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Abstract

Large language models (LLMs) frequently001
face challenges with complex logical reasoning002
tasks. We address these complexities with the003
help of Lean, a theorem proving framework.004
First, we formalize logical reasoning problems005
as theorems within Lean. We then proceed to ei-006
ther prove or disprove them. This methodology007
serves dual purposes: it eliminates the possibil-008
ity of logical inconsistencies typical in LLM009
outputs and effectively manages complex log-010
ical reasoning tasks. Central to our approach011
are the numerous theorem proofs written in012
Lean, which encapsulate human logical reason-013
ing. By training a model on this data, we apply014
the enhanced reasoning ability to tackle logic015
reasoning problems. Our approach achieves016
perfect accuracy on ProofWriter using reduced017
training data and achieves state-of-the-art per-018
formance on FOLIO, highlighting the potential019
of our method in logical reasoning tasks.1020

1 Introduction021

Logical reasoning, a bedrock of intelligence and022

a core capability of humans, has long been a chal-023

lenging issue for machine learning systems, even024

for the most recent and advanced large language025

models (LLMs). LLMs, despite their impressive026

abilities to understand and generate natural lan-027

guage, often fall short when dealing with complex028

logical reasoning tasks. They frequently suffer029

from logical inconsistencies, wherein the model030

makes statements or predictions not grounded in031

premises, leading to spurious results (Saparov and032

He, 2023; Dasgupta et al., 2022).033

Recent advances in AI have adopted a structured034

approach to tackle this reasoning problems by split-035

ting it into symbolic formalization and problem-036

solving (He-Yueya et al., 2023; Pan et al., 2023;037

Ye et al., 2023). The formalization step is often038

handled by a large language model (LLM), while039

1Our code and data will be released upon publication.

problem-solving is tackled by an off-the-shelf sym- 040

bolic solver. In this approach, symbolic solvers es- 041

sentially act as a rigorous checkpoint, ensuring that 042

the model outputs align with logical rules, thereby 043

mitigating the issue of logic inconsistency. Here, 044

solvers may range from being completely determin- 045

istic, like SymPy (He-Yueya et al., 2023), or rely 046

on a combination of heuristics and basic machine 047

learning techniques, as is the case with Pyke (Pan 048

et al., 2023) and Z3 (Ye et al., 2023; de Moura and 049

Bjørner, 2008). While this approach successfully 050

addresses hallucinations, it still struggles with more 051

complex problems. The primary challenge stems 052

from the solvers’ constraints: they lack the ability 053

to extract and use the vast wealth of reasoning data 054

and information available in language resources 055

as LLMs do. This absence of information integra- 056

tion leaves them underpowered when dealing with 057

complex reasoning tasks. 058

Serving as a powerful theorem prover and a 059

versatile programming language, Lean (de Moura 060

et al., 2015) presents a compelling solution to con- 061

nect symbolic solvers with extensive linguistic re- 062

sources. Much like symbolic solvers, Lean has a 063

strict check system, ensuring each reasoning step 064

is certified. What makes it notable is its function- 065

ality as a programming language designed for the- 066

orem proving. Every day, a substantial amount 067

of code is written in Lean, capturing reasoning 068

“nuggets” with step-by-step rationals that are useful 069

for training LLMs. A few recent studies have al- 070

ready tapped into Lean for automatic mathematical 071

theorem proving tasks (Polu et al., 2023; Han et al., 072

2022a; Lample et al., 2022), showing its potential 073

in tackling difficult reasoning challenges. Another 074

notable benefit of Lean is that its proof is explic- 075

itly structured. This makes the reasoning process 076

tractable and explainable. 077

In this paper, we propose LeanReasoner, a Lean- 078

based framework to tackle logical reasoning prob- 079

lems on datasets such as ProofWriter (Tafjord et al., 080
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2021) and FOLIO (Han et al., 2022b). We use081

LLMs to formalize these datasets into Lean, and082

fine-tune a custom model on these problems using083

a modest amount of data annotated ourselves.084

Our contributions in this paper are three-fold.085

• To our knowledge, this is the first attempt to use086

Lean, traditionally associated with mathematical087

theorem proving, for natural language logical088

reasoning. This effort highlights a possible inter-089

section between mathematical theorem proving090

and logical reasoning.091

• We found that utilizing training data from math-092

ematical proofs can aid in logical reasoning, an093

aspect not examined in previous studies. This094

method also allowed us to obtain state of the art095

results on FOLIO.096

• We make available the training data accumulated097

in this research, comprising 100 formalization098

of logic reasoning problems from ProofWriter099

to Lean, along with 27 analogous formalization100

from FOLIO. The corresponding proofs in Lean101

are also included.102

2 Problem Definition and Notation103

The underlying task we aim to solve is logical rea-104

soning, which takes the form of multi-choice ques-105

tion given natural language background context.106

The answer to the question can be logically de-107

duced based on the context.108

The framework we use for sovling the problem109

is Lean.2 Lean is an open source theorem proving110

programming language with a vibrant community111

support. Its current base includes over 100,000112

theorems and 1,000,0000 lines of code.3 Lean can113

also be used as a generic theorem prover, not nec-114

essarily in the area of mathematics. This is the way115

we use it for our case.116

The task and our solution to it, consist of the117

following components:118

• Context, which represents natural language ut-119

terances, composing a set of rules and facts. For120

example: Hudson is a cat, all cats are animals,121

and cats often meow.122

• Question, which denotes the posed question. For123

example, Does Hudson often meow?124

• Options is a set of available answers (discrete125

categories) from which an answer can be chosen.126

For example, True, False or Unknown.127

2https://leanprover.github.io/.
3https://en.wikipedia.org/wiki/Lean_

(proof_assistant).

• Formalized context refers to the representation 128

of context in Lean. For example, the formal- 129

ized context for our example would be: axiom 130

A1 is_cat Hudson, axiom A2 ∀x, is_cat x → 131

is_animal x and axiom A3 ∀x, is_cat x → of- 132

ten_meow x. 133

• Formalized question: Given that Lean operates 134

as a theorem prover, questions are transformed 135

into dual theorems: one asserting the positive 136

stance and the other negating it. For the given ex- 137

ample, the formalized questions would be: Theo- 138

rem hudson_often_meows: often_meow Hudson 139

and Theorem not_hudson_often_meows: ¬ of- 140

ten_meow Hudson. 141

• Goal: In the context of proving theorems with 142

Lean, a "goal" is a logical statement that needs 143

to be proven true, given a set of axioms and 144

rules. When we set out to answer a question 145

using the Lean prover, this question becomes our 146

root goal. At that point, we can apply various in- 147

structions in Lean to simplify or break down this 148

primary goal and generate intermediate goals. 149

These intermediate goals can be thought of as 150

subproblems or sub-questions derived from the 151

primary question. The proof process in Lean is 152

essentially a journey from the root goal through 153

a series of intermediate goals until we reach a 154

point where all goals have been resolved based 155

on our axioms and rules. 156

For instance, using our earlier examples, 157

if the root goal is proving Theorem hud- 158

son_often_meows: often_meow Hudson, an in- 159

termediate goal might be proving that Hudson is 160

a cat. We aim to resolve each intermediate goal 161

using our provided context, gradually working 162

our way towards proving the root goal. Once all 163

intermediate goals are addressed, we have effec- 164

tively proven our root goal, and the proof search 165

concludes successfully. 166

• Tactics are the instructions in the Lean theorem 167

proving language that are used to manipulate 168

goals to obtain a proof for a given goal. For 169

example, apply A3 Hudson is a tactic that uses 170

modus ponens on the Goal often_meow Hudson 171

and transforms it to a new Goal is_cat Hudson 172

A diagram of these components and the relations 173

between them is depicted in Figure 1. This proce- 174

dure is framed within the language of the Lean 175

theorem prover as a goal-satisfying process. 176
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Context, Question and Options

Context: The cow is big. The cow likes the dog. The cow visits the dog. The dog needs the cow The cow needs the cow. If something visits the dog and the dog needs the cow then it

needs the cow. If the dog visits the cow then the cow visits the dog. If something needs the cow and the cow likes the dog then it likes the cow.

Question: Does the Cow like the Cow Options: True, False or Unknown

Likes Cow Cow

apply R4 apply R3 Cow

Needs Cat Cow ∧
Likes Cow Cat

Needs Cow Cow ∧
Likes Cow Dog

sorry

No Goals

......

split

Needs Cow Cow,
Likes Cow Dog

apply R1 Cow exact T5
Likes Cow Dog......

exact T2

No Goals

Tactic Generator + Proof Search

constant Cow: obj                         
constant Dog: obj                         
constant Cat: obj                         
constant Big: obj -> Prop             
constant Likes: obj->obj->Prop    
constant Needs obj->obj->Prop

axiom R1 : ∀ x : obj, Visits x Dog ∧ Needs Dog Cow → Needs x
Cow
axiom R2 : Visits Dog Cow → Visits Cow Dog
axiom R3 : ∀ x : obj, Needs x Cow ∧ Likes Cow Dog → Likes x Cow
axiom R4: ∀ x : obj, Needs Cat Cow ∧ Likes Cow Cat → Likes Cow
Cow

Theorem does_cow_like_cow : Likes Cow Cow

Formalizer

Exists Path
that found a proof

to the theorem 

Yes

No
Is this theorem

the positive version
of the question

Yes

No

Check every proof
path

Unknown

False True

Result Intepreter

axiom T1: Big Cow                       
axiom T2: Likes Cow Dog             
axiom T3: Visits Cow Dog             
axiom T4: Needs Dog Cow           
axiom T5: Needs Cow Cow   

Figure 1: An overview of our approach: The natural language context is first processed by the “formalizer”. It then
advances to the proof search stage, where all the orange tactics are generated by the “tactic generator”. Finally, the
outcome is interpreted by the “result interpreter”.

3 LeanReasoner177

Our framework, LeanReasoner, is composed of178

four main components: a formalizer, a tactic gen-179

erator, a proof search mechanism, and a result180

interpreter. The formalizer converts context and181

question to formalized context and formalized ques-182

tion. The tactic generator then generates tactics183

based on premises extracted from the formalized184

context. The proof search mechanism oversees185

tactic execution and goal expansion. The result186

interpreter analyses the output of the proof search187

and identifies the correct answer in options. In this188

section, we provide detailed explanations of each189

component.190

3.1 Formalizer191

In this process of formalization, we used OpenAI192

models text-davinci-003 (GPT-3) and GPT-4 (Ope-193

nAI, 2023). For text-davinci-003, we followed194

the same prompting approach as Logic-LM (Pan195

et al., 2023) to separate the task specification and196

problems, thereby enabling the model to continue197

with the task of formalization through next-token-198

prediction. For GPT-4, we used similar prompts,199

but included the task specification in the system200

prompt.201

There is no definitive way to assert all the en-202

tities, relationships and constraints of the context203

have been captured by the formalized result. How-204

ever, the syntax of the formalized result can be205

checked, as correct syntax is a prerequisite for206

downstream theorem proving. If an error is en- 207

countered during compilation, we provide the error 208

message generated by Lean along with the faulty 209

formalization and ask the formalizer to regenerate 210

the result. We further conduct manual inspections 211

of the formalizer in §5. We note that we take a 212

strict approach, and if the formalizer fails more 213

than once, then the problem is counted as not being 214

correctly solved. 215

3.2 Tactic Generator 216

The model we used for tactic generation is Re- 217

Prover (Yang et al., 2023). This model contains 218

two parts: a retriever that employs retrieval mecha- 219

nisms to explicitly select premises when provided 220

with the current goal, and a generator that generates 221

tactics using the goal and the retrieved premises. 222

The division of the problem-solving task into 223

premise selection and tactic generation simplifies 224

the process and facilitates easier troubleshooting. 225

It isolates the source of potential issues, be it in 226

the premise selection or the tactic generation, thus 227

reducing the complexity of the problem. Also, this 228

division of responsibilities eases the burden on the 229

tactic generator. Choosing the right premise is chal- 230

lenging amidst numerous distractions, especially in 231

logical reasoning problems when several options 232

might seem promising for the current step but won’t 233

ultimately lead to the desired goal. 234

The premise retrieval component of our process 235

draws from the Dense Passage Retriever (DPR) 236
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(Karpukhin et al., 2020). Provided with a goal g237

as the query and a set of candidate premises P , it238

generates a ranked list of m premises from P . In239

DPR, both g and P are treated as raw texts that are240

embedded in a vector space. We then retrieve the241

top m premises that maximize the cosine similarity242

between the goal and the premise. For tactic gen-243

eration, we use a standard sequence to sequence244

model. The goal and the premises are concatenated245

together as a string to generate new tactics.246

As a baseline, we also prompt GPT-4 to generate247

proofs. For cases when the chosen theorem to prove248

aligns with the answer (say the chosen theorem is249

the positive stance of the question and the answer is250

YES), we present GPT-4 with the correct proof as251

part of the prompt. Conversely, if the answer does252

not align with the chosen theorem or the answer is253

UNKNOWN, the formalized theorem is unprovable.254

In those cases, we still encourage the model to255

engage in step-by-step reasoning, even though it256

will eventually hit a roadblock. An example of the257

prompt to GPT-4 can be found in Appendix A.1.258

3.3 Proof Search259

The proof search module controls the overall search260

process that selects tactics and maintains states dur-261

ing proof construction. Essentially, the goal of262

the search method is to build a proof tree, which263

incrementally evolves the goal through tactic invo-264

cations. This approach was first introduced in GPT-265

F (Polu and Sutskever, 2020). LeanDoJo (Yang266

et al., 2023), a recently released framework that267

enables interaction with Lean programmatically,268

subsequently provided an implementation of this269

method, which we utilize for our study.270

As a reference, the middle part of Figure 1 pro-271

vides a practical illustration of this process. Start-272

ing from the root goal, for each given proof goal,273

we explore 64 possible tactics. All goals are main-274

tained in a priority queue and are expanded based275

on cumulative log probabilities of the goal, defined276

as the summation of the log probabilities of the tac-277

tics that brought us to the goal from the root. This278

implies that we tend to expand those goals where279

our generative model has the highest global confi-280

dence. The resulting tendency is towards breadth-281

first exploration, as goals at greater depths have282

more parent tactics and hence a typically lower cu-283

mulative log probability. During the search process,284

there are no restrictions on the length of the queue.285

To enhance search efficiency and circumvent po-286

tential loops, we have incorporated a mechanism 287

that stops the expansion of a node N if we have 288

already explored another node M with a state se- 289

quence that prefixes N . Essentially, if the current 290

goal being explored contains all the elements of a 291

previously explored goal, then it shouldn’t be fur- 292

ther expanded. This is based on the observation 293

that if we have already assessed the potential paths 294

and outcomes for a specific goal, then exploring 295

a more generalized version of the same goal is re- 296

dundant. Such a mechanism avoids unnecessary 297

repetitions, thereby streamlining the search process 298

and improving overall efficiency. Moreover, we 299

define a valid proof as one that is devoid of “cheat- 300

ing” tactics (such as sorry) that tell Lean to assume 301

that the current goal is completed, even though it 302

hasn’t been proven. This means that that every path 303

containing “cheating” tactics is disregarded. 304

Errors in the search process typically manifest in 305

two ways: a timeout or the exhaustion of nodes to 306

search. We have allocated a three-minute window 307

for each search, which is usually sufficient. We 308

provided more analysis of the errors made by tactic 309

generator in the experiment section. 310

3.4 Result Intepreter 311

For options that include Unknown, we only re- 312

gard the result as correct if no other options can 313

be proven. All datasets investigated in this study 314

only contain questions with only one correct op- 315

tion. Consequently, if the proof system verifies 316

more than one option, the response is immediately 317

marked as incorrect. 318

4 Experimental Setup 319

We now describe our experimental setup: the 320

datasets we used for evaluation and model training 321

and the details of model training. 322

4.1 Evaluation Data 323

In our evaluation, we use two common logical rea- 324

soning datasets as testbeds: 325

ProofWriter: This deductive logical reasoning 326

dataset presents problems in an intuitive language 327

form. We incorporated the Open-World Assump- 328

tion (OWA) subset as per (Pan et al., 2023), where 329

each instance is characterized by a (problem, goal) 330

pairing, and labels can be categorized as TRUE, 331

FALSE, or UNKNOWN. It encompasses five seg- 332

ments based on the required reasoning depth: 0, 333

≤ 1, ≤ 2, ≤ 3, and ≤ 5 hops. Our focus is the 334
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depth-5 subset, which is the most challenging one.335

To get a fair comparison against Logic-LM, we336

used the same 600 sample tests, ensuring an even337

label distribution.338

FOLIO: Unlike ProofWriter, FOLIO is con-339

structed using intricate first-order logic. This in-340

creases the complexity of the proving part. The341

dataset presents problems in a more natural and342

intricate wording, with relationships that are con-343

siderably more complex. Such a combination of344

advanced logic and rich linguistic structure ren-345

ders the formalization task in FOLIO substantially346

tougher than in ProofWriter. For our analysis, we347

turned to the entire FOLIO test set, encompassing348

204 examples.349

4.2 Training Data for Domain Adaptation350

Regarding the data for model training, we collected351

100 theorem proofs for ProofWriter and 27 theorem352

proofs for FOLIO, where each problem’s proof353

was either manually annotated or collected from354

successful proofs generated by GPT-4. The data355

collection took about eight days.356

In annotating the data, we adopted two divergent357

approaches for constructing proofs. One approach358

emulated a straightforward strategy, encompassing359

a detailed procedure with numerous intermediate360

steps and lemmas, similar to how we might derive a361

proof when faced with theorem-proving tasks. Con-362

versely, the second approach resembles the proof363

formats found in mathlib. We generate more suc-364

cinct proofs to the same problem by reducing the365

number of intermediate lemmas and combining366

multiple tactics into a single compound tactic. The367

objective of having two annotations for the same368

problem was to examine the influence of annota-369

tion style on downstream logical reasoning. In the370

following experiments, we use Intuitive to refer to371

the first annotation style and Concise to denote the372

second annotation style. An illustrative example is373

available in Appendix C.374

It is important to mention that despite the limited375

data collected, the reasoning patterns for logical376

reasoning likely mirror those found in mathemati-377

cal reasoning, which were potentially learned dur-378

ing pretraining. The main purpose of this data379

collection is domain adaptation to transfer from380

math to natural language logical reasoning.381

4.3 Model Training382

We used the same model structure for pretraining383

as in the ReProver paper, namely, Google’s Byte-384

T5 (Xue et al., 2022). We also experimented with 385

the pre-trained ReProver from LeanDoJo (Yang 386

et al., 2023), which was pre-trained on Mathlib 3. 387

The fine-tuning of our collected data took about six 388

hours on one A100 40G. The hyperparameters we 389

used here are the same as in the original LeanDoJo 390

paper. We will also release our code to facilitate 391

reproducibility. 392

5 Results 393

We present the outcomes of our experiments, in- 394

cluding an examination of the formalization mod- 395

ule, insights into enhancing the tactic generator 396

module, and a comparison of our work with other 397

baselines. 398

5.1 Analysis of Formalization 399

To understand whether errors arise during the for- 400

malization or proving stages, we prompted the 401

LLM to formalize a selection of 100 questions from 402

ProofWriter’s validation set and 40 questions from 403

FOLIO’s training set and manually examined them. 404

Through this examination, we would also like to 405

pinpoint the exact mistakes in the formalization 406

process. Only those formalizations that correctly 407

captured every fact, axiom, and rule were counted 408

as accurate. The findings have been summarized in 409

Table 1. 410

The formalization accuracy of ProofWriter is 411

much higher than FOLIO. This can be attributed 412

to its simpler language structure. In the case of 413

FOLIO, although using large language model for 414

formalization helped in filtering out unnecessary 415

details from the natural language context, there still 416

exists some common error patterns. We have illus- 417

trated typical GPT-4 error patterns in Appendix B 418

using a composite sample derived from various er- 419

ror instances. Interestingly, Lean’s formalization 420

accuracy is on par with both Prolog and FOL in 421

Logic-LM. This consistency underscores Lean’s 422

versatility, allowing it to uniformly represent differ- 423

ent problem types within a single framework. 424

We observed improved results when formalized 425

code was paired with descriptive textual comments 426

sourced from the context. This approach further 427

splits the formalization task into two subtasks: 1) 428

linking textual context with formalized code and 429

2) generating formalized code based on the prior 430

textual context. These textual cues acted as a bridge 431

between raw text and formalized code, enhancing 432

the performance of formalization. 433
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Model ProofWriter FOLIO
Formalize Prove Answer Formalize Prove Answer

GPT-4 Base 94% 15% 80% 60% 10% 35%
GPT-4 Base Comments 99% - 80% 75% - 35%
GPT-4 Base Separate - 5% 75% - 10% 40%
GPT-3 Base Comments 77% 12% 63% 45% 10% 35%
Logic-LM 98% 75.5% 74% 65% 69.2% 55%

Table 1: Formalization, Proof, and Answer choice accuracies for ProofWriter and FOLIO using OpenAI language
model API. ’Base Comments’ provide annotations before each line of formalized code. In ’Base Separate’,
formalization and proof are segmented into two distinct prompts, which reduces the workload on the LLM. For
simplicity, we did not use the self-refinement technique when evaluating Logic-LM

The distinction in performance between GPT-3434

and GPT-4 is evident. While the formalization for435

simpler problems is the same, GPT-3 struggles with436

intricate logic and complex problems. As such, we437

opted not to use GPT-3 in further tests.438

The proof accuracy section of the table is deter-439

mined by whether the generated proof can be vali-440

dated successfully in Lean. If the formalization of441

the question to theorem is correct and the proof can442

be validated without any error or warning, then we443

can be confident that the proof is valid. However,444

the accuracy of rendered proofs is very low. The445

issue could stem from assigning too many tasks to446

the large language model, making it challenging447

to address both within a single prompt. Despite448

our efforts to separate formalization and proof, the449

results were still disappointing, which highlights450

GPT-3 and GPT-4’s struggle with generating cor-451

rect Lean proof. Interestingly, the proof accuracy452

of Logic-LM wasn’t as high as we expected. Upon453

replicating their code, we found their chosen solver454

Pyke to be suboptimal, struggling to identify an455

answer when multiple search paths are available456

and some could result in loops.457

Despite the low accuracy in most of GPT-4’s458

proofs, it achieved a high accuracy for final choices459

on ProofWriter (as shown in column Answer). We460

believe this may be due to GPT-4’s training expo-461

sure to the dataset, potentially leading to a degree462

of memorization.463

5.2 Enhanced Proving464

In this section, we focus on training LeanReasoner465

models to do tactic generation using our annotated466

training data. To isolate the impact of the tactic467

generator, we used all of the accurate formaliza-468

tions from the previous subsection for testing. This469

gave us 99 test examples for ProofWriter and 14470

for FOLIO. All findings are detailed in Table 2.471

We first compare the results on premise selec- 472

tion using the metrics recall@1 and recall@4. The 473

recall@k metric is defined as follows: 474

recall@k =
|GT_Prem ∩ Pred_Prem[0 : k]|

|GT_Prem|
, 475

where GT_Prem means ground truth premises and 476

Pred_Prem means top predicted premises. It is not 477

surprising that relying on ReProver trained solely 478

with math data yielded suboptimal results. This 479

can be attributed to the domain mismatch between 480

mathematical theorem proving and logical reason- 481

ing. The model frequently makes mistakes by at- 482

tempting to use other, unrelated tactics that are 483

useful in mathematical theorem proving (like ring, 484

linarith) but not applicable in logical reasoning. 485

The ReProver fine-tuning outperformed T5 fine- 486

tuning in terms of overall results. Furthermore, the 487

accuracy for FOLIO was noticeably poorer than 488

those of ProofWriter. This disparity is likely due to 489

FOLIO’s intricate logic and its need for a broader 490

array of first-order logic tactics such as cases, have, 491

and contradiction. In contrast, ProofWriter pri- 492

marily employs tactics like apply, exact, and split. 493

We proceeded to evaluate the overall proof re- 494

sults. Consistently, LeanReasoner fine-tuned on 495

math theorem proving data outperformed other ap- 496

proaches for both ProofWriter and FOLIO datasets. 497

This advantage can be attributed to the limited data 498

available for fine-tuning our tactic generator, thus 499

highlighting the benefits of our approach. While 500

the premise selector benefits from distinct cues 501

and a limited range of choices, the realm of tac- 502

tic generation is much broader. This vastness of 503

options renders the ReProver baseline’s proof ac- 504

curacy nearly negligible. But other than that, there 505

is a strong correlation between premise selection 506

accuracy and overall proof accuracy. While the ben- 507

efits of a pretrained LeanReasoner may not be as 508
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Method
Pretrained Fine-tuned ProofWriter FOLIO
on Math on the Premise Selection Proof Premise Selection Proof

Data Annotation Rec@1 Rec@4 Acc Rec@1 Rec@4 Acc
GPT-4 N/A N/A N/A 15% N/A 10%
ReProver Yes No 56.2% 81.3% 0% 23.5% 38.2% 0%
LeanReasoner No Intuitive 62.5% 100% 99% 54.8% 95.2% 71.4%
LeanReasoner Yes Intuitive 75% 100% 99% 71.4% 96.8% 85.7%
LeanReasoner Yes Concise 75% 100% 99% 83.8% 97.4% 85.7%

Table 2: Comparisons of Recall@k for premise selection and overall proof accuracy using various methods. The
test set comprises formally verified and manually inspected results. The effects of pretraining and fine-tuning on
LeanReasoner are evaluated using theorem-proving data and both Intuitive and Concise annotation sets, respectively.
Premise Selection accuracy was not calculated for the GPT-4 baseline due to the complexities in prompting GPT-4
with Lean goals

Method Acc
Abs Biases (Gontier et al., 2022) 80.6%
MetaInduce (Yang et al., 2022) 98.6%
RECKONING (Chen et al., 2023b) 99.8%
GPT-4 CoT (Pan et al., 2023) 68.1%
Logic-LM (Pan et al., 2023) 79.3%
Lean-based methods
LeanReasoner without Pretraining 95.8%
LeanReasoner fine-tuned on Intuitive 98.3%
LeanReasoner fine-tuned on Concise 98.3%

Table 3: Proof accuracy across different methods for
the ProofWriter dataset. Abs Biases stands for Abstrac-
tion Inductive Biases. The fine-tuned LeanReasoner has
been pretrained on mathlib. Fine-tuned on Intuitive/Con-
cise means the model is fine-tuned on Intuitive/Concise
annotation

noticeable for simpler datasets like ProofWriter, its509

value becomes evident for more complex datasets,510

such as FOLIO.511

Fine-tuning with different annotations has a512

slight effect on premise selection and tactic gener-513

ation in this small test set. When fine-tuned with514

Concise annotations, LeanReasoner would also515

try to generate concise proofs, which usually uses516

compound tactics that offer more information for517

premise selection. However, the final proof accu-518

racy has not changed in this small test set.519

5.3 Comparing Against Other Baselines520

Having demonstrated that pretraining on theorem521

proving data yields superior performance, we pro-522

ceed to benchmark our results against established523

baselines for both ProofWriter and FOLIO. The524

evaluation uses the same set of 600 problems from525

LogicLM and the entire FOLIO test set. Subse-526

Method Acc
Codex (Han et al., 2022b) 56.0%
FOLNet (Chen, 2023) 70.6%
GPT-4 CoT (Pan et al., 2023) 70.6%
Logic-LM (Pan et al., 2023) 74.5%
Lean-based methods
Lean Z3 (SATLM) 77.5%
LeanReasoner without Pretraining 66.2%
LeanReasoner fine-tuned on Intuitive 78.4%
LeanReasoner fine-tuned on Concise 82.6%

Table 4: Proof accuracy across different methods for
the FOLIO dataset. The Codex baseline employs an
8-shot prompt. The result from ’Lean Z3’ is derived
from lean-smt applied to formalized Lean Code. The
fine-tuned LeanReasoner has been pretrained on mathlib.
Fine-tuned on Intuitive/Concise means the model is fine-
tuned on Intuitive/Concise annotation

quently, we analyze the errors made by the tactic 527

generator in both the FOLIO and ProofWriter to 528

explore the reason our approach outperforms oth- 529

ers. 530

As illustrated in Table 3, our approach yields 531

near perfect accuracy on the ProofWriter dataset. 532

While other methods except Logic-LM use the en- 533

tire training set of ProofWriter, our approach relies 534

on just 100 examples, underscoring the efficiency 535

of our method. Fine-tuning on ‘Concise’ annota- 536

tion doesn’t bring any advantage to the final perfor- 537

mance on this dataset. 538

Table 4 presents our performance on FOLIO. For 539

a fair comparison with SATLM that uses the Z3 540

solver, we used the lean-smt tool 4 on our formal- 541

ized Lean code. This tool produces outcomes in 542

the form of “sat/unsat”. In Z3, “sat” stands for 543

4https://github.com/ufmg-smite/lean-smt
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“satisfiable.” When Z3 returns “sat” as the result,544

it means that there exists a set of variable values545

that makes the theorem true. On the other hand,546

“unsat” stands for “unsatisfiable”. When Z3 re-547

turns “unsat”, it means that the formula is inher-548

ently contradictory and cannot be satisfied under549

any circumstance. We interpret these results sim-550

ilarly to “found a proof/didn’t find a proof” using551

our result interpreter. Due to the extensive length552

of proofs for FOLIO problems, we observed that553

LeanReasoner, when fine-tuned on the Intuitive554

dataset, often allocates an excessive amount of time555

for exploration and occasionally enters loops. In556

contrast, generating shorter proofs tends to ease the557

discovery of the proof. In essence, while the tactics558

generated when fine-tuned on the ’Concise’ dataset559

are more challenging to produce, the bottleneck560

for LeanReasoner on FOLIO resides in the search561

process.562

It’s worth noting that there can be instances563

where a problem is inaccurately formalized because564

the formalization accuracy on FOLIO is lower than565

that on ProofWriter. If the answer to the problem566

being formalized is unknown, this can inadvertently567

skew the model’s performance, making it seem bet-568

ter than it truly is because our model can’t prove569

either the positive stance or the negative stance of570

the problem. Nevertheless, to the best of our knowl-571

edge, our approach sets a new SOTA on FOLIO.572

Two types of errors occur during our proving573

process: timeout errors and running-out-of-goals574

errors. The former arises when the time set for tac-575

tic generation and proof search is exhausted, while576

the latter occurs when there are no more goals in577

the queue that can be further expanded. The like-578

lihood of each error type can be influenced by the579

beam size chosen during the proof search. Our580

current approach utilizes a beam size of 64, mean-581

ing we generate 64 tactics for every goal we come582

across. At present, 81.8% of the errors from the583

LeanReasoner fine-tuned on Intuitive and 83.3%584

from the LeanReasoner fine-tuned on Concise stem585

from timeouts. While a thorough inspection of the586

errors hasn’t been conducted, a significant portion587

seems to arise from incorrect formalization.588

6 Related Work589

Several past studies (Chen, 2023; Creswell and590

Shanahan, 2022; Chen et al., 2023b) used symbolic591

solvers to augment neural networks with logical592

reasoning. Many of these approaches grapple with593

constraints like the necessity for custom or special- 594

ized module designs that lack broad applicability. 595

Recent work (Pan et al., 2023; Ye et al., 2023; Poe- 596

sia et al., 2023) presents a more general framework 597

that combines contemporary LLMs with symbolic 598

logic, bypassing the need to train or craft intricate 599

modules tailored for specific problems. While our 600

research aligns with these, we do not exclusively 601

rely on off-the-shelf solvers. 602

A common way to boost reasoning skills of 603

Large Language Models (LLMs) is by training 604

them on data that requires some form of reason- 605

ing. As noted by (Lewkowycz et al., 2022), LLMs 606

trained with science and math data do better on 607

tasks that require reasoning, especially when us- 608

ing CoT prompting. Other work (Fu and Khot, 609

2022; Fu et al., 2023) suggests powerful LLMs like 610

GPT-3.5 get their advanced reasoning capabilities 611

from being trained on code. This work is a natural 612

extension of this idea to theorem proving. 613

The interaction between LLM and theorem prov- 614

ing has recently become an important topic in NLP. 615

Although some studies delved into various theo- 616

rem provers (Polu and Sutskever, 2020; Jiang et al., 617

2023), a consistent focus has been observed around 618

Lean. A distinct advantage of Lean is its array of 619

open-source tools (Yang et al., 2023; Jiang et al., 620

2023) that simplify data collection and enable easy 621

interaction with external tools. Predominant re- 622

search on theorem proving with Lean encompasses 623

strategies such as harnessing proving artifact (Han 624

et al., 2022a), using curriculum learning to gen- 625

erate more training data (Polu et al., 2023), and 626

high-level planning like AlphaGo (Lample et al., 627

2022). For future work, we believe these method- 628

ologies could potentially be repurposed for natural 629

language logical reasoning. 630

7 Conclusion 631

We introduced LeanReasoner, a framework based 632

on Lean that augments the logical reasoning abili- 633

ties of LLMs. An extensive examination was con- 634

ducted on errors from the formalization and proof 635

generation stage. We also examined the perfor- 636

mance enhancements from pretraining on theorem 637

proving data and annotation styles. We offered a 638

comprehensive comparison with other techniques 639

that highlight our model’s superior strengths. Our 640

results underscore the potential of integrating theo- 641

rem proving frameworks with LLMs in advancing 642

logical reasoning. 643
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Limitations644

Despite our promising results, our method encoun-645

ters limitations when dealing with problems that646

involve commonsense and factual reasoning. In647

these cases, it is challenging to retrieve all the nec-648

essary information and accurately represent it in649

Lean. Consider MMLU (Hendrycks et al., 2020)650

and SummEdits (Laban et al., 2023): MMLU re-651

quires the model to possess extensive world knowl-652

edge, while SummEdits involves determining con-653

sistency in summaries of different edits. In both in-654

stances, the ability to represent the complexity and655

nuance of real-world knowledge in Lean is severely656

limited. Further complications arise when dealing657

with math word problems (Cobbe et al., 2021) and658

similar tasks (Hendrycks et al., 2021), where the659

goal is to derive a numeric solution rather than a660

proof. The theorem proving approach, while effec-661

tive for certifying the validity of logical reasoning,662

does not directly yield a numerical answer. Lastly,663

our method grapples with problems found in more664

complicated reasoning datasets like TheoremQA665

(Chen et al., 2023a). These problems require an666

advanced understanding of complex concepts and667

the ability to formalize these concepts into Lean.668

Our current framework struggles with this level669

of complexity, underscoring the need for more so-670

phisticated formalization techniques and a deeper671

integration between language understanding and672

theorem proving.673

Even in the context of symbolic problems, there674

are challenges. For instance, consider the Logi-675

calDeduction task from the BigBench dataset (Sri-676

vastava et al., 2022). Although this problem ap-677

pears straightforward, employing Lean to solve678

them is neither the most practical nor the most679

efficient approach. Lean, as a theorem prover,680

is excellent in abstract reasoning and proof con-681

struction, but when faced with tasks involving con-682

straints and variable possibilities, it falls short. To683

solve the problems in LogicDeduction, using Lean684

would require us to formalize the concepts of or-685

dering and relative positioning. Even after doing686

so, generating proof would necessitate significant687

labor and wouldn’t necessarily yield a readily inter-688

pretable answer. In contrast, a Constraint Satisfac-689

tion Problem (CSP) solver can effectively manage690

constraints and generate potential solutions effi-691

ciently.692

Ethical Considerations 693

Incorporating Lean’s theorem proving capabilities 694

into Large Language Models (LLMs) represents 695

a significant stride forward in the AI reasoning 696

domain. Our method has not only shown a remark- 697

able improvement in handling complex reasoning 698

tasks but also offers a layer of mathematical rigor 699

that bolsters the reliability of conclusions derived. 700

However, as we elevate the reasoning prowess of 701

LLMs, there’s an amplified potential for embedded 702

biases within the training data to manifest and mag- 703

nify. Especially in reasoning scenarios, this can 704

inadvertently lead to skewed logic or unintended 705

favoritism in areas of utmost sensitivity such as 706

medical diagnoses or legal interpretations. While 707

our method’s foundation in Lean’s theorem prov- 708

ing data acts as a rigorous check, complete reliance 709

on it is not foolproof. A proactive approach in re- 710

viewing both training data and model outcomes is 711

essential to uphold unbiased reasoning. 712

Our integration of Lean provides LLMs with the 713

unique advantage of elucidating detailed logical 714

pathways, reinforcing the transparency of our rea- 715

soning process. Tracing reasoning step by step, 716

not only bolsters confidence in the derived conclu- 717

sions but also enhances the explainability of these 718

systems. Such transparency is vital in fostering 719

trust, especially when these models are used in piv- 720

otal decision-making processes. This robustness 721

coupled with the broader societal implications of 722

advanced reasoning in LLMs underscores the ne- 723

cessity for ongoing ethical reflection and proactive 724

measures to address potential challenges. 725
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A Prompts for Formalization 861

A.1 Prompts for ProofWriter 862

In subsection 5.1, we discussed various formaliza- 863

tion approaches. In this section, we present the 864

results using the GPT-4 Base Comments method 865

on ProofWriter when the answer is False. As evi- 866

dent from the last line, the predicted outcome from 867

GPT-4 can be derived easily. 868
869

System Message: 870
You are a logician with a background in 871
mathematics that translates natural language 872
reasoning text to Lean code so that these natural 873
language reasoning problems can be solved. During 874
the translation, please pay close attention to the 875
predicates and entities. There is an additional 876
requirement: I also want you to try to prove the 877
theorem you translated to Lean. If you can prove the 878
theorem, give me True at the end of the answer. If 879
you can prove the negation of the theorem, write 880
False at the end of the answer. If you can neither 881
prove the original theorem nor the negation 882
of the theorem, please give me Unknown at the end of 883
the answer. 884885

886
Input: 887
Textual context: The cat is blue. The cat is nice. 888
The cat likes the cow. The cat needs the cow. The 889
cat needs the rabbit. The cow does not need the 890
rabbit. The cow needs the tiger. The rabbit is 891
round. The tiger is nice. The tiger does not 892
like the cow. If someone likes the cat and they 893
chase the cat then they are blue. If someone 894
likes the cow and they are red then the cow is 895
round. If someone needs the tiger and they need 896
the cat then they do not chase the cow. If someone 897
needs the cat and the cat is blue then the cat is 898
red. If someone is round then they need the cat. 899
If someone likes the cat and the cat needs the 900
rabbit then the cat chases the tiger. If the rabbit 901
needs the tiger then the rabbit is not round. 902

903
Question: Based on the above information, is the 904
following statement true, false, or unknown? The 905
cow chases the cow. 906907
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908
Output:909
universe u910

911
constant obj : Type u912

913
constant Cat : obj914
constant Cow : obj915
constant Rabbit : obj916
constant Tiger : obj917

918
constant Blue : obj → Prop919
constant Nice : obj → Prop920
constant Likes : obj → obj → Prop921
constant Needs : obj → obj → Prop922
constant Round : obj → Prop923
constant Red : obj → Prop924
constant Chases : obj → obj → Prop925

926
axiom T1 : Blue Cat927
axiom T2 : Nice Cat928
axiom T3 : Likes Cat Cow929
axiom T4 : Needs Cat Cow930
axiom T5 : Needs Cat Rabbit931
axiom T6 : ¬ Needs Cow Rabbit932
axiom T7 : Needs Cow Tiger933
axiom T8 : Round Rabbit934
axiom T9 : Nice Tiger935
axiom T10 : ¬ Likes Tiger Cow936

937
-- If someone likes the cat and they chase the cat938

then they are blue939
axiom R1 : ∀ x : obj, Likes x Cat ∧ Chases x Cat →940

Blue x941
-- If someone likes the cow and they are red then942

the cow is round943
axiom R2 : ∀ x : obj, Likes x Cow ∧ Red x → Round944

Cow945
-- If someone needs the tiger and they need the cat946

then they do not chase the cow947
axiom R3 : ∀ x : obj, Needs x Tiger ∧ Needs x Cat948

→ ¬ Chases x Cow949
-- If someone needs the cat and the cat is blue950

then the cat is red951
axiom R4 : ∀ x : obj, Needs x Cat ∧ Blue Cat →952

Red Cat953
-- If someone is round then they need the cat954
axiom R5 : ∀ x : obj, Round x → Needs x Cat955
-- If someone likes the cat and the cat needs the956

rabbit then the cat chases the tiger957
axiom R6 : ∀ x : obj, Likes x Cat ∧ Needs Cat958

Rabbit → Chases Cat Tiger959
-- If the rabbit needs the tiger then the rabbit is960

not round961
axiom R7 : ∀ x : obj, Needs Rabbit Tiger → ¬962

Round Rabbit963
964
965

theorem cow_chases_cow : Chases Cow Cow :=966
begin967

have H1 : Needs Cow Tiger := T7,968
have H2 : Needs Cat Cow := T4,969
have H3 : ¬ Chases Cow Cow := R3 Cow (and.intro970

H1 H2),971
contradiction,972
sorry,973

end974
975

-- Looks like the theorem cannot be proven in Lean.976
-- So let’s try to prove the negation of the977

theorem, which is Cow does not chase Cow978
979

theorem not_cow_chases_cow : ¬ Chases Cow Cow :=980
begin981

apply R3 Cow,982
split,983
exact T7,984
apply R5,985
apply R2 Cat,986
split,987
exact T3,988
apply R4 Rabbit,989
split,990
apply R5,991
exact T8,992
exact T1,993

end994

995
-- The negation of the theorem can be proven in 996

Lean. So 997
-- The answer is False 998999

A.2 Prompts used for FOLIO 1000

For FOLIO, the prompts differ slightly from those 1001

used for ProofWriter. Since FOLIO’s textual con- 1002

text remains consistent across multiple questions, 1003

we concatenate questions sharing the same context 1004

and prompt the large language model in a single in- 1005

stance. An illustrative example is provided below. 1006
1007

System Message: 1008
You are a logician with a background in 1009
mathematics that translates natural language 1010
reasoning text to Lean code so that these natural 1011
language reasoning problems can be solved. During 1012
the translation, please pay close attention to the 1013
predicates and entities. There is an additional 1014
requirement: I also want you to try to prove the 1015
theorem you translated to Lean. If you can prove the 1016
theorem, give me True at the end of the answer. If 1017
you can prove the negation of the theorem, write 1018
False at the end of the answer. If you can neither 1019
prove the original theorem nor the negation 1020
of the theorem, please give me Unknown at the end of 1021
the answer. 10221023

1024
Input: 1025
Textual context: There are six types of wild 1026
turkeys: Eastern wild turkey, Osceola wild 1027
turkey, Gould’s wild turkey, Merriam’s wild 1028
turkey, Rio Grande wild turkey, and Ocellated 1029
wild turkey. Tom is not an Eastern wild turkey. 1030
Tom is not an Osceola wild turkey. Tom is 1031
also not a Gould’s wild turkey, or a 1032
Merriam’s wild turkey, or a Rio Grande wild 1033
turkey. Tom is a wild turkey. 1034

1035
Question 1: Based on the above information, is the 1036
following statement true, false, or uncertain? 1037
Tom is an Ocellated wild turkey. 1038
Question 2: Based on the above information, is the 1039
following statement true, false, or uncertain? 1040
Tom is an Eastern wild turkey. 1041
Question 3: Based on the above information, is the 1042
following statement true, false, or uncertain? 1043
Joey is a wild turkey. 10441045
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1046
Output:1047
-- Introducing basic types for entities in our1048

universe.1049
constant Turkey : Type1050
constant Tom : Turkey1051
constant Joey : Turkey1052

1053
-- Defining properties for the turkeys in our1054

universe.1055
constant is_wild_turkey : Turkey → Prop1056
constant is_eastern_wild_turkey : Turkey → Prop1057
constant is_osceola_wild_turkey : Turkey → Prop1058
constant is_goulds_wild_turkey : Turkey → Prop1059
constant is_merriams_wild_turkey : Turkey → Prop1060
constant is_rio_grande_wild_turkey : Turkey → Prop1061
constant is_ocellated_wild_turkey : Turkey → Prop1062

1063
-- Context from the information1064

1065
-- Tom is not an Eastern wild turkey.1066
axiom A1 : ¬ is_eastern_wild_turkey Tom1067
-- Tom is not an Osceola wild turkey.1068
axiom A2 : ¬ is_osceola_wild_turkey Tom1069
-- Tom is also not a Gould’s wild turkey.1070
axiom A3 : ¬ is_goulds_wild_turkey Tom1071
-- Tom is not a Merriam’s wild turkey.1072
axiom A4 : ¬ is_merriams_wild_turkey Tom1073
-- Tom is not a Rio Grande wild turkey.1074
axiom A5 : ¬ is_rio_grande_wild_turkey Tom1075
-- Tom is a wild turkey.1076
axiom A6 : is_wild_turkey Tom1077
-- There are six types of wild turkeys: Eastern1078

wild turkey, Osceola wild turkey, ’Goulds wild1079
turkey, ’Merriams wild turkey, Rio Grande wild1080
turkey, and Ocellated wild turkey.1081

axiom turkey_type_exclusivity : ∀ (t : Turkey),1082
is_wild_turkey t → is_eastern_wild_turkey t ∨1083
is_osceola_wild_turkey t ∨1084
is_goulds_wild_turkey t ∨1085
is_merriams_wild_turkey t ∨1086
is_rio_grande_wild_turkey t ∨1087
is_ocellated_wild_turkey t1088

1089
-- Formalizing the Questions1090

1091
-- Question 11092
-- Tom is an Ocellated wild turkey.1093
-- Let’s first prove the positive case.1094
theorem tom_is_ocellated_wild_turkey :1095

is_ocellated_wild_turkey Tom :=1096
begin1097

cases turkey_type_exclusivity Tom A6, {1098
have h1 : ¬ is_eastern_wild_turkey Tom,1099

from A1,1100
contradiction,1101

}, {1102
cases h, {1103

have h1 : ¬ is_osceola_wild_turkey1104
Tom, from A2,1105

contradiction,1106
}, {1107

cases h, {1108
have h1 : ¬ is_goulds_wild_turkey1109

Tom, from A3,1110
contradiction,1111

}, {1112
cases h, {1113

have h1 : ¬1114
is_merriams_wild_turkey Tom, from A4,1115

contradiction,1116
}, {1117

cases h, {1118
have h1 : ¬1119

is_rio_grande_wild_turkey Tom, from A5,1120
contradiction,1121

}, {1122
assumption,1123

}1124
}1125

}1126
}1127

}1128
end1129

1130
-- Let’s try the negative case.1131

1132

theorem not_tom_is_ocellated_wild_turkey : ¬ 1133
is_ocellated_wild_turkey Tom := 1134

begin 1135
exact A2, 1136

end 1137
1138

-- The answer is Unknown 1139
1140

-- Question 2 1141
-- Tom is an Eastern wild turkey. 1142
-- Let’s first prove the positive case. 1143
theorem tom_is_eastern_wild_turkey : 1144

is_eastern_wild_turkey Tom := 1145
begin 1146

sorry, -- Placeholder for proof 1147
end 1148

1149
-- Let’s try the negative case. 1150

1151
theorem not_tom_is_eastern_wild_turkey : ¬ 1152

is_eastern_wild_turkey Tom := 1153
begin 1154

exact A1, 1155
end 1156

1157
-- The answer is False 1158

1159
-- Question 3 1160
-- Joey is a wild turkey. 1161
-- Let’s first prove the positive case. 1162
theorem joey_is_wild_turkey : is_wild_turkey Joey := 1163
begin 1164

sorry, -- Placeholder for proof 1165
end 1166

1167
-- Let’s try the negative case. 1168

1169
theorem not_joey_is_wild_turkey : ¬ is_wild_turkey 1170

Joey := 1171
begin 1172

sorry, -- Placeholder for proof 1173
end 1174

1175
-- The answer is Unknown 11761177

B Example Errors During Formalization 1178

This is an artificial example highlighting typical 1179

errors encountered in the formalization stage. 1180
1181

Input: 1182
There are three types of wild turkeys: Eastern 1183
turkey, Osceola turkey, Gould’s turkey. Tom is 1184
neither an Eastern turkey nor an Osceola turkey. 1185
Tom is a wild turkey. Bob is a Eastern turkey. 1186
Bob weights 86 pounds and Tom weights 73 pounds. 1187
Turkey either bites or stings.Bob bites. Eastern 1188
turkey ’s bite would cause death. 1189

1190
Question 1: Tom is a Gould’s turkey. 1191
Question 2: Bob is heavier than Tom. 1192
Question 3: If Bob bites you, you will die. 11931194

1195
Output: 1196
constant Turkey : Type 1197
constant Eastern Osceola Goulds : Turkey → Prop 1198
constant weight_86 weight_73 : Turkey → Prop 1199
constant bites stings : Turkey → Prop 1200
constant eastern_bite_causes_death : Turkey → Prop 1201
constant Tom Bob : Turkey 1202

1203
axiom A1 : ¬ Eastern Tom ∧ ¬ Osceola Tom 1204
axiom A2 : Eastern Bob 1205
axiom A3 : weight_86 Bob 1206
axiom A4 : weight_73 Tom 1207
axiom A5 : ∀ (t : Turkey), bites t ∨ stings t 1208
axiom A6 : bites Bob 1209
axiom A7 : ∀ (t : Turkey), 1210

eastern_bite_causes_death t 12111212
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There are a few errors in the above code, includ-1213

ing:1214

• There is a missing axiom that corresponds to1215

"There are three types of wild turkeys":1216

Goulds Tom ∨ Eastern Tom ∨ Osceola Tom1217

• The formalization of numbers is incorrect, it1218

should be:1219

constant weight : Turkey → N1220

axiom A3 : weight Bob = 861221

axiom A4 : weight Tom = 731222

• The formalization of logic is incorrect, it1223

should be:1224

¬ bite_causes_death t ∧ bite_causes_itching t) ∨1225

(bite_causes_death ∧ ¬ bite_causes_itching t1226

• There is an incorrect division of concepts that1227

would make the proving impossible, the cor-1228

rect version should be:1229

∀ (t : Turkey), Eastern t → bite_causes_death t1230

C Example Proof Annotation with1231

Different Annotation Styles1232

Here we’re showing two example proofs created on1233

the same problem with ‘Intuitive’ annotation style1234

and ‘Concise’ annotation style.1235
1236

Input:1237
"Textual Context": All eels are fish. No fish are1238
plants. A thing is either a plant or animal.1239
Nothing that breathes is paper. All animals breathe.1240
If a sea eel is either an eel or a plant, then a sea1241
eel is an eel or an animal.1242
"Question": "Based on the above information, is1243
the following statement true, false, or uncertain?1244
Sea eel is a paper.12451246

1247
Formalized Context:1248
constant Thing : Type1249

1250
constant is_eel : Thing → Prop1251
constant is_fish : Thing → Prop1252
constant is_plant : Thing → Prop1253
constant is_animal : Thing → Prop1254
constant is_paper : Thing → Prop1255
constant breathes : Thing → Prop1256

1257
constant sea_eel : Thing1258

1259
-- All eels are fish.1260
axiom A1 : ∀ (t : Thing), is_eel t → is_fish t1261
-- No fish are plants.1262
axiom A2 : ∀ (t : Thing), is_fish t → ¬ is_plant t1263
-- A thing is either a plant or animal.1264
axiom A3 : ∀ (t : Thing), is_plant t ∨ is_animal t1265
-- Nothing that breathes is paper.1266
axiom A4 : ∀ (t : Thing), breathes t → ¬ is_paper1267

t1268
-- All animals breathe.1269

axiom A5 : ∀ (t : Thing), is_animal t → breathes t 1270
-- If a sea eel is either an eel or a plant, then a 1271

sea eel is an eel or an animal. 1272
axiom A6 : (is_eel sea_eel ∨ is_plant sea_eel) → 1273

(is_eel sea_eel ∨ is_animal sea_eel) 12741275

1276
Intuitive Proof: 1277
theorem not_sea_eel_is_paper : ¬ is_paper sea_eel 1278

:= 1279
begin 1280

cases A3 sea_eel, { 1281
have h1 : ¬ is_fish sea_eel, { 1282

intro h, 1283
have temp := A2 sea_eel h, 1284
contradiction, 1285

}, 1286
have h2 : ¬ is_eel sea_eel, { 1287

intro h, 1288
have temp := A1 sea_eel h, 1289
contradiction, 1290

}, 1291
have h3 : is_eel sea_eel ∨ is_plant 1292

sea_eel, { 1293
right, 1294
assumption, 1295

}, 1296
have h4 : is_eel sea_eel ∨ is_animal 1297

sea_eel := A6 h3, 1298
cases h4, { 1299

contradiction, 1300
}, { 1301

have h5 : breathes sea_eel := A5 1302
sea_eel h4, 1303

have h6 : ¬ is_paper sea_eel := A4 1304
sea_eel h5, 1305

contradiction, 1306
} 1307

}, { 1308
have h1 : breathes sea_eel := A5 sea_eel h, 1309
have h2 : ¬ is_paper sea_eel := A4 sea_eel 1310

h1, 1311
contradiction, 1312

} 1313
end 13141315

1316
Concise Proof: 1317
theorem not_sea_eel_is_paper : ¬ is_paper sea_eel 1318

:= 1319
begin 1320

cases A3 sea_eel, { 1321
cases A6 (or.inr h), { 1322

have h1 := A2 sea_eel (A1 sea_eel h_1), 1323
contradiction, 1324

}, { 1325
exact A4 sea_eel (A5 sea_eel h_1), 1326

} 1327
}, { 1328

exact A4 sea_eel (A5 sea_eel h), 1329
} 1330

end 13311332
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