The
gradients of this loss with respect to the input data are used to update the input, effectively “search-
ing” for data that could produce the target mask. This attack also fails, recovering less than 2% of
the tokens and producing meaningless text. For example, Original Text: “your Apple AirPods and
EarPods. Easy & hassle free installation. Earbuddyz must be removed to charge AirPods...”. Recon-
structed Text: “¡deuxTvekirection Readlarzug hecho pertelled h threat todos installah={blearsefw
stories lookup...”. The attack fails because it tries to reverse a highly underdetermined, multi-stage
information loss chain:

Data → Activations → Scaler → Importance Score → Mask.

Most steps in this chain is practically irreversible:

• Activations → Scaler: Activations across thousands of tokens are compressed into a single
L2-norm statistic per neuron, losing all temporal and distributional information.

• Importance Score → Mask: The continuous, high-entropy importance scores are bina-
rized via a threshold. All information about the magnitude of the scores is permanently
destroyed; only a single bit (above or below threshold) remains.

An attacker trying to reverse this process faces a problem with an astronomical number of possible
solutions. Given only the final 1-bit mask, it is computationally infeasible to reconstruct the specific
data that initiated the chain. This confirms the security of our approach against even the most
powerful adversaries.

Therefore, by sharing only low-information binary masks, our framework fundamentally reduces
privacy risks and offers strong, practical privacy protection.

D PRACTICAL EFFICIENCY, COMMUNICATION COST, AND RESOURCE
USAGE

This section complements our main results with a thorough analysis of computation time, commu-
nication costs across diverse network conditions, client heterogeneity, memory usage, and energy
implications. Unless stated otherwise, all simulations are conducted using LLaMA-7B.

D.1 PRUNING RUNTIME AND PEAK MEMORY

Table 15 reports the pruning runtime and peak memory across all evaluated methods. One-shot and
iterative variants exhibit similar local pruning time on GPU (approximately 145 seconds), as both
compute Hessians and sort importance scores. The primary difference between these strategies lies
in the number of communication rounds: one-shot requires a single round (uploading masks once),
whereas iterative requires one round per layer (32 rounds for LLaMA-7B).

Regarding memory usage, one-shot pruning shows higher peak memory (about 31 GB) than iterative
(about 19 GB) in our single-machine simulation because the server aggregates masks across all
layers simultaneously. In a real distributed deployment, masks can be processed in a streaming,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: Runtime and Peak Memory usage for all evaluated methods.

Method Compar. Group Prune Stra. Weight Scaling Pruning Time (s) Peak Memory (GB)

Centralized - - - 79.8 18.66
Local-only - - - 142.5 25.14

FedPrLLM Layer One-shot ✗ 143.2 31.27
Row One-shot ✗ 143.8 31.27

Column One-shot ✗ 142.9 31.27
Layer Iterative ✗ 145.6 19.04
Row Iterative ✗ 144.8 19.04

Column Iterative ✗ 143.4 19.02
Layer One-shot ✓ 143.5 31.27
Row One-shot ✓ 144.1 31.27

Column One-shot ✓ 143.0 31.27
Layer Iterative ✓ 144.8 19.69
Row Iterative ✓ 144.8 19.04

Column Iterative ✓ 144.8 19.69

layer-by-layer fashion on the server, distributing the memory load across clients and reducing peak
memory to be comparable to the iterative approach.

D.2 BANDWIDTH VS. LATENCY TRADE-OFFS

We simulate end-to-end pruning time under four representative network profiles to quantify the
interplay between bandwidth and latency. Table 16 summarizes the results. We observe that one-
shot pruning method consistently achieves a ∼31x speedup over iterative pruning across all network
conditions. This significant reduction in communication rounds makes one-shot pruning particularly
advantageous in high-latency, low-bandwidth environments, such as edge networks.

Table 16: Simulated total communication time under different network conditions.

Network Profile Latency Bandwidth One-shot Time (h) Iterative Time (h) Speedup

Datacenter 1ms 10 Gbps ∼0.1 ∼3.1 ∼31x
Cross-Silo (LAN) 5ms 1 Gbps ∼1.0 ∼31.3 ∼31x
Cross-Silo (WAN) 50ms 100 Mbps ∼9.9 ∼313.3 ∼31x
Edge 100ms 10 Mbps ∼99.4 ∼3132.9 ∼31x

D.3 SYSTEM HETEROGENEITY (STRAGGLERS)

We further simulate system heterogeneity with 20% stragglers (slow clients) to compare the com-
munication time of One-shot and Iterative pruning. Specifically, we instantiate 64 clients, where 51
“fast” clients finish the mask upload in 534.1 seconds, while 13 “slow” clients (bandwidth at 50%)
take 1,068.2 seconds. In this setting, One-shot pruning incurs a +534 second straggler penalty only
once, resulting in a total straggler overhead of 534 seconds (100% of the homogeneous upload time).
By contrast, the iterative baseline must absorb the same 534-second penalty at every communication
round; with 32 rounds, this compounds to 32 × 534 ≈ 17,090 additional seconds (>4.7 hours) of
idle time. This dramatic gap makes One-shot inherently robust to the system heterogeneity typical
of cross-device federated learning.

D.4 COMPREHENSIVE EFFICIENCY, SCALABILITY, AND ENERGY

Tablere 17 summarizes time efficiency, scalability under heterogeneity, energy implications, mem-
ory/storage, and theoretical inference metrics for LLaMA-7B in a Cross-Silo WAN environment
(100,Mbps bandwidth, 50,ms latency). One-shot pruning reduces total pruning time by, which dom-
inates energy consumption in federated settings and translates to energy savings. In terms of scal-
ability, one-shot suffers the straggler penalty only once, whereas iterative methods incur it in every

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

round, making one-shot substantially more robust. Both methods achieve equivalent storage com-
pression at the same sparsity.

For inference time, unstructured sparsity reduces the theoretical FLOPs of pruned layers (e.g., at
50% sparsity), but practical speedups on standard GPUs may require specialized sparse kernels.
Realizing hardware-level inference acceleration is complementary to and beyond the scope of this
work.

Table 17: Comprehensive analysis of efficiency, scalability, and resource usage. Note: Energy
savings (>90%) are derived from the 31x reduction in total communication time, which dominates
the energy consumption in federated settings.

Metric Category Specific Metric One-shot Iterative Improvement

Time Efficiency Total Pruning Time 9.9 hours > 313 hours 31x Speedup
Straggler Impact 1x Penalty (Once) 32x Penalty (Every Layer) Robust

Energy Pruning Energy Cost Low Very High > 90% Savings
Memory Model Size (Storage) 6.5 GB 6.5 GB Equivalent

Inference Theoretical Throughput 1.43x 1.43x Equivalent
Theoretical Latency 0.70x 0.70x Equivalent

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) to enhance the language and clarity of this manuscript.
Their role included rephrasing for readability, correcting grammatical errors, and ensuring consistent
terminology. All core scientific contributions, including the proposed methods, experimental design,
and results analysis, are original to the authors. The LLMs acted solely as writing assistants and did
not influence the research ideas or outcomes presented.

23

	Introduction
	Preliminaries
	Federated Pruning for LLMs
	Problem Formulation
	FedPrLLM
	Comparison Group
	Weight Scaling
	One-shot vs. Iterative Pruning

	Experiments
	Experimental Setup
	Main Results
	Which Comparison Group is More Effective?
	Should We Scale the Model Weights of the Retained Parameters?
	Does Iterative Pruning Outperform One-shot Pruning?

	Extension to Non-IID Scenarios
	Sensitivity Analysis
	Privacy and Leakage Analysis

	Related Work
	Conclusion
	The Rationale of Voting Mechanisms
	Additional Experimental Results
	More Results under Higher Sparsity Ratios
	More Results on the Comparison Group for Local Pruning
	More Results on Other Local Pruning Methods
	More Results on Zero-shot Tasks
	Results on Ultra-Low Calibration Data Regime

	Privacy and Leakage Analysis
	Practical Efficiency, Communication Cost, and Resource Usage
	Pruning Runtime and Peak Memory
	Bandwidth vs. Latency Trade-offs
	System Heterogeneity (Stragglers)
	Comprehensive Efficiency, Scalability, and Energy

	The Use of Large Language Models (LLMs)

