
Learning Certified Control Using Contraction Metric

Dawei Sun
SRI International and

University of Illinois at Urbana-Champaign, US
daweis2@illinois.edu

Susmit Jha
Computer Science Laboratory

SRI International, US
susmit.jha@sri.com

Chuchu Fan
Massachusetts Institute of Technology

United States
chuchu@mit.edu

Abstract: In this paper, we solve the problem of finding a certified control policy
that drives a robot from any given initial state and under any bounded disturbance
to the desired reference trajectory, with guarantees on the convergence or bounds
on the tracking error. Such a controller is crucial in safe motion planning. We
leverage the advanced theory in Control Contraction Metric and design a learning
framework based on neural networks to co-synthesize the contraction metric and
the controller for control-affine systems. We further provide methods to validate
the convergence and bounded error guarantees. We demonstrate the performance
of our method using a suite of challenging robotic models, including models with
learned dynamics as neural networks. We compare our approach with leading
methods using sum-of-squares programming, reinforcement learning, and model
predictive control. Results show that our methods indeed can handle a broader
class of systems with less tracking error and faster execution speed. Code is avail-
able at https://github.com/sundw2014/C3M.

Keywords: Learning Tracking Controller, Control Contraction Metric, Conver-
gence Guarantee, Neural Networks

1 Introduction

Designing safe motion planning controllers for nonholonomic robotic systems is a critical yet ex-
tremely challenging problem. In general, motion planning for robots is notoriously difficult. For
example, even planning for a robot (composed of n polyhedral bodies) in a 3D world that contains
a fixed number of polyhedral obstacles is PSPACE-hard [1]. Simultaneously providing formal guar-
antees on safety and robustness when the robots are facing uncertainties and disturbances makes the
problem even more challenging. Sample-based planning techniques [2, 1] can plan safe trajectories
by exploring the environment but cannot handle uncertainty and disturbances. A natural thought
that has been extensively explored is to exploit a separation of concerns that exists in the problem:
(A) how to design a reference (also called expected or nominal) trajectory x∗(t) to drive a robot to
its goal safely without considering any uncertainty or disturbance, and (B) how to design a tracking
controller to make sure the actual trajectories x(t) of the system under disturbances can converge to
x∗(t) with guaranteed bounds for the tracking error between x(t) and x∗(t) [3, 4, 5, 6]. Combining
controllers from solving (A) and (B) can make sure that the actual behaviors of the robot are all safe.

While the reference trajectories can be found using efficient planning techniques [2, 1, 7] for a
very broad class of systems, the synthesis of a guaranteed tracking controller, also called trajectory
stabilization [8] is not an automatic process, especially for nonholonomic systems. Control theo-
retic techniques exist to guide the dual synthesis [6] of control policies and certificates at the same
time, where the certificates can make sure certain required properties are provably satisfied when the
corresponding controller is run in (closed-loop) composition with the plant. For example, control
Lyapunov Function (CLF) [9, 10] ensures the existence of a controller so the controlled system is

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

https://github.com/sundw2014/C3M

Lyapunov stable, and Control Barrier Function (CBF) [11, 12, 13] ensures that a controller exists
so the controlled system always stays in certain safety invariant sets defined by the corresponding
barrier function. Other methods pre-compute the tracking error through reachability analysis [4],
Funnels [14, 5], and Hamilton-Jacobi analysis [3, 15]. Despite the benefit brought by these certifi-
cates (e.g. Lyapunov Function, Barrier Function), finding the correct function representation for the
certificates is non-trivial. Various methods have been studied to learn the certificate as polynomi-
als [16, 10], support vectors [17], Gaussian processes [18], temporal logic formulae [19, 20], and
neural networks (NN) [9, 13, 21, 22, 23]. Unlike reinforcement learning (RL) [24, 25, 26, 27] which
focuses on learning a control policy that maximizes an accumulated reward and usually lacks formal
safety guarantees, certificate-guided controller learning focuses on learning a sufficient condition
for the desired property. In this paper, we follow this idea and learn a tracking controller by learning
a convergence certificate simultaneously as guidance.

In this paper, we leverage recent advances in Control Contraction Metric (CCM) [28, 29] theory
that extends the contraction theory to control-affine systems to prove the existence of a tracking
controller so the closed-loop system is contracting. In the CCM theory [28], it has been shown that
a valid CCM implies the existence of a contracting tracking controller for any reference trajectories.
In our framework, we model both the controller and the metric function as neural networks and
optimize them jointly with the cost functions inspired by the CCM theory. Due to the constraints
imposed during training, the tracking error of the learned controller is guaranteed to be bounded
even with external disturbances.

Synthesis of CCM certificate has been formulated as solving a Linear Matrix Inequality (LMI)
problem using Sum-of-Squares (SoS) programming [30] or RKHS theory [8] even when the model
dynamics is unknown. However, such LMI-based techniques have to rely on an assumption on the
special control input structure of a class of underactuated systems (see Sec. 3.1 for details) and
therefore cannot be applied to general robotic systems. Moreover, the above methods only learn
the CCM. The controller needs to be found separately by computing geodesics of the CCM, which
cannot be solved exactly and has high computational complexity. To use SoS, the system dynamics
need to be polynomial equations or can be approximated as polynomial equations. The degree and
template of the polynomials in SoS play a crucial role in determining whether a solution exists
and need to be tuned for each system. In [31], the authors proposed a synthesis framework using
recurrent NNs to model the contraction metric and this framework works for nonlinear systems
which are a convex combination of multiple state-dependent coefficients (i.e. f(x, t) is written as
A(x, t)x). Again, the controller in [31] is constructed from the learned metric. In contrast, our
approach can simultaneously synthesize the controller and the CCM certificate for control-affine
systems without any additional structural assumptions.

We provide two methods to prove convergence guarantees of the learned controller and CCM (Sec-
tion 3.2). The first method provides deterministic guarantees by leveraging the Lipschitz continuity
of the CCM’s condition. Furthermore, we observed that even if the CCM’s condition does not
hold globally for every state in the state space, the resulting trajectories still often converge to the
reference trajectories in our experience. This motivates our second approach based on conformal
regression to give probabilistic guarantees on the convergence of the tracking error. Both methods
can provide upper bounds on the tracking error, using which one can explore trajectory planning
methods such as sampling-based methods (e.g. RRT [32], PRM [2]), model predictive control
(MPC) [7], and satisfiability-based methods [33] to find safe reference trajectories to accomplish
the safe motion planning missions. We compare our approach Certified Control using Contraction
Metric (C3M) with the SoS programming [30], RL [34], and MPC [7, 35, 36] on several representa-
tive robotic systems, including the ones whose dynamics are learned from physical data using neural
networks. We show that C3M outperforms other methods by being the only approach that can find
converging tracking controllers for all the benchmarks. We provide two metrics for evaluating the
tracking performance and show that controllers achieved through C3M have a much smaller tracking
error. In addition, controllers found by C3M can be executed in sub-milliseconds at each step and
is much faster than methods that only learn the metric (e.g. SoS programming) and online control
methods (e.g. MPC).

2

2 Preliminaries and notations

We denote by R and R≥0 the set of real and non-negative real numbers respectively. For a symmetric
matrix A ∈ Rn×n, the notation A � 0 (A ≺ 0) means A is positive (negative) definite. The
set of positive definite n × n matrices is denoted by S>0

n . For a matrix-valued function M(x) :
Rn 7→ Rn×n, its element-wise Lie derivative along a vector v ∈ Rn is ∂vM :=

∑
i v
i ∂M
∂xi . Unless

otherwise stated, xi denotes the i-th element of vector x. For A ∈ Rn×n, we denote A+Aᵀ by Â.

Dynamical system We consider control-affine systems of the form
ẋ(t) = f(x(t)) +B(x(t))u(t) + d(t), (1)

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm, and d(t) ∈ D ⊆ Rn for all t ∈ R≥0 are states, inputs,
and disturbances respectively. Here, X ,U and D are compact sets that represent the state, input,
and disturbance space respectively. We assume that f : Rn 7→ Rn and B : Rn 7→ Rn×m are
smooth functions, the control input u : R≥0 7→ U is a piece-wise continuous function, and the right-
side of Eq. (1) holds at discontinuities. Furthermore, we assume that the disturbance is bounded,
i.e. supt ‖d(t)‖2 < ∞. Given an input signal : R≥0 7→ U , a disturbance signal d : R≥0 7→ D,
and an initial state x0 ∈ X , a (state) trajectory of the system is a function x : R≥0 7→ Rn such
that x(t), u(t), d(t) satisfy Eq. (1) and x(0) = x0. The goal of this paper is to design a tracking
controller u(·) such that the controlled trajectory x(t) can track any target trajectory x∗(t) generated
by a reference control u∗(t) when x(0) is in a neighborhood of x∗(0) and there is no disturbance (i.e.
d(t) = 0). Furthermore, when d(t) 6= 0, the tracking error can also be bounded (Sec. 3.3). Fig. 1 (a)
illustrates the reference trajectory and the actual trajectory controlled by the proposed method.

Control contraction metric theory Contraction theory [37] analyzes the incremental stability of
a system by considering the evolution of the distance between any pair of arbitrarily close neigh-
boring trajectories. Let us first consider a time-invariant autonomous system of the form ẋ = f(x).
Given a pair of neighboring trajectories, denote the infinitesimal displacement between them by δx,
which is also called a virtual displacement. The evolution of δx is dominated by a linear time vary-
ing (LTV) system: δ̇x = ∂f

∂x (x)δx. Thus, the dynamics of the squared distance δᵀxδx is given by
d
dt (δ

ᵀ
xδx) = 2δᵀx δ̇x = 2δᵀx

∂f
∂xδx. If the symmetrical part of the Jacobian ∂f

∂x is uniformly negative

definite, i.e. there exists a constant λ > 0 such that for all x, 1
2
∂f
∂x

∧

� −λI, then δᵀxδx converges
to zero exponentially at rate 2λ. Hence, all trajectories of this system will converge to a common
trajectory [37]. Such a system is referred to be contracting.

The above analysis can be generalized by introducing a contraction metric M : Rn 7→ S>0
n , which

is a smooth function. Then, δᵀxM(x)δx can be interpreted as a Riemannian squared length. Since
M(x) � 0 for all x, if δᵀxM(x)δx converges to 0 exponentially, then the system is contracting. The
converse is also true. As shown in [37], if a system is contracting, then there exists a contraction
metric M(x) and a constant λ > 0 such that d

dt (δ
ᵀ
xM(x)δx) < −λδᵀxM(x)δx for all x and δx.

Contraction theory can be further extended to control-affine systems. First, let us ignore the
disturbances in system (1), then the dynamics of the corresponding virtual system is given by
δ̇x = A(x, u)δx + B(x)δu, where A(x, u) := ∂f

∂x +
∑m
i=1 u

i ∂bi
∂x , bi is the i-th column of B, ui

is the i-th element of u, and δu is the infinitesimal difference of u. A fundamental theorem in Con-
trol Contraction Metric (CCM) theory [28] says if there exists a metricM(x) such that the following
conditions hold for all x and some λ > 0,

Bᵀ
⊥

(
−∂fW (x) + ∂f(x)

∂x W (x)

∧

+ 2λW (x)

)
B⊥ ≺ 0, (2)

Bᵀ
⊥

(
∂bjW (x)− ∂bj(x)

∂x W (x)

∧)
B⊥ = 0, j = 1, . . . ,m, (3)

where B⊥(x) is an annihilator matrix of B(x) satisfying Bᵀ
⊥B = 0, and W (x) = M(x)−1 is the

dual metric, then there exists a tracking controller k(x, x∗, u∗) such that the closed-loop system
controlled by u = k(x, x∗, u∗) is contracting with rate λ under metric M(x) [28], which means
x(t) converges to x∗(t) exponentially. However, as shown in [28], either finding a valid metric or
constructing a controller from a given metric is not straightforward. Hence, we proposed to jointly
learn the metric and controller using neural networks.

3

𝑥∗(𝑡)

𝑥∗(0)

Metric NN 𝑊(𝑥; 𝜃𝑤)

Training sample:
𝑥, 𝑥∗, 𝑢∗

∈ 𝒳 ×𝒳 ×𝒰

Controller NN 𝑢(𝑥, 𝑥∗, 𝑢∗; 𝜃𝑢)

Loss function:
ℒ = ℒ𝑤 + ℒ𝑢

Plant

ሶ𝑥 = 𝑓 𝑥 + 𝐵 𝑥 𝑢 + 𝑑(𝑡)

Controller NN

𝑥

𝑢(𝑥, 𝑥∗, 𝑢∗; 𝜃𝑢) (𝑥∗, 𝑢∗)

𝑥(0)

𝑥(𝑡)

𝑑(𝑡)

(a) Reference and actual trajectories (b) Offline training process (c) Online controller execution

Figure 1: Components of the proposed method. (a) Trajectories of the Dubins car model, which is a classical
nonholonomic system. Here, x∗ is the reference trajectory, and x is the actual trajectory controlled by our
learned controller. (b)Joint training for the CCM and the controller. (c) Illustration on the online execution.

3 Learning tracking controllers using CCM with formal guarantees

In this paper, we utilize machine learning methods to jointly learn a Contraction Metric and a track-
ing controller for System (1) with known dynamics. The overall learning system is illustrated in
Fig. 1 (b). Different from RL-based methods, since all the conditions used for learning (Eq. (2),(3),
and (4)) are defined for a single state at a specific time instant instead of the whole trajectory, running
of the system is not required for training. Hence, the training is fully offline and fast. The data set
for training is of the form {(xi, x∗i , u∗i) ∈ X × X × U}Ni=1, and samples are drawn independently.
The contraction metric and the tracking controller are parameterized using neural networks. In what
follows we first ignore the disturbance d(t) and then show in Sec. 3.3 that with d(t) 6= 0, the tracking
error of the learned controller can still be bounded.

3.1 Controller and metric learning

The controller u(x, x∗, u∗; θu) is a neural network with parameters θu, and the dual metricW (x; θw)
is also a neural network with parameters θw. By design, the controller satisfies that x = x∗ ⇒
u(x, x∗, u∗; θu) = u∗ for all θu, and W (x; θw) is a symmetric matrix satisfying W (x; θw) � wI
for all x and all θw, where w is a hyper-parameter. More details about the design can be found
in Sec. 4. Plugging u(x, x∗, u∗; θu) into System (1) with d(t) = 0, the dynamics of the general-
ized squared length of the virtual displacement under metric M(x; θw) = W (x; θw)−1 is given by
d
dt (δ

ᵀ
xM(x; θw)δx) = δᵀx(Ṁ +M(A+BK)
∧

)δx, where K = ∂u
∂x , and Ṁ =

∑n
i=1

∂M
∂xi ẋ

i, or using
the Lie derivative notation Ṁ = ∂f(x)+B(x)uM . A sufficient condition from [28] for the closed-
loop system being contracting is that there exists λ > 0 such that for all (x, x∗, u∗) ∈ X × X × U ,

Ṁ +M(A+BK)
∧

+ 2λM ≺ 0. (4)
Since x = x∗ ⇒ u(x, x∗, u∗; θu) = u∗, the reference (x∗(t), u∗(t)) is a valid trajectory of the
closed-loop system. If the system is furthermore contracting, then starting from any initial state, the
trajectory converges to a common trajectory which is indeed x∗(t) as formally stated below.
Proposition 1. If condition (4) holds and m ≥ m > 0 satisfying mI �M(x) � mI for all x, then
the initial difference between the reference and the actual trajectory is exponentially forgotten, i.e.
‖x(t)− x∗(t)‖2 ≤

√
m/m e−λt‖x(0)− x∗(0)‖2.

Denoting the LHS of Eq.(4) by Cu(x, x∗, u∗; θw, θu) and the uniform distribution over the data
space S := X × X × U by ρ(S), then the contraction risk of the system is defined as

Lu(θw, θu) = E
(x,x∗,u∗)∼ρ(S)

LPD(−Cu(x, x∗, u∗; θw, θu)), (5)

where LPD(·) ≥ 0 is for penalizing non-positive definiteness, and LPD(A) = 0 iff. A � 0.
Obviously, Lu(θ∗w, θ

∗
u) = 0 implies that u(x, x∗, u∗; θ∗u) andW (x; θ∗w) satisfy inequality (4) exactly.

As shown in Proposition 1, the overshoot of the tracking error is affected by the condition number
m/m of the metric. Since the smallest eigenvalue of the dual metric is lower bounded by w by
design, penalizing large condition numbers is equivalent to penalizing the largest eigenvalues, and
thus the following risk function is used

Lc(θw) = E
(x,x∗,u∗)∼ρ(S)

LPD(wI−W (x; θw)), (6)

4

where w is a hyper-parameter.

However, jointly learning a metric and a controller by minimizing Lu solely is hard and leads to
poor results. Inspired by the CCM theory, we add two auxiliary loss terms for the dual metric to
mitigate the difficulty of minimizing Lu. As shown in Sec. 2, conditions (2) and (3) are sufficient
for a metric to be a valid CCM. Intuitively, imposing these constraints on the dual metric W (x; θw)
provides more guidance for optimization. More discussion can be found in Appendix. Denoting the
LHS of Eq. (2) and (3) by C1(x; θw) and {Cj2(x; θw)}mj=1, the following risk functions are used

Lw1(θw) = E
(x,x∗,u∗)∼ρ(S)

LPD(−C1(x; θw));Lw2(θw) =

m∑
j=1

E
(x,x∗,u∗)∼ρ(S)

‖Ci2(x; θw)‖F , (7)

where ‖ · ‖F is the Frobenius norm.

Please note that in some cases, condition (3) can be automatically satisfied for all θw by de-
signing W (·) appropriately. As stated in [8], if the matrix B(x) is sparse and of the form

B(x) =

[
0(n−m)×m
b(x)

]
, where b(x) is an invertible matrix, condition (3) can be automatically sat-

isfied for all x and all θw by making the upper-left (n − m) × (n − m) block of W (x; θw) not
a function of the last (n − m) elements of x. In [8, 30], such sparsity assumptions are necessary
for their approach to work. For dynamical models satisfying this assumption, we make use of this
property by designing W to satisfy such a structure and eliminate Lw2 since it will always be 0. For
models not satisfying this assumption, we will show in Sec. 4 the impact of the loss term Lw2.

In order to train the neural network using sampled data, the following empirical risk function is used

L(θu, θw) =
1

N

N∑
i=1

[
LPD(−Cu(xi, x

∗
i , u
∗
i ; θw, θu)) + LPD(−C1(xi; θw))

+

m∑
j=1

‖Cj2(xi; θw))‖F + LPD(wI−W (xi; θw))
]
, (8)

where {(xi, x∗i , u∗i)}Ni=1 are drawn independently from ρ(S), and LPD is implemented as follows.
Given a matrix A ∈ Rn×n, we randomly sample K points {pi ∈ Rn | ||pi||2 = 1}Ki=1. Then, the
loss function is calculated as LPD(A) = 1

K

∑K
i=1 min{0,−pᵀiApi}.

3.2 Theoretical convergence guarantees

As discussed in Sec. 3.1, satisfaction of inequality (4) for all (x, x∗, u∗) ∈ S is a strong guarantee
to show the validity of M(x) as a contraction metric and therefore provide convergence guarantees.
SMT solvers [9] are valid tools for verifying the satisfaction of (4) on the uncountable set S. How-
ever, SMT solvers for NN have poor scalability and cannot handle the neural networks used in our
experiments. Moreover, we observed in experiments that even if inequality (4) does not hold for
all (x, x∗, u∗) ∈ S, the learned controller still has perfect performance. Therefore, we introduce
two approaches to provide guarantees on the satisfaction of inequality (4) or on the tracking error
directly, which in practice are easier to validate and still give the needed level of assurance.

Deterministic guarantees using Lipschitz continuity. For a Lipschitz continuous function f :
X 7→ R with Lipschitz constant Lf , discretizing the domain X such that the distance between any
grid point and its nearest neighbor is less than τ , if f(xi) < −Lfτ holds for all grid point xi, then
f(x) < 0 holds for all x ∈ X . We show in the following proposition that the largest eigenvalue
of the LHS of inequality (4) indeed has a Lipschitz constant if both the dynamics and the learned
controller and metric have Lipschitz constants.

Proposition 2. Let A, B, K, and M be functions of x, x∗, and u∗. If Ṁ , M , A,
B, and K all have Lipschitz constants LṀ , LM , LA, LB , and LK respectively, and 2-
norms of the last four are all bounded by SM , SA, SB , and SK respectively, then the
largest eigenvalue function λmax

(
Ṁ +M(A+BK)
∧

+ 2λM
)

has a Lipschitz constant LṀ +

2 (SMLA + SALM + SMSBLK + SBSKLM + SMSKLB + λLM).

5

The proof of Proposition 2 is provided in Appendix. Combining discrete samples and the Lipschitz
constant from Proposition 2 can guarantee the strict satisfaction of inequality (4) on the uncountable
set S. The Lipschitz constants for the metric and controller NNs can be computed using various ex-
isting tools such as the methods in [38]. An example demonstrating the verification process is given
in Appendix. Since the estimate of the Lipschitz constant is too conservative, it usually requires
a huge number of samples to verify the learned controller. Fortunately, this process only requires
forward computation of the NN and thus can be done relatively fast.

Probabilistic guarantees. We observed that even if inequality (4) does not hold for all points in S,
the learned controller can still drive all simulated trajectories to converge to reference trajectories.
This motivates us to derive probabilistic guarantees on the convergence as an alternative in the
trajectory space. The probabilistic guarantee is derived based on a simple result from conformal
prediction [39]. Let us consider the process of evaluating a tracking controller using a quality metric
function. Given an evaluation configuration including the initial state x(0), and the initial reference
state x∗(0) and reference control signal u∗(t), we can get the actual trajectory x(t) controlled by the
tracking controller. The quality metric function summarizes the tracking error curve ‖x∗(t)−x(t)‖2
into a scalar which can be viewed as a score for the tracking. Now, it is clear that the quality metric
function is a mapping from the evaluation configuration to a score. The following proposition gives
a probabilistic guarantee on the distribution of the quality score based on empirical observations.

Proposition 3. Given a set of n i.i.d. evaluation configurations, let {mi}ni=1 be the quality scores
for each configuration. Then, for a new i.i.d. evaluation configuration and the corresponding quality
scoremn+1, we have Pr(mn+1 ≥ q1−α) ≤ 1−α, where q1−α is the (1−α)-th quantile of {mi}ni=1.

Note that Proposition 3 asserts guarantees on the marginal distribution of mn+1, which should be
distinguished from the conditional distribution. Such probabilistic guarantees work on the trajectory
space and therefore can be applied to any method that finds tracking controllers. In Sec. 4, we
evaluate all the methods in comparison by computing the probabilistic guarantees using either the
average tracking error or the convergence rate as the quality metric.

3.3 Robustness of the learned controller

When the closed-loop system run with disturbances, the tracking error is still bounded as follows.

Theorem 4. Given M(x) and u(x, x∗, u∗) satisfying inequality (4), since M(x) ∈ S>0
n , there exist

m ≥ m > 0 such that mI � M(x) � mI for all x. Assume that the disturbance is uniformly
bounded as ‖d(t)‖2 ≤ ε. Now, for the same reference, considering the trajectories x1(t) and x2(t)
of the unperturbed and the perturbed closed-loop system respectively, the distance between these
two trajectories can be bounded as ‖x1(t) − x2(t)‖2 ≤ R0√

me
−λt +

√
m
m ·

ε
λ (1 − e−λt), where

R0 =
∫ x2(0)

x1(0)

√
δᵀxM(x)δx is the geodesic distance between x1(0) and x2(0) under metric M(x).

The proof of Theorem 4 is inspired by Theorem 1 in [31] and is provided in Appendix. In practice
m and m can be computed using samples and the Lipschitz constant of the eigenvalues of M(x) as
discussed in Sec. 3.2.

4 Evaluation of performance

We evaluate the C3M approach on 9 representative case studies (5 of them are reported in Appendix),
including high-dimensional (up to 9 state variables and 3 control variables) models and a system with
learned dynamics represented by a neural network. All our experiments were conducted on a Linux
workstation with two Xeon Silver 4110 CPUs, 32 GB RAM, and a Quadro P5000 GPU. Please note
that the execution time reported in Tab. 1 were all evaluated on CPU.

Comparison methods. We compare the performance of C3M with 3 different leading approaches
for synthesizing tracking controllers, including both model-based and model-free methods. To be
specific, the methods include (1.) SoS: the SoS-based method proposed in [30], using the official
implementation 1. (2.) MPC: an open-source implementation of MPC on PyTorch [7], which solves

1https://github.com/StanfordASL/RobustMP

6

https://github.com/StanfordASL/RobustMP

nonlinear implicit MPC problems using the first-order approximation of the dynamics [40]. (3.) RL:
the Proximal Policy Optimization (PPO) RL algorithm [34] implemented in Tianshou 2. Note that
although RL is often used in a model-free setting, the advances in deep neural networks have made
RL an outstanding tool for controller learning.

Studied systems. We study 4 representative system models adopted from classical benchmarks:
(1). PVTOL models a planar vertical-takeoff-vertical-landing (PVTOL) system for drones and is
adopted from [30, 8]. (2). Quadrotor models a physical quadrotor and is adopted from [30].
(3). Neural lander models a drone flying close to the ground so that ground effect is prominent
and therefore could not be ignored [41]. Note that in this model the ground effect is learned from
empirical data of a physical drone using a 4-layer neural network [41]. Due to the neural network
function in the dynamics, the SoS-based method as in [30] cannot handle such a model since neural
networks are hard to be approximated by polynomials. (4). SEGWAY models a real-world Segway
robot and is adopted from [13]. Since this model does not satisfy the sparsity assumption for matrix
B in Sec. 3.1, SoS-based method cannot handle it. With this model, we also study the impact of the
regularization term Lw2 in Equation (7) for learning a tracking controller.

We report the performance of C3M on 5 other examples in Appendix, including a 10D quadrotor
model, a cart-pole model, a pendulum model, a two-link planar robot arm system, and the Dubin’s
vehicle model in Fig. 1. The detailed dynamics of the above 4 representative system models are also
reported in Appendix.

Implementation details. For all systems studied here, we model the dual metric as W (x) =
C(x; θw)ᵀC(x; θw) +wI where C(x; θw) ∈ Rn×n is a 2-layer neural network, of which the hidden
layer contains 128 neurons. We use a relative complex structure for the controller. First, two weight
matrices of the controller w1 = w1(x, x∗; θu1) and w2 = w2(x, x∗; θu2) are modeled using two
2-layer neural networks with 128 neurons in the hidden layer, where θu1 and θu2 are the param-
eters. Then the controller is given by u(x, x∗, u∗; θu) = w2 · tanh(w1 · (x − x∗)) + u∗, where
θu = {θu1, θu2} and tanh(·) is the hyperbolic tangent function. It is easy to verify the assumptions
made in Sec. 3.1 are satisfied: For the controller, x = x∗ ⇒ u(x, x∗, u∗; θu) = u∗ for all θu. For the
metric, W (x; θw) is a symmetric matrix satisfying W (x; θw) � wI for all x and all θw. A training
set with 130K samples is used. We train the NN for 20 epochs with the Adam [42] optimizer.

The process of generating random reference trajectories x∗ is critical in the evaluation of tracking
controllers and also a fundamental part in RL training. We pre-define a group of sinusoidal signals
with some fixed frequencies and randomly sampled a weight for each frequency component, then the
reference control inputs u∗(t) are calculated as the linear combination of the sinusoidal signals. The
initial states of the reference trajectories x∗(0) are uniformly randomly sampled from a compact set.
Using x∗(0) and u∗(t), we can get the reference trajectories x∗(t) following the system dynamics (1)
with d(t) = 0. For evaluation, the initial errors xe(0) are uniformly randomly sampled from a
bounded set, and the initial states x(0) are computed as x(0) = x∗(0) + xe(0). Trajectories of the
closed-loop systems are then simulated on a bounded time horizon [0, T].

To make use of the model-free PPO RL library, we formulate some key concepts as follows. The
state of the environment at time t is the concatenation of x(t) and x∗(t). At the beginning of each
episode, the environment randomly samples two initial points as x(0) and x∗(0) respectively, and
a reference control input u∗(t) using the aforementioned sampling method. At each transition, the
environment takes the action u(t) from the agent, and returns the next state as x(t+ ∆t) = x(t) +
∆t(f(x(t)) + B(x(t))(u(t) + u∗(t))) and x∗(t+ ∆t) = x∗(t) + ∆t(f(x∗(t)) + B(x∗(t))u∗(t)),
and the reward as rt = 1/(1+ ||w◦(x(t+∆t)−x∗(t+∆t))||2), wherew are predefined weights for
each state. For a fair comparison, RL and our method share the same architecture for the controller.

For the MPC-PyTorch library, we observe that the time horizon, also called the receding time win-
dow for computing the control sequence, plays a crucial role. With smaller time window, the re-
sulting controller cannot always produce trajectories that converge to the reference trajectory. The
larger the time window is, the smaller the tracking errors are. However, a large time window can
also cause the computational time to increase. As a trade-off, we set time window to be 50 time
units in all cases.

Results and discussion Results are reported in Tab. 1 and Fig. 2. For each benchmark, a group
of evaluation configurations was randomly sampled using the aforementioned sampling method,

2https://github.com/thu-ml/tianshou

7

https://github.com/thu-ml/tianshou

Table 1: Comparison results of C3M vs. other methods. n and m are dimensions of the state and input space.

Model Dim Execution time per step (ms) Tracking error (AUC) Convergence rate (λ/C)
n m C3M SoS MPC RL C3M SoS MPC RL C3M SoS MPC RL

PVTOL 6 2 0.41 3.4 1968 0.41 0.659 0.975 0.892 0.735 1.153/3.95 0.864/4.91 0.489/4.95 0.799/3.84
Quadrotor 9 3 0.40 12.6 3535 0.40 0.772 1.103 0.977 1.416 1.078/3.63 0.821/3.30 0.401/2.23 0.187/1.37

Neural lander 6 3 0.36 - 3385 0.36 0.588 - 0.713 0.793 1.724/2.89 - 0.822/1.34 0.606/1.30
Segway 4 1 0.29 - - 0.29 0.704 - - 1.408 0.446/3.11 - - 0.168/8.12

0 1 2 3 4 5
time (s)

10 4

10 3

10 2

10 1

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

PVTOL

MPC
RL
SoS
C3M

0 1 2 3 4 5
time (s)

10 3

10 2

10 1

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

Quadrotor

MPC
RL
SoS
C3M

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

10 5

10 4

10 3

10 2

10 1

100

101

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

Neural lander

MPC
RL
C3M

0 1 2 3 4 5
time (s)

10 2

10 1

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

SEGWAY

RL
C3M w/o w2
C3M w/ w2

Figure 2: Normalized tracking error on the benchmarks using different approaches. The y axes are in log-scale.
The tubes are tracking errors between mean plus and minus one standard deviation over 100 trajectories.

and then each method was evaluated with these configurations. In Fig. 2 we show the normalized
tracking error xe(t) = ||x(t)−x∗(t)||2/||x(0)−x∗(0)||2 for each model and each available method.
In Tab. 1, we evaluate the tracking controllers using two quality metrics as discussed in Sec. 3.2.
(1) Total tracking error: Given the normalized tracking error curve xe(t) for t ∈ [0, T], the total
tracking error is just the area under this curve (AUC). (2) Convergence rate: Given a set of tracking
error curves, first we do the following for the error curve xe(t) that possesses the highest overshoot:
We search for the convergence rate λ > 0 and the overshoot C ≥ 1 such that xe(t) ≤ Ce−λt for
all t ∈ [0, T] and the AUC of Ce−λt is minimized. Then, C is fixed, and the convergence rate λ is
calculated for each curve. After obtaining the quality scores for all the error curves, we report the
(1− α)-th quantile with α = 0.05 as in Sec. 3.2.

Some observations are in order. (1) On PVTOL and the quadrotor models, both SOS and our method
successfully found tracking controllers such that the tracking error decreases rapidly. However, the
SOS-based method entails the calculation of geodesics on the fly for control synthesis, while our
method learns a neural controller offline, which makes a difference in running time. Also, due to
the aforementioned limitations on control matrix sparsity, the SOS-based method cannot be applied
to the neural lander and Segway. (2) The performance of the RL method varies with tasks. On
PVTOL and the neural lander models, RL achieved comparable results. However, since the state
space of the quadrotor model is larger, RL failed to find a contracting tracking controller within
a reasonable time. As for the Segway model, although we have tried our best to tune the hyper-
parameters, RL failed to find a reasonable controller. (3) Running time of MPC is not practical for
online control tasks. Also, the MPC library used in experiments failed to handle the Segway model
due to numerical issues. (4) The results of our methods with and without penalty term Lw2 on
Segway verify the sufficiency of this cost term when the sparsity assumption for B is not satisfied.

5 Conclusion

In this paper, we showed that a certified tracking controller with guaranteed convergence and track-
ing error bounds can indeed be learned by learning a control contraction metric simultaneously as
guidance. Results indicated that such a learned tracking controller can better track the reference or
nominal trajectory, and the execution time of such a controller is much shorter than online control
methods such as MPC. In future works, we plan to extend our learning framework to systems with
unknown dynamics and control non-affine systems.

Acknowledgments

The authors acknowledge support from the DARPA Assured Autonomy under contract FA8750-19-
C-0089, U.S. Army Research Laboratory Cooperative Research Agreement W911NF-17-2-0196,
U.S. National Science Foundation(NSF) grants #1740079 and #1750009. The views, opinions
and/or findings expressed are those of the author(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government.

8

References
[1] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[2] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic roadmaps for
path planning. IEEE Transactions on Robotics and Automation, 14(1):166–171, 1998.

[3] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin. FaSTrack: A mod-
ular framework for fast and guaranteed safe motion planning. In 56th Annual Conference on
Decision and Control (CDC). IEEE, 2017.

[4] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. Ward, S. Worrall, M. Johnson-Roberson, and R. Va-
sudevan. Towards provably not-at-fault control of autonomous robots in arbitrary dynamic
environments. arXiv preprint arXiv:1902.02851, 2019.

[5] A. Majumdar and R. Tedrake. Funnel libraries for real-time robust feedback motion planning.
The International Journal of Robotics Research, 36(8):947–982, 2017.

[6] S. Jha, S. Raj, S. K. Jha, and N. Shankar. Duality-based nested controller synthesis from STL
specifications for stochastic linear systems. In International Conference on Formal Modeling
and Analysis of Timed Systems, pages 235–251. Springer, 2018.

[7] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter. Differentiable mpc for end-to-end
planning and control. In Advances in Neural Information Processing Systems, 2018.

[8] S. Singh, S. M. Richards, V. Sindhwani, J.-J. E. Slotine, and M. Pavone. Learning stabilizable
nonlinear dynamics with contraction-based regularization. arXiv:1907.13122, 2019.

[9] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. In Advances in Neural Informa-
tion Processing Systems, pages 3245–3254, 2019.

[10] H. Ravanbakhsh and S. Sankaranarayanan. Robust controller synthesis of switched systems
using counterexample guided framework. In 2016 international conference on embedded soft-
ware (EMSOFT), pages 1–10. IEEE, 2016.

[11] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs
with application to adaptive cruise control. In 53rd IEEE Conference on Decision and Control,
pages 6271–6278. IEEE, 2014.

[12] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada. Control
barrier functions: Theory and applications. In 2019 18th European Control Conference (ECC),
pages 3420–3431. IEEE, 2019.

[13] A. Taylor, A. Singletary, Y. Yue, and A. Ames. Learning for safety-critical control with control
barrier functions. arXiv preprint arXiv:1912.10099, 2019.

[14] R. Tedrake. LQR-Trees: Feedback motion planning on sparse randomized trees. 2009.

[15] S. Bansal, M. Chen, J. F. Fisac, and C. J. Tomlin. Safe sequential path planning of multi-vehicle
systems under presence of disturbances and imperfect information. In American Control Con-
ference, 2017.

[16] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga. Simulation-guided lya-
punov analysis for hybrid dynamical systems. In Proceedings of the 17th international confer-
ence on Hybrid systems: computation and control, pages 133–142, 2014.

[17] S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function to ensure stability
of dynamical system-based robot reaching motions. Robotics and Autonomous Systems, 2014.

[18] S. Jha and P. Lincoln. Data efficient learning of robust control policies. In 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages 856–861.
IEEE, 2018.

[19] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar. Telex: Passive stl learning using
only positive examples. In International Conference on Runtime Verification, pages 208–224.
Springer, 2017.

9

[20] S. Jha, V. Raman, D. Sadigh, and S. A. Seshia. Safe autonomy under perception uncertainty
using chance-constrained temporal logic. Journal of Automated Reasoning, 60(1):43–62, 2018.

[21] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames. Episodic learning with
control lyapunov functions for uncertain robotic systems. arXiv:1903.01577, 2019.

[22] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni. Learning
control barrier functions from expert demonstrations. arXiv preprint arXiv:2004.03315, 2020.

[23] J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath. Reinforcement learning for safety-
critical control under model uncertainty, using control lyapunov functions and control barrier
functions. arXiv preprint arXiv:2004.07584, 2020.

[24] A. S. Polydoros and L. Nalpantidis. Survey of model-based reinforcement learning: Applica-
tions on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

[25] M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt. Barrier-certified adaptive reinforcement
learning with applications to brushbot navigation. IEEE Transactions on robotics, 2019.

[26] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[27] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. In Advances in Neural Information Processing
Systems, pages 4754–4765, 2018.

[28] I. R. Manchester and J.-J. E. Slotine. Control contraction metrics: Convex and intrinsic criteria
for nonlinear feedback design. IEEE Transactions on Automatic Control, 2017.

[29] I. R. Manchester, J. Z. Tang, and J.-J. E. Slotine. Unifying classical and optimization-based
methods for robot tracking control with control contraction metrics. In International Sympo-
sium on Robotics Research (ISRR), pages 1–16, 2015.

[30] S. Singh, B. Landry, A. Majumdar, J.-J. Slotine, and M. Pavone. Robust feedback motion
planning via contraction theory. The International Journal of Robotics Research, 2019.

[31] H. Tsukamoto and S.-J. Chung. Neural contraction metrics for robust estimation and control:
A convex optimization approach. arXiv preprint arXiv:2006.04361, 2020.

[32] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

[33] C. Fan, K. Miller, and S. Mitra. Fast and guaranteed safe controller synthesis for nonlinear
vehicle models. In International Conference on Computer Aided Verification, 2020.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[35] E. F. Camacho and C. B. Alba. Model predictive control. Springer, 2013.

[36] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma. An optimal-control-based frame-
work for trajectory planning, threat assessment, and semi-autonomous control of passenger
vehicles in hazard avoidance scenarios. International Journal of Vehicle Autonomous Systems,
8(2-4):190–216, 2010.

[37] W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica,
34(6):683–696, 1998.

[38] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas. Efficient and accurate es-
timation of lipschitz constants for deep neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[39] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world. Springer
Science & Business Media, 2005.

10

[40] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic programming. In
IEEE International Conference on Robotics and Automation, pages 1168–1175. IEEE, 2014.

[41] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue. Robust regression for safe exploration
in control. arXiv preprint arXiv:1906.05819, 2019.

[42] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[43] C. Fan and S. Mitra. Bounded verification with on-the-fly discrepancy computation. arXiv
preprint arXiv:1502.01801, 2015.

[44] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman. Distribution-free predictive
inference for regression. Journal of the American Statistical Association, 2018.

[45] H. K. Khalil and J. W. Grizzle. Nonlinear systems, volume 3. Prentice hall Upper Saddle River,
NJ, 2002.

[46] Q. Yang and S. Jagannathan. Reinforcement learning controller design for affine nonlinear
discrete-time systems using online approximators. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(2):377–390, 2011.

[47] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: A fast marching
sampling-based method for optimal motion planning in many dimensions. The International
journal of robotics research, 34(7):883–921, 2015.

[48] C. Richter, A. Bry, and N. Roy. Polynomial trajectory planning for aggressive quadrotor flight
in dense indoor environments. In Robotics Research, pages 649–666. Springer, 2016.

[49] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion planning
using the rrt. In 2011 IEEE International Conference on Robotics and Automation, pages
1478–1483. IEEE, 2011.

[50] M. Kobilarov. Cross-entropy motion planning. The International Journal of Robotics Re-
search, 31(7):855–871, 2012.

[51] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational techniques for the verifi-
cation of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, 2003.

[52] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin. Design of guaranteed safe maneuvers
using reachable sets: Autonomous quadrotor aerobatics in theory and practice. In 2010 IEEE
International Conference on Robotics and Automation, pages 1649–1654. IEEE, 2010.

[53] H. Huang, J. Ding, W. Zhang, and C. J. Tomlin. A differential game approach to planning in ad-
versarial scenarios: A case study on capture-the-flag. In 2011 IEEE International Conference
on Robotics and Automation, pages 1451–1456. IEEE, 2011.

[54] D. Fridovich-Keil, S. L. Herbert, J. F. Fisac, S. Deglurkar, and C. J. Tomlin. Planning, fast and
slow: A framework for adaptive real-time safe trajectory planning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 387–394. IEEE, 2018.

[55] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin. Decomposition of
reachable sets and tubes for a class of nonlinear systems. IEEE Transactions on Automatic
Control, 63(11):3675–3688, 2018.

[56] S. Prajna, A. Jadbabaie, and G. J. Pappas. A framework for worst-case and stochastic safety
verification using barrier certificates. IEEE Transactions on Automatic Control, 52(8):1415–
1428, 2007.

[57] A. J. Barry, A. Majumdar, and R. Tedrake. Safety verification of reactive controllers for uav
flight in cluttered environments using barrier certificates. In 2012 IEEE International Confer-
ence on Robotics and Automation, pages 484–490. IEEE, 2012.

[58] A. Majumdar and R. Tedrake. Robust online motion planning with regions of finite time
invariance. In Algorithmic foundations of robotics X, pages 543–558. Springer, 2013.

11

[59] W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne. Robust model predictive control
using tubes. Automatica, 40(1):125–133, 2004.

[60] D. Q. Mayne, M. M. Seron, and S. Raković. Robust model predictive control of constrained
linear systems with bounded disturbances. Automatica, 41(2):219–224, 2005.

[61] M. Farina and R. Scattolini. Tube-based robust sampled-data mpc for linear continuous-time
systems. Automatica, 48(7):1473–1476, 2012.

[62] M. Kögel and R. Findeisen. Discrete-time robust model predictive control for continuous-time
nonlinear systems. In 2015 American Control Conference (ACC), pages 924–930. IEEE, 2015.

[63] S. Yu, C. Maier, H. Chen, and F. Allgöwer. Tube mpc scheme based on robust control invariant
set with application to lipschitz nonlinear systems. Systems & Control Letters, 62(2):194–200,
2013.

[64] D. Q. Mayne, E. C. Kerrigan, E. Van Wyk, and P. Falugi. Tube-based robust nonlinear model
predictive control. International Journal of Robust and Nonlinear Control, 21(11):1341–1353,
2011.

[65] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine. Stability and robustness analysis of nonlinear
systems via contraction metrics and sos programming. Automatica, 44(8):2163–2170, 2008.

[66] K. Leung and I. R. Manchester. Nonlinear stabilization via control contraction metrics: A
pseudospectral approach for computing geodesics. In 2017 American Control Conference
(ACC), pages 1284–1289. IEEE, 2017.

12

Appendix

A Justification for the CCM regularization terms

In theory, minimizingLu is enough for learning a tracking controller, since inequality (4) implies the
contraction of the closed-loop system. However, in the experiments, we found that minimizing Lu
solely is hard. The training loss stayed on a relatively high level, and the accuracy of inequality (4)
was extremely low (∼ 1%). Here, Lw1 and Lw2 are used as auxiliary loss terms to mitigate the
difficulty of minimizing Lu. After adding these terms, the accuracy approached ∼ 100%.

Furthermore, conditions (2) and (3) are sufficient but not necessary for the existence of contracting
controller. In the derivation of conditions (2) and (3), the inequality (inequality (4) in the main paper)
which indicates contracting is required to be hold for all unbounded u, which is not necessary in the
sense that u is usually bounded in a control problem. Thus, even if conditions (2) and (3) do not
exactly hold, a contracting tracking controller may still exist.

All the benchmark models used in experiments are under-actuated where the rank of the control
matrix r(B) < n. In cases where r(B) = n for all x and thus there does not exist a non-zero
annihilator matrix B⊥ such that Bᵀ

⊥B = 0, one can easily verify that any uniformly positive def-
inite metric function M(x) can be a valid CCM. The control synthesis is also straightforward in
this case. One can directly compute the instantaneous control u given the desired ẋ since B(x) is
invertible. Moreover, as shown in [28], existence of a CCM is guaranteed for feedback linearizable
systems. In that case, a valid CCM can be constructed analytically from the variable and feedback
transformation. We refer the interested readers to [28] for more details.

B Proof of Proposition 2 and CCM validation process example

B.1 Proof of Proposition 2

We denote the operator 2-norm for matrices by ‖ · ‖2. The following lemmas are going to be used
for the proof of Proposition 2.

Lemma 5. For any two symmetric matrices A,B ∈ Rn×n, the difference of their eigenvalues
satisfies:

|λmax(A)− λmax(B)| ≤ ‖A−B‖2.

Lemma 5 is a well-known result that uses the Courant-Fischer minimax theorem. The detailed proof
can be found at [43].

Lemma 6. For any two functions A : Rn → Rk×` and B : Rn → R`×s, if A and B both have
Lipschitz constants LA and LB with respect to 2-norm respectively, moreover, if ∀x, ‖A(x)‖2 ≤ SA
and ‖B(x)‖2 ≤ SB , then for any x, y ∈ Rn,

‖A(x)B(x)−A(y)B(y)‖2 ≤ (SALB + SBLA) ‖x− y‖2.

Proof.

‖A(x)B(x)−A(y)B(y)‖2 = ‖A(x)B(x)−A(x)B(y) +A(x)B(y)−A(y)B(y)‖2
≤ LB‖A(x)‖2‖x− y‖2 + LA‖B(y)‖2‖x− y‖2
≤ (SALB + SBLA) ‖x− y‖2.

(9)

The proof of Proposition 2 follows from the above lemmas.

13

Proof. For all X and Y ∈ X × X × U , we have∣∣λmax

(
Ṁ(X) + (A(X) +B(X)K(X))ᵀM(X) +M(X)(A(X) +B(X)K(X)) + 2λM(X)

)
−λmax

(
Ṁ(Y) + (A(Y) +B(Y)K(Y))ᵀM(Y) +M(Y)(A(Y) +B(Y)K(Y)) + 2λM(Y)

) ∣∣
≤ ‖Ṁ(X)− Ṁ(Y)‖2 + 2‖M(X)A(X)−M(Y)A(Y)‖2

+2‖M(X)B(X)K(X)−M(Y)B(Y)K(Y)‖2 + 2λ‖M(X)−M(Y)‖2
≤ (LṀ + 2 (SMLA + SALM + SMSBLK + SBSKLM + SMSKLB + λLM)) ‖X − Y ‖2.

B.2 CCM validation on Dubin’s vehicle

First, the Lipschitz constants and bounds on 2-norms are derived as follows.

LA and SA: By definition, A = ∂f
∂x +

∑ ∂bi
∂x u

i =

0 0 −v cos(θ) cos(θ)
0 0 v sin(θ) sin(θ)
0 0 0 0
0 0 0 0

. Considering a

vector-valued function Ã = [−v cos(θ), v sin(θ), cos(θ), sin(θ)] and its Lipschitz constant LÃ w.r.t.

the Frobenius norm, since the Jacobian of Ã is given by ∂Ã
∂x =

− cos(θ) v sin(θ)
sin(θ) v cos(θ)

0 − sin(θ)
0 cos(θ)

, we have

LÃ = sup ||∂Ã∂x ||F =
√

2 + v2h, where vh is the upper bound of the velocity. Obviously, under
the Frobenius norm, the Lipschitz constants of A and Ã coincide. Moreover, for any matrix A, we
have ‖A‖2 ≤ ‖A‖F , and thus LA ≤ LÃ =

√
2 + v2h. As for the norm bound, SA = sup ‖A‖2 ≤

sup ‖A‖F =
√

1 + v2h.

LB and SB: By definition, B =

0 0
0 0
1 0
0 1

, which is a constant. Thus, LB = 0, and SB =

σmax(B) = 1, where σmax is the largest singular value.

LM and SM : By definition, we have W (x) = C(x)ᵀC(x) +wI and M(x) = W (x)−1, and thus
SM = sup ‖M(x)‖2 ≤ 1

w . Moreover, ‖M(x) −M(y)‖2 = ‖M(x)(W (x) −W (y))M(y)‖2 ≤
1
w2 ‖W (x) −W (y)‖2. Thus, we have LM ≤ 1

w2LW . As for LW , by Lemma 6, LW ≤ 2SCLC ,
where LC can be evaluated using tools for estimating the Lipschitz constants of NNs. In our exper-
iments, we use the official implementation3 of [38]. After obtaining LC , SC can be upper bounded
using samples and the Lipschitz constant LC .

LṀ : By definition, Ṁ =
∑n
i=1

∂M
∂xi

ẋi. We randomly sampled 10K points and evaluate the gradi-
ent of Ṁ , then the maximum of the norm of the gradient is returned as a Lipschitz constant.

LK and SK: For simplicity of the analysis, we use a simpler neural controller u = k(x, x∗)xe +
u∗, where k is a two-layer neural network and xe := (x − x∗). Then, K = ∂u

∂x = k(x, x∗) +∑n
i=1 x

i
e
∂ki
∂x , where ki is the i-th column of k and xie is the i-th element of xe. Thus, SK ≤

Sk +
∑n
i=1 sup |xie|Lki|x, where Lki|x is the Lipschitz constant of ki w.r.t. x. Also, LK ≤ Lk +∑n

i=1 sup |xie|L ∂ki
∂x

+
√

2
∑n
i=1 Lki|x, where we use the facts that xie = xi − x∗i =⇒ Lxi

e
=
√

2,

and S ∂ki
∂x

≤ Lki|x. As for L ∂ki
∂x

, we have ∂ki
∂x = Ai2 · diag(dtanh(A1[x, x∗])) · A11, where A1 is

the weights in the first layer, A11 is the weights associated to x in the first layer, Ai2 is the weights

3https://github.com/arobey1/LipSDP

14

https://github.com/arobey1/LipSDP

associated to the i-th column of k in the second layer, and dtanh is the derivative of the tanh
function. Thus, L ∂ki

∂x

≤ ||Ai2|| · ||A11|| · ||A1|| · Ldthan.

Validation process: We successfully verified the trained model for a state space where
[−5,−5,−π, 1] ≤ x, x∗ ≤ [5, 5, π, 2], [−0.1,−0.1,−0.1,−0.1] ≤ x − x∗ ≤ [0.1, 0.1, 0.1, 0.1],
and [−1, 0] ≤ u∗ ≤ [1, 0] with λ = 0.1. The derived Lipschitz constant using Proposition 2 for
the trained model was 616.8. After that, we discretized the state space and evaluated the maxi-
mum eigenvalues of the LHS of inequality (4) at the grid points, and the results gave a theoretical
guarantee on the satisfaction of inequality (4) for all x, x∗, and u∗.

C Proof of Proposition 3

The following lemma from [44] is going to be used.
Lemma 7. Consider a set of i.i.d. random variables {U1, · · · , Un}, then the following inequality
holds for a new i.i.d. sample Un+1,

Pr(Un+1 ≥ q1−α) ≤ 1− α,
where q1−α is (1− α)-th quantile of {Ui}ni=1, i.e.

q1−α =

{
U(d(1−α)(n+1)e) if d(1− α)(n+ 1)e ≤ n,
∞ otherwise

,

where U(1) ≤ · · · ≤ U(n) is the order statistics of {Ui}ni=1.

The above lemma follows from an obvious fact that the rank of Un+1 in {Ui}n+1
i=1 is uniformly

distributed in {1, · · · , n+ 1}.

Since the evaluation configurations are all i.i.d., the corresponding quality scores {mi}n+1
i=1 are also

i.i.d. The proposition immediately follows from the above lemma.

D Proof of Theorem 4

Proof. Since ∀x, M(x) ∈ S>0
n , there exists Θ(x) such that M(x) = Θ(x)ᵀΘ(x) for all x. Now,

let us consider the smallest path integral between x1(t) and x2(t) w.r.t. metric M(x) and denote
it by R(t) =

∫ x2(t)

x1(t)

√
δᵀxM(x)δx =

∫ x2(t)

x1(t)
‖Θ(x)δx‖2. Then differentiating R(t) w.r.t. t yields

Ṙ ≤ −λR + ‖Θd‖2 ≤ −λR + ε
√
m. (see [37], pp. 11 (vii)) By comparison lemma (see [45], pp.

102), R(t) is bounded as R(t) ≤ R(0)e−λt + ε
λ

√
m(1 − e−λt). Since Θ is uniformly bounded as

Θ(x) � √mI, we have R(t) ≥ √m‖x1(t)− x2(t)‖2, which follows from the fact that the smallest
path integral w.r.t. a constant metric is the path integral along the straight line. Combining these two
inequalities yields the theorem.

E More details on the experimental results

E.1 Hyper-parameters

For all the models, we set w = 0.1 and w = 10. For PVTOL, Quadrotor, Neural lander, Segway,
Quadrotor2, and Cart-pole, we set λ = 0.5. For Dubin’s car, we set λ = 1. For TLPRA, we set
λ = 2. For Pendulum, we set λ = 3.

For the evaluation of RL, we trained the model for 1K epochs (1K steps per epoch, and thus 1M
steps in total). The best model was used for evaluation.

E.2 Dynamics of the 4 benchmarks discussed in Section 4

As mentioned in the main paper, for each benchmark model, we have to define the state space X
and the reference control space U . Also, for evaluation purpose, the initial state of the reference
trajectory is sampled from a set X0, and the initial error is sampled from a set Xe0. All these sets
are defined as hyper-rectangles. For two vectors x, y ∈ Rn, x ≤ y or x ≥ y means element-wise
inequality.

15

PVTOL models a planar vertical-takeoff-vertical-landing (PVTOL) system for drones and is
adopted from [30, 8]. The system includes 6 variables x := [px, pz, φ, vx, vz, φ̇], where px and
pz are the positions, vx and vz are the corresponding velocities, φ is the roll, and φ̇ is the angular
rate. The 2-dimensional control input u corresponds to the thrusts of the two rotors. The dynamics
of the system are as follows:

ẋ =


vx cos(φ)− vz sin(φ)
vx sin(φ) + vz cos(φ)

φ̇

vzφ̇− g sin(φ)

−vxφ̇− g cos(φ)
0

+


0 0
0 0
0 0
0 0

1/m 1/m
l/J −l/J

u,
where m = 0.486, J = 0.00383, g = 9.81, and l = 0.25. For the sets, we set X =
{[−35,−2,−π3 ,−2,−1,−π3] ≤ x ≤ [0, 2, π3 , 2, 1,

π
3]}, U = {[mg/2 − 1,mg/2 − 1] ≤ u ≤

[mg/2 + 1,mg/2 + 1]}, X0 = {[0, 0,−0.1, 0.5, 0, 0] ≤ x0 ≤ [0, 0, 0.1, 1, 0, 0]}, and Xe0 =
{[−0.5,−0.5,−0.5,−0.5,−0.5,−0.5] ≤ xe0 ≤ [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]}.

Quadrotor is adopted from [30]. The state variables are given by x :=
[px, py, pz, vx, vy, vz, f, φ, θ, ψ], where pk and vk for k ∈ {x, y, z} are positions and veloci-
ties, and φ, θ and ψ are roll, pitch, and yaw respectively, and f > 0 is the net (normalized by
mass) thrust generated by the four rotors. The control input is considered as u := [ḟ , φ̇, θ̇, ψ̇]. The
dynamics of the system are as follows:

ẋ =



vx
vy
vz

−f sin(θ)
f cos(θ) sin(φ)

g − f cos(θ) cos(φ)
0
0
0
0


+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


u,

where g = 9.81. For the sets, we setX = {[−30,−30,−30,−1.5,−1.5,−1.5, 0.5g,−π3 ,−
π
3 ,−

π
3] ≤

x ≤ [30, 30, 30, 1.5, 1.5, 1.5, 2g, π3 ,
π
3 ,

π
3], U = {[−1,−1,−1,−1] ≤ u ≤ [1, 1, 1, 1]},

X0 = {[−5,−5,−5,−1,−1,−1, g, 0, 0, 0] ≤ x0 ≤ [5, 5, 5, 1, 1, 1, g, 0, 0, 0]}, and
Xe0 = {[−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5] ≤ xe0 ≤
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]}.

Neural lander models a drone flying close to the ground so that ground effect is prominent and
therefore could not be ignored [41]. The state is give by x := [px, py, pz, vx, vy, vz], where pk and
vk for k ∈ {x, y, z} are the positions and velocities. The 3-dimensional control input is given by
u := [ax, ay, az] which are the acceleration in three directions. Note that in this model the ground
effect is learned from empirical data of a physical drone using a 4-layer neural network [41]. Due to
the neural network function in the dynamics, the SoS-based method as in [30] cannot handle such
a model since neural networks are hard to be approximated by polynomials. However, C3M can
handle this model since it doesn’t impose hard constraints and only requires the ability to evaluate
the dynamics and its gradient. The dynamics of the system are as follows:

ẋ =


vx
vy
vz

Fa1/m
Fa2/m

Fa3/m− g

+


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

u,
where m = 1.47, g = 9.81, and Fai = Fai(z, vx, vy.vz) for i = 1, 2, 3, are neural net-
works. For the sets, we set X = {[−5,−5, 0,−1,−1,−1] ≤ x ≤ [5, 5, 2, 1, 1, 1], U =
{[−1,−1,−3] ≤ u ≤ [1, 1, 9]}, X0 = {[−3,−3, 0.5, 1, 0, 0] ≤ x0 ≤ [3, 3, 1, 1, 0, 0]}, and
Xe0 = {[−1,−1,−0.4,−1,−1, 0] ≤ xe0 ≤ [1, 1, 1, 1, 1, 0]}.

16

SEGWAY models a real-world Segway robot and is adopted from [13]. The state variables are
given by x := [px, θ, vx, ω] where px and vx are the position and velocity, and θ and ω are the angle
and angular velocity. The control input is the torque of the motor. The dynamics of the system are
as follows:

ẋ =


vx
ω

cos(θ)(9.8 sin(θ)−1.8u+11.5v)−10.9u+68.4v−1.2ω2 sin(θ)
cos(θ)−24.7

(9.3u−58.8v) cos(θ)+38.6u−243.5v−sin(θ)(208.3+ω2 cos(θ))
cos2(θ)−24.7

 .
For the sets, we set X = {[−5,−π3 ,−1,−π] ≤ x ≤ [5, π3 , 1, π], U = {0 ≤ u ≤ 0}, X0 =
{[0, 0, 0, 0] ≤ x0 ≤ [0, 0, 0, 0]}, and Xe0 = {[−1,−π3 ,−0.5,−π] ≤ xe0 ≤ [1, π3 , 0.5, π]}.

E.3 Additional benchmarks

Cart-pole is a well-known model for evaluating control algorithms. The state variables are given
by x := [px, θ, vx, ω]. The dynamics are given by

ẋ =


vx
ω

u+mp sin(θ)(lω2−g cos(θ))
mc+mp sin2(θ)

u cos(θ)+mplω
2 cos(θ) sin(θ)−(mc+mp)g sin(θ)
l(mc+mp sin2(θ))

 ,
where mc = 1, mp = 1, g = 9.8, and l = 1. For the sets, we set X = {[−5,−π3 ,−1,−1] ≤
x ≤ [5, π3 , 1, 1], U = {0 ≤ u ≤ 0}, X0 = {[0, 0, 0, 0] ≤ x0 ≤ [0, 0, 0, 0]}, and Xe0 =
{[−0.3,−0.3,−0.3,−0.3] ≤ xe0 ≤ [0.3, 0.3, 0.3, 0.3]}.

Quadrotor2 is adopted from [3]. The state variables are given by x :=
[px, py, pz, vx, vy, θx, θy, ωx, ωy, vz]. The control input is given by u := [ax, ay, az]. The
dynamics are given by

ẋ =



vx
vy
vz

g tan(θx)
g tan(θy)
−d1θx + ωx
−d1θy + ωy
−d0θx + n0ax
−d0θy + n0ay
kTaz − g


,

where d0 = 10, d1 = 8, n0 = 10, kT = 0.91, and g = 9.81. For
the sets, we set X = {[−15,−15,−15,−2,−2,−π3 ,−

π
3 ,−

π
3 ,−

π
3 ,−2] ≤ x ≤

[15, 15, 15, 2, 2, π3 ,
π
3 ,

π
3 ,

π
3 , 2], U = {[−10,−10, 0] ≤ u ≤ [10, 10, 1.5g]}, X0 =

{[−2,−2,−2,−1,−1,−0.5,−0.5,−0.5,−0.5,−1] ≤ x0 ≤ [2, 2, 2, 1, 1, 0.5, 0.5, 0.5, 0.5, 1]},
and Xe0 = {[−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5] ≤ xe0 ≤
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]}.

Pendulum is a simple model for evaluating control methods. The state variables are given by
x := [θ, θ̇], where θ is the angle, and θ̇ is the angular velocity. The one-dimensional control input
corresponds to the torque of the motor. The dynamics are as follows:

ẋ =

[
θ̇

mgl sin(θ)−0.1θ̇+u
ml2

]
,

where g = 9.81, m = 0.15, and l = 0.5. As for the sets, we set X = {[−π3 ,−
π
3] ≤ x ≤ [π3 ,

π
3],

U = {−1 ≤ u ≤ 1}, X0 = {[0, 0] ≤ x0 ≤ [0, 0]}, and Xe0 = {[−π4 ,−
π
4] ≤ xe0 ≤ [π4 ,

π
4]}.

17

Dubin’s car. The state of the car is given by x := [px, py, θ, v], where px, py are the positions, θ is
the heading direction, and v is the velocity. Its motion is controlled by two inputs: angular velocity
ω and linear acceleration a. The car’s dynamics are given by:

ẋ =

v cos(θ)
v sin(θ)
ω
a

 .
For the sets, we set X = {[−5,−5,−π, 1] ≤ x ≤ [5, 5, π, 2], U = {[−1, 0] ≤ u ≤ [1, 0]},
X0 = {[−2,−2,−1, 1.5] ≤ x0 ≤ [2, 2, 1, 1.5]}, and Xe0 = {[−1,−1,−1,−1] ≤ xe0 ≤
[1, 1, 1, 1]}. There is a simpler Dubin’s car model with three state variables x := [px, py, θ] and
a two-dimensional control input u := [v, ω]. The dynamics are similar to the above ODEs without
v̇ = a. However, we notice that in the simpler model f(x) ≡ 0 andB(x) is not full-rank. Therefore,
Eq. (2) in the paper is not feasible and the loss term Lw1 does not make sense. If we train the model
only with the loss Lu as in Eq. (5), the resulting controller is not performing well.

TLPRA models a Two-Link Planar Robot Arm system and is adopted from [46]. The state vari-
ables are given by x := [q1, q2, q̇1, q̇2], where q and q̇ are the rotational angle and angular velocity
of the joints respectively. The control input is given by u := [τ1, τ2] which are the torques applied
on the joints. The dynamics are given by[

q̈1
q̈2

]
=

[
α+ β + 2η cos(q2) β + η cos(q2)
β + η cos(q2) β

]−1
[
τ1 + η(2q̇1q̇2 + q̇22) sin(q2)− αe1 cos(q1)− ηe1 cos(q1 + q2)

τ2 − ηq̇21 sin(q2)− ηe1 cos(q1 + q2)

]
,

where α = (m1 + m2)a21, β = m2a
2
2, η = m2a1a2, e1 = g/a1, g = 9.8, m1 = 0.8, m2 = 2.3,

a1 = 1, and a2 = 1. For the sets, we set X = {[−π2 ,−
π
2 ,−

π
3 ,−

π
3] ≤ x ≤ [π2 ,

π
2 ,

π
3 ,

π
3], U =

{[0, 0] ≤ u ≤ [0, 0]}, X0 = {[π2 , 0, 0, 0] ≤ x0 ≤ [π2 , 0, 0, 0]}, and Xe0 = {[−0.3,−0.3, 0, 0] ≤
xe0 ≤ [0.3, 0.3, 0, 0]}.

E.4 Experimental results on additional benchmarks

Results comparing the performance of C3M and other approaches on the additional 5 models are
shown in Fig. 3 and Tab. 2. On some simple models including Pendulum, Dubin’s car, Cart-pole,
and TLPRA, both RL and C3M achieve perfect results, and C3M demonstrates lower variance.
On the higher-dimensional system, Quadrotor2, C3M outperforms RL with lower tracking error
and lower variance. Among these models, the SoS-based method cannot handle Cart-pole since it
does not satisfy the sparse assumption for the control matrix B and TLPRA since the dynamics is
too complicated and hard to be approximated with low-degree polynomials. We did not evaluate
the SoS-based method on other models since the case-by-case hyper-parameters tuning is too time
consuming without domain expertise on the models. For Cart-pole, Pendulum, and TLPRA, the
MPC-PyTorch library had numerical errors.

Model Dim Execution time per step (ms) Tracking error (AUC) Convergence rate (λ/C)
n m C3M MPC RL C3M MPC RL C3M MPC RL

CAR 4 2 0.46 2300 0.46 0.290 0.509 0.275 1.970/2.69 0.493/1.49 1.836/4.99
Quadrotor2 10 3 0.45 7460 0.45 1.239 1.673 2.081 0.400/3.52 0.451/3.98 0.237/3.78
Cart-pole 4 1 0.45 - 0.45 0.865 - 1.207 1.100/4.85 - 0.509/4.10
Pendulum 2 1 0.37 - 0.37 0.091 - 0.092 5.772/6.82 - 2.675/9.46
TLPRA 4 2 0.42 - 0.42 1.082 - 1.086 2.035/4.91 - 1.883/6.82

Table 2: Comparison results of C3M vs. other methods. Here, n and m are dimensions of the state and input
space. The MPC library used in experiments failed to handle some models due to numerical issues (we got
some nan errors).

E.5 Sampled trajectories under disturbance

We show some plots of actual trajectories of the controlled systems in Fig. 4. We simulate the
controlled Dubin’s car and Quadrotor2 system using different control strategy and with different

18

0 1 2 3 4 5
time (s)

10 6

10 4

10 2

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

CAR

MPC
RL
C3M

0 1 2 3 4 5
time (s)

10 2

10 1

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

Quadotor2

MPC
RL
C3M

0 1 2 3 4 5
time (s)

10 6

10 4

10 2

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

Cart-pole

RL
C3M w/o w2
C3M w/ w2

0 1 2 3 4 5
time (s)

10 15

10 12

10 9

10 6

10 3

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

Pendulum

RL
C3M

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
time (s)

10 2

10 1

100

||x
t

x
* t
|| 2

/||
x 0

x
* 0
|| 2

TLPRA

RL
C3M

Figure 3: Normalized tracking error on the benchmarks using different approaches. The y axes are in log-scale.
The tubes are tracking errors between mean plus and minus one standard deviation over 100 trajectories.

levels of disturbances. In order to model a more realistic disturbance (e.g. wind), we do not adopt
white noise as disturbance. Instead, d(t) is a piece-wise constant function, where the length of
each constant interval and the magnitude on each interval are uniformly randomly sampled from
[0, 1] (seconds) and [0, σ] respectively. Since the controlled system is proved to be contracting using
C3M, the tracking error is still bounded even under additive random disturbances. We can also see
from Fig. 4 that even with disturbance, the trajectories of the closed-loop system using C3M has less
tracking error than the system with controllers using RL or MPC.

F More discussions on related work

In the broad area of safe motion planning, driving the robots to some waypoints or follow some
nominal trajectory without hitting obstacles in dynamically changing environments is a very chal-
lenging task, especially when robotics systems are nonlinear and nonholonomic. In this section, we
provide more details on some related techniques in this area.

Sample-based planning methods including rapidly-exploring random trees (RRT) [32], probabilistic
road maps (PRM) [2], fast marching tree (FMT) [47], and many others [48, 49, 50], plan safe open-
loop trajectories by exploring the environment using samples. However, it is difficult to use sample-

19

0 1 2 3 4 5
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

CAR (= 0.1)

C3M
RL
MPC
Reference

0 1 2 3 4 5
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

CAR (= 0.3)

C3M
RL
MPC
Reference

0 1 2 3 4 5
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

CAR (= 0.5)

C3M
RL
MPC
Reference

0 1 2 3 4 5
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y

CAR (= 0.1)
C3M
RL
MPC
Reference

0 1 2 3 4 5
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y

CAR (= 0.3)
C3M
RL
MPC
Reference

0 1 2 3 4 5
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y

CAR (= 0.5)
C3M
RL
MPC
Reference

10 9 8 7 6 5 4
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

z

Quadrotor2 (= 0.1)
C3M
RL
MPC
Reference

10 9 8 7 6 5 4
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5
z

Quadrotor2 (= 0.3)
C3M
RL
MPC
Reference

10 9 8 7 6 5 4
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

z

Quadrotor2 (= 0.5)
C3M
RL
MPC
Reference

Figure 4: Actual trajectories of the controlled systems in the presence of disturbances. Red dots indicate
the starting points of the reference trajectories. Moreover, in order to show that the proposed method can
work for any reference trajectories, in the second row, we use a reference control u∗ that consists of a very
high-frequency component.

based planning to handle uncertainty and disturbances with safety guarantees. In order to plan safe
trajectories in the presence of disturbances, the uncertainty should be handled appropriately. The
disturbances are usually assumed to be bounded, and the safety can be guaranteed by dealing with
the worst case safely.

One may model safe motion planning problems as differential games, where the disturbances are
modeled as an adversarial agent. Backward reachable sets and the corresponding optimal controller
can be computed by solving Hamilton-Jacobi PDE using level-set methods [51, 52, 53, 3, 54, 55].
However, this class of methods suffers from poor scalablity. Solving Hamilton-Jacobi PDE for
high-dimensional models is computationally expensive. Moreover, such high computational com-
plexity limits their capability of solving online planning problems for dynamical environments. In
comparison, our learned tracking controller can be executed in sub-millisecond level and therefore
supports online planning. Moreover, because of the learned contraction metric, we can pre-compute
the tracking error bound, which can be further used to understand how far the nominal trajectories
should be from the obstacles.

Barrier functions are another widely-used class of certificates for safety. A barrier function is a
function of state whose time-derivative on the zero-level set is uniformly negative, which makes the
zero-level set an invariant. In [56, 57], barrier functions are computed for given controllers and any
admissible disturbances and are used for verification of the closed-loop system. As an extension
to controlled systems, control barrier functions [11, 12, 13] enable synthesis of safety-guaranteed
controllers and thus have gained increasing popularity. In [11], the authors jointly leveraged control
barrier functions (CBF) and control Lyapunov functions (CLF) as safety and objective certificates
respectively for control synthesis in the context of adaptive cruise control and lane keeping. How-
ever, finding valid CBF for general models is hard. Recently, the advances of machine learning have
been utilized to help search for CBF [13].

The idea of synthesizing a controller and bounding the tracking error meanwhile through pre-
computation has gained increasing popularity. It enables safe motion planning for dynamically
changing environments. Control Lyapunov functions can be used for this purpose [10]. Learning-
based CLF has also been studied in some recent works [23, 17, 22]. However, in order to use CLF
for synthesizing controller to track reference or nominal trajectories instead to driving the system
to a fixed goal set, the original dynamics has to be converted into error dynamics depending on the

20

reference trajectory, which limits the diversity of available reference trajectories. Similarly, funnel
library methods have been studied in [58, 5], where tracking controllers for a fixed set of reference
trajectories and the corresponding tracking error are computed offline. In the online planning phase,
the safety of the reference trajectories are examined using the funnels corresponding to them, and
the safest one is chosen. Again, this class of methods lack diversity of available reference trajecto-
ries which is critical to safe motion planning in complicated environments. LQR-Trees [14] builds
a tree of LQR controllers backward from the goal set such that the total contraction regions of the
nodes cover the whole state space, however, it cannot handle scenarios where the environments are
unknown until runtime. Tube Model Predicative Control (TMPC) is another class of related tech-
niques, where a tracking controller is computed such that the actual trajectory remains in a tube
centered at the planned MPC nominal trajectory in the presence of bounded disturbances. TMPC
techniques have been studied for linear system in many works [59, 60, 61]. As for non-linear sys-
tems, linearization and Lipschitz-continuity-based reachibility analysis are used [62, 63, 64]. How-
ever, in the latter case, the tube are often too conservative to be used in motion planning with limited
freespace.

Contraction analysis [37] is another series of methods for analyzing the incremental stability of
systems. Recently, it has been extended to controlled system in [28] and thus enabled tracking
control synthesis for arbitrary reference trajectories with guaranteed bound on tracking error. The
most challenging part in contraction analysis is the search for a valid contraction metric which entails
solving Linear Matrix Inequalities (LMIs). In [65], the authors proposed to solve this feasibility
problem with Sum-of-Squares (SoS) programming. In [30], the authors extended the SoS-based
method to controlled systems, i.e. search for a control contraction metric (CCM) instead of an
ordinary one, and proposed a more general method for synthesizing control given a valid CCM.
However, in order to apply SoS-based methods, the dynamics of the system has to be represented
by polynomials or can be approximated by polynomials. Furthermore, the method proposed in [30]
relies on an assumption on the structure which encodes the controllablity of the system. Different
from ours, the method proposed in [30] searches for a metric using the structural assumption and
synthesize the controller using geodesics, which entails heavy computation. Moreover, geodesics
cannot be computed exactly, and thus the authors in [30] resorted to the optimization-based method
proposed in [66] as an approximation of the geodesics.

Combining machine learning and contraction theory has also been studied in some recent work.
In [8], the authors proposed a learning-based method for identifying an unknown system with an
additional constraint that such learned dynamics admit a valid CCM. In [31], the authors proposed
a control synthesis method for nonlinear systems where the dynamics is written as a convex com-
bination of multiple state-dependent coefficients (i.e. f(x, t) written as A(x, t)x) and made use of
RNNs to model a time-varying metric. Again, different from our method, the controller is not jointly
learned with the metric. In contrast, our approach can simultaneously synthesize the controller and
the CCM certificate without any additional structural assumptions for the system.

21

	Introduction
	Preliminaries and notations
	Learning tracking controllers using CCM with formal guarantees
	Controller and metric learning
	Theoretical convergence guarantees
	Robustness of the learned controller

	Evaluation of performance
	Conclusion
	Justification for the CCM regularization terms
	Proof of Proposition 2 and CCM validation process example
	Proof of Proposition 2
	CCM validation on Dubin's vehicle

	Proof of Proposition 3
	Proof of Theorem 4
	More details on the experimental results
	Hyper-parameters
	Dynamics of the 4 benchmarks discussed in Section 4
	Additional benchmarks
	Experimental results on additional benchmarks
	Sampled trajectories under disturbance

	More discussions on related work

