

000 001 002 003 004 005 EXPLORING FEDERATED PRUNING FOR LARGE LAN- 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

LLM pruning has emerged as a promising technology for compressing LLMs, enabling their deployment on resource-limited devices. However, current methodologies typically require access to public calibration samples, which can be challenging to obtain in privacy-sensitive domains. To address this issue, we introduce **FedPrLLM**, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs. In FedPrLLM, each client only needs to calculate a pruning mask matrix based on its local calibration data and share it with the server to prune the global model. This approach allows for collaborative pruning of the global model with the knowledge of each client while maintaining local data privacy. Additionally, we conduct extensive experiments to explore various possibilities within the FedPrLLM framework, including different comparison groups, pruning strategies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields. Our code is available at <https://anonymous.4open.science/r/FedPrLLM-15594>.

1 INTRODUCTION

Large Language Models (LLMs) (Brown, 2020; Touvron et al., 2023a; Achiam et al., 2023) have revolutionized the field of natural language processing by demonstrating remarkable capabilities across various tasks. However, their increasing size leads to significant hardware requirements, limiting real-world deployment. To address this, research has focused on compact LLMs through compression techniques, such as *pruning* (Ma et al., 2023; Frantar & Alistarh, 2023; Sun et al., 2024), *knowledge distillation* (Gu et al., 2024; Xu et al., 2024b), *quantization* (Xiao et al., 2023; Shao et al., 2023), and *low-rank factorization* (Zhao et al., 2024; Saha et al., 2023). Among these, pruning has emerged as a promising method to reduce resource demands by selectively removing redundant parameters while preserving performance (Ma et al., 2023; Frantar & Alistarh, 2023). Typically, LLM pruning methods can be broadly classified into *structured pruning*, which removes entire substructures within LLMs, such as neurons (Ma et al., 2023; Li et al., 2023; Ashkboos et al., 2024), layers (Xia et al., 2024), or even entire transformer blocks (Gromov et al., 2025), and *unstructured pruning*, which removes individual weights from the model’s weight matrices based on certain criteria (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a). This work focuses on unstructured pruning, as it tends to achieve higher compression rates and maintain better model performance compared to structured pruning (Frantar & Alistarh, 2023; He et al., 2024; Xia et al., 2024; Zhang et al., 2024b).

Despite advances in LLM unstructured pruning methods, these approaches usually rely on access to public calibration data to guide the pruning process (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a). Specifically, they require calibration samples to evaluate the importance of the model weights in order to determine the pruning mask matrix for pruning models. However, in many real-world scenarios, such as healthcare, finance, and personalized services, the data used for pruning might be private and cannot be shared due to privacy regulations and concerns. Federated Learning (FL) (McMahan et al., 2017; Zhang et al., 2024a; Zeng et al., 2024; Guo et al., 2025b;a), which utilizes collaborative and decentralized training of models across multiple institutions without sharing personal data externally, offers a promising solution to this challenge.

054 Integrating FL with LLM pruning allows each client to calculate a local pruning mask matrix based
 055 on its private calibration data and share it with the server. The server then aggregates these mask
 056 matrices into an aggregated mask matrix and selects the top-k values (the most clients want to prune)
 057 to derive a final pruning mask matrix for pruning the global model. Despite its ability to protect data
 058 privacy, three unresolved challenges within this framework hinder practical deployment.

059 **Challenge 1: How to compare parameters?** When selecting the top-k values, a critical ambiguity
 060 arises: Should parameter importance be compared across the entire layer or within each respective
 061 row or column (corresponding to *layer*, *row*, and *column comparisons*, respectively)? Previous
 062 centralized LLM pruning work (Sun et al., 2024) has highlighted the importance of using a proper
 063 comparison group for pruning LLMs, yet no study explores this in federated scenarios.

064 **Challenge 2: To scale or not scale for retained parameters.** Beyond simply determining which
 065 parameters to prune via majority voting (i.e., selecting top-k values), the FL aggregated mask matrix
 066 reveals a critical hidden signal: how strongly each parameter is disfavored across clients. Consider
 067 two surviving parameters - one narrowly retained (pruned by 10/100 clients) and another unani-
 068 mously preserved (pruned by 0/100 clients). Traditional pruning treats both equally, maintaining
 069 their original magnitudes despite their differing consensus levels. However, this ignores a critical
 070 insight: the former parameter, though retained, exhibits weaker consensus across clients. This ob-
 071 servation raises a fundamental question: Rather than simply employing binary masking, could we
 072 leverage the FL aggregated mask matrix to guide continuous weight adjustment, where retained
 073 parameters are scaled down proportionally based on their pruning frequency?

074 **Challenge 3: Is iterative pruning worth the cost?** LLM pruning is typically performed *layer-
 075 by-layer* recursively to avoid error accumulation (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang
 076 et al., 2024b). As a result, in FL, this necessitates either *one-shot pruning* (clients compute all layer
 077 mask matrices and share them with the server in one go) or *iterative pruning* (clients send the mask
 078 matrices to the server layer by layer in an iterative manner). While iterative pruning allows for
 079 refining the local model promptly, it incurs prohibitive communication costs for deep LLMs. This
 080 raises an unstudied question: Does iteratively refining the local model improve accuracy enough to
 081 justify its massive communication overhead?

082 To address these challenges, we formalize the first systematic [and comprehensive empirical study of](#)
 083 [the fundamental design space of](#) federated LLM pruning and empirically evaluate three core design
 084 choices through a unified **FedPrLLM** framework (Figure 1):

085 **Q1. Comparison Group:** Which comparison group is more effective: *layer*, *row*, or *column*?

086 **Q2. Weight Scaling:** Should we scale the model weights of the retained parameters?

087 **Q3. Pruning Strategy:** Does iterative pruning outperform one-shot pruning?

088 We dedicated thousands of GPU hours to benchmark federated pruning for LLMs, conducting ex-
 089 tensive experiments across **6** open-source LLMs, **4** local pruning methods, **3** sparsity ratios, **3** com-
 090 parison groups, **2** pruning strategies on **10** common datasets. From these efforts, we have developed
 091 a practical list of key insights for federated pruning of LLMs:

- 095 **1. Layer comparison is simple yet effective.** Among the three comparison groups—*layer*,
 096 *row*, and *column comparisons*—layer comparison stands out as the simplest and most ef-
 097 fective method, regardless of the local pruning method’s comparison group.
- 098 **2. Scaling weights performs worse than expected.** Though the FL aggregated mask matrix,
 099 which reveals how strongly each parameter is disfavored across clients, could be used to
 100 scale the retained parameters for continuous weight adjustment, its performance is inferior
 101 to that of not scaling them.
- 102 **3. Iterative pruning offers no benefit.** While iterative pruning allows for prompt refinement
 103 of the local model, it incurs significant communication overhead, and its performance is
 104 comparable to that of one-shot pruning, offering no additional advantages.

105 We hope our findings will help guide future efforts in federated pruning for LLMs and inform best
 106 practices for deploying LLMs under federated scenarios in real-world applications. We summarize
 107 our contributions as follows:

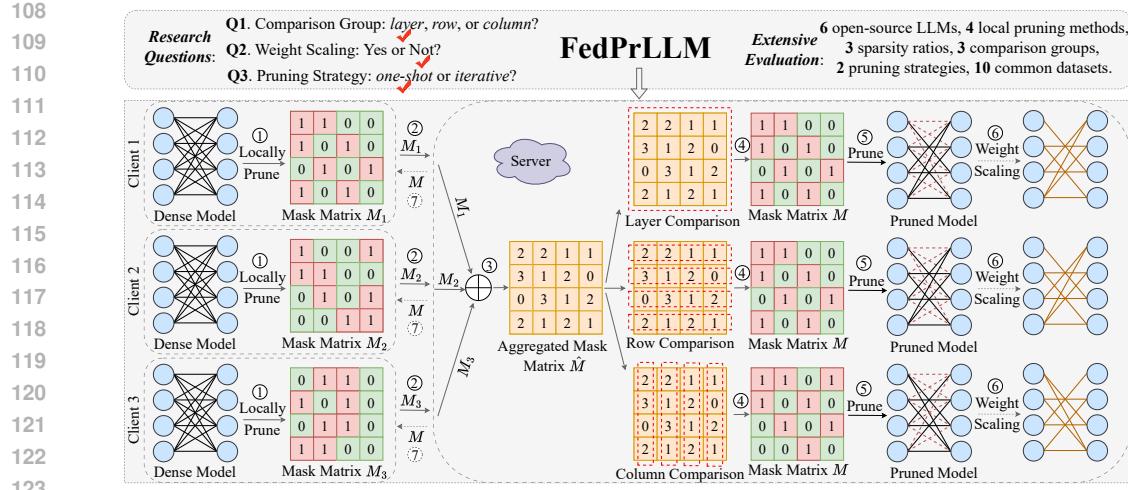


Figure 1: *Top*). Research questions alongside the corresponding findings and experimental scenarios. *Bottom*). The FedPrLLM framework. ① Each client calculates a pruning mask matrix M_i using its calibration dataset \mathcal{D}_i . ② Clients send the mask matrices M_i to the server. ③ The server aggregates these mask matrices M_i to obtain an aggregated mask matrix $\hat{M} = \sum_{i=1}^m M_i$. ④ Top-k values are selected from the aggregated mask matrix \hat{M} to derive the final mask matrix M . ⑤ Prune the global model \mathbf{W} using the mask matrix M as follows: $\hat{\mathbf{W}} = \mathbf{W} \odot (1 - M)$, where \odot denotes element-wise multiplication. ⑥ Scale the model weights of the retained parameters using the aggregated mask matrix \hat{M} as follows: $\hat{\mathbf{W}} \odot \frac{(m - \hat{M})}{m}$ (if needed). ⑦ The server broadcasts the mask matrix M to each client (for iterative pruning). The dashed arrow indicates that this operation is optional; step ⑥ is used for weight scaling, while ⑦ is used for iterative pruning. Note that this visualization is primarily for one-shot pruning, which requires only one communication round. For iterative pruning, multiple communication rounds will occur between steps ② and ⑦, and the layer index is omitted here.

- We introduce **FedPrLLM**, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs, which incorporates various possibilities for integrating FL with LLM pruning.
- We conduct an extensive evaluation of FedPrLLM, providing practical insights into effective federated pruning techniques for LLMs, based on thousands of GPU hours invested in multiple open-source LLMs, various sparsity ratios, comparison groups, and datasets.
- We identify that layer comparison is simple yet effective, scaling weights offers no benefits and may worsen performance, and that one-shot pruning is as effective as iterative pruning while reducing communication costs.

2 PRELIMINARIES

In this section, we review some concepts related to LLM pruning. LLM pruning can be broadly classified into *structured pruning* (Ma et al., 2023; Li et al., 2023; Ashkboos et al., 2024; Xia et al., 2024; Gromov et al., 2025) and *unstructured pruning* (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a), and in this work, we focus on the latter. Unstructured pruning involves removing individual weights from the model’s weight matrices based on certain criteria while maintaining its performance as much as possible (Frantar & Alistarh, 2023; Sun et al., 2024; Zhang et al., 2024b; Yin et al., 2024; Xu et al., 2024a). It is usually achieved by minimizing the discrepancy square error between the dense and pruned model *layer-by-layer* recursively. Specifically, for an uncompressed linear layer with weights $\mathbf{W}_l \in \mathbb{R}^{d \times r}$, the objective for unstructured pruning can usually be formulated as:

$$\arg \min_{\mathbf{M}_l} \|\mathbf{W}_l \mathbf{X}_l - (\mathbf{W}_l \odot (1 - \mathbf{M}_l)) \mathbf{X}_l\|_2^2 \quad \text{s.t.} \quad \|\mathbf{M}_l\|_0 = k, \quad (1)$$

162 where \mathbf{X}_l is the input to l -th linear layer (also referred to as calibration data), $\mathbf{M}_l \in \{0, 1\}^{d \times r}$ is the
 163 pruning mask matrix we aim to derive, \odot denotes element-wise multiplication, $\|\cdot\|_0$ is the l_0 -norm
 164 (e.g., the number of non-zero elements), and k represents the number of pruned weights determined
 165 by the pruning ratio.

166 The differences between previous pruning methods primarily lie in the design of the pruning metrics
 167 and the comparison groups used to derive the pruning mask matrix (Frantar & Alistarh, 2023; Sun
 168 et al., 2024; Zhang et al., 2024b). Pruning metrics refer to how the importance of each model weight
 169 is identified, while comparison groups denote the selection of groups for comparing these weights,
 170 including *layer comparison*, *row comparison*, and *column comparison*. For example, SparseGPT
 171 (Frantar & Alistarh, 2023) utilizes the Hessian Matrix inverse, i.e., $\left[\frac{|\mathbf{W}|^2}{\text{diag}((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1})} \right]_{ij}$, as the
 172 pruning metric, employing layer comparison to determine the pruning mask matrix for pruning,
 173 along with subsequent weight scaling. Wanda (Sun et al., 2024) adopts the magnitudes of model
 174 weights multiplied by the corresponding input activations, i.e., $|\mathbf{W}_{ij}| \cdot \|\mathbf{X}_j\|_2$, as the pruning metric
 175 and chooses row comparison.
 176

178 3 FEDERATED PRUNING FOR LLMs

180 3.1 PROBLEM FORMULATION

182 In the federated pruning scenario for LLMs, multiple clients aim to collaboratively prune an LLM
 183 while ensuring that their local calibration data remains private. Formally, let \mathbf{W} represent the model
 184 parameters of the LLM that we aim to prune. Each client i possesses a private calibration dataset
 185 denoted as \mathcal{D}_i , which is used for calculating the pruning mask matrices during the local pruning
 186 process. These mask matrices are then shared with the server to prune the LLM.

188 3.2 FEDPRLLM

189 In this section, we first introduce the overall workflow of the comprehensive **FedPrLLM** frame-
 190 work, as illustrated at the bottom of Figure 1, and then discuss the various possibilities within it.
 191 Specifically, during local pruning, each client calculates a pruning mask matrix $\mathbf{M}_i \in \{0, 1\}^{|\mathbf{W}_i|}$
 192 using its calibration dataset \mathcal{D}_i (step ①). This mask matrix determines which weights are pruned
 193 ($\mathbf{M}_{ij} = 1$) and which are retained ($\mathbf{M}_{ij} = 0$). The decision on which weights to prune or retain is
 194 based on an importance criterion derived from the calibration data, such as the magnitudes of model
 195 weights multiplied by the corresponding input activations used in Wanda (Sun et al., 2024) or other
 196 pruning methods.

197 After calculating the pruning mask matrix, each client i shares only the mask matrix \mathbf{M}_i with the
 198 central server (step ②). This approach ensures that no local model parameters or private calibra-
 199 tion data are transmitted, thereby minimizing communication overhead and preserving data privacy.
 200 Upon receiving the pruning mask matrices \mathbf{M}_i from all clients, the server sums them to obtain an
 201 aggregated mask matrix $\hat{\mathbf{M}} = \sum_{i=1}^m \mathbf{M}_i$ (step ③) and then selects the top- k values to create the final
 202 mask matrix \mathbf{M} (step ④)¹ for pruning the global model (step ⑤). In the following, we will discuss
 203 various possibilities within the FedPrLLM framework, including different comparison groups, the
 204 decision to perform weight scaling, and the choice between one-shot and iterative pruning.

206 3.2.1 COMPARISON GROUP

208 When selecting the top- k values from the aggregated mask matrix $\hat{\mathbf{M}}$ to derive the final pruning mask
 209 matrix \mathbf{M} , three comparison groups can be considered (step ④): *layer comparison*, *row comparison*,
 210 and *column comparison*. In layer comparison, the comparison group consists of all elements within a
 211 layer, allowing us to choose the top- k values across the entire layer. Conversely, in row (or column)
 212 comparison, the comparison group is defined by each individual row (or column), enabling the
 213 selection of the top- k values within each respective row (or column). The visualization of these
 214 comparison groups is shown in Figure 1. Thus, given that multiple comparison groups could be
 215 chosen, *which comparison group is more effective for federated pruning of LLMs?*

¹The rationale behind such voting mechanism is shown in Section A in Appendix.

216 3.2.2 WEIGHT SCALING
217

218 After obtaining the final mask matrix \mathbf{M} , it can be used to effectively prune the dense model \mathbf{W} using
219 $\mathbf{W} \odot (1 - \mathbf{M})$, where \odot denotes element-wise multiplication (step ⑤). This operation removes the
220 weights corresponding to the masked parameters (i.e., $\mathbf{M}_{ij} = 1$), resulting in a sparser model $\hat{\mathbf{W}}$.

221 Then, beyond merely determining which parameters to prune via majority voting (i.e., selecting
222 top-k values), the aggregated mask matrix $\hat{\mathbf{M}}$ reveals a critical hidden signal: how strongly each
223 parameter is disfavored across clients. Consider two surviving parameters - one narrowly retained
224 (pruned by 10/100 clients) and another unanimously preserved (pruned by 0/100 clients). Traditional
225 pruning treats both equally, maintaining their original magnitudes despite their differing consensus
226 levels. However, this ignores a critical insight: the former parameter, though retained, exhibits
227 weaker consensus across clients. To this end, the aggregated mask matrix $\hat{\mathbf{M}}$ could be further
228 applied to scale down the retained parameters using the formula $\hat{\mathbf{W}} \odot \frac{(m - \hat{\mathbf{M}})}{m}$ (step ⑥, if needed).
229 This approach corresponds to locally pruning the model and then sharing the pruned model with the
230 server, which aggregates them using the FedAvg algorithm (McMahan et al., 2017). However, *will the weight scaling improve the performance of federated pruning for LLMs?*

233 3.2.3 ONE-SHOT VS. ITERATIVE PRUNING
234

235 Since LLMs are usually pruned *layer-by-layer* recursively (Frantar & Alistarh, 2023; Sun et al.,
236 2024; Zhang et al., 2024b), federated pruning for LLMs can be naturally categorized into two types:
237 *one-shot pruning* and *iterative pruning*. In one-shot pruning, each client calculates the pruning mask
238 matrices for all layers and then sends them to the server, resulting in only one communication round.
239 In contrast, iterative pruning involves sending the pruning mask matrices to the server layer by layer.
240 Specifically, after calculating the pruning mask matrix for one layer, it is uploaded to the server for
241 aggregation. The server then combines these matrices into a global mask matrix for pruning the
242 model at that layer and broadcasts the global mask matrix back to each client for local pruning
243 of that layer (step ⑦, the layer index is omitted here). This process is carried out layer by layer
244 and involves multiple communication rounds, resulting in higher communication costs compared
245 to one-shot pruning. Therefore, given the significant communication costs associated with iterative
246 pruning, *will iterative pruning outperform one-shot pruning?*

247 One-shot and iterative pruning differ because, when calculating the pruning mask matrix for layer
248 $l + 1$ locally, the calibration data \mathbf{X}_{l+1} is derived from the output of layer l , which has already been
249 pruned. Since the weights of the local pruned model for layer l vary between using \mathbf{M}_i (one-shot
250 pruning) and \mathbf{M} (iterative pruning), this leads to different outputs for layer l and, consequently,
251 varying calibration data \mathbf{X}_{l+1} , resulting in distinct pruning mask matrices for layer $l + 1$.

252 4 EXPERIMENTS
253

254 Our experiments are designed to answer the following research questions that are important for the
255 practical pruning of LLMs under a federated scenario.
256

- 257 • **Q1.** Which comparison group is more effective: *layer*, *row*, or *column*?
- 258 • **Q2.** Should we scale the model weights of the retained parameters?
- 259 • **Q3.** Does iterative pruning outperform one-shot pruning?

262 4.1 EXPERIMENTAL SETUP
263

264 We implement FedPrLLM in PyTorch (Paszke et al., 2019) and use the Hugging Face Transform-
265 ers library (Wolf et al., 2019) to handle models and datasets. We evaluate the FedPrLLM on the
266 three most widely adopted LLM model families: LLaMA 7B/13B/30B (Touvron et al., 2023a),
267 LLaMA-2 7B/13B (Touvron et al., 2023b) and LLaMA-3 8B (Meta, 2024). For each model under
268 consideration, we focus on pruning the linear layers (skipping the first embedding layer and the
269 final classification head), which account for around 99% of the total LLM parameters. We employ
unstructured sparsity and impose a uniform sparsity ratio for all linear layers.

For the calibration data, following (Frantar & Alistarh, 2023; Sun et al., 2024; Xu et al., 2024a; Zhang et al., 2024b), we use 128 samples from the C4 dataset (Raffel et al., 2020), with each sample containing 2048 tokens. For FedPrLLM, we set the number of clients to 64, resulting in each client having only 2 calibration samples. For each client, we adopt Wanda (Sun et al., 2024) SparseGPT (Frantar & Alistarh, 2023), **OWL** (Yin et al., 2024), and **BESA** (Xu et al., 2024a) to perform local pruning and calculate the pruning mask matrix.

Apart from the proposed FedPrLLM framework, we further implement two baselines for comparison: (1) **Local-only**, where each client prunes the model locally using its private calibration data, and (2) **Centralized**, where the server prunes the model with all calibration data, which could be considered as an upper bound for the pruning performance under FL setting.

Following previous works on LLM compression (Frantar & Alistarh, 2023; Xu et al., 2024a; Zhang et al., 2024b), we measure the performance of pruned models in language modeling and evaluate their perplexity on the held-out WikiText2 (Merity et al., 2017) validation set, C4 (Raffel et al., 2020) validation data, and PTB (Marcus et al., 1994). For further evaluation, we also assess the pruned models on seven zero-shot tasks from lm-evaluation-harness²: BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), Hellaswag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), ARC Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). The evaluation metric is accuracy.

4.2 MAIN RESULTS

To answer the research questions above, we conducted extensive experiments to evaluate FedPrLLM along with two baselines across **6** open-source LLMs, **4** local pruning methods, **3** sparsity ratios, **3** comparison groups, **2** pruning strategies on **10** common datasets. The experimental results using Wanda as the local pruning method for the 50% sparsity ratio on the WikiText2 dataset are shown in Table 1, while results for higher sparsity ratios (e.g., 60% and 70%) and other datasets (e.g., C4 and PTB) are shown in Tables 6, 7, and 8 in Appendix. More results using SparseGPT, **OWL**, and **BESA** as the local pruning method and evaluation on the zero-shot tasks are shown Tables 10, 11, 12, and 13 in Appendix.

Table 1: WikiText2 perplexity of pruned LLMs under 50% sparsity ratio using Wanda as the local pruning method.

Method	Group	Compar.	Prune	Weight	LLaMA			LLaMA-2		LLaMA-3		
					Stra.	Scaling	7B	13B	30B	7B	13B	
Dense	-	-	-	-			5.67	5.09	4.10	5.11	4.57	7.46
Centralized	-	-	-	-			7.25	6.15	5.24	6.46	5.58	11.00
Local-only	-	-	-	-			7.44	6.33	5.34	6.63	5.72	11.39
FedPrLLM	Layer	One-shot	✗	7.32	6.19	5.24	6.48	5.61	11.02			
	Row	One-shot	✗	7.30	6.20	5.25	6.48	5.61	11.02			
	Column	One-shot	✗	1524.28	9282.09	501.88	20528.41	5309.48	311468.53			
	Layer	Iterative	✗	7.30	6.19	5.24	6.48	5.62	11.12			
	Row	Iterative	✗	7.30	6.20	5.24	6.48	5.61	11.11			
	Column	Iterative	✗	1822.89	6884.15	996.57	77245.84	5430.81	189134.78			
	Layer	One-shot	✓	7.48	6.36	5.35	6.67	5.75	11.75			
	Row	One-shot	✓	7.47	6.36	5.35	6.67	5.75	11.75			
	Column	One-shot	✓	1708.41	10819.42	824.50	18084.02	5914.91	276031.34			
	Layer	Iterative	✓	7.46	6.35	5.34	6.67	5.75	11.86			
	Row	Iterative	✓	7.46	6.35	5.34	6.67	5.74	11.87			
	Column	Iterative	✓	1985.40	6692.91	939.62	66911.49	5268.71	41996.95			

4.2.1 WHICH COMPARISON GROUP IS MORE EFFECTIVE?

As discussed above, various comparison groups can be used to select top-k values from the aggregated mask matrix to derive the final mask matrix for pruning the global model, including *layer comparison*, *row comparison*, and *column comparison*. Thus, which comparison group is the most effective?

²<https://github.com/EleutherAI/lm-evaluation-harness>

According to the results in Table 1, we observe that layer comparison and row comparison achieve comparable performance, both significantly surpassing column comparison. Results on higher sparsity ratios and other datasets (Tables 6, 7, and 8 in Appendix), using other local pruning methods (Table 10 in Appendix), and results on zero-shot tasks (Table 12 in Appendix) show a similar phenomenon. To investigate why column comparison performs much worse than the others, we noted that the local pruning methods we used adopts row comparison, meaning the local pruning mask matrix M_i derived from each client is based on row comparison. We hypothesize that this is the reason for the poorer performance of column comparison, as the comparison group used in FedPrLLM conflicts with that of the local pruning method.

Table 2: WikiText2 perplexity of pruned LLMs under 50% sparsity ratio when changing the comparison group for the local pruning method (i.e., Wanda). FedPrLLM adopts one-shot pruning and no weight scaling.

Local Compar.		Compar. Group	LLaMA			LLaMA-2		LLaMA-3
Group	Method		7B	13B	30B	7B	13B	8B
Layer	Centralized	-	7.94	6.57	5.47	7.38	5.92	12.04
	Local-only	-	8.16	6.74	5.58	7.56	6.06	12.43
	FedPrLLM	Layer	7.98	6.60	5.48	7.38	5.95	12.09
		Row	31.85	10.08	11.33	39.07	124.08	17.51
		Column	1749.59	10183.32	541.62	25258.16	5503.91	336255.96
Column	Centralized	-	8.86	7.68	5.67	10.41	6.38	83.67
	Local-only	-	8.86	7.68	5.67	10.41	6.38	83.67
	FedPrLLM	Layer	8.86	7.68	5.67	10.41	6.38	83.67
		Row	138.54	100.80	49.17	764.32	2580.88	400.95
		Column	8.86	7.68	5.67	10.41	6.38	83.67

To validate this, we further change the comparison group in the local pruning method (i.e., Wanda (Sun et al., 2024), SparseGPT (Frantar & Alistarh, 2023), OWL (Yin et al., 2024), and BESA (Xu et al., 2024a)) to layer comparison and column comparison to evaluate the performance of the FedPrLLM framework with one-shot pruning and no weight scaling. The results on WikiText2 are shown in Table 2, while results for other datasets are presented in Table 9 in Appendix. More results using other local pruning methods and results on the zero-shot tasks are shown in Tables 11 and 13 in Appendix. From these results, we see that when the comparison group in the local pruning method is changed to layer comparison, only the layer comparison used in FedPrLLM performs well, while row comparison performs poorly and column comparison performs even worse. Similarly, when the local pruning method’s comparison group is changed to column comparison, only the layer and column comparisons perform normally, while row comparison performance is poor. Note that when the comparison group in the local pruning method is changed to column comparison, it degrades to the magnitude-based pruning method, rendering the performance irrelevant to calibration samples, which results in the performance of Centralized and Local-only being the same (Sun et al., 2024). These results demonstrate our hypothesis that the conflict between the local and server comparison groups leads to worse performance, while the layer comparison used in FerPrLLM consistently achieves good results, regardless of the comparison group used for the local pruning method. The reason for this phenomenon may be due to the mismatch between the local and server comparison groups, which renders the aggregated mask matrix “meaningless”. We know that the aggregated mask matrix can be considered a “weight importance matrix” for conducting pruning on the server side. Note that these importance values are only meaningful under the local comparison group and will be meaningless under a mismatched comparison group. Therefore, when the comparison group used on the server mismatches the local group (e.g., local-row and server-column), the aggregated mask matrix will be meaningless and cannot be used to determine which weights are important, leading to poor pruning results. However, the layer comparison used on the server can avoid this issue since the comparisons within the whole layer will also take the local comparison group into consideration. Thus, regardless of the local comparison group used on the client side, the layer comparison used on the server can achieve good results. Therefore, we conclude that:

Takeaway 1: Layer comparison is simple yet effective.

378 4.2.2 SHOULD WE SCALE THE MODEL WEIGHTS OF THE RETAINED PARAMETERS?
379380 The aggregated mask matrix \hat{M} indicates the number of clients that wish to prune a parameter,
381 which allows it to be used for scaling the model weights of the retained parameters to $\frac{(m-\hat{M})}{m}$.
382 This approach corresponds to locally pruning the model and then sharing the pruned model with the
383 server, which aggregates them using the FedAvg algorithm (McMahan et al., 2017). However, will
384 weight scaling be beneficial for the federated pruning of LLMs?385 From the results in Table 1, we observe that the performance with weight scaling is worse than
386 that without weight scaling across all comparison groups and pruning strategies. Results on higher
387 sparsity ratios and more datasets (Tables 6, 7, and 8 in Appendix), using [other](#) local pruning meth-
388 ods (Table 10 in Appendix), and results on zero-shot tasks (Table 12 in Appendix) show a similar
389 phenomenon. It indicates that scaling weights offers no benefit and may even worsen performance.
390 This may be due to the fact that locally pruned models do not perform well, and applying the Fe-
391 dAvg algorithm (McMahan et al., 2017) to aggregate these pruned model weights leads to subpar
392 performance. Therefore, we conclude that:393
394 **Takeaway 2:** Scaling weights performs worse than expected.
395
396397 4.2.3 DOES ITERATIVE PRUNING OUTPERFORM ONE-SHOT PRUNING?
398399 Since LLMs are usually pruned *layer-by-layer* recursively (Frantar & Alistarh, 2023; Sun et al.,
400 2024; Zhang et al., 2024b), federated pruning for LLMs can be naturally categorized into two types:
401 *one-shot pruning* and *iterative pruning*. Given the significant communication costs associated with
402 iterative pruning, will it outperform one-shot pruning?403
404 Table 3: Communication cost for one-shot and iterative pruning. [The unit is the number of parame-
405 ters and “B” denotes billions.](#)

	LLaMA-7B	LLaMA-13B	LLaMA-30B	LLaMA-2-7B	LLaMA-2-13B	LLaMA-3-8B
one-shot pruning	6.476B	12.688B	32.102B	6.476B	12.688B	6.979B
iterative pruning	12.952B	25.376B	64.204B	12.952B	25.376B	13.958B

406
407 The comparison results are provided in Table 1, More results on higher sparsity ratios and other
408 datasets are shown in Tables 6, 7, and 8 in Appendix. Results using [other](#) local pruning methods are
409 shown in Table 10 in Appendix, and results on zero-shot tasks are shown in Table 12 in Appendix.
410 These results indicate that the performance of iterative pruning and one-shot pruning is compara-
411 ble, regardless of the comparison groups and pruning strategies. However, since iterative pruning
412 introduces significant communication costs (Table 3) without any performance improvement ([see](#)
413 [Section D in Appendix for more comparisons in terms of efficiency](#)), we conclude that:
414
415416 **Takeaway 3:** Iterative pruning offers no benefit.
417
418
419420 4.3 EXTENSION TO NON-IID SCENARIOS
421422 To validate the generalizability of our findings, we further conduct experiments under non-IID con-
423 ditions. Specifically, we extract 8 samples from the training data of WikiText2 (Merity et al., 2017),
424 C4 (Raffel et al., 2020), and PTB (Marcus et al., 1994) to form a global calibration dataset (i.e., 24
425 samples in total). We then use the Dirichlet distribution with a concentration parameter of $\alpha = 5$
426 to split the global calibration dataset into 12 non-IID local calibration datasets, each assigned to one
427 client (i.e., 2 samples per client). We choose Wanda as the local pruning method and use LLaMA-7B
428 to conduct experiments with 50% sparsity pruning. The experimental results under non-IID condi-
429 tions are shown in Tables 4 and 5. As shown in these results, our proposed “Best Recipe”—using
430 one-shot pruning, layer-wise comparison, and no weight scaling—consistently outperforms other
431 configurations under the non-IID scenario, confirming that our findings are generalizable.

432
433
434
435
436**Table 4: Perplexity (WikiText2 / C4 / PTB) of pruned LLMs under 50% sparsity ratio using Wanda as the local pruning method under non-IID conditions.**

Method	Compar. Group	Prune Stra.	Weight Scaling	LLaMA-7B
Centralized	-	-	-	7.06 / 9.27 / 65.72
Local-only	-	-	-	7.16 / 9.42 / 71.54
	Layer	One-shot	X	7.06 / 9.30 / 67.54
	Row	One-shot	X	7.06 / 9.30 / 67.28
	Column	One-shot	X	2923.46 / 1813.31 / 6736.30
	Layer	Iterative	X	7.06 / 9.31 / 68.09
	Row	Iterative	X	7.06 / 9.30 / 67.34
	Column	Iterative	X	3219.96 / 2294.87 / 6812.14
FedPrLLM	Layer	One-shot	✓	7.17 / 9.47 / 72.33
	Row	One-shot	✓	7.17 / 9.47 / 72.16
	Column	One-shot	✓	2723.30 / 1554.46 / 6364.29
	Layer	Iterative	✓	7.17 / 9.48 / 73.40
	Row	Iterative	✓	7.17 / 9.48 / 72.92
	Column	Iterative	✓	3182.52 / 1795.12 / 5808.61

446

447 4.4 SENSITIVITY ANALYSIS

448

449 In this section, we conduct sensitivity analyses on the number of clients and calibration samples in
450 FedPrLLM to better understand its effectiveness in pruning LLMs within a federated scenario. We
451 utilize Wanda as the local pruning method and use FedPrLLM, which employs layer comparison,
452 one-shot pruning, and no weight scaling, to conduct the analysis under a 50% sparsity ratio.

453
454
455
456
457
458
459
460

453 It is worth noting that the number of clients influences the performance of FL algorithms (Guo et al.,
454 2025b;c). In this section, we investigate the effect of client numbers on the federated pruning of
455 LLMs. We use a total of 128 calibration samples and vary the number of clients from 64 to 2,
456 resulting in an increase in the calibration samples allocated to each client. Specifically, when the
457 number of clients is 64, each client has only 2 calibration samples; when the number of clients is
458 reduced to 2, each client has 64 calibration samples. The experimental results are shown in Figure
459 2. From this figure, we observe that FedPrLLM consistently outperforms Local-only pruning across
460 various numbers of clients, demonstrating the effectiveness of the federated pruning algorithm.

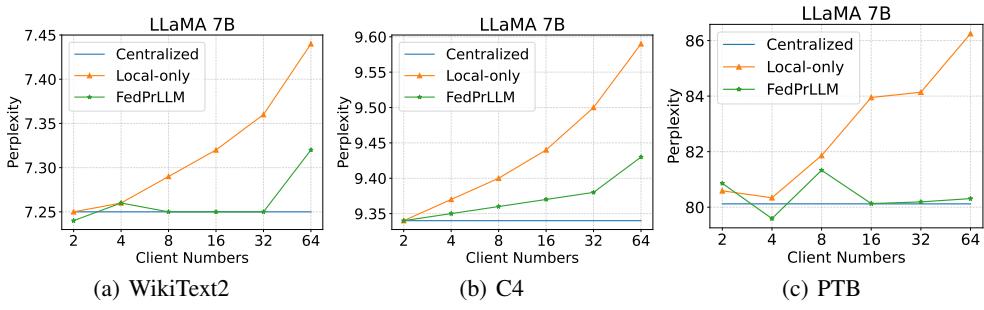
471
472

Figure 2: The effect of different client numbers on federated pruning LLMs.

473

474 We further investigate the impact of pruning LLMs in a federated scenario with varying numbers of
475 calibration samples, as shown in Figure 3. Specifically, we change the total number of calibration
476 samples from 128 to 4 while keeping the number of clients equal to half of that. As shown in Figure
477 3, we observe that with different numbers of calibration samples, FedPrLLM consistently outper-
478 forms Local-only pruning, which again shows the effectiveness of the federated pruning method.

479

480 4.5 PRIVACY AND LEAKAGE ANALYSIS

481

482 In this section, we conduct a detailed privacy analysis to formally and empirically assess the privacy
483 leakage of our framework for the LLaMA-7B model, covering both theoretical limits and practical
484 attack simulations.

485

486 To measure maximum information leakage, we conduct an information entropy analysis revealing
487 that a binary mask at 50% sparsity holds only 1.0 bit of information, compared to 13.75 bits for stan-
488 dard Float16 model weights, indicating a 92.7% reduction in information. This substantial reduction

Table 5: Perplexity (WikiText2 / C4 / PTB) of pruned LLMs under 50% sparsity ratio when changing the comparison group for the local pruning method (i.e., Wanda) under non-IID conditions. FedPrLLM adopts one-shot pruning and no weight scaling.

Local Compar. Group	Method	Compar. Group	LLaMA-7B
Layer	Centralized	-	7.67 / 10.07 / 83.20
	Local-only	-	7.76 / 10.26 / 85.16
Column	FedPrLLM	Layer	7.62 / 10.10 / 81.70
		Row	43.54 / 46.29 / 348.41
		Column	2324.40 / 1434.18 / 6026.79
FedPrLLM	Centralized	-	8.86 / 14.10 / 108.37
	Local-only	-	8.86 / 14.10 / 108.37
	FedPrLLM	Layer	8.86 / 14.10 / 108.37
		Row	138.54 / 155.15 / 1060.99
		Column	8.86 / 14.10 / 108.37

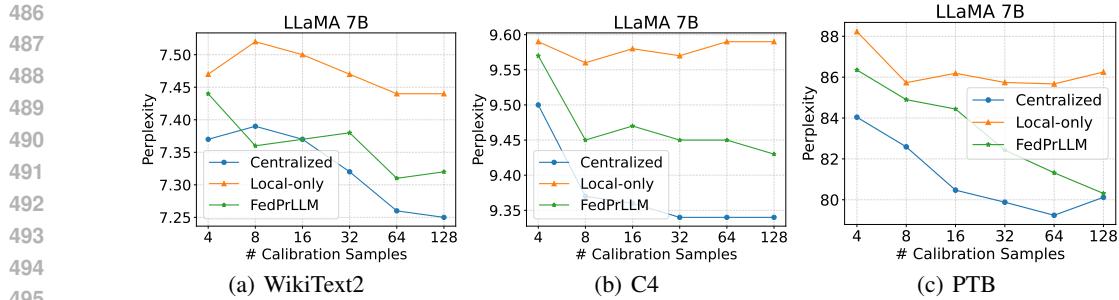


Figure 3: The effect of the number of calibration samples on federated pruning LLMs.

enhances security by making attacks more challenging. We further investigate our mask-sharing method through practical experiments, finding that masks generated with Wanda from randomly seeded calibration data are over 95% identical, which suggests they are primarily determined by the public pre-trained model, thus separating shared information from private data. Our Differential Privacy (Dwork, 2006) sensitivity analysis shows that altering a single dataset sample results in only a 4.96% change in the mask, providing strong privacy protection equivalent to a formal privacy budget of $\epsilon \approx 0.05$ without added noise. We also simulate targeted attacks to assess privacy leakage, including Membership Inference Attacks (Shokri et al., 2017), where the difference in masks—with and without a target sample—yields only a 3.23% Hamming distance, making it difficult to distinguish between signals and noise. Finally, in Gradient Inversion Attacks (Zhu et al., 2019; Fredrikson et al., 2015), the attacker also fails to reconstruct original training data, recovering less than 2% of tokens and generating nonsensical text. See Section C in Appendix for more details.

Therefore, by sharing only low-information binary masks, our framework fundamentally reduces privacy risks and offers strong, practical privacy protection.

5 RELATED WORK

There is one work that attempts to conduct LLM pruning in an FL scenario, i.e., FedSpAllM (Bai et al., 2024). It enables clients to collaboratively prune an LLM by introducing an ℓ_0 -norm aggregation function, an adaptive mask expansion technique, and a layer sampling strategy. While FedSpAllM proposes a specific and novel algorithm for federated LLM pruning, our paper provides the first systematic and comprehensive empirical study of the fundamental design space of federated LLM pruning. Our primary goal is not to introduce another single algorithm, but to establish a set of generalizable “best practices” and a “recipe” that can guide future research and applications in this domain. Moreover, FedSpAllM’s core operation can be mapped to a specific configuration within our comprehensive FedPrLLM framework. Specifically, it enables clients to locally prune their models based on private data and send the pruned models to the server for aggregation. The server averages the pruned models using the FedAvg algorithm (McMahan et al., 2017) and prunes the model to satisfy the predefined sparsity rate based on an aggregated mask matrix. This method can be viewed as a specific case within our FedPrLLM framework, i.e., iterative pruning with weight scaling. However, our extensive evaluations reveal that this approach is not optimal.

6 CONCLUSION

In this work, we introduce **FedPrLLM**, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs, incorporating various possibilities for integrating FL with LLM pruning. To identify the optimal operation within this framework, we invested thousands of GPU hours exploring these possibilities, including different comparison groups, pruning strategies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields.

Future Work. This work currently focuses on unstructured pruning of LLMs in a federated scenario. Future work could explore structured pruning within the FedPrLLM framework, which may be more suitable for certain real-world applications due to its hardware efficiency.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and
546 James Hensman. SliceGPT: Compress large language models by deleting rows and columns.
547 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=vXxardq6db>.

549 Guangji Bai, Yijiang Li, Zilinghan Li, Liang Zhao, and Kibaek Kim. Fedspallm: Federated pruning
550 of large language models. *arXiv preprint arXiv:2410.14852*, 2024.

552 Tom B Brown. Language models are few-shot learners. *arXiv preprint ArXiv:2005.14165*, 2020.

554 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
555 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings
556 of the 2019 Conference of the North American Chapter of the Association for Computational
557 Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936,
558 2019.

559 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
560 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
561 *arXiv preprint arXiv:1803.05457*, 2018.

562 Cynthia Dwork. Differential privacy. In *International colloquium on automata, languages, and
563 programming*, pp. 1–12. Springer, 2006.

564 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
565 in private data analysis. In *Theory of cryptography conference*, pp. 265–284. Springer, 2006.

566 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
567 one-shot. In *International Conference on Machine Learning*, pp. 10323–10337. PMLR, 2023.

568 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
569 dence information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC confer-
570 ence on computer and communications security*, pp. 1322–1333, 2015.

571 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The
572 unreasonable ineffectiveness of the deeper layers. In *The Thirteenth International Confer-
573 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ngmEcEer8a>.

574 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
575 language models. In *The Twelfth International Conference on Learning Representations*, 2024.
576 URL <https://openreview.net/forum?id=5h0qf7IBZZ>.

577 Pengxin Guo, Runxi Wang, Shuang Zeng, Jinjing Zhu, Haoning Jiang, Yanran Wang, Yuyin Zhou,
578 Feifei Wang, Hui Xiong, and Liangqiong Qu. Exploring the vulnerabilities of federated learning:
579 A deep dive into gradient inversion attacks. *arXiv preprint arXiv:2503.11514*, 2025a.

580 Pengxin Guo, Shuang Zeng, Wenhao Chen, Xiaodan Zhang, Weihong Ren, Yuyin Zhou, and
581 Liangqiong Qu. A new federated learning framework against gradient inversion attacks. In *Pro-
582 ceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 16969–16977, 2025b.

583 Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selective
584 aggregation for low-rank adaptation in federated learning. In *The Thirteenth International Con-
585 ference on Learning Representations*, 2025c. URL <https://openreview.net/forum?id=iX3uESGdsO>.

586 Shuai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
587 is needed. *arXiv preprint arXiv:2406.15786*, 2024.

594 Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
 595 Losparse: Structured compression of large language models based on low-rank and sparse ap-
 596 proximation. In *International Conference on Machine Learning*, pp. 20336–20350. PMLR, 2023.
 597

598 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 599 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

600 Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson,
 601 Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate argument structure.
 602 In *Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey,*
 603 *March 8-11, 1994*, 1994.

604 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 605 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 606 gence and statistics*, pp. 1273–1282. PMLR, 2017.

607

608 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
 609 ture models. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Byj72udxe>.

610

611 AI Meta. Introducing meta llama 3: The most capable openly available llm to date. *Meta AI*, 2024.

612

613 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
 614 tricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference*
 615 *on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.

616 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 617 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 618 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 619 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 620 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
 621 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 622 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

623

624 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 625 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 626 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

627

628 Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix compression via randomized low rank
 629 and low precision factorization. *Advances in Neural Information Processing Systems*, 36, 2023.

630

631 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 632 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

633

634 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 635 Peng Gao, Yu Qiao, and Ping Luo. Omnipoint: Omnidirectionally calibrated quantization for
 636 large language models. *arXiv preprint arXiv:2308.13137*, 2023.

637

638 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 639 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 640 pp. 3–18. IEEE, 2017.

641

642 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 643 for large language models. In *The Twelfth International Conference on Learning Representations*,
 644 2024. URL <https://openreview.net/forum?id=PxoFut3dWW>.

645

646 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 647 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 648 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

649

650 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 651 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 652 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

648 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 649 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*
 650 *preprint arXiv:1804.07461*, 2018.

651

652 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 653 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 654 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

655 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerat-
 656 ing language model pre-training via structured pruning. In *The Twelfth International Confer-
 657 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=09iOdae0zp>.

658

659 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 660 Accurate and efficient post-training quantization for large language models. In *International
 661 Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.

662

663 Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
 664 Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient
 665 sparsity allocation. In *The Twelfth International Conference on Learning Representations*, 2024a.
 666 URL <https://openreview.net/forum?id=gC6JTEU3jl>.

667

668 Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
 669 Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. *arXiv
 670 preprint arXiv:2402.13116*, 2024b.

671

672 Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR
 673 JAISWAL, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei
 674 Liu. Outlier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to
 675 high sparsity. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=ahEm312P6w>.

676

677 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 678 chine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association
 679 for Computational Linguistics*, pp. 4791–4800, 2019.

680

681 Shuang Zeng, Pengxin Guo, Shuai Wang, Jianbo Wang, Yuyin Zhou, and Liangqiong Qu. Tackling
 682 data heterogeneity in federated learning via loss decomposition. In *International Conference on
 683 Medical Image Computing and Computer-Assisted Intervention*, pp. 707–717. Springer, 2024.

684

685 Junyuan Zhang, Shuang Zeng, Miao Zhang, Runxi Wang, Feifei Wang, Yuyin Zhou, Paul Pu Liang,
 686 and Liangqiong Qu. Flhetbench: Benchmarking device and state heterogeneity in federated learn-
 687 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 688 pp. 12098–12108, 2024a.

689

690 Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
 691 and-play: An efficient post-training pruning method for large language models. In *The Twelfth
 692 International Conference on Learning Representations*, 2024b.

693

694 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 695 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In *International
 696 Conference on Machine Learning*, pp. 61121–61143. PMLR, 2024.

697

698 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural infor-
 699 mation processing systems*, 32, 2019.

700

701

702 A THE RATIONALE OF VOTING MECHANISMS 703

704 In this section, we provide theoretical analysis to demonstrate the rationale behind the voting mech-
705 anism for deriving the final pruning mask on the server side. Let $\{\mathbf{M}_1, \dots, \mathbf{M}_m\}$ be m independent
706 $d \times r$ binary mask matrices (with 50% sparsity) where each matrix satisfies:

$$707 \quad 708 \quad 709 \quad 710 \quad \sum_{p=1}^d \sum_{q=1}^r \mathbf{M}_i[p, q] = \frac{dr}{2}. \quad (2)$$

711 The voting mechanism procedure produces \mathbf{M} via: 1) Element-wise sum: $\hat{\mathbf{M}} = \sum_{i=1}^m \mathbf{M}_i$; 2) Set
712 the largest $\frac{dr}{2}$ entries in $\hat{\mathbf{M}}$ to 1, others to 0.

713 Let \mathbf{M}^* be the optimal mask defined by:

$$714 \quad 715 \quad \mathbf{M}^*[p, q] = \mathbb{I}(p_{pq} \geq \tau^*), \quad (3)$$

716 where $p_{pq} = P(\mathbf{M}_i[p, q] = 1)$ and τ^* is chosen such that $\sum_{p,q} \mathbf{M}^*[p, q] = \frac{dr}{2}$.

717 Then, the error between \mathbf{M} and \mathbf{M}^* can be defined as:

$$718 \quad 719 \quad 720 \quad \epsilon = \frac{1}{dr} \sum_{p=1}^d \sum_{q=1}^r \mathbb{I}(\mathbf{M}[p, q] \neq \mathbf{M}^*[p, q]). \quad (4)$$

721 There are two situations for $\mathbf{M}^*[p, q]$: 1 or 0.

722 **Case 1:** $\mathbf{M}^*[p, q] = 1$ (i.e., $p_{pq} \geq \tau^*$). In this case, $\mathbf{M}[p, q] = 0$ implies $\frac{\hat{\mathbf{M}}[p, q]}{m} < \tau^*$. Thus:

$$723 \quad 724 \quad p_{pq} - \frac{\hat{\mathbf{M}}[p, q]}{m} > p_{pq} - \tau^* = \delta_{pq} \quad (\text{since } \delta_{pq} = |p_{pq} - \tau^*| = p_{pq} - \tau^*), \quad (5)$$

725 which simplifies to:

$$726 \quad 727 \quad \left| \frac{\hat{\mathbf{M}}[p, q]}{m} - p_{pq} \right| > \delta_{pq} \quad (6)$$

728 **Case 2:** $\mathbf{M}^*[p, q] = 0$ (i.e., $p_{pq} < \tau^*$). In this case, $\mathbf{M}[p, q] = 1$ implies $\frac{\hat{\mathbf{M}}[p, q]}{m} \geq \tau^*$. Thus:

$$729 \quad 730 \quad \frac{\hat{\mathbf{M}}[p, q]}{m} - p_{pq} \geq \tau^* - p_{pq} = \delta_{pq} \quad (\text{since } \delta_{pq} = \tau^* - p_{pq}), \quad (7)$$

731 which simplifies to:

$$732 \quad 733 \quad \left| \frac{\hat{\mathbf{M}}[p, q]}{m} - p_{pq} \right| \geq \delta_{pq} \quad (8)$$

734 Let: **Event A:** $\mathbf{M}[p, q] \neq \mathbf{M}^*[p, q]$; **Event B:** $\left| \frac{\hat{\mathbf{M}}[p, q]}{m} - p_{pq} \right| \geq \frac{\delta_{pq}}{2}$. Then $A \subseteq B$, and we have:

$$735 \quad 736 \quad 737 \quad P(\mathbf{M}[p, q] \neq \mathbf{M}^*[p, q]) \leq P\left(\left| \frac{\hat{\mathbf{M}}[p, q]}{m} - p_{pq} \right| \geq \frac{\delta_{pq}}{2}\right) \leq 2 \exp\left(-\frac{m\delta_{pq}^2}{2}\right), \quad (9)$$

738 This implies:

$$739 \quad 740 \quad 741 \quad \mathbb{E}[\epsilon] \leq \frac{2}{dr} \sum_{p,q} \exp\left(-\frac{m\delta_{pq}^2}{2}\right). \quad (10)$$

742 This shows that the error between \mathbf{M} (which is obtained by voting) and \mathbf{M}^* is bounded by some
743 value, which demonstrates the rationale behind the voting mechanism.

744
745
746
747
748
749
750
751
752
753
754
755

756 B ADDITIONAL EXPERIMENTAL RESULTS

758 B.1 MORE RESULTS UNDER HIGHER SPARSITY RATIOS

760 The experimental results using Wanda as the local pruning method for higher sparsity ratios (i.e.,
 761 60% and 70%) are shown in Tables 6, 7, and 8.

763 Table 6: WikiText2 perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda
 764 as the local pruning method.

766 Sparsity	767 Method	768 Compar.	769 Prune	770 Weight	771 LLaMA			772 LLaMA-2		773 LLaMA-3
		774 Group	775 Stra.	776 Scaling	777 7B	778 13B	779 30B	780 7B	781 13B	782 8B
768 0%	769 Dense	-	-	-	5.67	5.09	4.10	5.11	4.57	7.46
		770 Centralized	-	-	7.25	6.15	5.24	6.46	5.58	11.00
	771 FedPrLLM	772 Local-only	-	-	7.44	6.33	5.34	6.63	5.72	11.39
		773 Layer	774 One-shot	775 ✗	7.32	6.19	5.24	6.48	5.61	11.02
		776 Row	777 One-shot	778 ✗	7.30	6.20	5.25	6.48	5.61	11.02
		779 Column	780 One-shot	781 ✗	1524.28	9282.09	501.88	20528.41	5309.48	311468.53
		782 Layer	783 Iterative	784 ✗	7.30	6.19	5.24	6.48	5.62	11.12
		785 Row	786 Iterative	787 ✗	7.30	6.20	5.24	6.48	5.61	11.11
		788 Column	789 Iterative	790 ✗	1822.89	6884.15	996.57	77245.84	5430.81	189134.78
		791 Layer	792 One-shot	793 ✗	7.48	6.36	5.35	6.67	5.75	11.75
794 50%	795 FedPrLLM	796 Row	797 One-shot	798 ✗	7.47	6.36	5.35	6.67	5.75	11.75
		799 Column	800 One-shot	801 ✗	1708.41	10819.42	824.5	18084.02	5914.91	276031.34
		802 Layer	803 Iterative	804 ✗	7.46	6.35	5.34	6.67	5.75	11.86
		805 Row	806 Iterative	807 ✗	7.46	6.35	5.34	6.67	5.74	11.87
		808 Column	809 Iterative	810 ✗	1985.40	6692.91	939.62	66911.49	5268.71	41996.95
		811 Centralized	812 -	813 -	10.71	8.74	6.55	10.03	7.92	25.81
		814 Local-only	815 -	816 -	11.70	9.38	6.96	10.84	8.55	27.47
		817 Layer	818 One-shot	819 ✗	10.76	8.80	6.65	10.08	8.01	25.48
820 60%	821 FedPrLLM	822 Row	823 One-shot	824 ✗	10.77	8.80	6.64	10.08	8.03	25.64
		825 Column	826 One-shot	827 ✗	2861.56	11190.34	1047.94	14737.65	5385.33	382319.37
		828 Layer	829 Iterative	830 ✗	10.87	8.88	6.65	10.17	8.05	26.21
		831 Row	832 Iterative	833 ✗	10.85	8.90	6.64	10.18	8.05	25.98
		834 Column	835 Iterative	836 ✗	3154.68	7824.46	2250.97	18849.20	6556.50	65475.84
		837 Layer	838 One-shot	839 ✗	12.14	9.77	7.10	11.53	8.98	30.34
		840 Row	841 One-shot	842 ✗	12.16	9.77	7.09	11.53	9.00	30.44
		843 Column	844 One-shot	845 ✗	3785.85	17163.16	1770.89	15180.33	5401.19	608169.33
		846 Layer	847 Iterative	848 ✗	12.27	9.85	7.12	11.90	9.07	30.94
849 70%	850 FedPrLLM	851 Row	852 Iterative	853 ✗	12.24	9.86	7.13	11.87	9.06	31.08
		854 Column	855 Iterative	856 ✗	2189.53	6032.71	2626.57	16081.73	6227.41	165510.73
		857 Centralized	858 -	859 -	87.42	53.48	17.30	72.38	45.94	92.20
		860 Local-only	861 -	862 -	104.15	67.13	23.29	80.39	51.79	108.35
		863 Layer	864 One-shot	865 ✗	83.12	55.92	18.73	70.92	44.98	102.88
		866 Row	867 One-shot	868 ✗	81.97	56.99	18.67	70.61	44.66	102.13
		869 Column	870 One-shot	871 ✗	17281.43	13045.16	2670.43	31238.51	12206.74	458666.00
		872 Layer	873 Iterative	874 ✗	89.25	55.48	18.65	79.27	45.89	100.37
875 80%	876 FedPrLLM	877 Row	878 Iterative	879 ✗	92.29	57.18	18.23	72.60	45.68	93.13
		880 Column	881 Iterative	882 ✗	19791.05	10323.63	3935.54	23090.20	7857.41	355916.56
		883 Layer	884 One-shot	885 ✗	136.50	94.90	31.62	93.89	64.34	123.92
		886 Row	887 One-shot	888 ✗	136.09	95.86	31.48	93.36	63.98	124.65
		889 Column	890 One-shot	891 ✗	20505.56	11695.06	3032.65	31485.38	10875.86	831352.18
		892 Layer	893 Iterative	894 ✗	174.95	102.78	31.12	94.49	62.07	116.97
		895 Row	896 Iterative	897 ✗	182.73	99.32	30.87	96.37	62.51	120.19
		898 Column	899 Iterative	900 ✗	8607.36	11707.00	3145.32	36254172.00	9604.48	1034635.56

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822

Table 7: C4 perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda as the local pruning method.

Sparsity	Method	Compar.	Prune	Weight	LLaMA			LLaMA-2		LLaMA-3			
					Group	Stra.	Scaling	7B	13B	30B	8B		
0%	Dense	-	-	-				7.34	6.79	6.12	7.03	6.51	12.34
	Centralized	-	-	-				9.34	8.14	7.28	8.94	8.03	18.38
	Local-only	-	-	-				9.59	8.37	7.52	9.16	8.31	18.92
50%	FedPrLLM	Layer	One-shot	✗	9.43	8.22	7.39	9.01	8.18	8.32			
		Row	One-shot	✗	9.43	8.22	7.39	9.01	8.19	8.32			
		Column	One-shot	✗	893.05	10616.94	612.27	9631.37	5075.92	200257.70			
		Layer	Iterative	✗	9.44	8.22	7.39	9.01	8.19	8.43			
		Row	Iterative	✗	9.44	8.22	7.39	9.02	8.18	8.38			
		Column	Iterative	✗	1050.26	8567.66	779.01	11658.80	4804.46	112192.42			
		Layer	One-shot	✓	9.64	8.40	7.57	9.21	8.39	19.45			
		Row	One-shot	✓	9.64	8.40	7.57	9.21	8.39	19.45			
		Column	One-shot	✓	887.34	13744.66	895.18	11440.51	5189.73	90476.94			
		Layer	Iterative	✓	9.64	8.41	7.57	9.22	8.39	19.58			
		Row	Iterative	✓	9.65	8.41	7.57	9.22	8.39	19.60			
		Column	Iterative	✓	1242.31	6860.69	724.28	10355.87	4657.88	44469.52			
60%	FedPrLLM	Centralized	-	-	13.72	11.22	9.16	13.64	11.39	43.02			
		Local-only	-	-	14.69	11.91	9.58	14.68	12.17	45.25			
		Layer	One-shot	✗	13.80	11.23	9.29	13.77	11.40	42.61			
		Row	One-shot	✗	15.26	12.24	9.79	15.60	12.75	50.37			
		Column	One-shot	✗	2149.09	11488.68	993.56	12252.16	4606.43	837570.62			
		Layer	Iterative	✗	13.92	11.37	9.32	13.84	11.52	44.24			
		Row	Iterative	✗	13.86	11.38	9.30	13.85	11.53	43.77			
		Column	Iterative	✗	2981.52	10375.02	1752.73	16673.62	5289.35	62234.32			
		Layer	One-shot	✓	15.24	12.24	9.80	15.61	12.74	50.28			
		Row	One-shot	✓	15.26	12.24	9.79	15.60	12.75	50.37			
		Column	One-shot	✓	3336.72	19430.46	1520.32	14613.11	4547.54	622715.25			
		Layer	Iterative	✓	15.46	12.54	9.86	16.15	13.01	51.47			
70%	FedPrLLM	Row	Iterative	✓	15.42	12.54	9.87	16.10	13.01	51.48			
		Column	Iterative	✓	1825.82	6669.63	1865.50	16167.12	5057.57	145341.28			
		Centralized	-	-	85.84	53.35	18.80	84.16	58.56	136.66			
		Local-only	-	-	96.47	63.61	22.48	82.96	67.09	161.86			
		Layer	One-shot	✗	81.95	52.55	19.24	81.40	59.87	158.08			
		Row	One-shot	✗	82.02	53.51	19.22	81.59	59.97	157.87			
		Column	One-shot	✗	15276.62	14041.01	2059.83	39339.21	11306.11	398674.93			
		Layer	Iterative	✗	83.52	57.22	19.15	92.51	60.46	162.29			
		Row	Iterative	✗	86.77	55.98	19.20	84.99	60.86	144.71			
		Column	Iterative	✗	18149.76	13537.18	2874.83	21704.32	7166.78	346598.5			
		Layer	One-shot	✓	116.61	77.99	26.30	104.86	79.82	184.11			
		Row	One-shot	✓	117.29	78.84	26.29	104.51	79.76	184.11			
		Column	One-shot	✓	19380.0	10934.98	2336.68	32034.07	11360.57	345798.53			
		Layer	Iterative	✓	142.08	85.91	27.17	103.02	79.25	177.97			
		Row	Iterative	✓	145.15	84.68	27.00	102.61	79.41	182.36			
		Column	Iterative	✓	7664.62	15985.50	2685.76	27805842.0	8041.09	1031318.56			

855
 856
 857
 858
 859
 860
 861
 862
 863

864
865
866
867
868
869
870
871
872
873

874 Table 8: PTB perplexity of pruned LLaMA, LLaMA-2, and LLaMA-3 models using Wanda as the
875 local pruning method.

877 Sparsity	878 Method	Compar.	Prune	Weight	879 LLaMA			880 LLaMA-2		881 LLaMA-3
		882 Group	883 Stra.	884 Scaling	7B	13B	30B	7B	13B	8B
885 0%	886 Dense	-	-	-	41.15	28.09	23.51	50.20	56.51	13.30
887	888 Centralized	-	-	-	80.12	36.41	26.64	96.99	86.83	20.69
889	890 Local-only	-	-	-	86.25	37.57	27.13	108.66	91.92	21.43
891	892 FedPrLLM	Layer	One-shot	✗	80.31	36.57	26.69	102.71	88.26	20.56
892		Row	One-shot	✗	80.71	36.61	26.64	101.85	88.31	20.55
893		Column	One-shot	✗	4463.92	22138.56	713.56	14256.86	7392.64	407313.84
894		Layer	Iterative	✗	81.22	36.54	26.68	102.72	88.38	20.55
895		Row	Iterative	✗	81.26	36.55	26.64	103.66	88.94	20.60
896		Column	Iterative	✗	4061.96	17610.52	1158.75	13401.63	6941.72	168643.04
897		Layer	One-shot	✓	87.97	37.70	27.27	112.52	92.90	22.21
898		Row	One-shot	✓	88.35	37.72	27.25	112.17	93.07	22.21
899		Column	One-shot	✓	4557.48	29140.28	982.59	12021.08	7801.23	264723.12
900		Layer	Iterative	✓	87.28	37.69	27.27	112.95	92.58	22.39
901		Row	Iterative	✓	87.61	37.60	27.27	113.32	92.61	22.41
902		Column	Iterative	✓	6929.83	15189.83	1178.40	10208.03	5220.64	39172.53
903	904 FedPrLLM	Centralized	-	-	193.10	71.66	34.94	363.71	220.81	52.42
904		Local-only	-	-	208.48	82.24	37.27	409.47	271.49	55.39
905		Layer	One-shot	✗	187.00	74.66	35.38	339.79	241.14	52.61
906		Row	One-shot	✗	186.10	74.64	35.47	337.69	242.96	52.61
907		Column	One-shot	✗	5604.92	31222.37	1338.25	28046.95	7553.32	322022.84
908		Layer	Iterative	✗	191.22	72.90	35.83	368.87	237.45	53.78
909		Row	Iterative	✗	190.60	73.74	35.77	367.56	235.51	53.25
910		Column	Iterative	✗	6785.79	13234.02	1903.66	24022.75	8125.57	46139.19
911		Layer	One-shot	✓	216.09	91.63	38.22	429.58	293.11	60.49
912		Row	One-shot	✓	215.50	91.60	38.25	428.87	294.44	60.48
913		Column	One-shot	✓	7600.58	41079.65	1910.36	18249.40	7601.34	416094.71
914		Layer	Iterative	✓	220.22	90.60	38.79	427.12	283.34	61.25
915		Row	Iterative	✓	220.16	90.58	38.74	428.36	282.20	61.55
916		Column	Iterative	✓	4242.84	11345.68	2133.62	29512.89	7113.24	133467.18
917	918 FedPrLLM	Centralized	-	-	698.79	299.42	110.70	1902.56	735.73	131.13
918		Local-only	-	-	782.42	412.24	144.90	1780.26	863.50	152.97
919		Layer	One-shot	✗	737.07	366.28	120.33	1521.25	793.55	156.63
920		Row	One-shot	✗	718.37	369.65	118.24	1557.08	792.08	154.72
921		Column	One-shot	✗	18649.81	18136.88	3180.23	49646.82	12010.97	466632.84
922		Layer	Iterative	✗	721.31	355.21	113.31	1675.79	775.69	146.27
923		Row	Iterative	✗	734.43	349.63	113.65	1757.10	767.13	133.92
924		Column	Iterative	✗	28179.23	17249.42	3967.48	29254.5	10233.18	314505.62
925		Layer	One-shot	✓	839.42	484.11	188.18	1633.85	890.27	174.11
926		Row	One-shot	✓	830.33	483.58	187.11	1641.92	891.27	172.74
927		Column	One-shot	✓	26556.95	21627.29	3383.87	54429.17	14951.70	239612.84
928		Layer	Iterative	✓	887.36	469.70	173.86	1789.42	858.48	162.24
929		Row	Iterative	✓	896.85	454.31	172.48	1740.04	879.50	168.51
930		Column	Iterative	✓	8660.95	18472.69	3246.05	11427895.00	8037.55	738685.56

911
912
913
914
915
916
917

918 B.2 MORE RESULTS ON THE COMPARISON GROUP FOR LOCAL PRUNING
919920 The results of changing the comparison group for the local pruning method (i.e., Wanda) are shown
921 in Table 9.
922923
924 Table 9: Perplexity of pruned LLMs under 50% sparsity ratio when changing the comparison group
925 for the local pruning method (i.e., Wanda). FedPrLLM adopts one-shot pruning and no weight
926 scaling.

Local Compar.		Compar.		LLaMA			LLaMA-2		LLaMA-3	
Group	Dataset	Method	Group	7B	13B	30B	7B	13B	8B	
WikiText2	FedPrLLM	Centralized	-	7.94	6.57	5.47	7.38	5.92	12.04	
		Local-only	-	8.16	6.74	5.58	7.56	6.06	12.43	
		Layer	Layer	7.98	6.60	5.48	7.38	5.95	12.09	
	C4	Row	Row	31.85	10.08	11.33	39.07	124.08	17.51	
		Column	Column	1749.59	10183.32	541.62	25258.16	5503.91	336255.96	
	PTB	Centralized	-	10.28	8.63	7.59	10.24	8.49	19.18	
		Local-only	-	10.56	8.90	7.86	10.52	8.76	19.64	
		Layer	Layer	10.34	8.71	7.72	10.32	8.63	19.09	
Column	FedPrLLM	Row	Row	34.90	12.35	12.75	29.79	207.57	28.05	
		Column	Column	975.75	12605.58	553.85	13950.23	4899.58	129415.62	
		Centralized	-	92.84	43.47	27.25	306.71	119.17	23.14	
	WikiText2	Local-only	-	99.13	45.34	27.87	338.70	136.88	23.69	
		Layer	Layer	91.99	43.59	27.25	305.79	124.27	22.85	
		Row	Row	284.19	109.14	110.46	1886.94	480.24	44.71	
	C4	Column	Column	3976.21	28144.48	711.16	14131.82	7134.88	293147.84	
	PTB	Centralized	-	8.86	7.68	5.67	10.41	6.38	83.67	
		Local-only	-	8.86	7.68	5.67	10.41	6.38	83.67	
		Layer	Layer	8.86	7.68	5.67	10.41	6.38	83.67	
Column	FedPrLLM	Row	Row	138.54	100.80	49.17	764.32	2580.88	400.95	
		Column	Column	8.86	7.68	5.67	10.41	6.38	83.67	
		Centralized	-	14.10	11.20	8.06	17.90	9.57	30.88	
	C4	Local-only	-	14.10	11.20	8.06	17.90	9.57	30.88	
		Layer	Layer	14.10	11.20	8.06	17.90	9.57	30.88	
		Row	Row	155.15	87.03	48.19	222.47	5135.37	327.77	
	PTB	Column	Column	14.10	11.20	8.06	17.90	9.57	30.88	
		Centralized	-	108.37	47.17	29.22	4567.49	115.68	240.14	
		Local-only	-	108.37	47.17	29.22	4567.49	115.68	240.14	
WikiText2	FedPrLLM	Layer	Layer	108.37	47.17	29.22	4567.49	115.68	240.14	
		Row	Row	1060.91	394.57	239.91	21323.02	1075.71	928.73	
		Column	Column	108.37	47.17	29.22	4567.49	115.68	240.14	

955
956 B.3 MORE RESULTS ON OTHER LOCAL PRUNING METHODS
957958
959 In this section, we provide additional experimental results using SparseGPT (Frantar & Alistarh,
960 2023), OWL (Yin et al., 2024), and BESA (Xu et al., 2024a) as the local pruning method to further
961 validate the generality of our findings. For SparseGPT, we utilize the pruning metric proposed in
962 SparseGPT (Frantar & Alistarh, 2023) and do not perform the weight update procedure (also adopted
963 in Wanda (Sun et al., 2024); see Table 7 in (Sun et al., 2024)).
964965 The experimental results of using other local pruning methods are shown in Tables 10 and 11. These
966 results show a trend similar to those obtained using Wanda as the local pruning method and further
967 demonstrate the generality of our findings.
968969 B.4 MORE RESULTS ON ZERO-SHOT TASKS
970971 The experimental results on seven zero-shot tasks are shown in Tables 12 and 13. These results show
972 a trend similar to those on the language modeling tasks and further demonstrate the generality of our
973 findings.
974

Table 10: Perplexity (WikiText2 / C4 / PTB) of pruned **LLaMA-7B** under 50% sparsity ratio using **other** local pruning methods.

Method	Compar. Group	Prune Stra.	Weight Scaling	SparseGPT		OWL (Yin et al., 2024)	BESA (Xu et al., 2024a)
				(Frantar & Alistarh, 2023)			
Centralized	-	-	-	7.40 / 9.54 / 76.18		7.21 / 9.31 / 67.44	7.27 / 9.34 / 78.74
Local-only	-	-	-	8.11 / 10.44 / 95.12		7.43 / 9.55 / 70.11	7.44 / 9.60 / 86.19
FedPrLLM	Layer	One-shot	X	8.04 / 10.37 / 93.52		7.24 / 9.38 / 67.52	7.31 / 9.43 / 80.28
	Row	One-shot	X	8.05 / 10.37 / 93.15		7.23 / 9.39 / 67.56	7.31 / 9.43 / 80.38
	Column	One-shot	X	4279.74 / 4868.07 / 11451.43	1408.46 / 914.26 / 3338.93	1548.53 / 932.58 / 4683.50	
	Layer	Iterative	X	8.04 / 10.37 / 94.09		7.23 / 9.40 / 67.77	7.30 / 9.43 / 81.31
	Row	Iterative	X	8.06 / 10.37 / 93.15		7.23 / 9.39 / 67.62	7.30 / 9.44 / 81.88
	Column	Iterative	X	2562.72 / 4263.29 / 5643.11	1171.66 / 905.47 / 2100.39	1823.51 / 983.13 / 4909.44	
	Layer	One-shot	✓	8.17 / 10.52 / 97.55		7.65 / 9.87 / 86.91	7.47 / 9.63 / 87.92
	Row	One-shot	✓	8.18 / 10.53 / 97.32		7.64 / 9.87 / 86.30	7.47 / 9.64 / 88.18
	Column	One-shot	✓	6524.84 / 7887.48 / 9790.79	1433.32 / 994.49 / 3598.38	1693.96 / 891.77 / 4662.56	
	Layer	Iterative	✓	8.16 / 10.51 / 97.72		7.41 / 9.57 / 71.36	7.46 / 9.64 / 87.44
	Row	Iterative	✓	8.17 / 10.52 / 97.14		7.42 / 9.57 / 71.24	7.46 / 9.64 / 87.64
	Column	Iterative	✓	2741.71 / 3998.72 / 6088.04	1455.31 / 939.69 / 2790.60	2178.33 / 1147.38 / 8064.72	

Table 11: Perplexity (WikiText2 / C4 / PTB) of pruned **LLaMA-7B** under 50% sparsity ratio when changing the comparison group for the local pruning method. FedPrLLM adopts one-shot pruning and no weight scaling.

Local Compar. Group	Method	Compar. Group	SparseGPT (Frantar & Alistarh, 2023)	OWL (Yin et al., 2024)	BESA (Xu et al., 2024a)
Layer	Centralized	-	7.91 / 10.21 / 83.25	7.61 / 9.88 / 71.59	7.94 / 10.28 / 92.81
	Local-only	-	8.89 / 11.58 / 108.47	7.84 / 10.12 / 76.15	8.16 / 10.56 / 99.17
	FedPrLLM	Layer	8.83 / 11.50 / 106.83	7.80 / 10.12 / 71.76	7.98 / 10.34 / 92.26
		Row	183.63 / 134.18 / 913.14	10.54 / 13.40 / 124.99	32.54 / 35.30 / 291.07
Column		Column	4623.88 / 4722.64 / 12115.99	1115.07 / 780.56 / 2480.77	1767.87 / 966.04 / 3964.13
	Centralized	-	8.86 / 14.10 / 108.37	7.89 / 10.82 / 72.35	8.23 / 11.64 / 100.07
	Local-only	-	8.86 / 14.10 / 108.37	7.91 / 10.86 / 73.27	8.89 / 14.19 / 109.73
	FedPrLLM	Layer	8.86 / 14.10 / 108.37	7.91 / 10.84 / 73.02	8.86 / 14.12 / 108.12
		Row	138.54 / 155.15 / 1060.91	32.24 / 46.92 / 645.47	138.87 / 154.99 / 1064.28
		Column	8.86 / 14.10 / 108.37	7.91 / 10.83 / 73.02	8.86 / 14.10 / 108.14

Table 12: Accuracies (%) on seven zero-shot tasks of pruned LLaMA-7B model under 50% sparsity ratio using Wanda as the local pruning method.

Method	Compar.	Group	Prune Stra.	Weight Scaling	HellaSwag	WinoGrande	OBQA	RTE	BoolQ	ARC-c	ARC-e	Mean
Dense	-	-	-	-	56.96	70.09	34.20	66.43	75.11	41.89	75.29	59.99
Centralized	-	-	-	-	51.89	66.54	28.60	55.60	71.16	36.86	69.44	54.30
Local-only	-	-	-	-	51.52	66.23	28.55	55.37	70.85	36.49	69.13	54.02
FedPrLLM	Layer	One-shot	X	51.93	66.61	29.80	53.49	71.22	37.03	69.49	54.22	
	Row	One-shot	X	51.84	66.61	30.20	53.07	71.16	36.77	69.61	54.18	
	Column	One-shot	X	26.24	50.51	13.60	52.35	38.01	20.65	30.56	33.13	
	Layer	Iterative	X	51.93	66.46	29.20	54.15	71.13	36.95	69.61	54.20	
	Row	Iterative	X	51.90	66.54	29.40	54.33	71.13	36.69	69.44	54.20	
	Column	Iterative	X	26.28	49.96	11.60	52.35	40.55	21.25	31.44	33.35	
	Layer	One-shot	✓	51.42	66.51	30.20	53.07	71.19	36.60	68.98	54.00	
	Row	One-shot	✓	51.80	66.33	30.20	53.79	71.10	36.30	69.16	54.09	
	Column	One-shot	✓	25.92	50.12	12.00	51.26	38.62	20.14	29.46	32.50	
	Layer	Iterative	✓	51.90	66.14	28.80	53.79	71.07	36.77	69.40	53.98	
	Row	Iterative	✓	51.89	66.54	29.60	54.11	71.15	36.20	69.10	54.08	
	Column	Iterative	✓	26.20	49.57	11.80	53.43	38.81	21.42	31.86	33.30	

B.5 RESULTS ON ULTRA-LOW CALIBRATION DATA REGIME

To further explore the performance of our FedPrLLM framework in scenarios with extremely limited calibration data (e.g., 1 sample/client), we conduct additional experiments using only 1 sample per client for calibration. We ran this challenging experiment on LLaMA-7B and LLaMA-2-7B with 128 clients (each holding only a single calibration sample) at 50% sparsity. For FedPrLLM, we use our recommended configuration of layer comparison, one-shot pruning, and no weight scaling. The results are presented in Table 14.

1026
 1027 Table 13: Accuracies (%) on seven zero-shot tasks of pruned LLaMA-7B model under 50% sparsity
 1028 ratio when changing the comparison group for the local pruning method (i.e., Wanda). FedPrLLM
 1029 adopts one-shot pruning and no weight scaling.

Local Compar. Group	Method	Compar. Group	HellaSwag	WinoGrande	OBQA	RTE	BoolQ	ARC-c	ARC-e	Mean
Layer	Centralized	-	50.00	66.85	28.40	50.18	69.69	36.60	67.13	52.69
	Local-only	-	49.59	66.33	27.57	50.07	68.58	35.56	67.11	52.12
	FedPrLLM	Layer	50.04	65.59	27.80	49.82	68.72	36.09	67.93	52.28
		Row	44.34	64.01	26.40	51.62	56.51	30.55	66.08	48.50
		Column	25.78	50.91	12.20	52.35	37.95	20.82	27.86	32.55
Column	Centralized	-	48.92	65.82	26.20	56.68	65.11	34.56	66.79	52.01
	Local-only	-	48.92	65.82	26.20	56.68	65.11	34.56	66.79	52.01
	FedPrLLM	Layer	48.92	65.82	26.20	56.68	65.11	34.56	66.79	52.01
		Row	35.60	56.20	20.80	53.43	50.95	26.28	60.23	43.35
		Column	48.92	65.82	26.20	56.68	65.11	34.56	66.79	52.01

1039
 1040 Table 14: Perplexity (WikiText2 / C4 / PTB) of pruned LLMs under 50% sparsity ratio in the ultra-
 1041 low data regime (1 sample per client).

Method	LLaMA-7B	LLaMA-2-7B
Centralized	7.25 / 9.34 / 80.12	6.46 / 8.94 / 96.99
Local-only	7.58 / 9.73 / 89.22	6.77 / 9.30 / 116.60
FedPrLLM	7.31 / 9.46 / 82.33	6.49 / 9.04 / 103.24

1050 As shown in Table 14, FedPrLLM consistently outperforms the Local-only baseline even in this
 1051 ultra-low data regime. These results highlight the core strength of FedPrLLM: it effectively aggre-
 1052 gates 128 individual masks into a single robust global mask, thereby overcoming the instability that
 1053 severely impacts the Local-only approach.

C PRIVACY AND LEAKAGE ANALYSIS

1058 To formally and empirically assess the privacy leakage of our framework, we conduct a detailed
 1059 privacy analysis on the LLaMA-7B model, covering both theoretical limits and practical attack
 1060 simulations.

1061 To measure the maximum possible information leakage, we first perform an information entropy
 1062 analysis. This tells us the theoretical limit of how much data a message can hold. Our analysis
 1063 shows that a binary mask (at 50% sparsity) holds only 1.0 bit of information, while standard Float16
 1064 model weights hold 13.75 bits³. This means the mask contains only 7.3% of the information found
 1065 in the weights—a 92.7% reduction. This massive reduction acts as a primary defense, making attack
 1066 much harder because there is simply very little information available to leak.

1067 Building on this theory, we test our mask-sharing method with a series of practical experiments.
 1068 First, we check mask similarity to see if a mask is uniquely tied to the private data used to create it.
 1069 We find that masks generated with Wanda using completely different, randomly seeded calibration
 1070 data are over 95% identical (4.96% Hamming distance). This high similarity proves that the mask
 1071 matrices are mostly determined by the public pre-trained model’s weight, not the private data. This
 1072 effectively separates the shared information from the private data. Next, our Differential Privacy
 1073 (DP) (Dwork, 2006) sensitivity analysis shows that changing just one sample in the dataset causes
 1074 a very small change in the mask matrices (~4.96% Hamming distance). Specifically, we create
 1075 two datasets that differ by only one sample and measure the difference (i.e., Hamming distance)
 1076 between their masks. This extremely low sensitivity means our method naturally provides strong
 1077 privacy protection (equivalent to a formal privacy budget of $\epsilon \approx 0.05$) without needing to add extra
 1078 noise.

1079 ³As calculating entropy across all model parameters is computationally prohibitive, this analysis compares
 data from a single sub-layer (`q_proj`) within the first transformer block.

1080 We also simulate targeted attacks to test for privacy leakage. To test for Membership Inference Attacks (MIA) (Shokri et al., 2017), where an attacker tries to guess if a specific data record was used,
 1081 we simulate a metric-based attack scenario. Since standard MIA relies on confidence scores (which
 1082 our binary masks don't have), we measure the "signal strength"—the specific influence of a target
 1083 sample on the final mask. We find that the difference in masks generated with and without a specific
 1084 target sample is only 3.23% Hamming distance. This variation is smaller than the natural differences
 1085 caused by using different datasets ($\sim 4.96\%$), making it difficult for an attacker to tell the difference
 1086 between a real signal and random noise. This implies that any complex attack models would likely
 1087 fail because the signal is too weak (Shokri et al., 2017; Dwork et al., 2006). Finally, we simulate
 1088 a Gradient Inversion Attacks (Zhu et al., 2019; Fredrikson et al., 2015), where an attacker (e.g., an
 1089 honest-but-curious server) with full knowledge of the model tries to reconstruct the original training
 1090 data via gradient-based optimization. The attacker starts with a random noise tensor as input data
 1091 and iteratively optimizes it to generate a mask that matches the target mask shared by the client.
 1092 The loss function is the Hamming distance between the generated mask and the target mask. The
 1093 gradients of this loss with respect to the input data are used to update the input, effectively "searching"
 1094 for data that could produce the target mask. This attack also fails, recovering less than 2% of
 1095 the tokens and producing meaningless text. For example, Original Text: "*your Apple AirPods and*
 1096 *EarPods. Easy & hassle free installation. Earbuddyz must be removed to charge AirPods...*". Recon-
 1097 *structed Text: "jdeuxTvekirection Readlarzug hecho pertelled h threat todos installah={blearselfw*
 1098 *stories lookup...".* The attack fails because it tries to reverse a highly underdetermined, multi-stage
 1099 information loss chain:

1100 **Data → Activations → Scaler → Importance Score → Mask.**

1102 Most steps in this chain is practically irreversible:

1104 • **Activations → Scaler:** Activations across thousands of tokens are compressed into a single
 1105 L2-norm statistic per neuron, losing all temporal and distributional information.

1106 • **Importance Score → Mask:** The continuous, high-entropy importance scores are bina-
 1107 rized via a threshold. All information about the magnitude of the scores is permanently
 1108 destroyed; only a single bit (above or below threshold) remains.

1110 An attacker trying to reverse this process faces a problem with an astronomical number of possible
 1111 solutions. Given only the final 1-bit mask, it is computationally infeasible to reconstruct the specific
 1112 data that initiated the chain. This confirms the security of our approach against even the most
 1113 powerful adversaries.

1114 Therefore, by sharing only low-information binary masks, our framework fundamentally reduces
 1115 privacy risks and offers strong, practical privacy protection.

1117 **D PRACTICAL EFFICIENCY, COMMUNICATION COST, AND RESOURCE
 1118 USAGE**

1121 This section complements our main results with a thorough analysis of computation time, commu-
 1122 nication costs across diverse network conditions, client heterogeneity, memory usage, and energy
 1123 implications. Unless stated otherwise, all simulations are conducted using LLaMA-7B.

1125 **D.1 PRUNING RUNTIME AND PEAK MEMORY**

1127 Table 15 reports the pruning runtime and peak memory across all evaluated methods. One-shot and
 1128 iterative variants exhibit similar local pruning time on GPU (approximately 145 seconds), as both
 1129 compute Hessians and sort importance scores. The primary difference between these strategies lies
 1130 in the number of communication rounds: one-shot requires a single round (uploading masks once),
 1131 whereas iterative requires one round per layer (32 rounds for LLaMA-7B).

1132 Regarding memory usage, one-shot pruning shows higher peak memory (about 31 GB) than iterative
 1133 (about 19 GB) in our single-machine simulation because the server aggregates masks across all
 layers simultaneously. In a real distributed deployment, masks can be processed in a streaming,

1134

1135

Table 15: Runtime and Peak Memory usage for all evaluated methods.

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

Method	Compar. Group	Prune Stra.	Weight Scaling	Pruning Time (s)	Peak Memory (GB)
Centralized	-	-	-	79.8	18.66
Local-only	-	-	-	142.5	25.14
FedPrLLM	Layer	One-shot	✗	143.2	31.27
	Row	One-shot	✗	143.8	31.27
	Column	One-shot	✗	142.9	31.27
	Layer	Iterative	✗	145.6	19.04
	Row	Iterative	✗	144.8	19.04
	Column	Iterative	✗	143.4	19.02
	Layer	One-shot	✓	143.5	31.27
	Row	One-shot	✓	144.1	31.27
	Column	One-shot	✓	143.0	31.27
	Layer	Iterative	✓	144.8	19.69
	Row	Iterative	✓	144.8	19.04
	Column	Iterative	✓	144.8	19.69

1150

1151

layer-by-layer fashion on the server, distributing the memory load across clients and reducing peak memory to be comparable to the iterative approach.

1152

1153

1154

1155

D.2 BANDWIDTH VS. LATENCY TRADE-OFFS

We simulate end-to-end pruning time under four representative network profiles to quantify the interplay between bandwidth and latency. Table 16 summarizes the results. We observe that one-shot pruning method consistently achieves a $\sim 31x$ speedup over iterative pruning across all network conditions. This significant reduction in communication rounds makes one-shot pruning particularly advantageous in high-latency, low-bandwidth environments, such as edge networks.

1156

1157

1158

1159

1160

1161

1162

1163

Table 16: Simulated total communication time under different network conditions.

Network Profile	Latency	Bandwidth	One-shot Time (h)	Iterative Time (h)	Speedup
Datacenter	1ms	10 Gbps	~0.1	~3.1	~31x
Cross-Silo (LAN)	5ms	1 Gbps	~1.0	~31.3	~31x
Cross-Silo (WAN)	50ms	100 Mbps	~9.9	~313.3	~31x
Edge	100ms	10 Mbps	~99.4	~3132.9	~31x

1164

1165

D.3 SYSTEM HETEROGENEITY (STRAGGLERS)

1166

1167

1168

1169

1170

1171

1172

We further simulate system heterogeneity with 20% stragglers (slow clients) to compare the communication time of One-shot and Iterative pruning. Specifically, we instantiate 64 clients, where 51 “fast” clients finish the mask upload in 534.1 seconds, while 13 “slow” clients (bandwidth at 50%) take 1,068.2 seconds. In this setting, One-shot pruning incurs a +534 second straggler penalty only once, resulting in a total straggler overhead of 534 seconds (100% of the homogeneous upload time). By contrast, the iterative baseline must absorb the same 534-second penalty at every communication round; with 32 rounds, this compounds to $32 \times 534 \approx 17,090$ additional seconds (>4.7 hours) of idle time. This dramatic gap makes One-shot inherently robust to the system heterogeneity typical of cross-device federated learning.

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

D.4 COMPREHENSIVE EFFICIENCY, SCALABILITY, AND ENERGY

Table 17 summarizes time efficiency, scalability under heterogeneity, energy implications, memory/storage, and theoretical inference metrics for LLaMA-7B in a Cross-Silo WAN environment (100Mbps bandwidth, 50ms latency). One-shot pruning reduces total pruning time by, which dominates energy consumption in federated settings and translates to energy savings. In terms of scalability, one-shot suffers the straggler penalty only once, whereas iterative methods incur it in every

1188 round, making one-shot substantially more robust. Both methods achieve equivalent storage com-
 1189 pression at the same sparsity.

1190 For inference time, unstructured sparsity reduces the theoretical FLOPs of pruned layers (e.g., at
 1191 50% sparsity), but practical speedups on standard GPUs may require specialized sparse kernels.
 1192 Realizing hardware-level inference acceleration is complementary to and beyond the scope of this
 1193 work.

1194
 1195
 1196 **Table 17: Comprehensive analysis of efficiency, scalability, and resource usage.** Note: Energy
 1197 savings (>90%) are derived from the 31x reduction in total communication time, which dominates
 1198 the energy consumption in federated settings.

Metric Category	Specific Metric	One-shot	Iterative	Improvement
Time Efficiency	Total Pruning Time	9.9 hours	> 313 hours	31x Speedup
	Straggler Impact	1x Penalty (Once)	32x Penalty (Every Layer)	Robust
Energy	Pruning Energy Cost	Low	Very High	> 90% Savings
Memory	Model Size (Storage)	6.5 GB	6.5 GB	Equivalent
Inference	Theoretical Throughput	1.43x	1.43x	Equivalent
	Theoretical Latency	0.70x	0.70x	Equivalent

1207 E THE USE OF LARGE LANGUAGE MODELS (LLMs)

1208 We used Large Language Models (LLMs) to enhance the language and clarity of this manuscript.
 1209 Their role included rephrasing for readability, correcting grammatical errors, and ensuring consistent
 1210 terminology. All core scientific contributions, including the proposed methods, experimental design,
 1211 and results analysis, are original to the authors. The LLMs acted solely as writing assistants and did
 1212 not influence the research ideas or outcomes presented.