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Abstract

Numerous scientific and technological challenges arise in the context of optimiza-1

tion, particularly, black-box optimization within high-dimensional spaces presents2

significant challenges. Recent investigations into neural network-based black-box3

optimization have shown promising results. However, the effectiveness of these4

methods in navigating high-dimensional search spaces remains limited. In this5

study, we propose a black-box optimization method that combines an evolution-6

ary strategy (ES) with a generative surrogate neural network (GSN) model. This7

integrated model is designed to function in a complementary manner, where ES8

addresses the instability inherent in surrogate neural network learning associated9

with GSN models, and GSN improves the mutation efficiency of ES. Based on10

our experimental findings, this approach outperforms both classical optimization11

techniques and standalone GSN models.12

1 Introduction13

Black-box optimization plays a vital role in both science and technology; however, it has long been14

an unresolved problem particularly for high dimensional problems. While low-dimensional problems,15

which have dimensions lesser than 100, can be optimized easily, high-dimensional optimization16

problems pose more significant challenges. In specific cases, such as convex functions, classical17

algorithms such as Evolution Strategies (ES) [7–20] and others [4–6] can efficiently tackle high-18

dimensional optimization problems. However, their efficiency tends to decline rapidly when faced19

with general black-box problems characterized by high dimensionality and non-convexity.20

Furthermore, in high-dimensional optimization problems, the number of function calls inevitably21

grows proportionally with the dimension size. Consequently, maintaining O(N) time complexity is22

crucial in preventing the optimization process from failing owing to rapidly increasing computation23

time. In this context, algorithms such as the Bayesian optimization [1–3], which exhibit non-linear24

complexity, are at a significant disadvantage. Conversely, neural networks offer a promising solution25

to this problem. The field of artificial intelligence has demonstrated their considerable benefits in26

managing data within high-dimensional spaces, such as images or language models, while preserving27

linear time complexity.28

Recently, GSN-based approaches, inspired by Generative Adversarial Networks (GANs) [30–32],29

have emerged to tackle the black-box optimization problem, offering a novel solution for high-30

dimensional, non-convex problems. However, in contrast to GANs, Generative Surrogate Neural31

networks (GSNs) face a significant challenge with learning stability in the surrogate model, and the32

performance of GSN-like algorithms remains limited to just hundreds of dimensions.33

Hence, addressing the training instability problem is crucial for enhancing the performance of GSN-34

based algorithms[21, 29]. Our research aligns with this perspective, and in this work, we introduce35
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a method called Generative Evolutionary Optimization (GEO). GEO arises from the cooperative36

interaction between two linear complexity algorithms, ES and GSN. Furthermore, ES contributes to37

the stability of the surrogate network training for GSN while GSN enhances the mutation efficiency38

of ES, leading to their complementary functioning.39

In this study, we designed an algorithm to accomplish five goals: optimizing non-convex, high-40

dimensional, multi-objective, and stochastic target functions, while preserving O(N) complexity.41

In the following chapters, we explore GEO’s design and the methodologies used in addressing its most42

significant challenge: training instability. The Related works chapter discusses two prior works, Local43

Generative Surrogate Optimization (L-GSO) [21] and Evolutionary Generative Adversarial Network44

(EGAN) [22], which serve as the foundation for GEO’s core concepts. In addition, emphasis on the45

importance of the generator network is also discussed. The Methods chapter, we combines ideas from46

L-GSO and EGAN studies to clarify the aspects of GSN that require improvement and how they can47

be addressed. The Results chapter presents the findings from the test function experiments. Because48

GEO is a combination of ES and GSN, we assume a close relationship with ES, and therefore compare49

it against non-convex test functions commonly used in ES, such as ZDT [42], Styblinski-Tang [41],50

Rosenbrock [39, 40], Rastrigin [35–37], and Ackley [38] test functions. The experimental results51

show that GEO outperforms traditional ES and GSN as dimensionality increases, thus enabling52

optimizations of approximately 10,000 dimensions.53

As mentioned earlier, we excluded non-linear algorithms from the comparison because our aim is to54

maintain O(N) complexity. This makes a direct comparison with Bayesian optimization, another55

significant branch of black-box optimization, difficult. Consequently, the issue is revisited in the56

Conclusion chapter.57

2 Related works58

Before delving into the structure of GEO, we will first introduce some related works, focusing59

on GSN and GAN algorithms. By examining earlier optimization approaches that utilized neural60

networks, we can gain valuable insights. As GEO is inspired by an L-GSO study (a type of GSN) and61

an EGAN study (a type of GAN), we will provide a brief overview of both algorithms, discussing62

their strengths and weaknesses for a better understanding.63

2.1 L-GSO64

Local Generative Surrogate Optimization (L-GSO) is a type of GSN that approaches the problem65

using a local surrogate network and a local gradient. To better understand this, let’s think of a situation66

where we need to optimize a target function F (x) within an optimization space x ∈ X and find the67

best point x. If we identify x0 as the optimal point at some stage, L-GSO samples the local space68

around x0 and calculates pairs [x′, F (x′)], where x′ = x0 + ϵ and |ϵ| << 1. It is important that ϵ is69

sufficiently small so that we only sample within a space close to x0. From this data, L-GSO trains70

a surrogate network, C, which acts as a local surrogate model with information around x0 and can71

generate a local gradient. After training the surrogate network, the generator network G is trained72

using C. Let p = C(G(z)), where x = G(z) and z is an input seed. G is trained with a loss function73

∓p that either increases or decreases the prediction p. Finally, the trained generator suggests a search74

point x, and the iterative process continues.75

This way, G is trained to be a generator that produces optimal (or near-optimal) points x, assuming76

that C simulates the local distribution accurately enough. Meanwhile, as the data points are focused77

within a localized area, the surrogate network can benefit from a stable training data region, which78

enables accurate gradient prediction. Another advantage is that the data information is retained in the79

surrogate network C, allowing lesser amount of data generation required when predicting the local80

gradient at new points.81

Although the approach of utilizing GSNs in L-GSO is quite innovative, it does have some limitations.82

The primary constraint is that it is only applicable to single-objective function problems. The optimal83

point x0 mentioned earlier is just a single point. However, if the optimal points (the Pareto front)84

consist of multiple points, the distance between these optimal points and the data sampling space85

(which the surrogate network must learn) will no longer be local. This undermines the fundamental86

premise of L-GSO. Hence, the challenge is that the optimal point of an n-objective function features87
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a Pareto front in n − 1 dimensions. For example, in a two-objective function, the Pareto front88

forms a line, typically containing infinitely many non-dominated points that are distant from one89

another. Consequently, the locality of L-GSO becomes unsuitable for n-objective problems that90

require non-dominated sorting [58, 59].91

The second problem with this algorithm is that its performance may be significantly influenced by92

the interaction between the hyperparameters and the test function. Specifically, the combination93

of the sampling hypercube size ϵ and the test function characteristics can significantly impact the94

algorithm’s optimization performance. For instance, if the test function is convex, estimating the95

local gradient with any ϵ is generally not a problem; however, this can often be challenging for96

non-convex functions. Around the local optimum, if ϵ is smaller than the size of the localized well,97

the algorithm can hardly escape the local optimum. Conversely, if ϵ is too large, the local gradient98

cannot be accurately estimated. The interplay among the type of test function, the location of the99

local optimum point, and ϵ is substantial, making it difficult to determine the appropriate value of ϵ100

for the test function in advance; thus posing a disadvantage for black-box problems.101

Conclusively, L-GSO effectively handles high-dimensional spaces using surrogate networks and102

improves the stability of surrogate network training through locality. However, it is clear that non-103

dominated sorting for multi-objective problems is not feasible, and the relationship between the104

hyperparameter ϵ and the test function might be too strong.105

2.2 EGAN106

The Evolutionary Generative Adversarial Network (EGAN) integrates ES to improve GAN perfor-107

mance. Although this method does not focus on black-box optimization, its algorithmic structure is108

similar to GEO.109

Usually, GANs are trained with one generator and one discriminator (critic) network, which alternate.110

In EGAN, a scenario is considered where there is only one discriminator network; however, with111

multiple generator networks. The main idea of this study is to rank the generator networks using an112

evolutionary strategy and keep only the suitable networks. By using the prediction of discriminator113

C as the fitness score, the generators G that can increase C(G(z)) at each iteration survive. This114

process incorporates ES into the GAN, and it has been established that the introduction of ES reduces115

mode collapsing, which is a common issue in GANs.116

Although EGAN is not directly related to optimization problems, we can gain valuable insights into117

improving GSN based on EGAN’s concepts. Because the generator and surrogate network structure118

in GSN is similar to the generator and discriminator network structure in GAN, we can adopt EGAN’s119

strategy in GSN. This forms the core basis of our research, GEO. However, the main difference120

between the two algorithms is that GAN operates without evolution, whereas GSN typically diverges121

and fails when it consists only of a single generator and a surrogate network. In the Methods section,122

we discuss how the working mechanism of GSN can change owing to the introduction of ES.123

2.3 GLOnet124

Global Optimization of dielectric metasurfaces using a physics-driven neural network (GLOnet) [23–125

27] is a study to optimize devices in electromagnetic systems. The study investigates the optimization126

of device structures within a specific electromagnetic system using neural network techniques.127

In this study, x serves as device design parameters, and the goal is to find the optimal value of x that128

maximizes the objective value F (x) of the simulator F . The algorithm finds x = G(z), where z is129

the input seed, and the generator G is trained by backpropagating the gradient from the simulator.130

Technically, this is not a black-box optimization, as it receives the analytic gradient information131

directly from the simulator. Therefore, a surrogate network is not required.132

An important implication of the GLOnet study is the necessity for a deep generator network. One133

might assume that since we have a gradient, we can optimize x through direct gradient descent.134

However, this study demonstrates that employing a generator network is more advantageous than135

updating x directly without a generator. In fact, this also holds true for GSN studies. The importance136

of deep generators is not emphasized in many GSN studies; however, it can be argued that it is137

omitted because they are inspired by GANs, and the significance of a deep generator is implicitly138

understood.139
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Figure 1: a) Structural differences between GAN and GSN. b) A schematic figure illustrating the
training instability of GSN. The suboptimal point does not converge towards the near-optimal region,
but rather diverges in the opposite direction. c) The vicious cycle between the generator and critic,
which is the origin of divergence.

3 Methods140

In the previous chapters, we examined L-GSO, EGAN, and GLOnet. Our goal is to adopt the141

surrogate network training strategy of L-GSO while enabling multi-objective optimization, which142

cannot be implemented in the local surrogate model, and also reducing the excessive dependency143

between the hyperparameters and the test functions. Meanwhile, we adopt the evolution strategy of144

EGAN; however, unlike GAN, GSN has an inherently unstable structure; hence, we need to consider145

how to address this instability. Additionally, EGAN assumes a single-objective fitness score; hence,146

we need to modify it to work with multi-objective functions.147

3.1 A training instability148

First, let’s explain why surrogate training in GSNs is particularly unstable. The structure of GSNs is149

almost identical to GANs, hence it might seem that, just as GANs are highly successful in the fake150

data generation task, GSNs should also be successful. However, in practice, when we run a GSN151

model with just one generator network and one surrogate network, without employing any special152

tricks, we encounter a situation where they diverge to infinity almost immediately after starting, in153

most test cases. This is neither the desired result nor can we consider it being optimized. This is why154

GSN studies incorporate some kind of special trick.155

In addition, the crucial difference between GANs and GSNs lies in the presence or absence of true156

data. GANs rely on fixed true data; for instance, if the task is to generate images of human faces,157

a large dataset of real human face photos is required. Discriminator networks possess a significant158

amount of fixed true data initially and learn additional fake data during training, providing a stable159

training region. Conversely, GSNs, which are used for black-box optimization, do not have true data.160

Consequently, we must start from scratch, with no prior information. The first Pareto front points that161

have been explored, and the surrounding points, might correspond to true data. However, the amount162

of data near the first Pareto front is insufficient because the first Pareto front in the objective problem163

is constantly changing and data is collected on-the-fly. To draw an analogy, the GAN represents a164

situation in which the target is anchored by true data, whereas the GSN represents a situation where165

the target is floating without an anchor.166

This is why the critic network (discriminator network) in GANs and the critic network (surrogate167

network) in GSNs have similar learning structures; however, they yield completely different results.168

To summarize the erroneous learning process of GSN’s critic network, we describe its workings as169

follows:170

1. The critic network begins training with insufficient data.171
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2. The training data has minimal information about the Pareto front, which prevents the network172

from learning anything meaningful.173

3. As the critic network is trained improperly, the gradient it provides fails to guide x towards174

the Pareto front.175

4. The generator, using incorrect gradient information, produces a point unrelated to the Pareto176

front when suggesting the next x.177

5. The critic network is then retrained using the poorly generated x.178

This leads to a vicious cycle between the generator and the critic network, a situation that does not179

occur in GANs owing to the presence of true data.180

One solution to this problem is to create a data region that corresponds to the true data region found181

in GANs. In optimization problems, the most crucial information is concentrated at the first Pareto182

front. Hence, it is necessary to sample the area around the first Pareto front and use it as training183

data for the critic network. L-GSO addresses this issue by intensively sampling only the local region184

around x0, representing the zero-dimensional first Pareto front, and supplying that data to the critic185

network. However, as mentioned in the related works section, the local sampling method cannot be186

applied to n-objective functions with n > 1. Consequently, we need an approach that is similar to the187

local sampling method and can also accommodate the multi-objective target functions.188

Hence, we suggest using ES. The idea is to keep generators G that produce x values close to the first189

Pareto front and discard those that are farther away. By selecting G through a non-dominated sorting190

process, we ensure that only [x,G] pairs generating search points near the Pareto front survive at191

each iteration. Even if the critic network initially learns the incorrect region, as iterations progress,192

the probability of generating a search point x near the Pareto front increases. Eventually, the critic193

network will have a stable training data region near the Pareto front; thus breaking the vicious cycle194

and achieving our desired outcome: stability in critic network training for multi-objective targets.195

GEO was developed with the notion that ES complements GSN; however, this idea can also be196

reversed. As previously mentioned, from the ES perspective, the algorithm consists of mutation197

and (non-dominated) sorting based on fitness scores, with generator networks being the targets of198

mutation. In this case, mutation occurs through backpropagation from the critic network, which199

can be more efficient because the neural network has learned information about the Pareto front.200

Therefore, from the ES perspective, GSN serves as an auxiliary means to enhance the mutation201

efficiency of ES.202

Conclusively, GEO functions in such a way that GSN complements ES, and ES complements GSN.203

By doing so, it integrates the strengths of both GSN and ES while mitigating their weaknesses,204

particularly effectively addressing the instability problem of GSN. Moreover, since both GSN and ES205

are O(N) algorithms, GEO is able to maintain O(N) complexity.206

However, it is important to emphasize that both GSN and ES are exploitation-oriented algorithms207

in terms of exploit and explore strategies. Bayesian optimization, another significant branch of208

black-box optimization, offers a powerful feature by estimating uncertainty and incorporating it into209

the next step search. From that perspective, both ES and GSN lack the uncertainty estimation aspect,210

and even with the addition of supplementary exploration strategies, they may not reach the same211

level of robust exploration performance as the Bayesian optimization. Consequently, GEO, similar212

to GSN and ES, cannot guarantee global optimization even though the number of function calls213

N approaches infinity. Nevertheless, GSN, ES, and GEO are free from the non-linear complexity214

problem that Bayesian optimization encounters. Hence, it is clear that Bayesian optimization and215

GEO have distinctly different optimization goals and conditions in which they are best applied.216

3.2 Operation steps217

The following are the operation sequences for GEO in the context of n-objective black-box opti-218

mization F = (f1, f2, ..., fi, ..., fn). G: generator network, Ci: ith Critic network, z: input seed of219

generator, x: search point of search space X .220

Pretraining steps:221

1. Prepare a set of generators and n critic networks. Each critic network predicts one corre-222

sponding objective. The networks have not been trained yet.223
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Figure 2: a) The overall algorithm of GEO. b) ES contributes to GSN by ensuring a stable training
region, while GSN aids ES in carrying out efficient mutations. This creates a virtuous cycle where
both algorithms complement each other’s weaknesses.

2. Prepare the [x, F (x)] training set for initializing the critic network. The Latin Hypercube224

method[52] is generally recommended as the initial sampling method for search point x.225

However, the generator network can also be initialized using weight initialization techniques226

for neural networks, such as Xavier or He initialization.227

3. Store the initialized [x, F (x)] in buffer memory, which has a maximum length.228

4. Pretrain the critic network using the data stored in buffer memory. For example, Ci is trained229

with [x, fi(x)] pairs.230

Main iteration steps:231

1. Randomly sample a few generators from the generator set (evolution pool).232

2. Train the generators through backpropagation with the critic network Ci. The loss function233

is −Ci(G(z)) for the maximization problem. The training of the generators also serves as234

mutation from the ES perspective. Because there are n critic networks, the single-objective235

mutation is repeated n times; thus implying that for each sampled G, we make n mutants.236

3. Generate new x′ = G′(z) points from the mutated generators G′.237

4. Evaluate F (x′) from the new x′ and store the pair [x′, F (x′)] in the buffer memory. If the238

buffer memory’s maximum length is exceeded, delete the previously stored data.239

5. Train the critic networks using the data in the buffer memory.240

6. Save the [G′, F (x′)] pair back to the generator set. F (x′) corresponds to the multi-objective241

fitness score.242

7. The number of generators in the evolution pool has increased with the newly stored mutated243

G′. Perform a non-dominated sort on them based on their fitness scores. Predetermine a244

maximum number for the generator set and retain only the generators with high fitness (top245

Pareto-front data).246

8. Repeat the iteration.247

The configuration of the critic network might have been designed to allow a single critic network248

to predict multiple target objectives. However, we separated the critic network independently for249

each objective to minimize correlation, under the assumption that it is more common for black-box250

problems to have independent objective targets. By dividing the critic network into n parts and251

applying backpropagation separately, it behaves as if the single-objective problem is being run n252

times independently. Nevertheless, it can be used for multi-objective optimization because the results253

are combined and ranked using non-dominated sorting.254

In addition, if the target function is stochastic, age evolution can be incorporated into the non-255

dominated sorting step. In age evolution, we can store the time order information of generators256

together and remove a few of the oldest generators before performing non-dominated sorting.257
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Figure 3: a) Comparison of GEO with baseline algorithms such as BO (Bayesian Optimization), GA
(Genetic Algorithm), CMA-ES, and GEO with a single-layer generator. b) Comparison with LSM, a
modified version of L-GSO.

The provided explanation outlines the basic algorithmic structure of GEO. As described, the operation258

of GEO is achieved when both the ES-direction cycle and the GSN-direction cycle work together259

simultaneously.260

4 Results261

Previously, we mentioned that L-GSO has a particularly strong correlation with the hyperparameter262

set and test function. However, all black-box optimization problems exhibit a significant correlation263

between the algorithm type, hyperparameter set, and target function, thus leading to entirely different264

results with even slight changes. Comparing the performance of optimization algorithms can be265

challenging precisely because of this reason. It is impossible to prove which hyperparameter set266

is optimal for a specific test function. Even if the optimal hyperparameter set for a particular test267

function is found through repeated experimentation, it would constitute overfitting to that specific test268

function and would no longer be considered black-box optimization. Therefore, a straightforward269

performance comparison between algorithms for the final results is susceptible to cherry-picking270

problems. Therefore, this study focuses on describing how the trend of optimization performance271

depends on the dimension, rather than simply comparing the values of the final results.272

In the single-objective function, it is crucial to compare GEO with L-GSO. To ensure a fair comparison,273

we matched L-GSO’s network configuration with GEO’s, referring to it as Local Surrogate Model274

(LSM). Examining the performance changes of LSM and GEO as dimensions increase, LSM is more275

efficient at smaller dimensions. However, its performance declines significantly as the dimensions276

grow larger. This situation is also evident in classical ES and Bayesian optimization (based on277

Gaussian process). Although GEO is less efficient at lower dimensions, its efficiency increases as the278

dimensions grow, outperforming the other methods.279

In the related works chapter, we discussed the importance of deep generators. To investigate this280

further, we conducted an experiment with GEO using a single-layer FC network as the generator.281

(However, the critic network remains a deep neural network.) The experiment demonstrated that the282

shallow layer GEO experienced a significant decrease in optimization performance.283
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Figure 4: a) Optimization results after 100,000 function calls in two-objective function with
8192 dimensions. To investigate the influence of the initial condition, we conducted experiments
differentiating between Latin Hyper Cube (LHC) initialization and point initialization (I) that is the
same as the GEO neural network initial state. The results show that the influence of the initial states
is insignificant. b) Optimization results in a stochastic environment with random noise added to the
ZDT function, after 100,000 function calls in 8192 dimensions.

We also conducted high-dimensional experiments in multi-objective functions. According to the284

experimental results, as the dimension increases, the performance of the comparison group declines285

rapidly, whereas the performance of GEO is relatively well maintained. By the time it reaches 8192286

dimensions, there is a significant difference in the final results. The comparison group tends to get287

trapped in local optima easily; however, GEO manages to escape local optima and makes considerable288

progress.289

However, a limitation of GEO can be identified in one of the experimental results. The ZDT2 function290

has a concave Pareto-front shape. In this case, although GEO succeeds in optimization, it fails to find291

the entire shape of the Pareto-front and tends to collapse toward one side. We also experimented the292

stochastic functions by adding normal random noise to the ZDT test functions. The results for the293

stochastic multi-objective functions exhibit similar characteristics. Here, the performance of GEO294

appears to be better compared to the baseline methods; however, it also shows a similar tendency295

to collapse toward one side while optimizing the ZDT2 function. In the case of ZDT1 and ZDT3,296

although some lines of the Pareto-front are found, the collapsing tendency is stronger compared to297

non-stochastic functions.298

Summarily, as we intended, GEO successfully overcomes the difficulties of critic network training299

in GSN and demonstrates stable performance. Because it does not assume locality, it shows excel-300

lent performance in multi-objective functions and operates effectively in stochastic environments.301
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Figure 5: Changes in the optimization results of each algorithm as the dimension increases, using
the ZDT3 test function after 100,000 function calls.

Although in cases with low dimensions, GEO’s performance is lower compared to traditional algo-302

rithms, possibly due to too large neural network size we used; however, as the number of dimensions303

increases, it shows better performance than other algorithms.304

5 Conclusion305

We can observe that GEO successfully accomplishes our five primary objectives: optimizing non-306

convex, high-dimensional, multi-objective, and stochastic target functions while maintaining O(N)307

complexity.308

In the Related works chapter, we examined insights into L-GSO and EGAN and combined them309

to create the foundational concept behind GEO. GSN has problems with unstable critic network310

training, and to address this, methods that focus on sampling around optimal values can be considered.311

Although L-GSO employs such an approach, introducing locality to implement it limits the algorithm312

to single-objective functions and results in excessive sensitivity to hyperparameters. Hence, we313

introduced ES combination strategy to create a stable training data region near the Pareto-front. This314

method can be used for multi-objective problems and also resolves the hyperparameter sensitivity315

problem because it does not assume a separate local ϵ size. Moreover, GSN and ES work comple-316

mentarily, enhancing each other’s strengths and compensating for weaknesses, leading to improved317

efficiency.318

As indicated in the Results chapter, GEO appears to be more effective in high dimensions rather319

than low dimensions. For instance, ES is an algorithm that is advantageous in low dimensions when320

a large number of function calls is available, whereas Bayesian optimization is favorable in low321

dimensions with limited number of function calls. Conversely, GEO might have an advantage when322

many function calls are possible in high dimensions. This observation suggests that GEO has the323

potential to address optimization areas not covered by existing algorithms.324

Because GEO is specialized for high-dimensional non-convex functions, it is worth considering its325

potential applications in other areas of machine learning. For example, some research trains reinforce-326

ment learning (RL) neural networks through black-box optimization [60]. As these techniques require327

high-dimensional black-box optimization, GEO, which specializes in high-dimensional optimization,328

could be a viable option.329

As previously mentioned in the Results section, one difficulty in black-box optimization research330

could be the variability in the performance of algorithms. The performance can vary greatly depending331

on the combination of algorithm type, hyperparameters, and test function type. A certain algorithm332

and hyperparameter set might be highly effective when targeting a specific test function; however,333

it may yield poor results for a different test function. Hence, this can lead to biased preparation334

toward specific test functions, making it easier to cherry-pick results. In the worst-case scenario, one335

could develop an algorithm specialized for a target test function and fine-tune the algorithm through336

repeated experiments to obtain good results. Consequently, these results would not be considered337

genuine black-box optimization outcomes because they utilize prior knowledge gained through the338

iterative experiments. Therefore, it is challenging to determine the state-of-the-art (SOTA) status in339

black-box optimization research. Hence, although GEO demonstrates outstanding performance in340

this study, further research is necessary to determine its performance across various environments341

and to identify its limitations.342
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