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ABSTRACT

Unsupervised learning of vision transformers seeks to pretrain an encoder via pre-
text tasks without labels. Among them is the Masked Image Modeling (MIM)
aligned with pretraining of language transformers by predicting masked patches
as a pretext task. A criterion in unsupervised pretraining is the pretext task need-
s to be sufficiently hard to prevent the transformer encoder from learning trivial
low-level features not generalizable well to downstream tasks. For this purpose,
we propose an Adversarial Positional Embedding (AdPE) approach – It distorts
the local visual structures by perturbing the position encodings so that the learned
transformer cannot simply use the locally correlated patches to predict the miss-
ing ones. We hypothesize that it forces the transformer encoder to learn more
discriminative features in a global context with stronger generalizability to down-
stream tasks. We will consider both absolute and relative positional encodings,
where adversarial positions can be imposed both in the embedding mode and the
coordinate mode. We will also present a new MAE+ baseline that brings the per-
formance of the MIM pretraining to a new level with the AdPE. The experiments
demonstrate that our approach can improve the fine-tuning accuracy of MAE by
0.8% and 0.4% over 1600 epochs of pretraining ViT-B and ViT-L on Imagenet1K.
For the transfer learning task, it outperforms the MAE with the ViT-B backbone
by 2.6% in mIoU on ADE20K, and by 3.2% in APbbox and 1.6% in APmask on
COCO, respectively. These results are obtained with the AdPE being a pure MIM
approach that does not use any extra models or external datasets for pretraining.

1 INTRODUCTION

Pretraining vision transformers (Dosovitskiy et al., 2020) effectively has received many attentions
due to the potential of unifying transformer architectures across modalities. Among them is the
Masked Image Modeling (MIM) (Bao et al., 2021)(He et al., 2022) that inherits the same idea in
Bert pretraining of language transformers (Devlin et al., 2018). These MIM approaches seek to
predict the masked patches as a pretext task to pretrain vision transformers.

A critical principle in unsupervised pretraining of deep networks is the pretext task ought to be
sufficiently hard to avoid trivial solutions only focusing on low-level features to bypass the task
(Robinson et al., 2021). For this purpose, adversarial pretraining of the CNNs has demonstrat-
ed tremendous successes in the context of contrastive learning (Hu et al., 2021; Kim et al., 2020;
Robinson et al., 2021). For example, Hu et al. (2021) learn to generate hard negatives, forcing the
network encoder to learn more discriminative features to distinguish hard negatives from their posi-
tive counterparts. By adopting harder pretext tasks (Robinson et al., 2021), the results showcase the
adversarial pretraining is able to prevent the deep network from learning trivial low-level features
with poor generalizability to downstream tasks.

Along this line of research, we aspire to develop an adversarial approach to effectively pretrain trans-
formers in a MIM manner. While the adversarial contrastive learning seeks to learn hard negatives
(Hu et al., 2021; Kalantidis et al., 2020; Robinson et al., 2020), no such adversaries exist in the
MIM-based pretraining. Thus, we first need to answer the question of what to choose as the ad-
versary in the MIM-pretrained transformer. In this paper, we propose that perturbing the positional
encodings is a natural choice to adversarially pretrain the vision transformer. It spatially distorts
the local visual structures through perturbed positional encodings, and thus prevents the transformer
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from learning trivial features by exploiting the strong correlations between masked patches and their
local unmasked peers.

In this way, we hypothesize the transformer is adversarially pretrained to focus on global contexts
that are more useful for the downstream tasks to predict masked patches. We will consider adversar-
ial perturbations applied in the positional embedding space additively, or on the image coordinates
through a differentiable positional embedding/indexing function. Both absolute (Shaw et al., 2018)
and relative positional embeddings (Wu et al., 2021) will be considered for adversarial pretraining
of transformers.

In addition, we will present a new MAE+ baseline by seamlessly fitting multi-crop tokenization
to MAE (He et al., 2022). While multi-crop augmentation has been successfully applied in the
contrastive pretraining of both CNNs (Caron et al., 2020) and transformers (Caron et al., 2021),
we will demonstrate how this simple mechanism can be delicately designed with a lighter-weighted
decoder having fewer input tokens than the existing MIM baseline (He et al., 2022). It allows to
strike a better trade-off between the lighter decoder and more crops of tokenization to improve the
MIM-pretraining. We will demonstrate this results in a more efficient MAE+ baseline reaching
superior performances alongside the proposed Adversarial Positional Embeddings (AdPE).

The remainder of this paper is organized as follows. We will review the related works in Section 2.
Then we will revisit the key idea behind the MIM and present a new MAE+ baseline in Section 3. We
will elaborate on the proposed Adversarial Positional Embeddings (AdPE) in Section 4. Experiment
results will be reported in Section 5, and we will conclude the paper in Section 6.

2 RELATED WORKS

We will review the works that are closely related with the proposed method from three aspects –
MIM-based pretraining of transformers, absolute and relative positional encodings, and adversarial
pretraining of deep networks.

2.1 MASKED IMAGE MODELING AND PRETRAINING VISION TRANSFORMERS

While it is natural to extend the contrastive learning approaches that achieve tremendous successes
in pretraining the CNNs to pretrain the Vision Transformers (ViTs), Masked Image Modeling (MIM)
(Bao et al., 2021)(He et al., 2022) provides an alternative way inspired by the success in the NLP
domain (Devlin et al., 2018). This is expected to unify the transformer pretraining in computer
vision, NLP and multmodality domains. The idea is simple – it aims to unsupervisedly train a
transformer encoder by masking out some tokens and reconstructing them at the decoder end. Such
a pretext task aims to learn a useful transformer backbone as its encoder to learn representations that
are useful to predict the masked contents.

It is demonstrated that by masking out a large portion of input images (e.g., 75% masked out (He
et al., 2022)), a hard MIM task is formulated that forces the encoder to learn useful clues in the
long-range contexts to predict the missing patches. Masked tokens will be added either before (Bao
et al., 2021) or after (He et al., 2022) the encoder. By only feeding the unmasked tokens through
the encoder, the Masked Auto-Encoder (MAE) is able to reduce the computing costs for its encoder
during the pretraining (He et al., 2022). However, it still needs to feed the masked tokens through
the decoder to predict the missing patches.

2.2 POSITIONAL ENCODINGS

The self-attention mechanism is unaware of position information by itself, and Positional Encodings
(PEs) are thus required to represent the knowledge of where a token is in a sentence or in an image.
Sinusoid embedding of positions was first proposed in the seminal paper (Vaswani et al., 2017).
It transforms a hard-coded position into a Fourier basis through sine/cosine functions at different
frequencies. Such an Absolute PE (APE) is variant when the sequence is shifted.

Alternatively, Relative PEs (RPEs) (Shaw et al., 2018; Dai et al., 2019; Ramachandran et al., 2019)
aim to encode the positions between tokens based on their relative relations, such as their relative
distances and positions (Wu et al., 2021). The resultant positional encodings are invariant when
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the sequence or the image is shifted. Various RPEs have been proposed. We will revisit them in
Section 4.2.1 before discussing how adversaries can be imposed on the RPEs.

2.3 ADVERSARIAL PRETRAINING

While adversarial training has been intensively studied through adversarial examples (Szegedy et al.,
2013)(Goodfellow et al., 2014)(Madry et al., 2017), adversarial pretraining of deep networks, es-
pecially CNNs, is receiving lots of attentions recently in the context of contrastive learning (Kim
et al., 2020; Robinson et al., 2021). One of representative works in this line of research is to treat
negative samples as adversarially learnable by maximizing instead of minimizing the InfoNCE loss
(Hu et al., 2021). Hard negatives are thus generated directly, where they are continuously being
pushed towards their positive counterparts so that more discriminative features must be learned to
distinguish between positives and negatives for a query. The idea was also extended to incorpo-
rate learnable positives in a cooperative-adversarial fashion together with learnable negatives (Wang
et al., 2022). All these methods focus on the adversarial pretraining for contrastive learning.

In this paper, we seek to adversarially pretrain vision transformers in the MIM fashion. In contrast
to obtaining hard negatives in (Hu et al., 2021; Kalantidis et al., 2020; Robinson et al., 2020), we
will impose adversarial perturbations on positional embeddings to distort the local visual structures
spatially so that the pretrained transformers are forced to explore high-level features in long-range
contexts to predict missing patches, instead of simply cheating on the strongly correlated patches in
local neighborhood.

3 MASKED IMAGE MODELING AND A NEW MAE+ BASELINE

In this section, first we will briefly revisit the Masked Image Modeling (MIM)-based approaches
for pretraining vision transformers. Then we will present a new MIM-pretraining baseline, MAE+
based on multi-crop tokenization that seamlessly fits the state-of-the-art MAE (He et al., 2022),
boosting performances with less computing cost. The MAE+ will be used as the new baseline to
showcase the greater potential of the MIM-pretraining.

3.1 MASKED IMAGE MODELING AND MASKED AUTO-ENCODERS

The Masked Image Modeling (MIM)-based methods pretrain vision transformers through an
encoder-decoder architecture. Given an image, it is flattened to a sequence of tokens corresponding
to a group of non-overlapping patches. A large portion of patch tokens in the input sequence will
be masked out, being replaced with a mask token before feeding into the encoder (Bao et al., 2021).
Alternatively, only unmasked patch tokens will be input to the encoder (He et al., 2022), and a shared
learnable mask token will be used to represent each masked patch before feeding all tokens into the
decoder to predict the missing patches.

The decoder can be composed of several layers of transformers (He et al., 2022), or simply consist
of a simple fully-connected layer (Xie et al., 2022). The encoder is a backbone transformer that
we wish to pretrain and use later in the downstream tasks. A mean-squared reconstruction error
over masked patches is minimized to pre-train both the encoder and the decoder end-to-end through
back-propagation in the Masked Auto-Encoder (MAE) architecture (He et al., 2022).

3.2 MAE+: A NEW BASELINE FOR MIM-PRETRAINING OF VISION TRANSFORMERS

Typically, in a MIM-based approach (Bao et al., 2021; He et al., 2022), an input image of resolution
224×224 is divided into 14×14 tokens, each of which correspondences to a non-overlapping patch
of 16 × 16. In the MAE (He et al., 2022), 75% tokens are masked out, leaving only 49 unmasked
tokens that will be fed through an ViT encoder. After that, a group of learnable masked tokens
will be concatenated with the unmasked tokens output from the encoder, forming a total of 196
tokens which will then go through several layers of transformer decoders to reconstruct the patches
of masked tokens.

Such a MAE architecture has some drawbacks preventing it from releasing its full potentials. First,
although only a much smaller number of 49 unmasked tokens are fed into the encoder, the decoder
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still has a full number of 196 tokens as input. The computational complexity squared in the number
of the decoder tokens still incurs heavy costs to pretrain a ViT network. Second, Although multi-crop
augmentation has been studied in both CNNs (Caron et al., 2020) and vision transformers (Caron
et al., 2021) for contrastive learning, a delicate mechanism tailored to the masked image modeling
has yet to be developed considering both efficiency and accuracy.

To this end, we propose a new MIM baseline named MAE+, and show that it can seamlessly fit
the MIM-pretraining of transformers. Particularly, we randomly crop a full-sized image by half to a
small scale of 112×112, but still tokenize it with non-overlapping patches of 16×16. This will result
in exactly 49(= 7 × 7) tokens, the same number of unmasked tokens fed into the MAE encoder.
Then we randomly mask out 75% tokens. Unlike the MAE, we allow all these 49 tokens to feed
through the encoder, no matter if they are masked or not, which does not incur more computational
burden than the MAE encoder. Now, the decoder will only take these 49 tokens as input. In contrast,
the MAE decoder has a total of 196 masked and unmasked tokens as its input on a full-sized image,
whose computing complexity is up to 16 times that of a cropped one.

Figure 1: The figure illustrates the top-1 accuracy on Ima-
genet1K achieved by MAE and MAE+ with the ViT-B back-
bone. It compares the accuracy against the GPU hours (on
a single GPU server with eight V100 Nvidia cards) used for
network pretraining. The k ∗ 112 in the parenthesis denotes
k of 112 ∗ 112 sub-images are cropped to tokenize an input
image. Note that the pretrained backbone is fine-tuned on
the original 224 ∗ 224 images without multi-crop tokeniza-
tion following the evaluation protocol (He et al., 2022).

The saved computational cost in the
decoder allows us to have multiple
crops without increasing the comput-
ing overhead. One can even adopt
a simple fully-connected layer as the
decoder as in the SimMIM (Xie et al.,
2022). More crops of tokenization
can yield better performances, and a
delicate trade-off can be reached be-
tween the lower complexity of the
decoder and more tokenized crops
per image to pretrain a vision trans-
former to its great potential. Once
pretrained, the transformer encoder is
used conventionally on full-sized im-
ages as a backbone in downstream
tasks.

Figure 1 compares the top-1 accu-
racy achieved by MAE and MAE+
with the ViT-B backbone by pre-
training on Imagenet1k dataset. The
same encoder and decoder transform-
ers are adapted except the MAE+ us-
es the multi-crop tokenization. The
same evaluation protocol as in MAE
(He et al., 2022) is adopted by fine-
tuning the pretrained encoder with

Imagenet1K labels on the original 224 ∗ 224 images without multi-crop tokenization. The results
show that MAE+ can remarkably improve the accuracy while reducing the computing cost. For
example, with half of GPU hours, even a single crop MAE+ (1*112) can achieve the same top-1
accuracy as the MAE pretrained for 1600 epochs. With more crops k, more pretraining cost can
be saved with even higher accuracy. The details about the experiment setting on the MAE+ are
discussed in Appendix A. In the following, we will adopt MAE+ with four crops (4 ∗ 112) as the
baseline model for the proposed approach.

4 ADVERSARIAL POSITIONAL EMBEDDINGS

In this section, we will present the proposed Adversarial Positional Embeddings (AdPE). On a high
level, it seeks to make it harder to reconstruct the masked tokens. In particular, the AdPE will distort
the local spatial structures, which will prevent the MIM from merely leveraging the local correlations
between tokens to reconstruct those masked ones. In this way, the learned representation can capture
more useful high-level features in global contexts.
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Adversarial perturbations will be added onto the positional embeddings in two ways: in the embed-
ding space (i.e., embedding mode) and in the spatial coordinates (i.e., coordinate mode). We will
consider both absolute positional embeddings and relative positional embeddings for the AdPE.

4.1 ADVERSARIAL ABSOLUTE POSITIONAL EMBEDDINGS

Consider a token representation ti ∈ Rd at an image location (xi, yi). Before it is fed through a
transformer, a positional encoding pxi,yi of its coordinates is added onto ti to give rise to a resultant
position-aware token.

We seek to distort the local structures represented by the positional embeddings, so that the MIM
cannot merely explore the patch-level correlations in a local affinity to predict the masked tokens.
For this, there are two different ways to add adversarial perturbations to the positional information.

4.1.1 EMBEDDING MODE ADVERSARIES

The most straight way is to directly add an adversarial perturbation a ∈ Rd onto the positional
embedding pxi,yi . This results in a perturbed positional embedding pxi,yi + a being fed into a
transformer layer. Leaving all the trainable network weights in θ, the MIM objective becomes

min
θ

max
‖a‖q≤ε

L({pxi,yi + a|i ∈M};θ)

whereL is the MAE loss that minimizes the mean squared reconstruction errors over masked tokens,
and ‖a‖q ≤ ε is the `q-norm constraint on the magnitude of the perturbation. The adversarial
perturbations are only added to the set M of masked tokens, and better performances have been
observed by sharing adversaries a over masked tokens. To solve this constrained minimax problem,
we will adopt the following two strategies throughout the paper.

Parallel mode updates. We adopt the stochastic gradient to update θ and a. However, unlike the
other adversarial approach (Szegedy et al., 2013) that sequentially update two adversarial players,
these two parts are simultaneously updated via negative gradient (i.e., minimizing the loss over θ)
and positive gradient (i.e., maximizing the loss over a). In other words, for each iteration, we only
feed a sample forward and backward once through the network to update θ and a in parallel, without
alternating between them 1. We do not find any significant difference between sequential and parallel
updates in performance but the latter can save up to half of the computing time per iteration.

Projected gradient descent. The `q-norm constraint can be enforced by the Projected Gradient
Descent (PGD) iteratively 2. Once a is updated each time, it is immediately projected onto the
`q-ball with a radius of ε to meet the constraint, that is

a← ΠS(a+ α∇aL({pxi,yi + a|i ∈M};θ))

with a learning rate α, and the constraint set S = {a|‖a‖q ≤ ε}. For the `2 norm, the projection
clips the resultant perturbation to a maximum length of ε, i.e., ΠS(v) = min(ε,‖v‖2)·v

‖v‖2 . For the `∞
norm, the projection clips the resultant perturbation element-wise to a maximum absolute value of
ε, i.e., [ΠS(v)]l = min(|vl|, ε) · sign(vl).

We will adopt both strategies to update the adversarial perturbation unless stated otherwise. In
experiments, the computing overhead for the PGD-based AdPE with the parallel mode updates is
less than 1.5% compared to the MAE+ baseline.

4.1.2 COORDINATE MODE ADVERSARIES

Adding adversaries in the positional embedding space is implicit in how the underly spatial structure
is perturbed. A more direct way is to add the adversaries δ = (δx, δy) to the underlying coordinates,

1In sequential mode, each time after updating and fixing one part of parameters, one needs to feed forward
and backward an image again before the other part being updated and fixed.

2Alternatively, linearizing the loss L can lead to a direct update to a (Goodfellow et al., 2014)(Kurakin et al.,
2016). For the `2 norm, we have a = εg

‖g‖2
, and for the `∞ norm, a = εsign(g), where g = ∇aL({pxi,yi +

a}i;θ)|a=0 is the loss gradient at zero perturbation. However, the iterative update via PGD can find more
sophisticated adversarial perturbations than the direct approach (Tramèr et al., 2017).
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resulting in disturbed coordinates (xi + δx, yi + δy) and the corresponding positional embedding
pxi+δx,yi+δy .

In this case, the objective of the MIM task becomes
min
θ

max
‖δ‖q≤ε

L({pxi+δx,yi+δy |i ∈M};θ)

such that the adversaries are maximized to distort the spatial coordinates. Usually the absolute
positional embedding is a sinusoid function (Vaswani et al., 2017),

pxi+δx,yi+δy =

[
sin((xi + δx)/100002j/dmodel)
cos((xi + δx)/100002j/dmodel)

]
j

⊕
[

sin((yi + δy)/100002j/dmodel)
cos((yi + δy)/100002j/dmodel)

]
j

which is differential in δ so it can be learned via back-propagation. Here, dmodel is the dimension
compatible with the model, and ⊕ denotes the vector concatenation.

4.2 ADVERSARIAL RELATIVE POSITIONAL EMBEDDINGS

Like in absolute positional embeddings, the relative positional embeddings also have two adversarial
modes on embeddings and coordinates, respectively.

4.2.1 RELATIVE POSITIONAL ENCODINGS

Let us first revisit the relative positional encodings (Wu et al., 2021). Consider a pair of token
representations ti and tj . We have a scaled correlation matrix e whose entries eij is computed as

eij =
(tiW

Q · tjWK) + bij√
dz

where the bias is either bij = rij or bij = tiW
Q · rij with rij ∈ Rdz .

Here rij is the relative positional encoding for a token pair ti and tj , which is a learnable vector. A
softmax function is applied to transform eij into an attention matrix α, and the output token can be
written as

zi =

n∑
j=1

αij(tjW
V + rVij)

with rVij ∈ Rdz is a value embedding of relative positions between the two tokens. For simplicity,
we can use a unified representation rij to denote the positional embeddings in different cases.

An index function Ind : I × I → I is defined to map a pair of tokens (i, j) to an integer index
Ind(i, j) such that a learnable positional embedding pInd(i,j) can be retrieved from a dictionary. For
an image, its x-coordinate and y-coordinate will be mapped separately to two indices denoted by
Indx(i, j) and Indy(i, j). Then the relative positional encoding rij of the two tokens is given by

rij , p[Indx(i,j),Indy(i,j)]

with such a 2D index [Indx(i, j), Indy(i, j)] in square brackets to a dictionary of relative positional
embeddings P = {p[k,l]|k, l = −β, · · · ,+β} (see details below).

4.2.2 EMBEDDING MODE ADVERSARIES

It is straight to add adversarial perturbation to the relative positional encodings directly,
p[Indx(i,j),Indy(i,j)] + a,

where a is such an additive adversarial perturbation in the embedding mode as in the aforementioned
APE case. Now the MIM task becomes

min
θ,p

max
‖a‖q≤ε

L({p[Indx(i,j),Indy(i,j)] + a|i ∈M};θ)

where the constrained adversarial perturbation a is applied so long as the first token is masked in
a pairwise relation no matter if the second one is masked or not. While the positional embeddings
p’s are learned by minimizing the MAE loss as the other weights θ, the perturbation is learned in
an adversarial manner by maximizing the loss. Relative positional encodings are applied to various
layers of transformers. For each layer of transformer, a distinct adversarial perturbation is applied
and learned. This allows us to perturb positional structures between tokens differently to model the
transformer representation on various scales.
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4.2.3 COORDINATE MODE ADVERSARIES

Figure 2: Illustration of the integer-valued
index function g and its relaxed form g̃.

The adversarial perturbations can also be added to the
coordinates (xi, yi) and (xj , yj) directly. For exam-
ple, a piece-wise function g : R → I in (Wu et al.,
2021) has been introduced to define the index function
such that Indx(i, j) = g(xi − xj) and Indy(i, j) =
g(yi−yj), which is able to distribute various ranges of
attention by the relative distance between two tokens
i and j as illustrated in Figure 2. Then the adversari-
al perturbations δx and δy on the relative coordinates
in these two index functions give rise to an adversarial
positional embedding p[g(xi−xj+δx),g(yi−yj+δy)].

However, the gradient of the adversarial positional embedding p[g(xi−xj+δx),g(yi−yj+δy)] over the
perturbation δ is ill-defined for back-propagation for the step-wise g. A small perturbation on the
image coordinates either incurs an abrupt change in indexing g to another positional embedding,
resulting in an infinitely large gradient; or makes no change at all, leading to a vanishing gradient.

To mitigate this problem, we relax the integer index g to a real-valued function g̃. For example, by
removing the round operation, the piece-wise linear function is relaxed to

g̃(x) =

x |x| ≤ α

sign(x) ·min(β, α+
ln(|x|/α)

ln(γ/α)
(β − α)) |x| > α

Figure 2 compares the integer index g with its relaxed form g̃.

Figure 3: The bilinear interpolation of four
nearest positional embeddings via g̃.

To have differentiable positional embeddings over δ,
we view [g̃(xi − xj + δx), g̃(yi − yj + δy)] as a con-
tinuous 2D index, and apply bilinear interpolation to
continuously retrieve the positional embedding from
P = {p[k,l]|k, l = −β, · · · ,+β}, the dictionary of
all positional embeddings at integer 2D indices (see
Figure 3). Suppose the top-left corner nearest to the
2D coordinate has an integer index [k, l], where k =
bg̃(xi − xj + δx)c and l = bg̃(yi − yj + δy)c with
the floor function b·c. Then it yields the interpolated
adversarial positional embedding below under the per-
turbation δ = (δx, δy)

p[g̃(xi−xj+δx),g̃(yi−yj+δy)] = (1− wx)(1− wy)p[k,l]

+ wx(1− wy)p[k+1,l] + (1− wx)wyp[k,l+1]

+ wxwyp[k+1,l+1]

with the interpolation weights

wx = g̃(xi − xj + δx)− k,wy = g̃(yi − yj + δy)− l.

The index function g̃ and the coordinate perturbation (δx, δy) appear in the bilinear weights, where
the back-propagated errors can go through g̃ via these weights to update the perturbation.

Finally, the MIM objective with adversarial coordinates on relative positional embeddings becomes

min
θ,p

max
‖δ‖q≤ε

L({p[g̃(xi−xj+δx),g̃(yi−yj+δy)]|i ∈M};θ)

with the constrained coordinate perturbation δ.

5 EXPERIMENTS

In this section, we present the experiment results for the proposed AdPE method. We will show the
results on Imagenet1K dataset with the pretrained model, and the transfer learning results on other
datasets, as well as visualize the attention maps learned by the AdPE model.
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Table 1: Comparison of our model with other methods on ViT-B and ViT-L. We evaluate them with
the top-1 fine-tuning accuracy on ImageNet.

Method Type Extra Model Epochs ViT-B ViT-L

supervised (He et al., 2022) Supervised - 300 82.3 82.6
MoCo-v3 (Chen et al., 2021) Contrastive momentum ViT 300 83.2 84.1
DINO (Caron et al., 2021) Contrastive momentum ViT 300 82.8 -
iBOT (Zhou et al., 2021) Contrastive+MIM momentum ViT 1600 84.0 84.8
BEiT (Bao et al., 2021) MIM DALLE+dVAE 800 83.2 85.2
data2vec (Baevski et al., 2022) Contrastive momentum ViT 800 84.2 86.2
CAE (Chen et al., 2022) MIM DALLE tokenizer 1600 83.9 86.3

SimMIM (Xie et al., 2022) MIM - 800 83.8 85.4
MaskFeat (Wei et al., 2022) MIM - 1600 84.0 85.7
MAE (He et al., 2022) MIM - 1600 83.6 85.9

MAE+ (ours) MIM - 1600 83.9 86.0
AdPE (ours) MIM - 1600 84.4 86.3

5.1 IMAGENET1K RESULTS

We adopt the MAE+ baseline presented in Section 3.2 as our baseline model for MIM pretraining.
For the fair comparison, the same set of hyperparameters used in Appendix A are adopted. There
are four combinations of design choices as discussed in Section 4 for the AdPE - two types of
positional embeddings (absolute vs. relative), and two types of adversarial modes (embedding mode
vs. coordinate mode). We follow the same evaluation protocol He et al. (2022) to report the results.

Table A.2 and Table A.3 in Appendix C shows the experiment results on Imagenet1K. The ViT-
B with a 12-layer transformer encoder is pretrained over 400 epochs with an 8-layer transformer
decoder. Then the pretrained backbone is fine-tuned end-to-end over 100 epochs with imagenet
labels, and the top-1 accuracy is reported. For comparison, the MAE and MAE+ achieve 82.95%
and 83.51% in top-1 accuracy, respectively.

From the ablation study in Table A.2, we can see that the AdPE with `∞-constraint has higher
accuracy than that with `2-contraint for the same model type. Also, for the same type of positional
embedding, the coordinate-mode adversaries perform better than the embedding-mode adversaries.
We attribute this to the coordinate mode distorting image spatial structures in a more direct way
with lower dimensionality (only two for x-and-y-axis) of adversaries than the embedding mode.
This probably avoids the risk of over-distorting image structures arbitrarily with higher-dimensional
adversaries in the embedding mode. Thus, a better balance is made to learn discriminative features
from sufficiently adversarial rather than over-adversarial perturbations. The best accuracy for 400
epochs in Table A.2 is achieved by the coordinate-mode adversaries on RPE with ε = 20 for the
`∞-constraint, which we adopt in the following experiments.

In Table 1, we compare the AdPE with the other methods on Imagenet1K for pretraining ViT-B
and ViT-L. The AdPE improves the accuracy of the MAE by 0.8% and 0.4% on ViT-B and ViT-L
without using any external datasets or models. Its accuracy also is higher than that of the MAE+ by
0.4% and 0.3%.

We note that the AdPE is a pure MIM approach without contrastive pretraining or extra models
like some other methods in Table 1. Particularly, contrastive pretraining often needs an additional
momentum ViT branch, which makes it very slow and memory demanding in pretraining stage.
For example, MoCo-v3 (Chen et al., 2021), a typical contrastive pretraining approach, used 128
V100 GPUs and took 10.24 GPU hours per epoch for pretraining, one order of magnitude slower
than MAE and MAE+ that can be pretrained on merely eight V100 GPUs. Some approaches also
resort to other models such as DALLE (Ramesh et al., 2021) as an extra tokenizer model. Although
the AdPE is quite flexible to further improve these approaches by adding adversarial positional
embeddings, it has already outperformed them.

8



Under review as a conference paper at ICLR 2023

Table 2: Transfer learning results on various downstream tasks.

ADE20K COCO
Measurement Epoch mIoU APbbox APmask

MoCo-v3 (Chen et al., 2021) 300 47.3 47.9 42.7
DINO (Caron et al., 2021) 400 47.2 - -
BEiT (Bao et al., 2021) 800 47.1 49.8 44.4
CAE (Chen et al., 2022) 1600 50.2 50.0 44.0
iBOT (Zhou et al., 2021) 1600 50.0 51.2 44.2
SimMIM (Xie et al., 2022) 1600 50.0 49.1 43.8
MAE (He et al., 2022) 1600 48.1 50.3 44.9

AdPE (ours) 1600 51.5 53.5 46.5

5.2 TRANSFER LEARNING RESULTS

We also conduct experiments on the transfer learning task to evaluate the generalization performance
on ADE20K and COCO datasets. For a fair comparison, we still adopt the same protocol used in
MAE to fine-tune the Mask R-CNN (He et al., 2017) end-to-end with the pretrained ViT-B backbone
adapted for the FPN use on COCO (Lin et al., 2014), and report APbbox for object detection and
APmask for instance segmentation. On ADE20K, we also follow the MAE by fine-tuning UpperNet
(Xiao et al., 2018) for 100 epochs with a batch size of 16. The fine-tuning learning rate is set to 0.5
and 2e− 4 on COCO and ADE20K (Zhou et al., 2019), respectively.

The results in Table 2 show that across all tasks, our model performs the best among the compared
methods, which significantly improves the SOTA approaches that even adopt extra datasets and/or
models. This demonstrates its outstanding generalizability to other tasks.

5.3 COMPARISON WITH FGSM ADVERSARIES

We also extend the FGSM (Goodfellow et al., 2014) that applies instance-wise perturbations to im-
age pixels. It follows the classic FGSM except the MAE reconstruction loss with the multi-crop to-
kenization in MAE+ are adopted to compute the adversarial perturbations. Table A.1 in Appendix B
reports the fine-tuning results of the FGSM with various ε for `∞ constraint over 400 epochs of pre-
training ViT-B. FGSM does not perform better than MAE+ (83.51%). This suggests that a straight
extension of FGSM cannot improve the accuracy of a MIM-pretrained model in downstream tasks.

5.4 VISUALIZATION OF ATTENTION MAPS

In Appendix D, we visualize the attention maps to compare MAE and AdPE. We show that AdPE
does not focus its attention over local patches to infer missing ones. Instead, it is forced to explore
non-local features in a larger spatial context. This verifies our assumption that the AdPE learns and
integrates such high-level features from the global image context.

6 CONCLUSION

In this paper we present a new MAE+ baseline via multi-crop tokenization by extending the MAE-
based masked image modeling. Upon the new baseline, we show that with Adversarial Positional
Embeddings (AdPE), more discriminative features can be learned from the distorted image struc-
tures by preventing a pretrained vision transformer from simply using local correlations between
patches to predict masked ones. This enables the transformer to learn high-level representations
generalizable to downstream tasks. We impose coordinate-mode or embedding-mode adversaries
on both absolute and relative positional embeddings, and the experiment results show that the AdPE
with relative positional embeddings in the coordinate mode performs the best. We also show the
AdPE has higher accuracy than the classic FGSM approach after fine-tuning the pretrained net-
works.
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7 REPRODUCIBILITY

The source code of the proposed approach is available at https://anonymous.4open.
science/r/AdPE-ICLR. Instructions to reproduce the reported results are included in the
README.md file.
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A A NEW MIM BASELINE MAE+

In Section 3.2, we propose a new MIM baseline MAE+ by allowing multi-crop tokenization. Specif-
ically, on Imagenet1K dataset, following random cropping and resizing , a 224 ∗ 224 input image is
cropped into multiple 112 ∗ 112 smaller images.

The 75% of 7 ∗ 7 tokens resulting from each 112 ∗ 112 image with a grid of 16 ∗ 16 non-overlapping
patches are randomly masked. Unlike the MAE, both masked and unmasked tokens will be fed
through the MAE+ encoder.

For a fair comparison with MAE, the MAE+ adopts the same encoder-decoder architecture. Par-
ticularly, for the ViT-B backbone, the encoder of MAE+ is composed of 12 layers of transformers,
and the decoder follows the same architecture in the MAE baseline with 8 transformer layers. The
reconstruction loss over tokens is minimized to pretrain the network over various epochs. Then, the
fine-tuning evaluation is made by re-training the whole network with Imagenet labels where a linear
classification layer is added upon the average-pooled features from the pretrained ViT-B backbone.
All experiments are run on a GPU server equipped with eight Nvidia V100 cards.

More specifically, in the pretraining stage, we follow the MAE baseline (He et al., 2022) without
using color-jittering data augmentation, drop path or gradient clip. The xavier uniform is used
to initialize all transformer blocks, and the same linear learning rate scaling rule is applied - the
base learning rate of 1.5e − 4 is adapted with a batch size of 4096, yielding a learning rate of
lr = baselr×batchsize/256 = 2.4e−3. AdamW optimizer is used with its momentum parameters
of β1 = 0.9 and β2 = 0.95. The cosine decay is also adopted for scheduling learning rate with 40
warmup epochs and a weight decay of 0.05.

In the fine-tuning stage, we also use the common practice (He et al., 2022)(Bao et al., 2021) to
supervise the end-to-end re-training of ViT-B. A learning rate of 4e− 3 is used with a batch size of
1024 and the cosine decay. AdamW is still used with the optimizer momentums set to β1 = 0.9 and
β2 = 0.999. A layer-wise learning rate decay of 0.75 is adopted. A total of 100 epochs is adopted
for the fine-tuning with 5 warmup epochs. A drop path of 0.1 is aopted and RandAug (9, 0.5) is
used for data augmentation along with mixup, cutmix and label smoothing.

B COMPARISON WITH FGSM ADVERSARIES

Table A.1: Top-1 accuracy of FGSM over 400 epochs of pretraining with ViT-B on Imagenet1k.
The FGSM is imposed on the model pretrained with the MAE+ baseline.

Cutoff ε = 0.001 Cutoff ε = 0.01 Cutoff ε = 0.1
Constraint FT ∆MAE+ FT ∆MAE+ FT ∆MAE+

`∞ 83.04 -0.47 83.09 -0.42 82.91 -0.60

The FGSM adversaries (Goodfellow et al., 2014) are one of the most classic instance-wise attacks
on deep networks. It adds pixel-wise perturbations on the raw inputs that maximize the loss to make
the worst-case attacks, and uses the resultant perturbed inputs to train the backbone network. The
loss we adopt for MIM is the patch-wise reconstruction loss used in MAE (He et al., 2022). We then
follow the same evaluation protocol to fine-tune the pretrained ViT-B backbone end-to-end with
Imagenet1k labels. Table A.1 shows the results. We can see that the FGSM fails to improve the
accuracy of the baseline MAE+ model. The results confirms the existing observation in literature
(Tsipras et al., 2018) that the instance-wise perturbations cannot improve the standard accuracy for
the downstream tasks.

Here we note that the goal of the AdPE is to improve the standard accuracy in downstream tasks
since it is not an instance-wise perturbations sought by the FGSM imposed on raw images. Instead,
the adversarial positional embeddings are a part of the pretrained transformer architecture. On the
contrary, the FGSM-based adversaries are instance-wise attacks against the inputs, and they care
more about the robust accuracy against various forms of adversarial perturbations. We would like to
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leave it to our future research to reveal if and how adversarial positional embeddings are related to
the robustness against instance-wise attacks.

C ABLATION STUDY OF VARIOUS DESIGN CHOICES

In this section, we report more experiment results. Table A.2 reports the top-1 accuracy over 400
epochs of pretraining ViT-B under different types of positional embeddings (PE), adversarial modes,
constraints, and cutoff ε.

Table A.2: Top-1 fine-tuning (FT) accuracy over 400 epochs of pretraining ViT-B with different
positional encodings (PE), adversarial modes (Mode), constraint types (Constraint), and the cutoff ε
of constraint strength (Cutoff). It also gives the relative improvement over the baseline MAE model.
Here, APE and RPE stand for absolute and relative positional embeddings, respectively.

PE Mode Constraint Cutoff FT ∆MAE PE Type Constraint Cutoff ft ∆MAE

APE Embed `2 1 83.55 +0.60 RPE Embed `2 3 83.85 +0.90
APE Embed `2 3 83.60 +0.65 RPE Embed `2 5 83.85 +0.90
APE Embed `2 5 83.63 +0.68 RPE Embed `2 7 83.82 +0.87
APE Embed `∞ 1 83.53 +0.58 RPE Embed `∞ 10 83.92 +0.97
APE Embed `∞ 3 83.67 +0.72 RPE Embed `∞ 15 83.97 +1.02
APE Embed `∞ 5 83.62 +0.67 RPE Embed `∞ 20 83.98 +1.03

APE Coord `2 1 83.66 +0.71 RPE Coord `2 3 81.13 -1.82
APE Coord `2 3 83.54 +0.59 RPE Coord `2 5 81.18 -1.77
APE Coord `2 5 83.59 +0.64 RPE Coord `2 7 81.21 -1.74
APE Coord `∞ 1 83.50 +0.55 RPE Coord `∞ 10 83.73 +0.78
APE Coord `∞ 3 83.68 +0.73 RPE Coord `∞ 15 83.86 +0.91
APE Coord `∞ 5 83.61 +0.66 RPE Coord `∞ 20 84.01 +1.06

Table A.3 compares the AdPE with MAE+. It shows that the AdPE consistently improves over
the MAE+ baseline – the coordinate-mode adversaries perform better than the embedding-mode
adversaries, and the RPE outperforms the APE among the compared AdPE versions.

Table A.3: Comparison of the AdPE with MAE+. The results show that the AdPE makes consistent
improvement (in ∆) over the MAE+ baseline.

400ep 1600ep 400ep 1600ep
Method PE Mode FT ∆ ft ∆ Method PE Mode FT ∆ ft ∆

MAE+ APE - 83.51 - 83.94 - MAE+ RPE - 83.78 - 84.17 -
AdPE APE Embed 83.67 +0.16 84.08 +0.14 AdPE RPE Embed 83.98 +0.20 84.25 +0.08
AdPE APE Coord 83.68 +0.17 84.16 +0.22 AdPE RPE Coord 84.01 +0.23 84.36 +0.19

D VISUALIZING ATTENTION MAPS

In this section, we visualize attention maps when pretraining the AdPE. Figure A.1 visualizes atten-
tion maps of the first transformer encoder layer at different locations of an example image. It shows
that compared to MAE, AdPE has a wider attention map covering large parts of the image. AdPE
pretrained in coordinate-mode adversaries has largely distorted attention maps than that in embed-
ding mode. It suggests that both AdPE models cannot simply use local correlations to infer missing
patches. Instead, they are forced to explore those high-level features in a larger spatial context.

Figure A.2 visualizes the attention maps averaged over 1024 input images, which shows the same
observation in the above.
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Figure A.1: The attention maps of the first transformer encoder layer. The MAE and AdPE are
pretrained over 1600 epochs with the APE and ε = 3 for the `∞ constraint.

14



Under review as a conference paper at ICLR 2023

Figure A.2: The attention maps of the first transformer encoder layer averaged over 1024 input
images. Again, the MAE and AdPE are pretrained over 1600 epochs with the APE and ε = 3 for
the `∞ constraint.
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