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Abstract001

Training deep neural networks in biological systems002

is faced with major challenges such as scarce labeled003

data and obstacles for propagating error signals in004

the absence of symmetric connections. We introduce005

Tourbillon, a new architecture that uses circular au-006

toencoders trained with various recirculation algo-007

rithms in a self-supervised mode, with an optional008

top layer for classification or regression. Tourbillon009

is designed to address biological learning constraints010

rather than enhance existing engineering applica-011

tions. Preliminary experiments on small benchmark012

datasets (MNIST, Fashion MNIST, CIFAR-10) show013

that Tourbillon performs comparably to models014

trained with backpropagation and may outperform015

other biologically plausible approaches. The code016

and models are available at https://anonymous.017

4open.science/r/Circular-Learning-4E1F.018

1 Introduction019

Decades of machine learning have taught us that020

gradient descent is the sole effective optimization021

method in high-dimensional spaces. Other strategies,022

like random search, are bound to fail. Backpropa-023

gation, the algorithm behind gradient computation024

in artificial neural networks, has been incredibly025

successful. It powers advancements in Artificial026

Intelligence, from protein folding (e.g., AlphaFold027

[1]) to natural language understanding and gener-028

ation (e.g., GPT-4 [2, 3]). Backpropagation effi-029

ciently computes the gradient in a network with W030

weights using O(W ) operations. Considering that031

at least O(W ) operations are necessary to adjust032

W synapses, backpropagation demonstrates optimal033

efficiency. Consequently, if learning is viewed as an034

optimization problem in a high-dimensional space of035

synaptic weights, this suggests that the brain likely036

employs learning algorithms based on gradient com-037

putation, either exact or approximate. Yet there038

are several well-known reasons in the literature why039

backpropagation is implausible in biological systems040

[4, 5, 6, 7, 8, 9]. Thus, in short, we hypothesize that041

biological systems must strive to approximate gradi-042

ent descent methods without being able to compute043

exact gradients by backpropagation. Here, we set044

out to propose a plausible strategy for achieving this045

goal.046

Let us first briefly enumerate some of the ma-047

jor reasons why backpropagation is not plausible 048

in biological neural networks: 1) Symmetry of 049

Connections (weight transport): Backpropagation 050

requires precisely symmetric connections between 051

the forward and backward passes. This constraint 052

cannot be satisfied in a biological neural system and 053

might be hard to realize in some physical neural 054

systems. 2) Forward Nonlinearities (F prime): 055

Backpropagation relies on the exact memory of for- 056

ward pass nonlinearities (e.g., activation functions) 057

to compute weight updates. This is not supported 058

in biological or physical neural systems. 3) Local- 059

ity: In a biological neural system, the learning rule 060

for adjusting synaptic weights must be local, i.e. it 061

must rely solely on variables available locally, both in 062

space (spatial locality) and time (temporal locality), 063

at each synapse. 4) Clocked Computation: In 064

backpropagation, the forward and backward passes 065

are manually clocked to compute activations and 066

update weights. In contrast, in a biological sys- 067

tem, neurons communicate stochastically, lacking 068

the precise clocking mechanism observed in back- 069

propagation. 5) Labeling: Backpropagation relies 070

on large labeled datasets, unlike biological systems, 071

which lack access to such data. 6) Spike: Bio- 072

logical neurons use noisy spikes for communication, 073

while artificial neurons typically use deterministic 074

analog values. 7) Distances: Backpropagation 075

necessitates propagating signals over considerable 076

neural distances in deep models, which can result 077

in signal dilution and lead to distorted or unsta- 078

ble gradients. 8) Developmental Modularity: 079

Backpropagation in general, requires having a com- 080

plete architecture in place before training can begin, 081

which may not be realistic for biological systems 082

undergoing development and other changes. 083

Several solutions have been suggested to try to 084

address these problems, in isolation or small combi- 085

nations, but no approach addresses all of them at 086

once. Here we propose a neural architecture called 087

Tourbillon and its training algorithms to address 088

all the implausibility discussed above by combining 089

different ideas, including stacked autoencoders, recir- 090

culation, and asynchronous training. We emphasize 091

that the primary goal here is to address the obsta- 092

cles listed above for biological (or neuromorphic) 093

neural systems and not to derive a new architecture 094

or algorithm that is practically useful for digital 095

applications of deep learning. 096
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2 Biological Plausibility097

Several approaches have been proposed to address098

the biological implausibilities enumerated above.099

The most notable ones include: Feedback Alignment100

(FA), Difference Target Propagation (DTP), Stacked101

Autoencoders, and the Forward-Forward (FF) algo-102

rithm. However, each of these methods addresses103

only a limited subset of the biological implausibilities104

(Section A.1 and Table 1). Self-supervised learning,105

in particular stacked autoencoders, provides one way106

of addressing the data labeling issue. However, stan-107

dard autoencoders suffer from several other issues108

which we now address.109

Circular Autoencoders. In a standard feed-110

forward autoencoder (AE), the data itself provides111

the targets (self-supervised learning). The data112

and hence the targets are available in the input113

layer. However, they are not available in the output114

layer, in the sense that they are not physically local115

(spatial-locality) to the output layer. This problem is116

addressed in circular autoencoders (CAE) [8] where117

the output layer is physically equal (or physically118

adjacent) to the input layer (Figure 1). With the119

circular layout, targets and errors can be computed120

at the level of the input/output layer.121

Recirculation Algorithms. Standard back-122

propagation, or even FA, of these targets, would123

require a channel (wires) running backward from124

the output layer to the hidden layer. However, be-125

cause of the circular layout, it is possible to use the126

forward connections to propagate target and error127

information during learning. This is the fundamen-128

tal idea behind recirculation, a family of algorithms129

for training CAEs that do not require backward130

connections [10, 11, 8].131

Consider a CAE with layers numbered from 0 to132

L, where 0 corresponds to the input layer. We use133

the index t to denote different cyclic passes through134

the autoencoder, with the first pass indexed by t =135

0. After the first pass, one can locally compute136

the error T − H0
L, where T is the target located137

at the input layer. This error could be used to138

train the top layer of the CAE by gradient descent,139

and then train the other layers by using a form of140

random backpropagation where the error signal is141

obtained by propagating the error T −H0
L using the142

forward weights of the CAE. This however requires143

propagating two different kinds of signals, activities,144

and errors, through the CAE. Thus rather than145

recirculating the error, a more uniform approach can146

be obtained by recirculating activities. If Ht
i denotes147

the activation of layer i during the forward pass148

indexed by t, the main idea behind the recirculation149

family of algorithms is to use Ht
i as the target for150

the output Ht′

i taken at a later time t′ to produce151

the post-synaptic term for the weight update. The152

intuition is that the data may become increasingly153

corrupted as it is being recycled, thus earlier pass 154

serve as targets for later passes. Different variations 155

can be obtained, by varying, for instance, the post- 156

and pre-synaptic terms. In addition to the original 157

learning rule of recirculation [8] Equation 1, we 158

propose two variations of the learning rule, all shown 159

in Equation 9 (b) and (c) in the Appendix. 160

∆Wi = η(Ht
i −Ht′

i )
post(Ht

i−1)
pre (1) 161

These rules follow a Hebbian-product form, resem- 162

bling backpropagation but with a postsynaptic re- 163

circulation error, denoted as [H0
i − H1

i ]
post. This 164

error term is both spatially and temporally local, 165

assuming that consecutive passes through the circu- 166

lar autoencoder fall within the proper time window. 167

In the input layer, the vector H0
0 represents the in- 168

put data, including the targets for an autoencoder. 169

The presynaptic term can be computed at different 170

times (t or t′) or even as the difference between the 171

activities at two different times. Using the first form 172

or presynaptic terms (Equation 1), the recircula- 173

tion learning equation for the top layer of weights 174

is identical to backpropagation. Although in this 175

work we are not using spiking neurons, all learning 176

rules described in Equation 9 are closely related to 177

the concept of spike time-dependent synaptic plas- 178

ticity (STDP) [12]. STDP Hebbian or anti-Hebbian 179

learning rules have been proposed using the tem- 180

poral derivative of the activity of the post-synaptic 181

neuron [13] to encode error derivatives. 182

3 Tourbillon: A CAE Stack 183

We propose the Tourbillon architecture as a stack of 184

circular autoencoders, capped by a classification or 185

regression layer connecting the hidden representa- 186

tion of the top circular autoencoder and the output 187

layer. Each circular autoencoder has an encoder 188

and decoder components. The hidden layer that is 189

shared by the encoding and decoding components is 190

called the hinge layer. In the stack, the hinge layer 191

of the ith circular autoencoder becomes the input 192

layer of the i+ 1th circular autoencoder (Figure 2). 193

The Tourbillon architecture addresses the issues of 194

target labels and spatial locality. With the recircula- 195

tion algorithms, it also addresses the issues of weight 196

transport, forward non-linearities, temporal locality, 197

and distances. Using a novel training algorithm, we 198

set out to address issues of clocking and modularity. 199

Sequential Training. In sequential training, the 200

CAEs are trained separately. Training of the i-th 201

CAE in the stack must be completed before training 202

of the i+ 1-th CAE can begin. The input data to 203

the i+ 1-th CAE is provided by the hidden repre- 204

sentations produced by the hinge layer of the i-th 205

CAE. Finally, we can stack N trained CAE, each 206

is trained to further compress the hinge layer of its 207
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Figure 1. From left to right: Recirculation, forward forward, difference target propagation, (direct) feedback
alignment. The learning rule for each model is written at the top of the architecture schematics.

Table 1. A comparison of physical plausibility between different neural architectures from a biological standpoint.
é, ○, and Ëcorrespond to no plausibility, partial plausibility, and full plausibility, respectively.

W Transport F prime Locality Clocked Labeling Spike Distance Modular
Backpropagation é é é é é é é é
Feedback Alignment (FA) Ë Ë é é é é é é
Direct Feedback Alignment (DFA) Ë Ë ○ é é é Ë é
Difference Target Propagation (DTP) ○ é é é ○ é Ë é
Stacked Autoencoders Ë Ë ○ é Ë é Ë ○
Forward Forward (FF) Ë Ë Ë é ○ é Ë é
Tourbillon Ë Ë Ë Ë ○ é Ë Ë

predecessor CAE. These trained CAEs as the build-208

ing blocks of tourbillon must be trained from the209

bottom to the top. So each autoencoder would be210

able to generate the training data for its successor211

building blocks. This is explained in Equation 3212

where E and D represent the encoder and decoder213

characterized by a deep neural network trained with214

recirculation. x is the original training data (e.g.215

MNIST) and H shows the hidden representation of216

the circular autoencoder.217

H1 = E1(x1), x̂1 = D1(H1), (2)218

H2 = E2(H1), Ĥ1 = D2(H2) (3)219

Asynchronous Training. The sequential train-220

ing algorithm is the standard method for training221

a stack of autoencoders by fully training the first222

AE, then the second one, and so on. This requires223

a high degree of orchestration. Moreover, sequen-224

tial training does not fully support modularity, as225

training each CAE depends on the prior training of226

all preceding CAEs. To remove the need for clocked227

orchestration and increase biological plausibility via228

modularity, we introduce the asynchronous training229

algorithm where all the CAEs are trained simulta-230

neously and asynchronously. The main idea behind231

asynchronous training is to train the weights of one232

CAE of the stack that is randomly chosen.233

In this case, each CAE can be viewed as a “spin-234

ning wheel” and these wheels can spin independently235

of each other. At any random time, a CAE may236

elect to recirculate whatever happens to be in its 237

input layer (either random data, older data, or the 238

data at the hinge layer activated by previous CAEs) 239

and adapt its synapses accordingly. Further details 240

and a precise algorithm on asynchronous training 241

are given in the Appendix. 242

𝐻!"#$

𝐻!"#% 𝑊!

Hinge Layer

Hinge Layer

CAE1

CAE2

CAE3

Figure 2. Tourbillon architecture with a stack of three
circular autoencoders (CAE) trained by recirculation.

4 Experiments and Results 243

We begin by training CAEs to investigate the ef- 244

fects of various parameters, including the number 245

of cycles (between t and t′), and the CAE size (i.e., 246

3
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the number of hidden layers in the CAE except the247

input and output layers). We use the learning rule in248

Equation 1 in training CAEs, however a discussion249

on the effect of different learning rules (Equation 9)250

is presented in Section A.2.1. Then, using the best251

set of these parameters, we develop and train several252

Tourbillon architectures, both with and without a253

top classifier layer, using different stack depths and254

training algorithms. The goal of these experiments255

is not to outperform existing deep learning mod-256

els but to show that Tourbillon architectures can257

learn complex tasks while satisfying the plausibility258

constraints. Similar to recently proposed plausible259

architectures [14], we use relatively small datasets260

and models, leaving the scaling up to future stud-261

ies. Details on the hyperparameters, hardware, and262

CAE implementation can be found in the Appendix263

and the GitHub repository.264

4.1 Training Tourbillon CAEs265

We train CAEs using the learning rule in Equation266

1. We optimize each architecture using a mean-267

squared reconstruction loss. In all experiments, we268

use symmetric CAEs, where the number of hidden269

layers in the encoder and decoder are equal. To270

satisfy distance plausibility, we use CAEs with a271

small number of hidden layers. Additionally, to272

maintain the temporal locality of the variables, we273

limit the number of cycles (difference between t and274

t′) to one, two, and three.275

We train CAEs with fully connected layers for the276

MNIST and Fashion MNIST datasets and convolu-277

tional layers for the CIFAR-10 dataset. Table 2 dis-278

plays the reconstruction losses on the test datasets.279

Notably, using a CAE size of one and one cycle280

(t = 0 and t′ = 1) yields the lowest testing loss. This281

also corresponds to the highest level of spatial and282

temporal locality of variables.283

Using the best values for the CAE size and number284

of cycles, we further show the viability of training285

CAEs with the learning rule above. We compare286

the mean-squared loss of the trained CAE with287

the same autoencoder trained with backpropagation288

(BP) and feedback alignment (FA). Figure 3 shows289

the training and test error curves for the MNIST290

and Fashion MNIST datasets. Figure 5 (first row)291

shows the trajectories of training and test error292

for CAEs with convolutional layers and similar au-293

toencoders trained with BP and FA. Additionally,294

randomly sampled MNIST images are reconstructed295

using three models shown in Figure A.3 with the296

average reconstruction loss. The results presented297

in these figures show that recirculation outperforms298

FA across different datasets and architectures both299

in training and reconstruction loss. Recirculation300

also shows a reconstruction loss very close to that of301

BP in both fully-connected and convolutional archi-302

tectures (0.001% relative error). Detailed training303

parameters for each CAE are given in the Appendix. 304

305

Figure 3. Train and test loss of three equivalent au-
toencoders. The first row shows the performance of
the models for the MNIST dataset, and the second row
shows the performance for the Fashion MNIST dataset.

4.2 Stacking CAEs with Various 306

Stack Depths and Training Algo- 307

rithms 308

We construct stacks of two, three, and four compres- 309

sive CAEs and train them using sequential and asyn- 310

chronous training algorithms. Table 3 demonstrates 311

the reconstruction errors of the stacks, indicating 312

the effect of stack depth and training algorithm ap- 313

plied to each CAE. Detailed parameters, such as 314

CAE dimensions, batch size, and learning rate, are 315

given in the Appendix. 316

During training, we found the asynchronous train- 317

ing algorithm to be sensitive to learning rate changes. 318

Experimenting with different schedules for each CAE 319

in the stack reveals that decreasing the learning rates 320

from the bottom to the top layers is crucial. Despite 321

the algorithm’s inherent randomness, it achieves an 322

identical test reconstruction error to that of Tourbil- 323

lon trained sequentially. Thus, asynchronous train- 324

ing increases the model’s biological plausibility while 325

maintaining its performance. 326

After training the stacks, we add a top classifier 327

layer for MNIST, Fashion MNIST, and CIFAR-10 328

datasets. We conduct classification experiments to 329

compare the performance of different Tourbillons 330

with neural networks of similar, but sequential ar- 331

chitecture trained using BP, FA, and a stack of 332

autoencoders (SAEs) with identical parameters to 333

CAEs but trained with backpropagation. 334

Three different Tourbillons are considered in this 335

experiment: (1) Tourbillon with the sequential learn- 336

ing algorithm (Tourbillon-seq); (2) Tourbillon with 337

the asynchronous learning algorithm (Tourbillon- 338

asynch); (3) and Tourbillon with the asynchronous 339

learning algorithm that only uses 10% of the labeled 340

4
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Table 2. The test mean-squared reconstruction loss of CAEs with different cycles and CAE sizes trained on
MNIST, Fashion MNIST, and CIFAR-10. Each number is the mean of five distinct runs. The top results are in
boldface.

CAE size
MNIST Fashion MNIST CIFAR-10

Cycles Cycles Cycles

1 2 3 1 2 3 1 2 3

1 0.0090 0.0093 0.0099 0.0123 0.0124 0.0132 0.0013 0.0012 0.0014

3 0.0151 0.0154 0.0165 0.0204 0.0198 0.0204 0.0324 0.0323 0.0381

Table 3. The test mean-squared reconstruction loss of Tourbillon with different stack depths and training
algorithms on MNIST, Fashion MNIST, and CIFAR-10. The top results are in boldface.

Training Algorithm
MNIST Fashion MNIST CIFAR-10

Stack Depth Stack Depth Stack Depth

2 3 4 2 3 4 2 3

Sequential 0.009 0.026 0.027 0.013 0.031 0.032 0.023 0.046

Asynchronous 0.009 0.019 0.025 0.014 0.029 0.042 0.034 0.074

data to train the top classifier (Tourbillon-10%). All341

three models achieve a similar level of good classifi-342

cation accuracy. The Tourbillon-10% model is the343

most biologically plausible and performs on par with344

SAE which is less biologically plausible.345

Although Tourbillon’s performance falls short of346

BP in fully connected architectures (Figure 4), its347

viability is demonstrated by its trainability and348

competitive accuracy, achieving 92% test accuracy349

compared to 99% for BP. Additionally, Tourbillon350

matches the performance of SAE, which is trained351

with BP but is less biologically plausible. When352

using convolutional layers, Tourbillon performs com-353

parably to BP and surpasses other less plausible354

models like FA and SAEs (Figure 5).355

Additionally, we assess Tourbillon’s reconstruction356

capability. Initially, we employ the trained stack of357

circular autoencoders to generate compressed rep-358

resentations of the input data. These compressed359

representations are then mapped onto a 2D space us-360

ing the t-SNE method [15]. Figure 7 shows these 2D361

maps, highlighting Tourbillon’s unsupervised abil-362

ity to cluster elements in each class. Moreover, we363

utilize the trained stack of circular autoencoders364

with feed-forward fully connected layers to recon-365

struct the original input images by leveraging the366

decoder weights of the circular autoencoders. Figure367

7 demonstrates that the Tourbillon models success-368

fully capture the crucial information of the input369

images. During testing, the uncorrupted input is370

passed through the encoder channel to the top of the371

model and then back through the separate decoder372

channel to produce the reconstructed sample. In373

this scenario, each CAE except the top one decodes374

a representation in their hinge layer that comes from375

the CAE immediately above, and not from the CAE376

itself. This may explain why the reconstruction er-377

ror seems to increase with the depth of the stack378

(Table 3). However, this does not imply that stacks379

with multiple CAEs are ineffective as we are inter- 380

ested in using the hidden representation at the top 381

of the stack for classification or regression and not 382

for reconstruction. 383
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Figure 4. Train and test accuracy of six classifiers
trained on the MNIST dataset BP, FA, Tourbillon Se-
quential (seq), Tourbillon Asynchronous (asynch), Tour-
billon with 10% of the labeled data, and SAE. Each line
corresponds to the mean of five distinct runs with the
standard deviation shown as the shaded area.

4.3 Tourbillon Requires Less Labeled 384

Data 385

A key advantage of Tourbillon is its ability to lever- 386

age unlabeled data for unsupervised training of the 387

stack, allowing the top classifier to be trained with 388

significantly less labeled data. To evaluate this, we 389

use a stack of CAEs, identical to the one in the 390

previous section, with the asynchronous training 391

algorithm. Once the stack is trained in an unsu- 392

pervised manner, we train the top classifier in a 393

supervised manner using 10%, 25%, 50%, and 100% 394

of the labeled data. The results for both training 395

and testing are presented in Figure 6. 396

Remarkably, Tourbillon’s performance remains 397

unchanged even with only 10% of the data. This is 398

because the stack of CAEs produces an abstract and 399

informative representation of the input, enabling the 400

small top-layer classifier to learn the classification 401

task with a minimal amount of labeled data. 402
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Figure 5. Top: The mean-squared reconstruction loss
for three autoencoders trained with BP, FA, and CAE
on CIFAR-10. Bottom: Train/test accuracy for six clas-
sifiers trained with BP, FA, Tourbillon-seq, Tourbillon-
asynch, SAE, and Tourbillon-10% on CIFAR-10. Each
trajectory is the mean of five runs, with the shaded area
representing the standard deviation.

4.4 Conversion to Tourbillon403

Finally, we introduce an algorithm designed to con-404

vert a traditional neural network with a sequential405

layout into its Tourbillon version.406

By applying this algorithm to a layered feed-407

forward architecture with no skip connections, we408

can create a more biologically plausible counterpart409

that preserves the original model’s functionality and410

core structure. The Tourbillon version has roughly411

twice as many parameters but requires only minimal412

additional memory. Importantly, during inference,413

both the computational resources and parameter414

count of the Tourbillon version are identical to those415

of the original model.416
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Figure 6. The train and test accuracy of four asyn-
chronous Tourbillons with the use of 10%, 25%, 50%, and
100% of the labeled data. Each line corresponds to the
mean of five distinct runs with the standard deviation
shown as the shaded area.

The key idea is to substitute each sequential layer417

with a small CAE, enabling the encoding of inter-418

mediate data in a manner that facilitates its trans-419

mission to the higher layers of the network. This420

conversion algorithm is represented in Algorithm421

A.2. We use Algorithm A.2 to convert a U-Net [16]422

and a feed-forward architecture into their Tourbillon423

versions. The details of the training are given in the424

Figure 7. tSNE plots for the 2D visualization of 1000
random samples from the MNIST, Fashion MNIST, and
CIFAR-10 datasets. Examples of reconstructed images
from the MNIST and the Fashion MNIST datasets using
Tourbillon are shown on the right.

Appendix. Table A.3 illustrates that the process of 425

converting an architecture to its more biologically 426

plausible Tourbillon version incurs a relatively small 427

cost in terms of accuracy degradation (94% vs 99%). 428

429

Table 4. Comparison of networks trained with BP vs
their Tourbillon version: U-Net numbers show mean-
squared error, feed-forward numbers show classification
error.

U-Net

MNIST CIFAR-10

BP Train 0.0031 (5.8e-05) 0.0024 (5.8e-05)
BP Test 0.0031 (5.8e-05) 0.0026 (e-04)
Tourbillon Train 0.0111 (e-04) 0.0733 (3.2e-04)
Tourbillon Test 0.0113 (2e-04) 0.0783 (3.2e-04)

Fully Connected

MNIST CIFAR-10

BP Train 1.04 (0.20) -
BP Test 1.18 (0.20) -
Tourbillon Train 5.21 (0.40) -
Tourbillon Test 5.82 (0.40) -

5 Conclusion 430

Tourbillon represents a systematic approach towards 431

addressing the problems of deep learning in biolog- 432

ical or neuromorphic networks. In essence, it is a 433

stack of circular autoencoders trained by recircu- 434

lation, hence the name Tourbillon associated with 435

turbulence in French. Moreover, in horology, a tour- 436

billon is an addition to the mechanics of a watch 437

escapement to increase its accuracy. While we do not 438

claim to have increased accuracy, we have shown that 439

the Tourbillon approach shows similar performance 440

to backpropagation, at least on MNIST, Fashion 441

MNIST, and CIFAR-10. 442

Several issues have been identified that will require 443

additional research. The first one is to study the 444

scaling of the Tourbillon architecture so it can be 445

trained on real-world data sets such as ImageNet [17]. 446

The second one is to study whether local learning 447

algorithms are necessary to also fine-tune the stack 448

during regression or classification. For instance, 449

using decoder weights as the random matrices of FA 450

may be a possibility. The third one is the issue of 451

convolutions that was only incrementally addressed 452

here by showing that Tourbillon with convolutions 453

does better than FA, but lags behind BP. And last, 454

there is the study of Tourbillon with spiking neurons. 455
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A Appendix 598

In this appendix, we provide additional details re- 599

garding the algorithms and the experiments. Each 600

section in this appendix corresponds to the section 601

with the same title in the main article. All the exper- 602

iments are conducted using a single NVidia Titan X 603

GPU. 604

A.1 Biological Plausibility 605

We describe the learning equation (weight update) 606

using post- and pre-synaptic terms. For a forward 607

weight Wi at layer i, the backpropagation learning 608

equation can be written as: 609

∆Wi = ηBpost
i Hpre

i−1, Bpost
L = T −HL, (4) 610

Bpost
i−1 = F ′

i−1 ◦WT
i Bpost

i 611

where η denotes the learning rate, Bpost
i denotes 612

the postsynaptic backpropagated error at layer i, 613

and Hpre
i−1 denotes the pre-synaptic activity. F ′

i−1◦ 614

denotes the component wise multiplication by the 615

vector of activation function derivatives in layer i−1. 616

T and HL are the targets and the activation at the 617

top layer L. Note that in order to avoid further clut- 618

tering the notation, we omit the transpose sign for 619

all the presynatpic terms throughout this document. 620

A.1.1 Feedback Alignment 621

Feedback Alignment (FA) or Random Backprop- 622

agation (RBP) refers to a family of algorithms 623

[18, 19, 20, 21] that address the weights transport 624

problem by using non-symmetric, and usually ran- 625

dom, weights in the backward pass as follows: 626

∆Wi = ηBpost
i Hpre

i−1, Bpost
L = T −HL, (5) 627

Bpost
i−1 = F ′

i−1 ◦RiB
post
i 628

where Ri denotes the random fixed matrices (ran- 629

dom backward channels) to fix the issue of weights 630

transport. 631

While FA and its variants address the weight 632

transport problem, by themselves they do not ad- 633

dress the other problems. Among several flavors 634

of FA [19, 22], Direct Feedback Alignment (DFA) 635

[20], backpropagates the error signal obtained at the 636

top layer to each of the lower layers independently 637

using direct fixed random matrices. By this means, 638

DFA can address the issues of spatial locality and 639

distance implausibilities. The learning equation of 640

DFA can be written as follows: 641

∆Wi = ηBpost
i Hpre

i−1, Bpost
i = Ri(T −HL) (6) 642

A version with component-wise multiplication by 643

the derivatives of the corresponding activation func- 644

tions is also possible. Experiments reported in the 645
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literature suggest that FA and its variants do not646

work well with convolutional layers [23, 24, 25]. A647

few methods have been proposed to address this648

apparent weakness of FA algorithms, however, most649

of them introduce more constraints and dependence650

on the forward pass which may make them less bio-651

logically plausible [24, 26, 27].652

A.1.2 Difference Target Propagation653

Difference Target Propagation (DTP) [5] as another654

biologically plausible model, trains the weights using655

a local target at each layer Ŷi that is propagated656

from the original target Y to each of the lower layers657

using learnable weights Gi.658

∆Wi = ηŶ post
i Hpre

i−1, Ŷi = Ŷi+1Gi+1 (7)659

The Gis are trained in the forward pass to approxi-660

mate the inverse of the forward operation at each661

layer. Propagating the target using Gis at the top662

two layers is dependent on the backpropagation and663

weight transport [25]. Also, the forward and back-664

ward passes through the network are completely665

clocked to learn Gis. However, since the information666

flows through layers independently, the variables are667

local in space, thus, this architecture can address668

space-locality and distance implausibilities.669

A.1.3 Stacked Autoencoders670

A well known approach to address the labeling issue671

is using a stack of autoencoders [28, 29], where each672

autoencoder learns to reproduce the hidden repre-673

sentation of the previous one in a self-supervised674

manner, allowing the stack to learn increasingly ab-675

stract representations without labels. Labels are676

only used to train the top layer in a supervised way,677

with the option to fine-tune all layers via backprop-678

agation [30].679

This approach also addresses the distance and680

developmental modularity issues since backpropaga-681

tion within each autoencoder limits error gradients682

to short distances and allows training to begin be-683

fore the entire architecture is complete. However,684

stacked autoencoders do not solve the locality and685

weight transport issues. Each autoencoder, being686

deep, requires backpropagation across at least two687

adaptive layers, necessitating a learning channel for688

error signals and symmetric weights to implement689

backpropagation.690

A.1.4 Forward Forward691

The recently introduced Forward Forward algorithm692

(FF) [14], attempts to address the implausibility693

through a contrastive learning framework. Positive694

and negative data are fed through the network. Then695

the weights can be updated using a local target696

defined at each layer as follows: 697

∆Wi = η(||H+
i −H−

i ||2)postHpre
i−1 (8) 698

FF uses variables that are local in space and can 699

be assumed to be local in time (due to the short 700

neural distance). Given the contrastive learning 701

framework, it can be trained in a self-supervised 702

manner, however, the computation remains heavily 703

clocked for feeding positive and negative data one 704

at a time. 705

A.2 Training Tourbillon CAEs 706

A.2.1 Recurculation Learning Rules 707

We start by introducing two new learning rules (in 708

addition to the main rule of recirculation which can 709

be found in Equation 1). 710

∆Wi =


η(Ht

i −Ht′

i )
post(Ht

i−1)
pre, (a)

η(Ht
i −Ht′

i )
post(Ht′

i−1)
pre, (b)

η(Ht
i −Ht′

i )
post(Ht

i −Ht′

i−1)
pre(c)

(9) 711

Rule (a) is the main learning rule of recirculation. (b) 712

is a slightly different version where the pre-synaptic 713

term is computed at the later cycle (t′). In our 714

experiments we observe that learning rule (b) pro- 715

vides trainability, however, it leads to a higher re- 716

construction error in a CAE across all datasets and 717

architectures. 718

Given that rules (c) and (a) have been identified 719

as the best-performing rules, our focus is on com- 720

paring these two rules. Specifically, we examine the 721

characteristics of these rules in terms of their impact 722

on training dynamics. 723

In Figure A.1, we observe the training process 724

of a circular autoencoder using rule (c), which in- 725

corporates symmetric terms for both pre- and post- 726

synaptic activation differences. The graph illustrates 727

that the use of the symmetric learning rule leads to 728

the convergence of the loss function during training. 729

Moreover, compared to rule (a), this rule exhibits 730

smoother training dynamics. The smoother training 731

dynamics associated with rule (c) or the symmetric 732

learning rule suggest that it promotes more stable 733

and consistent updates to the model parameters, 734

leading to improved training performance. 735

Due to the inherent cyclic structure of circular 736

autoencoders, the data circulates through the model 737

in multiple time steps where neurons produce dif- 738

ferent activations. Assuming that the time frame 739

between two consecutive cycles is short, the differ- 740

ence between two consecutive activations of a neuron 741

[Ht+1
j −Ht

j ] can be interpreted as the activation rate 742

of that neuron at time t. Therefore, rule (c) be also 743

seen as the multiplication of the post-synaptic and 744

pre-synaptic neurons’ activation rates. This implies 745

that the connection between two neurons (∆wij) 746

9
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Figure A.1. The different behavior of the two recircu-
lation learning rules (a) and (c). The REC learning rule
corresponds to rule (a) and the symmetric learning rule
corresponds to rule (c). While both demonstrate simi-
lar performance in training models using MNIST (first
row) and Fashion MNIST (second row), the symmetric
learning rule has smoother trajectories. All trajectories
correspond to the best run out of three. The noise was
removed for clarity.

must be strengthened (or weakened) if neurons’ ac-747

tivation is correlated. This behavior closely matches748

the concept of spike time-dependent synaptic plastic-749

ity Hebbian (or anti-Hebbian) learning rules which750

was proposed using the temporal derivative of the ac-751

tivity of the post-synaptic neuron [13, 31] to encode752

error derivatives.753

However, during training a circular autoencoder754

using rule (c), the model tends to be trapped into755

a mode-collapse state where the reconstructed im-756

ages are the mean of the entire dataset. This mode757

collapse state can be seen in Figure A.2. Therefore,758

despite the interesting interpretation and intuition759

behind rule (c) with its symmetric terms, the prob-760

lem of mode collapse confined our studies to the use761

of the main recirculation learning associated with762

rule (a).763

A.2.2 Training CAEs764

Table A.1 summarizes the parameters used for train-765

ing the CAEs in Section 4.1 of the main article.766

Additionally, all models were trained for 100 epochs767

with a batch size of 64. To optimize the activa-768

tion function and learning rates, a grid search was769

conducted, resulting in the use of tanh activation770

function and a learning rate of 0.01 for the initial771

layers. Subsequently, a smaller learning rate of 0.001772

was employed for the remaining fully connected lay-773

ers across all architectures. For the models that774

incorporated convolutional layers and were trained775

using CIFAR-10, a learning rate of 0.001 was used776

for the initial layer, while a learning rate of 0.0001777

was applied to the subsequent layers.778

Figure A.2. Examples of reconstructed images from the
MNIST and Fashion MINST datasets using the circular
autoencoder trained with rule (c). There is a mode-
collapse effect and the model reconstructs the mean of
the data.

In the case of the convolutional models, zero 779

padding is crucial to maintain the size of the input, 780

ensuring that the spatial dimensions are preserved 781

during the convolutions. The plots in the first row 782

of Figure 5 display the training and test error curves 783

for the convolutional circular autoencoder trained 784

using the CIFAR-10 dataset. Notably, these exper- 785

iments demonstrate that the use of recirculation 786

leads to comparable reconstruction errors, and in 787

some cases even superior, to those achieved with 788

traditional backpropagation and random backprop- 789

agation techniques. 790

Figure A.3. Samples of reconstructed images from
MNIST using autoencoders trained with BP, FA, and a
CAE trained with recirculation.

10



NLDL
#14

NLDL
#14

NLDL 2025 Full Paper Submission #14. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table A.1. CAE size refers to the number of hidden layers except for the input and output layers. For CIFAR-10,
we only show the kernel size of the encoder part of the CAEs. The decoder of the CAEs used a symmetric kernel
size.

CAE size
MNIST and Fashion MNIST CIFAR-10

Hidden Layers Dim Kernel Stride

1 784-256-784 (3× 5× 5× 3) (1× 1)

3 784-256-64-256-784 (3× 5× 5× 3)-(3× 5× 5× 6) (1× 1)

A.3 Stacking CAEs With Various791

Depth and Training Algorithms792

Here we explain the details of the experiments con-793

ducted in Section 4.2. Specifically, Table A.2 summa-794

rizes the parameters used for stacking and training795

the CAEs.796

The size of the CAE architectures is explained in797

Table A.2. We use the same architectures for both798

sequential and asynchronous training algorithms.799

For the sequential training, each CAE is trained800

for 100 epochs with a batch size of 64. We use the801

learning rates explained in the previous section.802

For the asynchronous training algorithm, we use a803

batch size of 64 and we train the entire stack for 3000804

iterations. According to Algorithm A.1, an iteration805

refers to feeding one batch of data through the stack806

and updating the weights of one CAE within the807

stack. During our observations, we noted that when808

employing the same learning rate as the sequential809

training algorithm, the reconstruction loss exhibited810

a noisy trajectory with a limited convergence rate.811

To address this issue, we conducted several grid812

searches to identify an optimal approach. Our find-813

ings indicated that utilizing lower learning rates for814

the upper CAEs in the stack during the initial stages815

of training was crucial. By gradually increasing the816

learning rate of the upper CAEs, we observed a de-817

crease in the reconstruction loss, eventually aligning818

all the CAEs in the stack to use the same learning819

rate. This adjusted learning rate strategy enabled820

more stable and efficient training, facilitating im-821

proved convergence of the reconstruction loss. We822

CAE3

CAE2

CAE1

CAE2 CAE3 CAE1
Random Selection 

of CAEs:

Figure A.4. Random phases of the asynchronous train-
ing. Each time, one CAE is selected randomly and
trained by recirculating the information.

provide a pseudocode of the asynchronous training 823

in Algorithm A.1. To further enhance clarity, we 824

have depicted the schematics of the asynchronous 825

training algorithm in Figure A.4. 826

Algorithm A.1 Asynchronous training

Input: T : A stack of m sequential circular au-
toencoders T = CAEm ◦ ... ◦ CAE1, CAEi =
Di ◦ Ei(datasample), data: training data, S:
steps, Ei and Di are the encoder and decoder
of CAEi

for i = 1 to S do
1 ≤ j = random ≤ m
h = Ej−1 ◦ ... ◦ E1

circulation(CAEj , h)
end for

To evaluate the performance of the Tourbillon 827

architecture when adding the top classification layer, 828

we conducted a comparison with similar architec- 829

tures trained using backpropagation, FA, and DFA. 830

Figure 4 presents the results of this experiment 831

specifically for the Tourbillons, trained sequentially 832

with a stack of three fully connected CAEs using the 833

Fashion MNIST dataset. Additionally, the second 834

row of Figure 5 showcases similar results obtained for 835

the Tourbillons, trained sequentially with a stack of 836

two convolutional CAEs using the CIFAR-10 dataset. 837

All the parameters of the CAEs are explained above. 838

In all cases, we can observe that Tourbillon can 839

achieve comparable performance to models trained 840

using BP or FA, showing the viability of Tourbillon 841

while being the most biologically plausible model. 842

A.4 Conversion to Tourbillon 843

As described in Section 4.4, we follow the Algorithm 844

A.2 to build the biologically plausible version of the 845

architecture for a U-Net autoencoder model that 846

addresses all the problems mentioned in the Intro- 847

duction. In addition, we also convert a feed-forward 848

fully connected network architecture to its biologi- 849

cally plausible version. Results obtained on MNIST 850

and Fashion MNIST are very similar, therefore we 851

reported the results obtained on MNIST and CIFAR- 852

10. The U-Net architecture for the MNIST dataset 853

comprises a two-layer encoder and a two-layer de- 854

coder. The encoder layers compress the data from 855
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Table A.2. Depth refers to the number of CAEs used to construct the stack. For CIFAR-10, we only show the
kernel size of the encoder part of the CAEs. The decoder of the CAEs used a symmetric kernel size.

Depth
MNIST and Fashion MNIST CIFAR-10

Input and Hinge Layers Dim Kernel Stride

2 (784,256)-(256,128) (3× 5× 5× 3) (1× 1)

3 (784,256)-(256,128)-(128,64) (3× 5× 5× 3) (1× 1)

4 (784,256)-(256,128)-(128,64)-(64,64)

Algorithm A.2 Conversion to Tourbillon

Input: M : A network with m sequential layers
L = [L1, ..., Lm], data: training data.
Output: M ′: The biological plausible version of
the architecture.
Initialize L′ = [].
for i = 1 to m do
if Li has learnable parameters then

l = train cae([L1, ..., Li])
L′.append(l)

else
L′.append(Li)

end if
end for
M ′ = [data]
for i = 1 to m do
M ′ = L′

i(M
′)

end for
function train cae([L1, ..., Li]):
input = Li−1(...(L1(data)))
circular ae = Gi(Li(input)), Gi:decoder
recirculation(circular ae)
return Li

endfunction

784 to 128, and then from 128 to 64. The decoder856

layers expand the data from 64 to 128, and then857

from 128 to 784. The U-Net architecture for the858

CIFAR-10 dataset comprises two 2D convolutional859

layers with kernels of size (5 × 5). For both the860

MNIST and CIFAR-10 U-Nets we use the same861

batch size, learning rate, number of epochs, and862

activation function used in the previous section. For863

the feed-forward architecture, we use a three-layer864

network with 256, 64, and 10 hidden units. For this865

architecture and its Tourbillon twin, we also use the866

same batch size, learning rate, number of epochs,867

and activation function as described in the previous868

section.869

Table A.3. Train/Test time and number of parameters
used in the models. Models for MINST and Fashion
MNIST are of identical sizes. Train times are the average
time of one epoch. All times are in seconds.

Model Name Train/Test Time Parameters

Section 4.1

BP (MNIST) 3.95/411 403488
FA (MNIST) 4.05/420 403488
CAE (MNIST) 4.21/422 403488
BP (CIFAR-10) 2.40/231 244
FA (CIFAR-10) 2.44/231 244
CAE (CIFAR-10) 2.59/245 462

Section 4.2

BP (MNIST) 5.90/595 49220
FA (MNIST) 6.17/605 49220
SAE (MNIST) 6.20/620 981250
Tourb (MNIST/seq) 6.29/628 981250
Tourb (MNIST/asynch) 7.01/628 981250
BP (CIFAR-10) 3.66/350 720
FA (CIFAR-10) 3.66/350 720
SAE (CIFAR-10) 3.81/379 1380
Tourb (CIFAR-10/seq) 3.94/396 1380
Tourb (CIFAR-10/asynch) 4.19/420 1380

Section 4.3

Tourb-10% (MNIST) 7.01/628 981250
Tourb-25% (MNIST) 7.01/628 981250
Tourb-50% (MNIST) 7.01/628 981250
Tourb-100% (MNIST) 7.01/628 981250
Tourb-10% (CIFAR-10) 4.19/420 1380
Tourb-25% (CIFAR-10) 4.19/420 1380
Tourb-50% (CIFAR-10) 4.19/420 1380
Tourb-100% (CIFAR-10) 4.19/420 1380

Section 4.4

U-Net (MNIST) 5.12/520 327100
Tourb-U-Net (MNIST) 6.71/590 654200
U-Net (CIFAR-10) 3.35/377 630
Tourb-U-Net (CIFAR-10) 3.88/390 1260
FC (MNIST) 5.88/600 49220
Tourb-FC (MNIST) 7.01/628 981250
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