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ABSTRACT

LLM pruning has emerged as a promising technology for compressing LLMs, en-
abling their deployment on resource-limited devices. However, current method-
ologies typically require access to public calibration samples, which can be chal-
lenging to obtain in privacy-sensitive domains. To address this issue, we intro-
duce FedPrLLM, a comprehensive federated pruning framework designed for
the privacy-preserving compression of LLMs. In FedPrLLM, each client only
needs to calculate a pruning mask matrix based on its local calibration data and
share it with the server to prune the global model. This approach allows for col-
laborative pruning of the global model with the knowledge of each client while
maintaining local data privacy. Additionally, we conduct extensive experiments to
explore various possibilities within the FedPrLLM framework, including differ-
ent comparison groups, pruning strategies, and the decision to scale weights. Our
extensive evaluation reveals that one-shot pruning with layer comparison and no
weight scaling is the optimal choice within the FedPrLLM framework. We hope
our work will help guide future efforts in pruning LLMs in privacy-sensitive fields.
Our code is available at https://anonymous.4open.science/r/FedPrLLM-15594,

1 INTRODUCTION

Large Language Models (LLMs) (Brownl |2020; [Touvron et al.l 2023a; |Achiam et al., [2023)) have
revolutionized the field of natural language processing by demonstrating remarkable capabilities
across various tasks. However, their increasing size leads to significant hardware requirements,
limiting real-world deployment. To address this, research has focused on compact LLMs through
compression techniques, such as pruning (Ma et al.|, 2023} [Frantar & Alistarhl 2023} [Sun et al.,
2024)), knowledge distillation (Gu et al., [2024; Xu et al., [2024b), quantization (Xiao et al., 2023;
Shao et al.| 2023), and low-rank factorization (Zhao et al., 2024; [Saha et al., 2023). Among these,
pruning has emerged as a promising method to reduce resource demands by selectively removing
redundant parameters while preserving performance (Ma et al.| 2023; [Frantar & Alistarh, 2023)).
Typically, LLM pruning methods can be broadly classified into structured pruning, which removes
entire substructures within LLMs, such as neurons (Ma et al., 2023; L1 et al., 2023} |Ashkboos et al.,
2024]), layers (Xia et al.l 2024), or even entire transformer blocks (Gromov et al., [2025)), and un-
structured pruning, which removes individual weights from the model’s weight matrices based on
certain criteria (Frantar & Alistarhl 2023} Sun et al., 2024;|[Zhang et al.| [2024b} |Yin et al., 2024; |[Xu
et al.| [2024a). This work focuses on unstructured pruning, as it tends to achieve higher compression
rates and maintain better model performance compared to structured pruning (Frantar & Alistarh,
2023 |He et al., [2024; Xia et al.| [2024; Zhang et al.| [2024b)).

Despite advances in LLM unstructured pruning methods, these approaches usually rely on access
to public calibration data to guide the pruning process (Frantar & Alistarh, 2023} [Sun et al.| 2024;
Zhang et al.| [2024b} [Yin et al| [2024; Xu et al.| 2024a)). Specifically, they require calibration sam-
ples to evaluate the importance of the model weights in order to determine the pruning mask matrix
for pruning models. However, in many real-world scenarios, such as healthcare, finance, and per-
sonalized services, the data used for pruning might be private and cannot be shared due to privacy
regulations and concerns. Federated Learning (FL) (McMahan et al.l 2017; Zhang et al., [2024a;
Zeng et all 2024} |Guo et al} 2025bza), which utilizes collaborative and decentralized training of
models across multiple institutions without sharing personal data externally, offers a promising so-
lution to this challenge.
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Integrating FLL with LLM pruning allows each client to calculate a local pruning mask matrix based
on its private calibration data and share it with the server. The server then aggregates these mask
matrices into an aggregated mask matrix and selects the top-k values (the most clients want to prune)
to derive a final pruning mask matrix for pruning the global model. Despite its ability to protect data
privacy, three unresolved challenges within this framework hinder practical deployment.

Challenge 1: How to compare parameters? When selecting the top-k values, a critical ambiguity
arises: Should parameter importance be compared across the entire layer or within each respective
row or column (corresponding to layer, row, and column comparisons, respectively)? Previous
centralized LLM pruning work (Sun et al., [2024) has highlighted the importance of using a proper
comparison group for pruning LLMs, yet no study explores this in federated scenarios.

Challenge 2: To scale or not scale for retained parameters. Beyond simply determining which
parameters to prune via majority voting (i.e., selecting top-k values), the FL aggregated mask matrix
reveals a critical hidden signal: how strongly each parameter is disfavored across clients. Consider
two surviving parameters - one narrowly retained (pruned by 10/100 clients) and another unani-
mously preserved (pruned by 0/100 clients). Traditional pruning treats both equally, maintaining
their original magnitudes despite their differing consensus levels. However, this ignores a critical
insight: the former parameter, though retained, exhibits weaker consensus across clients. This ob-
servation raises a fundamental question: Rather than simply employing binary masking, could we
leverage the FL aggregated mask matrix to guide continuous weight adjustment, where retained
parameters are scaled down proportionally based on their pruning frequency?

Challenge 3: Is iterative pruning worth the cost? LLM pruning is typically performed layer-
by-layer recursively to avoid error accumulation (Frantar & Alistarh, [2023}; |Sun et al.| 2024; Zhang
et al.,[2024b). As a result, in FL, this necessitates either one-shot pruning (clients compute all layer
mask matrices and share them with the server in one go) or iterative pruning (clients send the mask
matrices to the server layer by layer in an iterative manner). While iterative pruning allows for
refining the local model promptly, it incurs prohibitive communication costs for deep LLMs. This
raises an unstudied question: Does iteratively refining the local model improve accuracy enough to
justify its massive communication overhead?

To address these challenges, we formalize the first systematic and comprehensive empirical study of
the fundamental design space of federated LLM pruning and empirically evaluate three core design
choices through a unified FedPrLLM framework (Figure [T)):

Q1. Comparison Group: Which comparison group is more effective: layer, row, or column?
Q2. Weight Scaling: Should we scale the model weights of the retained parameters?

Q3. Pruning Strategy: Does iterative pruning outperform one-shot pruning?

We dedicated thousands of GPU hours to benchmark federated pruning for LLMs, conducting ex-
tensive experiments across 6 open-source LLMs, 4 local pruning methods, 3 sparsity ratios, 3 com-
parison groups, 2 pruning strategies on 10 common datasets. From these efforts, we have developed
a practical list of key insights for federated pruning of LLMs:

1). Layer comparison is simple yet effective. Among the three comparison groups—Iayer,
row, and column comparisons—layer comparison stands out as the simplest and most ef-
fective method, regardless of the local pruning method’s comparison group.

2). Scaling weights performs worse than expected. Though the FL aggregated mask matrix,
which reveals how strongly each parameter is disfavored across clients, could be used to
scale the retained parameters for continuous weight adjustment, its performance is inferior
to that of not scaling them.

3). Iterative pruning offers no benefit. While iterative pruning allows for prompt refinement
of the local model, it incurs significant communication overhead, and its performance is
comparable to that of one-shot pruning, offering no additional advantages.

We hope our findings will help guide future efforts in federated pruning for LLMs and inform best
practices for deploying LLMs under federated scenarios in real-world applications. We summarize
our contributions as follows:
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Figure 1: Top). Research questions alongside the corresponding findings and experimental scenar-
ios. Bottom). The FedPrLLM framework. (1) Each client calculates a pruning mask matrix M,
using its calibration dataset D;. (2) Clients send the mask matrices M, to the server. (3) The server
aggregates these mask matrices M; to obtain an aggregated mask matrix M = 27:1 M;. ® Top-k
values are selected from the aggregated mask matrix W to derive the final mask matrix M. (5)

Prune the global model W using the mask matrix M as follows: W = W © (1 — M), where ©
denotes element-wise multiplication. (6) Scale the model weights of the retained parameters using

the aggregated mask matrix M as follows: W © w (if needed). (7) The server broadcasts the
mask matrix M to each client (for iterative pruning). The dashed arrow indicates that this operation
is optional; step (6) is used for weight scaling, while (7) is used for iterative pruning. Note that this
visualization is primarily for one-shot pruning, which requires only one communication round. For
iterative pruning, multiple communication rounds will occur between steps (2) and (7), and the layer
index is omitted here.

* We introduce FedPrLLM, a comprehensive federated pruning framework designed for
the privacy-preserving compression of LLMs, which incorporates various possibilities for
integrating FL with LLM pruning.

* We conduct an extensive evaluation of FedPrLLM, providing practical insights into effec-
tive federated pruning techniques for LLMs, based on thousands of GPU hours invested in
multiple open-source LLMs, various sparsity ratios, comparison groups, and datasets.

* We identify that layer comparison is simple yet effective, scaling weights offers no benefits
and may worsen performance, and that one-shot pruning is as effective as iterative pruning
while reducing communication costs.

2 PRELIMINARIES

In this section, we review some concepts related to LLM pruning. LLM pruning can be broadly
classified into structured pruning (Ma et al.| 2023} |Li et al., |2023]; |/Ashkboos et al.l 2024; Xia et al.}
2024} \Gromov et al.l [2025) and unstructured pruning (Frantar & Alistarh, 2023} |Sun et al., [2024;
Zhang et al) 2024b; [Yin et al.| [2024; Xu et al., |2024a)), and in this work, we focus on the latter.
Unstructured pruning involves removing individual weights from the model’s weight matrices based
on certain criteria while maintaining its performance as much as possible (Frantar & Alistarh} 2023
Sun et al., |2024; [Zhang et al. |2024b; |Yin et all 2024; Xu et al.| 2024a). It is usually achieved
by minimizing the discrepancy square error between the dense and pruned model layer-by-layer
recursively. Specifically, for an uncompressed linear layer with weights W; € R%*", the objective
for unstructured pruning can usually be formulated as:

arnginHWlxl—(Wl@(1—Ml))Xl||§ st [|[Mlo=F, (1)
1
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where X is the input to I-th linear layer (also referred to as calibration data), M; € {0, l}d” is the
pruning mask matrix we aim to derive, © denotes element-wise multiplication, || - ||o is the lp-norm
(e.g., the number of non-zero elements), and k represents the number of pruned weights determined
by the pruning ratio.

The differences between previous pruning methods primarily lie in the design of the pruning metrics
and the comparison groups used to derive the pruning mask matrix (Frantar & Alistarh, 2023} |Sun
et al., 2024} Zhang et al.,[2024b). Pruning metrics refer to how the importance of each model weight
is identified, while comparison groups denote the selection of groups for comparing these weights,
including layer comparison, row comparison, and column comparison. For example, SparseGPT
w)|?

diag(XTXAD 1) | » 8 the
ij
pruning metric, employing layer comparison to determine the pruning mask matrix for pruning,

along with subsequent weight scaling. Wanda (Sun et al.l 2024)) adopts the magnitudes of model
weights multiplied by the corresponding input activations, i.e., |[W;| - || X;||2, as the pruning metric
and chooses row comparison.

(Frantar & Alistarh, 2023) utilizes the Hessian Matrix inverse, i.e.,

3 FEDERATED PRUNING FOR LLMS

3.1 PROBLEM FORMULATION

In the federated pruning scenario for LLMs, multiple clients aim to collaboratively prune an LLM
while ensuring that their local calibration data remains private. Formally, let W represent the model
parameters of the LLM that we aim to prune. Each client ¢ possesses a private calibration dataset
denoted as D;, which is used for calculating the pruning mask matrices during the local pruning
process. These mask matrices are then shared with the server to prune the LLM.

3.2 FEDPRLLM

In this section, we first introduce the overall workflow of the comprehensive FedPrLLM frame-
work, as illustrated at the bottom of Figure [T} and then discuss the various possibilities within it.
Specifically, during local pruning, each client calculates a pruning mask matrix M; € {0, 1}‘Wi|
using its calibration dataset D; (step (). This mask matrix determines which weights are pruned
(M;; = 1) and which are retained (M;; = 0). The decision on which weights to prune or retain is
based on an importance criterion derived from the calibration data, such as the magnitudes of model
weights multiplied by the corresponding input activations used in Wanda (Sun et al., 2024)) or other
pruning methods.

After calculating the pruning mask matrix, each client ¢ shares only the mask matrix IM; with the
central server (step (2)). This approach ensures that no local model parameters or private calibra-
tion data are transmitted, thereby minimizing communication overhead and preserving data privacy.
Upon receiving the pruning mask matrices M,; from all clients, the server sums them to obtain an
aggregated mask matrix M = Yot M (step ®) and then selects the top-k values to create the final
mask matrix M (step @ﬂ for pruning the global model (step (3)). In the following, we will discuss
various possibilities within the FedPrLLM framework, including different comparison groups, the
decision to perform weight scaling, and the choice between one-shot and iterative pruning.

3.2.1 COMPARISON GROUP

When selecting the top-k values from the aggregated mask matrix M to derive the final pruning mask
matrix M, three comparison groups can be considered (step @): layer comparison, row comparison,
and column comparison. In layer comparison, the comparison group consists of all elements within a
layer, allowing us to choose the top-k values across the entire layer. Conversely, in row (or column)
comparison, the comparison group is defined by each individual row (or column), enabling the
selection of the top-k values within each respective row (or column). The visualization of these
comparison groups is shown in Figure [I} Thus, given that multiple comparison groups could be
chosen, which comparison group is more effective for federated pruning of LLMs?

!The rationale behind such voting mechanism is shown in Section@in Appendix.
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3.2.2 WEIGHT SCALING

After obtaining the final mask matrix M, it can be used to effectively prune the dense model W using
W © (1 — M), where ® denotes element-wise multiplication (step (3)). This operation removes the

weights corresponding to the masked parameters (i.e., M;; = 1), resulting in a sparser model W.

Then, beyond merely determining which parameters to prune via majority voting (i.e., selecting
top-k values), the aggregated mask matrix M reveals a critical hidden signal: how strongly each
parameter is disfavored across clients. Consider two surviving parameters - one narrowly retained
(pruned by 10/100 clients) and another unanimously preserved (pruned by 0/100 clients). Traditional
pruning treats both equally, maintaining their original magnitudes despite their differing consensus
levels. However, this ignores a critical insight: the former parameter, though retained, exhibits
weaker consensus across clients. To this end, the aggregated mask matrix M could be further

applied to scale down the retained parameters using the formula W o (m:nM) (step (6), if needed).
This approach corresponds to locally pruning the model and then sharing the pruned model with the
server, which aggregates them using the FedAvg algorithm (McMahan et al.,|2017). However, will

the weight scaling improve the performance of federated pruning for LLMs?

3.2.3 ONE-SHOT VS. ITERATIVE PRUNING

Since LLMs are usually pruned layer-by-layer recursively (Frantar & Alistarh, 2023} [Sun et al.,
2024;|[Zhang et al.,|2024b)), federated pruning for LLMs can be naturally categorized into two types:
one-shot pruning and iterative pruning. In one-shot pruning, each client calculates the pruning mask
matrices for all layers and then sends them to the server, resulting in only one communication round.
In contrast, iterative pruning involves sending the pruning mask matrices to the server layer by layer.
Specifically, after calculating the pruning mask matrix for one layer, it is uploaded to the server for
aggregation. The server then combines these matrices into a global mask matrix for pruning the
model at that layer and broadcasts the global mask matrix back to each client for local pruning
of that layer (step (7), the layer index is omitted here). This process is carried out layer by layer
and involves multiple communication rounds, resulting in higher communication costs compared
to one-shot pruning. Therefore, given the significant communication costs associated with iterative
pruning, will iterative pruning outperform one-shot pruning?

One-shot and iterative pruning differ because, when calculating the pruning mask matrix for layer
I + 1 locally, the calibration data X, ; is derived from the output of layer [, which has already been
pruned. Since the weights of the local pruned model for layer [ vary between using M, (one-shot
pruning) and M (iterative pruning), this leads to different outputs for layer [ and, consequently,
varying calibration data X 1, resulting in distinct pruning mask matrices for layer [ + 1.

4 EXPERIMENTS

Our experiments are designed to answer the following research questions that are important for the
practical pruning of LLMs under a federated scenario.

* Q1. Which comparison group is more effective: layer, row, or column?
* Q2. Should we scale the model weights of the retained parameters?

* Q3. Does iterative pruning outperform one-shot pruning?

4.1 EXPERIMENTAL SETUP

We implement FedPrLLM in PyTorch (Paszke et al., 2019) and use the Hugging Face Transform-
ers library (Wolf et al.| 2019) to handle models and datasets. We evaluate the FedPrLLM on the
three most widely adopted LLM model families: LLaMA 7B/13B/30B (Touvron et al., 2023a),
LLaMA-2 7B/13B (Touvron et al., 2023b)) and LLaMA-3 8B (Meta, |2024). For each model under
consideration, we focus on pruning the linear layers (skipping the first embedding layer and the
final classification head), which account for around 99% of the total LLM parameters. We employ
unstructured sparsity and impose a uniform sparsity ratio for all linear layers.
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For the calibration data, following (Frantar & Alistarhl 2023} [Sun et al.l 2024} Xu et al.| [2024a;
Zhang et al.,[2024b)), we use 128 samples from the C4 dataset (Raffel et al.,|2020)), with each sample
containing 2048 tokens. For FedPrLLM, we set the number of clients to 64, resulting in each client
having only 2 calibration samples. For each client, we adopt Wanda (Sun et al., 2024) SparseGPT
(Frantar & Alistarh, [2023), OWL (Yin et al., 2024), and BESA (Xu et al., 2024a) to perform local
pruning and calculate the pruning mask matrix.

Apart from the proposed FedPrLLM framework, we further implement two baselines for compari-
son: (1) Local-only, where each client prunes the model locally using its private calibration data,
and (2) Centralized, where the server prunes the model with all calibration data, which could be
considered as an upper bound for the pruning performance under FL setting.

Following previous works on LLM compression (Frantar & Alistarh, 2023} |Xu et al., 2024aj Zhang
et al., [2024b)), we measure the performance of pruned models in language modeling and evaluate
their perplexity on the held-out WikiText2 (Merity et al.,[2017) validation set, C4 (Raffel et al.,[2020)
validation data, and PTB (Marcus et al., |1994). For further evaluation, we also assess the pruned
models on seven zero-shot tasks from lm-evaluation-harnes BoolQ (Clark et al., 2019), RTE
(Wang et al., 2018), HellaSwag (Zellers et al.,|2019), WinoGrande (Sakaguchi et al., 2021), ARC
Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al.,|2018). The evaluation
metric is accuracy.

4.2 MAIN RESULTS

To answer the research questions above, we conducted extensive experiments to evaluate FedPrLLM
along with two baselines across 6 open-source LL.Ms, 4 local pruning methods, 3 sparsity ratios, 3
comparison groups, 2 pruning strategies on 10 common datasets. The experimental results using
Wanda as the local pruning method for the 50% sparsity ratio on the WikiText2 dataset are shown
in Table[I] while results for higher sparsity ratios (e.g., 60% and 70%) and other datasets (e.g., C4
and PTB) are shown in Tables[6] [7} and [8]in Appendix. More results using SparseGPT, OWL, and
BESA as the local pruning method and evaluation on the zero-shot tasks are shown Tables [T0] [TT}

and[13]in Appendix.

Table 1: WikiText2 perplexity of pruned LLMs under 50% sparsity ratio using Wanda as the local
pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3
Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B
Dense - - - 5.67 5.09 4.10 5.11 4.57 7.46
Centralized - - - 7.25 6.15 5.24 6.46 5.58 11.00
Local-only - - - 7.44 6.33 5.34 6.63 5.72 11.39
Layer One-shot X 7.32 6.19 5.24 6.48 5.61 11.02
Row One-shot X 7.30 6.20 5.25 6.48 5.61 11.02
Column  One-shot X 152428  9282.09 501.88 20528.41 5309.48 311468.53
Layer Iterative X 7.30 6.19 5.24 6.48 5.62 11.12
Row Iterative X 7.30 6.20 5.24 6.48 5.61 11.11
FedPrLLM Column  Iterative X 1822.89  6884.15  996.57 77245.84 5430.81 189134.78
Layer One-shot v 7.48 6.36 5.35 6.67 5.75 11.75
Row One-shot v 7.47 6.36 5.35 6.67 5.75 11.75
Column  One-shot v 1708.41 10819.42 824.50 18084.02 591491 276031.34
Layer Iterative v 7.46 6.35 5.34 6.67 5.75 11.86
Row Iterative v 7.46 6.35 5.34 6.67 5.74 11.87
Column  Iterative v 198540 669291 939.62 6691149 5268.71  41996.95

4.2.1 WHICH COMPARISON GROUP IS MORE EFFECTIVE?

As discussed above, various comparison groups can be used to select top-k values from the aggre-
gated mask matrix to derive the final mask matrix for pruning the global model, including layer
comparison, row comparison, and column comparison. Thus, which comparison group is the most
effective?

“https://github.com/Eleuther Al/Im-evaluation-harness
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According to the results in Table[I] we observe that layer comparison and row comparison achieve
comparable performance, both significantly surpassing column comparison. Results on higher spar-
sity ratios and other datasets (Tables [6] [7] and [§]in Appendix), using other local pruning methods
(Table [I0]in Appendix), and results on zero-shot tasks (Table [I2]in Appendix) show a similar phe-
nomenon. To investigate why column comparison performs much worse than the others, we noted
that the local pruning methods we used adopts row comparison, meaning the local pruning mask
matrix M; derived from each client is based on row comparison. We hypothesize that this is the rea-
son for the poorer performance of column comparison, as the comparison group used in FedPrLLM
conflicts with that of the local pruning method.

Table 2: WikiText2 perplexity of pruned LLMs under 50% sparsity ratio when changing the com-
parison group for the local pruning method (i.e., Wanda). FedPrLLM adopts one-shot pruning and
no weight scaling.

Local Compar. Compar. LLaMA LLaMA-2 LLaMA-3
Group Method Group 7B 13B 30B 7B 13B 8B
Centralized - 7.94 6.57 5.47 7.38 5.92 12.04
Local-only - 8.16 6.74 5.58 7.56 6.06 12.43
Layer Layer 7.98 6.60 5.48 7.38 5.95 12.09
FedPrLLM Row 31.85 10.08 11.33 39.07 124.08 17.51
Column  1749.59 10183.32 541.62 25258.16 5503.91 336255.96
Centralized - 8.86 7.68 5.67 10.41 6.38 83.67
Local-only - 8.86 7.68 5.67 10.41 6.38 83.67
Column
Layer 8.86 7.68 5.67 10.41 6.38 83.67
FedPrLLM  Row 138.54 100.80 49.17 764.32  2580.88 400.95
Column 8.86 7.68 5.67 10.41 6.38 83.67

To validate this, we further change the comparison group in the local pruning method (i.e., Wanda
(Sun et al., 2024), SparseGPT (Frantar & Alistarh, [2023), OWL (Yin et al., 2024)), and BESA (Xu
et al.| 2024a))) to layer comparison and column comparison to evaluate the performance of the Fed-
PrLLM framework with one-shot pruning and no weight scaling. The results on WikiText2 are
shown in Table[2] while results for other datasets are presented in Table[9]in Appendix. More results
using other local pruning methods and results on the zero-shot tasks are shown in Tables|IT)and[T3]in
Appendix. From these results, we see that when the comparison group in the local pruning method
is changed to layer comparison, only the layer comparison used in FedPrLLM performs well, while
row comparison performs poorly and column comparison performs even worse. Similarly, when
the local pruning method’s comparison group is changed to column comparison, only the layer and
column comparisons perform normally, while row comparison performance is poor. Note that when
the comparison group in the local pruning method is changed to column comparison, it degrades to
the magnitude-based pruning method, rendering the performance irrelevant to calibration samples,
which results in the performance of Centralized and Local-only being the same (Sun et al., [2024).
These results demonstrate our hypothesis that the conflict between the local and server compari-
son groups leads to worse performance, while the layer comparison used in FerPrLLM consistently
achieves good results, regardless of the comparison group used for the local pruning method. The
reason for this phenomenon may be due to the mismatch between the local and server comparison
groups, which renders the aggregated mask matrix “meaningless”. We know that the aggregated
mask matrix can be considered a “weight importance matrix” for conducting pruning on the server
side. Note that these importance values are only meaningful under the local comparison group and
will be meaningless under a mismatched comparison group. Therefore, when the comparison group
used on the server mismatches the local group (e.g., local-row and server-column), the aggregated
mask matrix will be meaningless and cannot be used to determine which weights are important,
leading to poor pruning results. However, the layer comparison used on the server can avoid this
issue since the comparisons within the whole layer will also take the local comparison group into
consideration. Thus, regardless of the local comparison group used on the client side, the layer
comparison used on the server can achieve good results. Therefore, we conclude that:

Takeaway 1: Layer comparison is simple yet effective.
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4.2.2 SHOULD WE SCALE THE MODEL WEIGHTS OF THE RETAINED PARAMETERS?

The aggregated mask matrix M indicates the number of clients that wish to prune a parameter,

which allows it to be used for scaling the model weights of the retained parameters to LmM)

This approach corresponds to locally pruning the model and then sharing the pruned model with the
server, which aggregates them using the FedAvg algorithm (McMahan et al., 2017). However, will
weight scaling be beneficial for the federated pruning of LLMs?

From the results in Table [T, we observe that the performance with weight scaling is worse than
that without weight scaling across all comparison groups and pruning strategies. Results on higher
sparsity ratios and more datasets (Tables[6] [7] and []in Appendix), using other local pruning meth-
ods (Table [T0]in Appendix), and results on zero-shot tasks (Table [T2]in Appendix) show a similar
phenomenon. It indicates that scaling weights offers no benefit and may even worsen performance.
This may be due to the fact that locally pruned models do not perform well, and applying the Fe-
dAvg algorithm (McMahan et al, 2017) to aggregate these pruned model weights leads to subpar
performance. Therefore, we conclude that:

Takeaway 2: Scaling weights performs worse than expected.

4.2.3 DOES ITERATIVE PRUNING OUTPERFORM ONE-SHOT PRUNING?

Since LLMs are usually pruned layer-by-layer recursively (Frantar & Alistarh, 2023} [Sun et al.
2024} Zhang et al., [2024b), federated pruning for LLMs can be naturally categorized into two types:
one-shot pruning and iterative pruning. Given the significant communication costs associated with
iterative pruning, will it outperform one-shot pruning?

Table 3: Communication cost for one-shot and iterative pruning. The unit is the number of parame-
ters and “B” denotes billions.

LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B

one-shot pruning 6.476B 12.688B 32.102B 6.476B 12.688B 6.979B
iterative pruning 12.952B 25.376B 64.204B 12.952B 25.376B 13.958B

The comparison results are provided in Table [T} More results on higher sparsity ratios and other
datasets are shown in Tables[6] [7} and[8]in Appendix. Results using other local pruning methods are
shown in Table[T0]in Appendix, and results on zero-shot tasks are shown in Table [I2]in Appendix.
These results indicate that the performance of iterative pruning and one-shot pruning is compara-
ble, regardless of the comparison groups and pruning strategies. However, since iterative pruning
introduces significant communication costs (Table [3) without any performance improvement (see
Section |D|in Appendix for more comparisons in terms of efficiency), we conclude that:

Takeaway 3: Iterative pruning offers no benefit.

4.3 EXTENSION TO NON-IID SCENARIOS

To validate the generalizability of our findings, we further conduct experiments under non-IID con-
ditions. Specifically, we extract 8 samples from the training data of WikiText2 (Merity et al.l[2017),
C4 (Raffel et al.| 2020), and PTB (Marcus et al.l [1994) to form a global calibration dataset (i.e., 24
samples in total). We then use the Dirichlet distribution with a concentration parameter of « = 5
to split the global calibration dataset into 12 non-IID local calibration datasets, each assigned to one
client (i.e., 2 samples per client). We choose Wanda as the local pruning method and use LLaMA-7B
to conduct experiments with 50% sparsity pruning. The experimental results under non-I1ID condi-
tions are shown in Tables @ and[5] As shown in these results, our proposed “Best Recipe”—using
one-shot pruning, layer-wise comparison, and no weight scaling—consistently outperforms other
configurations under the non-IID scenario, confirming that our findings are generalizable.
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Table 4: Perplexity (WikiText2 / C4 / PTB) of
pruned LLMs under 50% sparsity ratio using
Wanda as the local pruning method under non-
IID conditions.

Table 5: Perplexity (WikiText2 / C4 / PTB) of
pruned LLMs under 50% sparsity ratio when
changing the comparison group for the local
pruning method (i.e., Wanda) under non-IID

Compar. Prune Weight Tt _ :
Method  Groms  Sta Secaling LLaMA.7B conditions. FedPrLLM adopts one-shot pruning
Centralized - - - 7.06/927/6572 and no weight scaling.
Local-only - - - 7.16/9.42/71.54
Layer One-shot x 7.06/9.30/67.54 Local Compar. Group Method Compar. Group LLaMA-7B
Row One-shot X 7.06/9.30/ 67.28 Centralized - 7.67/10.07 /83.20
Column  One-shot X 2923.46/1813.31/6736.30 Local-only - 7.76/10.26/85.16
Layer Iterative X 7.06/9.31/68.09 Layer Layer 7.62/10.10 / 81.70
Row Iterative X 7.06/9.30/67.34 FedPrLLM  Row 43.54/46.29/348.41
FedPrLLM Column  TIterative X 3219.96 /2294.87 / 6812.14 Column 2324.40/1434.18 / 6026.79
Layer One-shot v 7.17/9.47/72.33 Centralized - 8.86/14.10/108.37
Row One-shot v 7.1719.47772.16 Local-only - 8.86/14.10/108.37
Column  One-shot v 2723.30/1554.46 / 6364.29 Column
. Layer 8.86/14.10/108.37
Layer Iterative v 7.17/9.48/73.40 FedPrLLM ~ Row 138.54/155.15 / 1060.99
Row Iterative v 7.177/9.48/72.92 Column 8.86/14.10 / 108.37
Column  Iterative v 3182.52/1795.12/5808.61

4.4 SENSITIVITY ANALYSIS

In this section, we conduct sensitivity analyses on the number of clients and calibration samples in
FedPrLLM to better understand its effectiveness in pruning LLMs within a federated scenario. We
utilize Wanda as the local pruning method and use FedPrLLM, which employs layer comparison,
one-shot pruning, and no weight scaling, to conduct the analysis under a 50% sparsity ratio.

It is worth noting that the number of clients influences the performance of FL algorithms (Guo et al.,
2025bic). In this section, we investigate the effect of client numbers on the federated pruning of
LLMs. We use a total of 128 calibration samples and vary the number of clients from 64 to 2,
resulting in an increase in the calibration samples allocated to each client. Specifically, when the
number of clients is 64, each client has only 2 calibration samples; when the number of clients is
reduced to 2, each client has 64 calibration samples. The experimental results are shown in Figure
[2] From this figure, we observe that FedPrLLM consistently outperforms Local-only pruning across
various numbers of clients, demonstrating the effectiveness of the federated pruning algorithm.

_ LLaMA 78 LLaMA 7B LLaMA 78
: ; 9.60 ; 861 —— Centralized
—— Centralized —— Centralized -on
7.40 Local-only 9.55 Local-only Local-only
> —— FedPrLLM Zos50l FedPrLLM >84{ FedPrLLM
kn £9. <
$7.35 B o)
g 29.45 5
o} o} & 82
& 7.30 o
249 \ /\
7.25 =" 9.35 80 DV
2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
Client Numbers Client Numbers Client Numbers
(a) WikiText2 (b) C4 (c) PTB

Figure 2: The effect of different client numbers on federated pruning LLMs.

We further investigate the impact of pruning LLMs in a federated scenario with varying numbers of
calibration samples, as shown in Figure[3] Specifically, we change the total number of calibration
samples from 128 to 4 while keeping the number of clients equal to half of that. As shown in Figure
Bl we observe that with different numbers of calibration samples, FedPrLLM consistently outper-
forms Local-only pruning, which again shows the effectiveness of the federated pruning method.

4.5 PRIVACY AND LEAKAGE ANALYSIS

In this section, we conduct a detailed privacy analysis to formally and empirically assess the privacy
leakage of our framework for the LLaMA-7B model, covering both theoretical limits and practical
attack simulations.

To measure maximum information leakage, we conduct an information entropy analysis revealing
that a binary mask at 50% sparsity holds only 1.0 bit of information, compared to 13.75 bits for stan-
dard Float16 model weights, indicating a 92.7% reduction in information. This substantial reduction
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Figure 3: The effect of the number of calibration samples on federated pruning LLMs.

enhances security by making attacks more challenging. We further investigate our mask-sharing
method through practical experiments, finding that masks generated with Wanda from randomly
seeded calibration data are over 95% identical, which suggests they are primarily determined by
the public pre-trained model, thus separating shared information from private data. Our Differential
Privacy [2006) sensitivity analysis shows that altering a single dataset sample results in only
a4.96% change in the mask, providing strong privacy protection equivalent to a formal privacy bud-
get of € ~ 0.05 without added noise. We also simulate targeted attacks to assess privacy leakage,
including Membership Inference Attacks (Shokri et all[2017), where the difference in masks—with
and without a target sample—yields only a 3.23% Hamming distance, making it difficult to distin-
guish between signals and noise. Finally, in Gradient Inversion Attacks (Zhu et al}[2019; [Fredrikson
20135), the attacker also fails to reconstruct original training data, recovering less than 2% of
tokens and generating nonsensical text. See Section [C|in Appendix for more details.

Therefore, by sharing only low-information binary masks, our framework fundamentally reduces
privacy risks and offers strong, practical privacy protection.

5 RELATED WORK

There is one work that attempts to conduct LLM pruning in an FL scenario, i.e., FedSpaLLM
2024). Tt enables clients to collaboratively prune an LLM by introducing an £y-norm ag-
gregation function, an adaptive mask expansion technique, and a layer sampling strategy. While
FedSpalLLM proposes a specific and novel algorithm for federated LLM pruning, our paper provides
the first systematic and comprehensive empirical study of the fundamental design space of federated
LLM pruning. Our primary goal is not to introduce another single algorithm, but to establish a set
of generalizable “best practices” and a “recipe” that can guide future research and applications in
this domain. Moreover, FedSpalLLM’s core operation can be mapped to a specific configuration
within our comprehensive FedPrLLM framework. Specifically, it enables clients to locally prune
their models based on private data and send the pruned models to the server for aggregation. The
server averages the pruned models using the FedAvg algorithm (McMahan et al},[2017) and prunes
the model to satisfy the predefined sparsity rate based on an aggregated mask matrix. This method
can be viewed as a specific case within our FedPrLLM framework, i.e., iterative pruning with weight
scaling. However, our extensive evaluations reveal that this approach is not optimal.

6 CONCLUSION

In this work, we introduce FedPrLLM, a comprehensive federated pruning framework designed for
the privacy-preserving compression of LLMs, incorporating various possibilities for integrating FL.
with LLM pruning. To identify the optimal operation within this framework, we invested thousands
of GPU hours exploring these possibilities, including different comparison groups, pruning strate-
gies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with
layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We
hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields.

Future Work. This work currently focuses on unstructured pruning of LLMs in a federated sce-
nario. Future work could explore structured pruning within the FedPrLLM framework, which may
be more suitable for certain real-world applications due to its hardware efficiency.
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A THE RATIONALE OF VOTING MECHANISMS

In this section, we provide theoretical analysis to demonstrate the rationale behind the voting mech-
anism for deriving the final pruning mask on the server side. Let {M, ..., M,, } be m independent
d x r binary mask matrices (with 50% sparsity) where each matrix satisfies:

d T
SN Mipg = T @

p=1g=1

The voting mechanism procedure produces M via: 1) Element-wise sum: M = S M;; 2) Set
the largest % entries in M to 1, others to 0.

Let M* be the optimal mask defined by:
M*[p,q] =1(ppg = 77), &)
where ppg = P(M;[p, ¢] = 1) and 7" is chosen such that 3, M*[p, q] = a
Then, the error between M and M™ can be defined as:
1 d r
e=2->_ > T(Mlp,q] #M"[p,q)). &)
T p=1qg=1
There are two situations for M*[p, ¢]: 1 or 0.

Case 1: M*[p, ¢] = 1 (i.e., ppq > 7). In this case, M|[p, ¢] = 0 implies W < 7*. Thus:

M[p, q|

Ppq — > Ppg — T =0pg  (since bpg = |Ppg — 77| = Ppg — 77), @)

which simplifies to:

|1\7I[p, q]

— Ppgl > Opg (6)

Case 2: M*[p, ¢] = 0 (i.e., ppg < 7%). In this case, M[p, ¢] = 1 implies M%"q} > 7*. Thus:

M]p, q]

— Ppg = T = Ppq = Opg  (since 0pg = 7" — ppq), (7
which simplifies to:

>4 ®)

= “Pq

M(p, g
‘ m Ppq

Let: Event A: M[p, q] # M*[p, ¢|; Event B: ’% —ppq’ > ‘SI’TQ Then A C B, and we have:

P(Mp,q) # M'[p.q]) < P <|ME';‘” ~ P

This implies:

2
Ele] < % > exp <—m§”q> : (10)

This shows that the error between M (which is obtained by voting) and M* is bounded by some
value, which demonstrates the rationale behind the voting mechanism.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 MORE RESULTS UNDER HIGHER SPARSITY RATIOS

The experimental results using Wanda as the local pruning method for higher sparsity ratios (i.e.,
60% and 70%) are shown in Tables[6] [7, and[8]

Table 6: WikiText2 perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda
as the local pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3

Sparsity  Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B
0% Dense - - - 5.67 5.09 4.10 5.11 4.57 7.46
Centralized - - - 7.25 6.15 5.24 6.46 5.58 11.00
Local-only - - - 7.44 6.33 5.34 6.63 5.72 11.39
Layer One-shot X 7.32 6.19 5.24 6.48 5.61 11.02

Row One-shot X 7.30 6.20 5.25 6.48 5.61 11.02
Column  One-shot X 152428  9282.09  501.88 20528.41 5309.48  311468.53

Layer Iterative X 7.30 6.19 5.24 6.48 5.62 11.12

50% Row Iterative X 7.30 6.20 5.24 6.48 5.61 11.11
FedPrLLM Column  Iterative X 1822.89  6884.15  996.57 77245.84 5430.81 189134.78
Layer One-shot v 7.48 6.36 5.35 6.67 5.75 11.75

Row One-shot v 7.47 6.36 5.35 6.67 5.75 11.75
Column  One-shot v 1708.41 10819.42 8245 18084.02 591491  276031.34

Layer Iterative v 7.46 6.35 5.34 6.67 5.75 11.86

Row Iterative v 7.46 6.35 5.34 6.67 5.74 11.87

Column  Iterative v 198540 669291  939.62 66911.49 5268.71 41996.95

Centralized - - - 10.71 8.74 6.55 10.03 7.92 25.81
Local-only - - - 11.70 9.38 6.96 10.84 8.55 27.47
Layer One-shot X 10.76 8.80 6.65 10.08 8.01 25.48

Row One-shot X 10.77 8.80 6.64 10.08 8.03 25.64
Column  One-shot X 2861.56  11190.34 1047.94 14737.65 5385.33  382319.37

Layer Iterative X 10.87 8.88 6.65 10.17 8.05 26.21

60% Row Iterative X 10.85 8.90 6.64 10.18 8.05 25.98
FedPrLLM Column  Iterative X 3154.68 782446 225097 18849.20 6556.50 65475.84
Layer One-shot v 12.14 9.77 7.10 11.53 8.98 30.34

Row One-shot v 12.16 9.77 7.09 11.53 9.00 30.44

Column  One-shot v 3785.85 17163.16 1770.89 15180.33 5401.19  608169.33

Layer Iterative v 12.27 9.85 7.12 11.90 9.07 30.94

Row Iterative v 12.24 9.86 7.13 11.87 9.06 31.08

Column  Iterative v 2189.53  6032.71  2626.57 16081.73 6227.41 165510.73

Centralized - - - 87.42 53.48 17.30 72.38 45.94 92.20
Local-only - - - 104.15 67.13 23.29 80.39 51.79 108.35
Layer One-shot X 83.12 55.92 18.73 70.92 44.98 102.88

Row One-shot X 81.97 56.99 18.67 70.61 44.66 102.13
Column  One-shot X 17281.43 13045.16 2670.43 31238.51 12206.74  458666.00

Layer Iterative X 89.25 55.48 18.65 79.27 45.89 100.37

70% Row Iterative X 92.29 57.18 18.23 72.60 45.68 93.13
FedPrLLM Column  Iterative X 19791.05 10323.63  3935.54 23090.20 785741  355916.56
Layer One-shot v 136.50 94.90 31.62 93.89 64.34 123.92

Row One-shot v 136.09 95.86 31.48 93.36 63.98 124.65

Column  One-shot v 20505.56  11695.06 3032.65 31485.38 10875.86  831352.18

Layer Iterative v 174.95 102.78 31.12 94.49 62.07 116.97

Row Iterative v 182.73 99.32 30.87 96.37 62.51 120.19
Column  Iterative v 8607.36  11707.00 314532 36254172.00 9604.48  1034635.56
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Table 7: C4 perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda as the
local pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3

Sparsity  Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B
0% Dense - - - 7.34 6.79 6.12 7.03 6.51 12.34
Centralized - - - 9.34 8.14 7.28 8.94 8.03 18.38
Local-only - - - 9.59 8.37 7.52 9.16 8.31 18.92
Layer One-shot X 9.43 8.22 7.39 9.01 8.18 18.32

Row One-shot X 9.43 8.22 7.39 9.01 8.19 18.32
Column  One-shot X 893.05  10616.94 612.27 9631.37 5075.92  200257.70

Layer Iterative X 9.44 8.22 7.39 9.01 8.19 18.43

50% Row Iterative X 9.44 8.22 7.39 9.02 8.18 18.38
FedPrLLM Column  Iterative X 1050.26  8567.66  779.01 11658.80 4804.46  112192.42
Layer One-shot v 9.64 8.40 7.57 9.21 8.39 19.45

Row One-shot v 9.64 8.40 7.57 9.21 8.39 19.45

Column  One-shot v 887.34  13744.66  895.18 11440.51 5189.73 90476.94

Layer Iterative v 9.64 8.41 7.57 9.22 8.39 19.58

Row Iterative v 9.65 8.41 7.57 9.22 8.39 19.60

Column  Iterative v 124231 6860.69  724.28 10355.87 4657.88 44469.52

Centralized - - - 13.72 11.22 9.16 13.64 11.39 43.02
Local-only - - - 14.69 11.91 9.58 14.68 12.17 45.25
Layer One-shot X 13.80 11.23 9.29 13.77 11.40 42.61

Row One-shot X 15.26 12.24 9.79 15.60 12.75 50.37
Column  One-shot X 2149.09 11488.68  993.56 12252.16 4606.43  837570.62

Layer Iterative X 13.92 11.37 9.32 13.84 11.52 44.24

60% Row Iterative X 13.86 11.38 9.30 13.85 11.53 43.77
FedPrLLM Column  Iterative X 2981.52 10375.02 175273  16673.62 5289.35 62234.32
Layer One-shot v 15.24 12.24 9.80 15.61 12.74 50.28

Row One-shot v 15.26 12.24 9.79 15.60 12.75 50.37
Column  One-shot v 3336.72 1943046 152032  14613.11 4547.54  622715.25

Layer Iterative v 15.46 12.54 9.86 16.15 13.01 51.47

Row Iterative v 15.42 12.54 9.87 16.10 13.01 51.48
Column  Iterative v 1825.82  6669.63 186550  16167.12 5057.57  145341.28

Centralized - - - 85.84 53.35 18.80 84.16 58.56 136.66
Local-only - - - 96.47 63.61 22.48 82.96 67.09 161.86
Layer One-shot X 81.95 52.55 19.24 81.40 59.87 158.08

Row One-shot X 82.02 53.51 19.22 81.59 59.97 157.87
Column  One-shot X 15276.62 14041.01 2059.83  39339.21 11306.11  398674.93

Layer Iterative X 83.52 57.22 19.15 92.51 60.46 162.29

70% Row Tterative X 86.77 55.98 19.20 84.99 60.86 144.71
FedPrLLM Column  Iterative X 18149.76  13537.18 2874.83  21704.32 7166.78 346598.5
Layer One-shot v 116.61 77.99 26.30 104.86 79.82 184.11

Row One-shot v 117.29 78.84 26.29 104.51 79.76 184.11
Column  One-shot v 19380.0 10934.98 2336.68  32034.07  11360.57 345798.53

Layer Iterative v 142.08 85.91 27.17 103.02 79.25 177.97

Row Iterative v 145.15 84.68 27.00 102.61 79.41 182.36
Column  TIterative v 7664.62  15985.50 2685.76 27805842.0 8041.09 1031318.56
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Table 8: PTB perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda as the
local pruning method.

Compar. Prune Weight LLaMA LLaMA-2 LLaMA-3
Sparsity  Method Group Stra. Scaling 7B 13B 30B 7B 13B 8B
0% Dense - - - 41.15 28.09 23.51 50.20 56.51 13.30
Centralized - - - 80.12 36.41 26.64 96.99 86.83 20.69
Local-only - - - 86.25 37.57 27.13 108.66 91.92 21.43
Layer One-shot X 80.31 36.57 26.69 102.71 88.26 20.56
Row One-shot X 80.71 36.61 26.64 101.85 88.31 20.55
Column  One-shot X 446392 2213856  713.56 14256.86 7392.64  407313.84
Layer Iterative X 81.22 36.54 26.68 102.72 88.38 20.55
50% Row Iterative X 81.26 36.55 26.64 103.66 88.94 20.60
FedPrLLM Column  Iterative X 4061.96  17610.52 1158.75 13401.63 6941.72  168643.04
Layer One-shot v 87.97 37.70 27.27 112.52 92.90 22.21
Row One-shot v 88.35 37.72 27.25 112.17 93.07 2221
Column  One-shot v 4557.48  29140.28  982.59 12021.08 7801.23  264723.12
Layer Iterative v 87.28 37.69 27.27 112.95 92.58 22.39
Row Iterative v 87.61 37.60 27.27 113.32 92.61 22.41
Column  Iterative v 6929.83  15189.83 1178.40 10208.03 5220.64  39172.53
Centralized - - - 193.10 71.66 34.94 363.71 220.81 52.42
Local-only - - - 208.48 82.24 37.27 409.47 271.49 55.39
Layer One-shot X 187.00 74.66 35.38 339.79 241.14 52.61
Row One-shot X 186.10 74.64 35.47 337.69 242.96 52.61
Column  One-shot X 5604.92  31222.37 1338.25 28046.95 7553.32  322022.84
Layer Iterative X 191.22 72.90 35.83 368.87 237.45 53.78
60% Row Iterative X 190.60 73.74 35.77 367.56 235.51 53.25
FedPrLLM Column  Iterative X 6785.79  13234.02 1903.66 24022.75 8125.57  46139.19
Layer One-shot v 216.09 91.63 38.22 429.58 293.11 60.49
Row One-shot v 215.50 91.60 38.25 428.87 294.44 60.48
Column  One-shot v 7600.58  41079.65 1910.36 18249.40 7601.34  416094.71
Layer Iterative v 220.22 90.60 38.79 427.12 283.34 61.25
Row Iterative v 220.16 90.58 38.74 428.36 282.20 61.55
Column  Iterative v 424284  11345.68 2133.62 29512.89 7113.24  133467.18
Centralized - - - 698.79 299.42 110.70 1902.56 735.73 131.13
Local-only - - - 782.42 412.24 144.90 1780.26 863.50 152.97
Layer One-shot X 737.07 366.28 120.33 1521.25 793.55 156.63
Row One-shot X 718.37 369.65 118.24 1557.08 792.08 154.72
Column  One-shot X 18649.81 18136.88 3180.23 49646.82 12010.97  466632.84
Layer Iterative X 721.31 355.21 113.31 1675.79 775.69 146.27
70% Row Tterative X 734.43 349.63 113.65 1757.10 767.13 133.92
FedPrLLM Column  Iterative X 28179.23 17249.42 3967.48 29254.5 10233.18  314505.62
Layer One-shot v 839.42 484.11 188.18 1633.85 890.27 174.11
Row One-shot v 830.33 483.58 187.11 1641.92 891.27 172.74
Column  One-shot v 26556.95 21627.29 3383.87 54429.17 14951.70  239612.84
Layer Iterative v 887.36 469.70 173.86 1789.42 858.48 162.24
Row Iterative v 896.85 45431 172.48 1740.04 879.50 168.51
Column  Iterative v 8660.95  18472.69 3246.05 11427895.00 8037.55 738685.56
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B.2 MORE RESULTS ON THE COMPARISON GROUP FOR LOCAL PRUNING

The results of changing the comparison group for the local pruning method (i.e., Wanda) are shown
in Table O]

Table 9: Perplexity of pruned LLMs under 50% sparsity ratio when changing the comparison group
for the local pruning method (i.e., Wanda). FedPrLLM adopts one-shot pruning and no weight
scaling.

Local Compar. Compar. LLaMA LLaMA-2 LLaMA-3
Group Dataset Method Group 7B 13B 30B 7B 13B 8B
Centralized - 7.94 657 547 138 5.92 12.04
Local-only - 8.16 674 558  17.56 6.06 12.43
WISHTExE2 Layer 7.98 660 548 738 5.95 12.09
FedPrLLM  Row 3185 1008 1133 39.07 12408  17.51
Column 1749.59 1018332 541.62 25258.16 5503.91 336255.96
Centralized - 1028 863 759 1024 849 19.18
Layer Local-only - 1056 890 786 1052 876 19.64
c4 Layer 1034 8.71 772 1032 8.63 19.09
FedPrLLM  Row 3490 1235 1275 2979  207.57 2805
Column 97575 1260558 553.85 1395023 4899.58 129415.62
Centralized - 9284 4347 2725 30671 11917  23.14
Local-only - 99.13 4534 2787 33870 13688  23.69
PTB Layer 9199 4359 2725 30579 12427 2285
FedPrLLM  Row 28419 109.14 11046 188694 48024 4471
Column 397621 2814448 711.16 14131.82 7134.88 293147.84
Centralized - 8.86 768 567 1041 6.38 83.67
Local-only - 8.86 768 567 1041 6.38 83.67
WikiText2 Layer 8.86 768 567 1041 6.38 83.67
FedPrLLM Row 13854 100.80  49.17 76432  2580.88  400.95
Column  8.86 768 567 1041 6.38 83.67
Centralized - 1410 1120 806 1790  9.57 30.88
Column Local-only - 1410 1120 806 1790  9.57 30.88
4 Layer 1410 1120 806 1790  9.57 30.88
FedPrLLM  Row 155.15  87.03  48.19 22247 513537  327.77
Column 1410 1120 806 1790 957 30.88
Centralized - 10837  47.17 2922 456749 11568  240.14
Local-only - 10837  47.17 2922 456749 11568  240.14
PTB Layer 10837  47.17 2922 456749 11568  240.14
FedPrLLM  Row 106091 39457 23991 21323.02 107571  928.73

Column  108.37 47.17 2922 456749  115.68 240.14

B.3 MORE RESULTS ON OTHER LOCAL PRUNING METHODS

In this section, we provide additional experimental results using SparseGPT (Frantar & Alistarh,
2023)), OWL (Yin et al.} 2024), and BESA (Xu et al., [2024a) as the local pruning method to further
validate the generality of our findings. For SparseGPT, we utilize the pruning metric proposed in
SparseGPT (Frantar & Alistarh,[2023)) and do not perform the weight update procedure (also adopted
in Wanda (Sun et al.| 2024])); see Table 7 in (Sun et al., [2024)).

The experimental results of using other local pruning methods are shown in Tables[I0]and[T1] These
results show a trend similar to those obtained using Wanda as the local pruning method and further
demonstrate the generality of our findings.

B.4 MORE RESULTS ON ZERO-SHOT TASKS
The experimental results on seven zero-shot tasks are shown in Tables[I2]and[I3] These results show

a trend similar to those on the language modeling tasks and further demonstrate the generality of our
findings.
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Table 10: Perplexity (WikiText2 / C4 / PTB) of pruned LLaMA-7B under 50% sparsity ratio using
other local pruning methods.

Compar. Prune Weight SparseGPT OWL BESA
Method Group Stra. Scaling  (Frantar & Alistarh][2023} (Yin et al.| 2024} Xu et al.|[2024a)
Centralized - - - 7.40/9.54/76.18 7.21/9.31/67.44 7.2719.34/78.74
Local-only - - - 8.11/10.44/95.12 7.43/9.55/70.11 7.4479.60/86.19
Layer One-shot X 8.04/10.37/93.52 7.24179.38/67.52 7.31/9.43/80.28
Row One-shot X 8.05/10.37/93.15 7.23/9.39/67.56 7.31/9.43/80.38
Column  One-shot X 4279.74 /1 4868.07 / 11451.43  1408.46/914.26/3338.93  1548.53/932.58 / 4683.50
Layer Iterative X 8.04/10.37 / 94.09 7.23/9.40/67.77 7.30/9.43/81.31
Row Iterative X 8.06/10.37/93.15 7.23/9.39/67.62 7.30/9.44/81.88
FedPrLLM Column  Iterative X 2562.72/4263.29/5643.11  1171.66/905.47/2100.39  1823.51/983.13 /4909.44
Layer One-shot v 8.17/10.52/97.55 7.65/9.87/86.91 7.47/9.63/87.92
Row One-shot v 8.18/10.53/97.32 7.64/9.87/86.30 7.477/9.64 /88.18
Column  One-shot v 6524.84/7887.48/9790.79  1433.32/994.49/3598.38  1693.96 / 891.77 / 4662.56
Layer Iterative v 8.16/10.51/97.72 7.41/9.57/71.36 7.46/9.64/87.44
Row Iterative v 8.17/10.52/97.14 7.42/9.57/171.24 7.46/9.64 / 87.64
Column  Iterative v 2741.71/3998.72 / 6088.04  1455.31/939.69/2790.60 2178.33/1147.38 / 8064.72

Table 11: Perplexity (WikiText2 / C4 / PTB) of pruned LLaMA-7B under 50% sparsity ratio when
changing the comparison group for the local pruning method. FedPrLLM adopts one-shot pruning
and no weight scaling.

Local Compar. Compar. SparseGPT OWL BESA
Group Method  Group (Frantar & Alistarh}[2023) (Yin et al.}[2024) Xu et al.|2024a)
Centralized - 7.91/10.21/83.25 7.61/9.88/71.59 7.94/10.28/92.81
Local-only - 8.89/11.58/108.47 7.84/10.12/76.15 8.16/10.56/99.17
Layer Layer 8.83/11.50 / 106.83 7.80/10.12/ 71.76 7.98/10.34/92.26
FedPrLLM Row 183.63 /134.18 /913.14 10.54/13.40/ 124.99 32.54/35.30/291.07
Column  4623.88/4722.64/12115.99 1115.07/780.56/2480.77  1767.87 /966.04 / 3964.13
Centralized - 8.86/14.10/108.37 7.89/10.82/72.35 8.23/11.64 /100.07
Local-only - 8.86/14.10/108.37 7.91/10.86/73.27 8.89/14.19/109.73
Column Layer 8.86/14.10/108.37 7.91/10.84/73.02 8.86/14.12/108.12
FedPrLLM  Row 138.54/155.15/1060.91 32.24/46.92 / 645.47 138.87 / 154.99 / 1064.28
Column 8.86/14.10/108.37 7.91/10.83/73.02 8.86/14.10/108.14

Table 12: Accuracies (%) on seven zero-shot tasks of pruned LLaMA-7B model under 50% sparsity
ratio using Wanda as the local pruning method.

Method Compar. Group  Prune Stra.  Weight Scaling HellaSwag WinoGrande OBQA RTE BoolQ ARC-c ARC-e Mean
Dense - - - 56.96 70.09 3420 6643 7511  41.89 7529  59.99
Centralized - - - 51.89 66.54 28,60 5560 71.16 36.86 69.44 54.30
Local-only - - - 51.52 66.23 28.55 5537 7085 3649  69.13  54.02
Layer One-shot X 51.93 66.61 29.80 5349 7122 3703 6949 54.22
Row One-shot X 51.84 66.61 30.20 53.07 71.16 3677  69.61 54.18
Column One-shot X 26.24 50.51 13.60 5235 38.01 20.65 30.56 33.13
Layer Iterative X 51.93 66.46 2920 5415 7113 3695  69.61 54.20
Row Iterative X 51.90 66.54 2940 5433 7113 36.69 6944 54.20
FedPrLLM Column Iterative X 26.28 49.96 11.60 5235 4055 2125 3144 3335
Layer One-shot v 51.42 66.51 30.20  53.07 71.19 3660 6898  54.00
Row One-shot v 51.80 66.33 3020 5379 7110 3630  69.16  54.09
Column One-shot v 25.92 50.12 1200 5126 38.62 20.14 2946 32.50
Layer Iterative v 51.90 66.14 28.80 53.79 71.07 3677 69.40 53.98
Row Iterative v 51.89 66.54 29.60 5411 7115 3620  69.10 54.08
Column Iterative v 26.20 49.57 11.80 5343 3881 2142 31.86 33.30

B.5 RESULTS ON ULTRA-LOW CALIBRATION DATA REGIME

To further explore the performance of our FedPrLLM framework in scenarios with extremely limited
calibration data (e.g., 1 sample/client), we conduct additional experiments using only 1 sample per
client for calibration. We ran this challenging experiment on LLaMA-7B and LLaMA-2-7B with
128 clients (each holding only a single calibration sample) at 50% sparsity. For FedPrLLM, we use
our recommended configuration of layer comparison, one-shot pruning, and no weight scaling. The
results are presented in Table[T4]
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Table 13: Accuracies (%) on seven zero-shot tasks of pruned LLaMA-7B model under 50% sparsity
ratio when changing the comparison group for the local pruning method (i.e., Wanda). FedPrLLM
adopts one-shot pruning and no weight scaling.

Local Compar. Group Method Compar. Group HellaSwag WinoGrande OBQA RTE BoolQ ARC-c ARC-e Mean

Centralized - 50.00 66.85 2840 5018  69.69 36.60 67.13  52.69

Local-only - 49.59 66.33 2757 5007 6858 3556 67.1 5212

Layer Layer 50.04 65.59 27.80 49.82 6872 3609 6793 5228
FedPrLLM  Row 4434 64.01 2640 5162 5651 3055 6608 4850

Column 2578 50.91 1220 5235 3795 2082 27.86 3255

Centralized - 48.92 65.82 2620 5668 6511 3456 6679 5201

Local-only - 48.92 65.82 2620 5668 6511 3456 6679 5201

Column Layer 48.92 65.82 2620 56.68 6511 3456 66.79 52.01
FedPrLLM  Row 35.60 56.20 20.80 5343 5095 2628 6023 4335

Column 48.92 65.82 2620 56.68 6511 3456 66.79 52.01

Table 14: Perplexity (WikiText2 / C4 / PTB) of pruned LLMs under 50% sparsity ratio in the ultra-
low data regime (1 sample per client).

Method LLaMA-7B LLaMA-2-7B

Centralized 7.25/9.34/80.12  6.46/8.94/96.99
Local-only 7.58/9.73/89.22 6.77/9.30/116.60

FedPrLLM  7.31/9.46/82.33 6.49/9.04/103.24

As shown in Table [T4] FedPrLLM consistently outperforms the Local-only baseline even in this
ultra-low data regime. These results highlight the core strength of FedPrLLM: it effectively aggre-
gates 128 individual masks into a single robust global mask, thereby overcoming the instability that
severely impacts the Local-only approach.

C PRIVACY AND LEAKAGE ANALYSIS

To formally and empirically assess the privacy leakage of our framework, we conduct a detailed
privacy analysis on the LLaMA-7B model, covering both theoretical limits and practical attack
simulations.

To measure the maximum possible information leakage, we first perform an information entropy
analysis. This tells us the theoretical limit of how much data a message can hold. Our analysis
shows that a binary mask (at 50% sparsity) holds only 1.0 bit of information, while standard Float16
model weights hold 13.75 bitsﬂ This means the mask contains only 7.3% of the information found
in the weights—a 92.7% reduction. This massive reduction acts as a primary defense, making attack
much harder because there is simply very little information available to leak.

Building on this theory, we test our mask-sharing method with a series of practical experiments.
First, we check mask similarity to see if a mask is uniquely tied to the private data used to create it.
We find that masks generated with Wanda using completely different, randomly seeded calibration
data are over 95% identical (4.96% Hamming distance). This high similarity proves that the mask
matrices are mostly determined by the public pre-trained model’s weight, not the private data. This
effectively separates the shared information from the private data. Next, our Differential Privacy
(DP) [2006) sensitivity analysis shows that changing just one sample in the dataset causes
a very small change in the mask matrices (~4.96% Hamming distance). Specifically, we create
two datasets that differ by only one sample and measure the difference (i.e., Hamming distance)
between their masks. This extremely low sensitivity means our method naturally provides strong
privacy protection (equivalent to a formal privacy budget of € ~ 0.05) without needing to add extra
noise.

3 As calculating entropy across all model parameters is computationally prohibitive, this analysis compares
data from a single sub-layer (g_pro j) within the first transformer block.
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We also simulate targeted attacks to test for privacy leakage. To test for Membership Inference At-
tacks (MIA) (Shokri et all,[2017)), where an attacker tries to guess if a specific data record was used,
we simulate a metric-based attack scenario. Since standard MIA relies on confidence scores (which
our binary masks don’t have), we measure the “signal strength”—the specific influence of a target
sample on the final mask. We find that the difference in masks generated with and without a specific
target sample is only 3.23% Hamming distance. This variation is smaller than the natural differences
caused by using different datasets (~4.96%), making it difficult for an attacker to tell the difference
between a real signal and random noise. This implies that any complex attack models would likely
fail because the signal is too weak (Shokri et al.l 2017, [Dwork et al 2006). Finally, we simulate
a Gradient Inversion Attacks (Zhu et al., [2019} [Fredrikson et al.l 2015]), where an attacker (e.g., an
honest-but-curious server) with full knowledge of the model tries to reconstruct the original training
data via gradient-based optimization. The attacker starts with a random noise tensor as input data
and iteratively optimizes it to generate a mask that matches the target mask shared by the client.
The loss function is the Hamming distance between the generated mask and the target mask. The
gradients of this loss with respect to the input data are used to update the input, effectively “search-
ing” for data that could produce the target mask. This attack also fails, recovering less than 2% of
the tokens and producing meaningless text. For example, Original Text: “your Apple AirPods and
EarPods. Easy & hassle free installation. Earbuddyz must be removed to charge AirPods...”. Recon-
structed Text: “;deuxTvekirection Readlarzug hecho pertelled h threat todos installah={blearsefw
stories lookup...”. The attack fails because it tries to reverse a highly underdetermined, multi-stage
information loss chain:

Data — Activations — Scaler — Importance Score — Mask.
Most steps in this chain is practically irreversible:

* Activations — Scaler: Activations across thousands of tokens are compressed into a single
L2-norm statistic per neuron, losing all temporal and distributional information.

* Importance Score — Mask: The continuous, high-entropy importance scores are bina-
rized via a threshold. All information about the magnitude of the scores is permanently
destroyed; only a single bit (above or below threshold) remains.

An attacker trying to reverse this process faces a problem with an astronomical number of possible
solutions. Given only the final 1-bit mask, it is computationally infeasible to reconstruct the specific
data that initiated the chain. This confirms the security of our approach against even the most
powerful adversaries.

Therefore, by sharing only low-information binary masks, our framework fundamentally reduces
privacy risks and offers strong, practical privacy protection.

D PRACTICAL EFFICIENCY, COMMUNICATION COST, AND RESOURCE
USAGE

This section complements our main results with a thorough analysis of computation time, commu-
nication costs across diverse network conditions, client heterogeneity, memory usage, and energy
implications. Unless stated otherwise, all simulations are conducted using LLaMA-7B.

D.1 PRUNING RUNTIME AND PEAK MEMORY

Table T3] reports the pruning runtime and peak memory across all evaluated methods. One-shot and
iterative variants exhibit similar local pruning time on GPU (approximately 145 seconds), as both
compute Hessians and sort importance scores. The primary difference between these strategies lies
in the number of communication rounds: one-shot requires a single round (uploading masks once),
whereas iterative requires one round per layer (32 rounds for LLaMA-7B).

Regarding memory usage, one-shot pruning shows higher peak memory (about 31 GB) than iterative
(about 19 GB) in our single-machine simulation because the server aggregates masks across all
layers simultaneously. In a real distributed deployment, masks can be processed in a streaming,
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Table 15: Runtime and Peak Memory usage for all evaluated methods.

Method Compar. Group ~ Prune Stra. | Weight Scaling | Pruning Time (s) | Peak Memory (GB)
Centralized - - - 79.8 18.66
Local-only - - - 142.5 25.14
FedPrLLM Layer One-shot X 143.2 31.27
Row One-shot X 143.8 31.27
Column One-shot X 142.9 31.27
Layer Iterative X 145.6 19.04
Row Iterative X 144.8 19.04
Column Iterative X 143.4 19.02
Layer One-shot v 143.5 31.27
Row One-shot v 144.1 31.27
Column One-shot v 143.0 31.27
Layer Iterative v 144.8 19.69
Row Iterative v 144.8 19.04
Column Iterative v 144.8 19.69

layer-by-layer fashion on the server, distributing the memory load across clients and reducing peak
memory to be comparable to the iterative approach.

D.2 BANDWIDTH VS. LATENCY TRADE-OFFS

We simulate end-to-end pruning time under four representative network profiles to quantify the
interplay between bandwidth and latency. Table [T6] summarizes the results. We observe that one-
shot pruning method consistently achieves a ~31x speedup over iterative pruning across all network
conditions. This significant reduction in communication rounds makes one-shot pruning particularly
advantageous in high-latency, low-bandwidth environments, such as edge networks.

Table 16: Simulated total communication time under different network conditions.

Network Profile Latency Bandwidth One-shot Time (h) Iterative Time (h) Speedup

Datacenter Ims 10 Gbps ~0.1 ~3.1 ~31x
Cross-Silo (LAN) Sms 1 Gbps ~1.0 ~31.3 ~31x
Cross-Silo (WAN) 50ms 100 Mbps ~9.9 ~313.3 ~31x
Edge 100ms 10 Mbps ~99.4 ~3132.9 ~31x

D.3 SYSTEM HETEROGENEITY (STRAGGLERS)

We further simulate system heterogeneity with 20% stragglers (slow clients) to compare the com-
munication time of One-shot and Iterative pruning. Specifically, we instantiate 64 clients, where 51
“fast” clients finish the mask upload in 534.1 seconds, while 13 “slow” clients (bandwidth at 50%)
take 1,068.2 seconds. In this setting, One-shot pruning incurs a +534 second straggler penalty only
once, resulting in a total straggler overhead of 534 seconds (100% of the homogeneous upload time).
By contrast, the iterative baseline must absorb the same 534-second penalty at every communication
round; with 32 rounds, this compounds to 32 x 534 ~ 17,090 additional seconds (>4.7 hours) of
idle time. This dramatic gap makes One-shot inherently robust to the system heterogeneity typical
of cross-device federated learning.

D.4 COMPREHENSIVE EFFICIENCY, SCALABILITY, AND ENERGY

Tablere [T7 summarizes time efficiency, scalability under heterogeneity, energy implications, mem-
ory/storage, and theoretical inference metrics for LLaMA-7B in a Cross-Silo WAN environment
(100,Mbps bandwidth, 50,ms latency). One-shot pruning reduces total pruning time by, which dom-
inates energy consumption in federated settings and translates to energy savings. In terms of scal-
ability, one-shot suffers the straggler penalty only once, whereas iterative methods incur it in every
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round, making one-shot substantially more robust. Both methods achieve equivalent storage com-
pression at the same sparsity.

For inference time, unstructured sparsity reduces the theoretical FLOPs of pruned layers (e.g., at
50% sparsity), but practical speedups on standard GPUs may require specialized sparse kernels.
Realizing hardware-level inference acceleration is complementary to and beyond the scope of this
work.

Table 17: Comprehensive analysis of efficiency, scalability, and resource usage. Note: Energy
savings (>90%) are derived from the 31x reduction in total communication time, which dominates
the energy consumption in federated settings.

Metric Category Specific Metric One-shot Iterative Improvement
Time Efficiency Total Pruning Time 9.9 hours > 313 hours 31x Speedup
Straggler Impact 1x Penalty (Once)  32x Penalty (Every Layer) Robust
Energy Pruning Energy Cost Low Very High > 90% Savings
Memory Model Size (Storage) 6.5 GB 6.5 GB Equivalent
Inference Theoretical Throughput 1.43x 1.43x Equivalent
Theoretical Latency 0.70x 0.70x Equivalent

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) to enhance the language and clarity of this manuscript.
Their role included rephrasing for readability, correcting grammatical errors, and ensuring consistent
terminology. All core scientific contributions, including the proposed methods, experimental design,
and results analysis, are original to the authors. The LLMs acted solely as writing assistants and did
not influence the research ideas or outcomes presented.
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