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Abstract

Language models (LMs) only pretrained on a general and massive corpus usually
cannot attain satisfying performance on domain-specific downstream tasks, and
hence, applying domain-specific pretraining to LMs is a common and indispensable
practice. However, domain-specific pretraining can be costly and time-consuming,
hindering LMs’ deployment in real-world applications. In this work, we consider
the incapability to memorize domain-specific knowledge embedded in the general
corpus with rare occurrences and “long-tail” distributions as the leading cause for
pretrained LMs’ inferior downstream performance. Analysis of Neural Tangent
Kernels (NTKs) reveals that those long-tail data are commonly overlooked in the
model’s gradient updates and, consequently, are not effectively memorized, leading
to poor domain-specific downstream performance. Based on the intuition that
data with similar semantic meaning are closer in the embedding space, we devise
a Cluster-guided Sparse Expert (CSE) layer to actively learn long-tail domain
knowledge typically neglected in previous pretrained LMs. During pretraining, a
CSE layer efficiently clusters domain knowledge together and assigns long-tail
knowledge to designate extra experts. CSE is also a lightweight structure that only
needs to be incorporated in several deep layers. With our training strategy, we found
that during pretraining, data of long-tail knowledge gradually formulate isolated,
“outlier” clusters in an LM’s representation spaces, especially in deeper layers.
Our experimental results show that only pretraining CSE-based LMs is enough to
achieve superior performance than regularly pretrained-finetuned LMs on various
downstream tasks, implying the prospects of domain-specific-pretraining-free
language models.
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1 Introduction

In natural language processing, it is a prevalent paradigm to pretrain language models (LMs) on
a large-scale unlabeled corpus covering a plethora of knowledge, and those pretrained LMs have
exhibited impressive performance in language tasks in the general domain [41]. When it comes to
downstream tasks requiring specialized domain knowledge, e.g., legal search or medical question
answering [23| [7]], those models usually fail to expertise in such knowledge and cannot acquire
desirable performance. As such, domain-specific pretraining on domain-specific datasets is deemed
essential to fulfill pretrained LMs’ potential in various downstream tasks [21} 14} 142 [36]]. However,
applying domain-specific pretraining on an LM could require domain expertise from humans, for
instance, the involvement of a doctor for healthcare tasks [31]], which can be costly and laborious. The
associated catastrophic forgetting issue [[26] could further complicate the domain-specific pretraining
process.
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Figure 1: a) The top 20 subreddits with the highest amount of data in the Reddit Comments Dataset,
where a typical long-tail distribution can be observed. b) Language Models struggle to memorize
long-tail domain knowledge during pretraining. The less frequently a sentence appears in the training
corpus, the higher its perplexity, indicating that it is not effectively memorized.

In this work, we re-visit the pretraining- domain-specific-pretraining paradigm and raise the follow-
ing question: is domain-specific pretraining indispensable to LMs? Notably, the domain-specific
knowledge necessary for various downstream tasks is usually embedded in the pretraining corpus of
extensive information sources. Those pieces of domain-specific information may only appear a few
times in the massive corpus, significantly less frequently than other ubiquitous and general knowledge,
and there can be numerous pieces of such rare information, a distribution usually defined as “long-
tail”. In Fig[I(a)] we plot the frequency of the top-20 subreddits count on Reddit Comments Dataset
[2], and a typical long-tail distribution can be observed. Previous works have verified that LMs are
not good learners of long-tail knowledge in the pretraining dataset with Question-Answering as the
downstream task[20]. Our experiments, as shown in Figure [I(b)] further illustrate that pretrained
LMs do not adequately retain domain-specific knowledge in long-tail sequences which is evidenced
by a surge in perplexity corresponding to decreased frequency score. This could result in inferior
performance on downstream tasks. Domain-specific pretraining improves LMs’ domain performance
by providing a second lesson, which could be avoided if the first (pretraining) is appropriately
delivered.

To unveil the hidden mechanisms under LM’s incapability to learn long-tail domain-specific knowl-
edge, we investigate the behaviors of a GPT on the Wikipedia dataset. We examine LMs’ learning
capabilities on long-tail data by analyzing the Neural Tangent Kernels (NTKSs) of long-tail data and
all data. Recent research [5) 40] has indicated that the updating of deep networks can be governed by
the gradient direction corresponding to the principle eigenvector of an NTK matrix, which reflects the
most common gradient-descending direction across the entire input space. Following those works,
we consider an NTK’s principle eigenvector (PE) gradient direction as a primary indicator of an LM’s
overall gradient-updating direction over a data space. Our analysis has revealed that the PE gradient
direction of long-tail data, indicating the gradient-descending direction from long-tail knowledge, is



generally diverged from that of overall data, which rules the overall updating of network parameters.
The observation that long-tail data cannot substantially impact LMs’ parametric updates under regular
pretraining settings explains pretrained LMs’ incompetence on domain-specific knowledge of rare
occurrences, necessitating an effective solution.

To this end, we propose the Cluster-guided Sparse Expert (CSE) layer, an effective, efficient, and
easy-to-implement approach to improve LMs’ long-tail knowledge awareness. In a CSE layer, with
intuition such that data with similar semantic meaning are closer in the embedding space, we perform
efficient clustering on the embeddings to group data from different domains, and additional experts
will be assigned to explicitly and appropriately memorize the information within those clusters.
Models trained with CSE show pronounced cluster structure in the embedding space, where long-tail
data forms small, outlier clusters. We empirically demonstrate that converting several deep layers
into CSE ones can be enough to achieve satisfying results, such as the last two layers of GPT[28] or
BERT(10], and the incurred computational costs are comparatively small and arguably acceptable. We
have verified that pretrained CSE-based LMs have outperformed regularly pretrained domain-specific
pretrained LMs on downstream tasks from various domains, which implies that domain-specific
pretraining may not be essential if long-tail knowledge can be sufficiently learned.

Our contributions are summarized as follows:

* We have presented that datasets show a long-tail distribution, with domain-specific data
in the long-tail, and revealed that long-tail data cannot substantially affect LMs’ training,
which is a leading cause of LMs’ incompetence in learning rare, domain-specific knowledge.

* We have devised a Cluster-guided Sparse Expert (CSE) architecture to better pretrain LMs
to memorize the long-tail domain knowledge. With such a training strategy, LMs can
effectively capture long-tail domain data in the representation space as outlier clusters,
thereby enhancing their ability to handle less frequent contexts efficiently.

* Promising performance on downstream tasks has verified the effectiveness of the proposed
method, indicating that domain-specific pretraining may not be indispensable to LMs.

2 Analysis of Long-Tail Domain Data

In this section, we first elucidate the challenges associated with learning from long-tail data through
gradient analysis. We then explore the embedding space using the Cluster-guided Sparse Expert
(CSE) layer, which effectively captures the structural nuances of long-tail data. Furthermore, we
examine the dynamics of these clustering structures, offering insights into how the learning processes
of long-tail clusters adapt and evolve across various training stages and model layers.

2.1 Challenges in Learning Long-Tail Domain Data

This subsection explores the significant challenges posed by long-tail domain data within language
models (LMs). The primary issue stems from the divergence in gradient directions between long-tail
data and the general gradient-updating trajectory of these models, which critically hampers effective
learning.

2.1.1 Preliminaries and Definitions

Informed by seminal works [12}[19], we utilize Neural Tangent Kernels (NTKs) to scrutinize the
gradient behavior of neural networks under a gradient descent training regime. The NTK represented
as ©(X,X), is defined as the outer product of the gradients of network outputs relative to its
parameters @ (X, X') = Jo(X)Jo(X) T, where Jp = Vg f(X'; 0) denotes the Jacobian matrix of the
function f at the data points X’.

To determine the predominant gradient-descending direction across the input space, which is influ-
enced by the gradient direction associated with the principal eigenvector of the NTK matrix, we first
perform an eigenvalue decomposition of the NTK matrix. Recognized as a positive semi-definite real
symmetric matrix, the NTK decomposes into @ = UAUT = S Aju;u; . Here, n represents
the total number of training instances. The principal eigenvector u,, ., is identified as the vector
corresponding to the maximum eigenvalue. Then the primary gradient direction for a given input
set X is gg(X) = WnazJo(X). Building upon the above preliminaries, we introduce the metric of



Gradient Consistency (GC) to evaluate the alignment between gradient directions for specific data
subsets and the overall dataset.

Definition 1 (Gradient Consistency (GC)). Let X' be a specific subset of the training set X. The
gradient consistency of X' is evaluated by computing the cosine similarity between the most prevalent
gradient direction of X' and that of the entire dataset X :

N 8o(X) ge(X)
GOo(X) = Tga(®)Tge (X M

A higher GC value indicates that the model’s optimization updates are well-aligned with the needs of
the specific subset X', suggesting focused and effective learning of this data. Conversely, a lower
value indicates suboptimal learning of these data, pointing to potential areas for improvement in
model training strategies.

2.1.2 Gradient Consistency (GC) Analysis

We assess the sentences from Wikipedia on a standard GPT model using a sentence frequency score
to gauge how frequently each sentence appears in the corpus. This score is calculated by averaging
the frequency of its constituent tokens. Figure[2(a)|displays the relationship between GC and sentence
frequency score. Additionally, the figure includes a histogram that details how many percentages of
sentences across the whole dataset fall into each frequency bin.

There is a significant correlation between gradient consistency and the frequency with which sentences
appear in the corpus. Notably, for sentences less frequently encountered in the dataset, the model
demonstrates substantial ineffectiveness in learning. As demonstrated, the GC value sharply declines
from 0.8 to 0.4 as the sentence frequency score decreases from 0.3 to 0.2. Furthermore, the GC value
continues to diminish as the sentence frequency score decreases further, indicating that the model’s
gradient descent direction struggles to align with the requirements of these rare sentences.

Our analysis indicates that the optimization requirements for long-tail sentences are significantly
overlooked during standard pretraining, largely due to gradient conflicts between long-tail and
common data. Research [38}[30] has demonstrated that these conflicts lead to suboptimal learning
outcomes for the affected data. In typical pretraining, the gradient descent direction is dominated
by common data, which prevents the model from effectively capturing the unique characteristics
of long-tail domain data. This oversight significantly impairs the performance of LMs in learning
domain-specific knowledge, particularly when dealing with rare occurrences, highlighting the need
for a more effective solution.
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Figure 2: a) The correlation between sentence frequency score and gradient consistency in the
baseline model. A histogram is also included showing how many percentage of sentences across the
whole dataset fall into each frequency bin. For further analysis using 2/3-gram averages, please refer
to the appendix [D.1] b) A sampled embedding space containing 4 long-tail clusters, taken from our
CSE layers. For more information on the detailed cluster contents, please refer to the appendix [D.2]



2.2 Embedding Space Analysis With Cluster-guided Sparse Expert (CSE) layer

Prior research[2] has shown that extensive domain-specific data reside within the long-tail distribution
of a general pretraining corpus, as illustrated in Figure[I(a)] These data, often semantically similar, are
likely to cluster closely within the embedding space, facilitating potential aggregation for dedicated
learning. However, our analysis in Section 2.T|underscores significant challenges in learning from
long-tail data. Specifically, the model’s gradient updates frequently fail to align with the optimization
needs of these data, leading to their under-representation in the embedding space. Such misalignment
obscures the inherent group structures that these domain data form based on their semantic similarities,
thereby impeding dedicated learning efforts.

To address the issues outlined above and to facilitate a more effective examination of long-tail
domain data in the embedding space, we propose the Cluster-guided Sparse Expert (CSE) layer. This
layer groups proximate long-tail data points into clusters and directs them to specialized experts
for dedicated learning. As demonstrated in Figure the GC value of long-tail data in the
baseline model initially increases at the beginning of the training stage but rapidly declines thereafter,
indicating that the model’s inability to capture the learning dynamics of long-tail data begins early in
the training process. Our CSE layer capitalizes on the clustering structure at the point where the GC
value peaks, subsequently taking effect to channel domain-specific clusters into dedicated learning
pathways. Further details about this approach are provided in Section 3]

The clustering results from the CSE-based LM, shown in Figure 2(b)| reveal four smaller clusters
alongside a predominant one. Detailed analysis shows high domain coherence within the smaller
clusters, each comprising sentences closely related to specific domains. The average sentence
frequency score of these domain clusters falls into the long tail of the sentence frequency distribution,
as shown in Figure[2(a)] In contrast, the predominant cluster, colored in purple, contains a diverse
mix of more common data and exhibits a higher average sentence frequency compared to the
smaller clusters. Further analysis of sentences with frequency scores below 0.2 shows their random
distribution across clusters, suggesting these extremely infrequent sentences may serve as noise in
the learning process.

This analysis demonstrates that our proposed CSE-based architecture effectively groups long-tail
data from the same domains for dedicated learning, fostering a domain-specific clustering structure
within the embedding space. The long-tail domain clusters, distinct from clusters containing common
data, show a higher degree of compactness and are clearly separated, highlighting the unique features
embodied by these clusters.

2.3 Dynamic of Long-Tail Domain Clusters

In this subsection, we explore the learning dynamics of long-tail domain data by tracking how clusters
evolve across different training stages and model layers. We utilize DBSCAN clustering[29] to
determine the number of clusters.

Long-tail clusters can be seen early in the training stage. As shown in Figure|3(b)|and Figure[3(c)}
the number of clusters quickly peaks early in the training stage, along with a peak in the ratio of
cluster distances to cluster radii. This indicates that our CSE-based architecture effectively promotes
the formation of a clustering structure early on.

The swift emergence of these clusters signifies substantial model adaptation to global features at
the start of training, allowing for effective differentiation between clusters. As training progresses,
inter-cluster distances gradually decrease, suggesting a stabilization in the learning dynamics and a
potential shift in focus toward refining intra-cluster nuances.

Long-tail clusters become more pronounced with increasing network depth. Figures[3(b)land
demonstrate that the number of clusters is consistently higher in the deeper layers compared
to the lower layers, with the ratio of cluster distances to cluster radii escalating significantly in the
last two layers and reaching its maximum in the final layer. This pattern indicates that clusters
become increasingly distinct and better separated as they progress through the network’s layers. The
enhanced separation of clusters in deeper layers can be attributed to the hierarchical feature extraction
inherent in deep neural networks. As data moves through successive layers, the network abstracts
and compiles more complex features, transitioning from general to more specific attributes. This



gradient consistency of long-tail data cluster number by DBSCAN
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Figure 3: a) Evolution of the Gradient Consistency (GC) of long-tail data in the baseline model over
the first 8000 training steps. GC scores beyond this range are omitted, as they consistently remain
below 0.2. For details on the method used to select long-tail data, please refer to the appendix [D.3] b)
Evolution of number of clusters over training steps. ¢) The ratio of cluster distances to cluster radii
over training steps, providing a measure of cluster structure clarity independent of norm values.
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Figure 4: a) Overview of the Cluster-guided Sparse Expert (CSE) layer. b) The cluster number
fluctuation is mainly caused by the big common cluster. These four figures arranged sequentially
from top to bottom, were sampled at every 10,000 steps throughout the process from the FFN of the
10-th layer in a GPT model.

hierarchical processing allows the final layers to capture and enhance subtle distinctions between
different data groups, leading to more defined and isolated clusters. This process not only underscores
the capability of deep layers to refine and emphasize key features but also illustrates the network’s
efficiency in encoding progressively finer-grained information as layer depth increases.

3 Cluster-guided Sparse Expert (CSE)

To avoid the troublesome and costly domain-specific pretraining, we design a novel strategy, named
Clsuter-guided Sparse Expert (CSE), to help the model capture the long-tail domain knowledge
during pretraining. Since long-tail domain data show poor gradient consistency with overall data,
we employ a sparse expert architecture within the Transformer model to assign data to different
parameters, thereby avoiding the gradient conflict in each parameter group. This strategy can be
applied to either attention or FFN. To dispatch data, with a straightforward and generally accepted
intuition such that data with similar semantic meaning are closer in the embedding space, we design
a very simple, efficient but effective online clustering algorithm operating concurrently with the
language model pretraining, separate embeddings into different clusters, and use the outcome of
this algorithm to instruct the dispatching of embeddings. The proposed algorithm is outlined in
Algorithm[T}



Dimension Reduction In high-dimensional vector clustering, computational efficiency poses a
significant challenge due to the O(d?) complexity of computing vector distance where d denotes the
dimensionality. So, we employ the same way of dimension reduction as is discussed in Section 2]
before applying clustering on the embeddings, using a Gaussian random initialized matrix to project
embeddings to a low-dimensional space[22]]. This process, grounded in the Johnson-Lindenstrauss
Lemma, effectively preserves the pairwise distances between embeddings while reducing their
dimensionality, thereby enhancing the efficiency of our clustering algorithm.

Initialization We commence by
training a baseline dense model
devoid of any expert structure.
Our findings in Section [2] illu-
minate an initial rise in gradient
consistency between long-tail do-
main data and the general dataset
at the onset of training, subse-
quently followed by a downturn.
Consequently, we adopt a warm-
up stage, letting the model learn
the common features of long-tail
and non-long-tail data. In our
experiments, this process typi-
cally accounts for no more than
1% of the overall training. We
then sample NN instances from
the dataset and use its cluster-
ing result to initialize the cluster
structure. We utilized DBSCAN
[29] in our experiments, a clustering algorithm that does not explicitly require the number of clusters.
For every identified cluster, we document its centroid and define its radius as the average distance of
all constituent data points from this central point

Algorithm 1 Cluster-guided Sparse Expert

Require: w: Warm-up step count
Require: V: Initialization data count
Require: M: Gaussian random matrix € R for reducing
dimension
Require: S: Incoming embedding stream
Require: «: center update factor
1: Wait w steps till the warm-up end.
2: Sample N data and run a clustering algorithm. Initialize
cluster structure with the outcome by recording the cluster
center ¢; and radius r; for each cluster.
for v in S do
v = Mv
i=arg minjC:1 [lv) —¢;||/r;
Dispatch v to parameter group ¢
ci =ac; + (1 —a)v

end for

e A A

After this warm-up period, we fix the number of clusters and copy the module into cluster number
copies. The module selection is introduced in the next paragraph. In our experiments, we noticed
that the variations in the number of clusters were primarily driven by the splitting and merging of
larger clusters, as illustrated in Figure the smaller, long-tail clusters, however, remained largely
unchanged. Consequently, adopting the initial clustering configuration directly, without further
adjustments during training, was found to have no detrimental effect on model performance or the
distribution of data handling. This approach capitalizes on the stability of the long-tail clusters and
the dynamics of the larger ones, ensuring efficient data processing without compromising accuracy.

Select Layer Our motivation for performing clustering is rooted in the premise that semantically
similar data tends to be closer. However, it is important to note that models learn the semantics of
data progressively through layers; as we delve deeper into the model layers, the semantic information
becomes increasingly rich, which may in turn amplify distinctions between data points. To quantify
this variation, we apply our strategy only on layers with larger inter-cluster distances. Since the last 2
layers show a significant increase in inter-cluster distance, we apply our strategy in the last 2 layers,
which is also the empirical best practice observed in existing moe-related works.[11} 25]]

Dispatch Embeddings For each coming embedding, we decide the index of the expert it is dispatched
to with i = argmin_, |[v" — ¢;||/r;, where c; denotes the center of cluster j, and r; denotes the
radius of cluster j. Note that the v’ here is the sequence embedding rather than a token embedding
and is defined as the mean of all token embeddings in the sequence[17]], and the dispatching also
happens on the sequence level. The rationale for defining and analyzing long-tail at the sequence
level stems from the fact that when we discuss long-tails, we are essentially referring to semantics
rather than individual words or tokens. Such semantics can only be observed within the context
provided by sequences as a whole.

Update cluster center The model’s parameter space undergoes gradual updates throughout training,
causing a slow drift in the embedding space as the parameters evolve. To tackle this, we incorporate a
dynamic mechanism to update the cluster centers concurrently with the assignment of clusters. For



a given cluster mc;, let its center at time ¢ be denoted as c!. When a new embedding v arrives and
is assigned to mc;, we update ¢! with: ¢!™ = a - ¢t + (1 — ) - v/, where, o € [0,1] is a center
update factor that determines the influence of the new embedding v’ on the existing center c!. This
adaptive updating scheme ensures that cluster centers remain representative of the current state of the
embedding space, even as it evolves through the training process.

4 Related Works

Long-Tail Prior research addressing the issue of long-tail learning has predominantly been con-
ducted within the domain of computer vision. The objective is to accurately recognize and classify
rare or infrequently occurring classes in a given dataset together with frequently occurring classes [44].
There are several approaches to address the problem, including re-weighting [8]], logit adjustment
[4} 145]], robust distributional matching [18 35], and knowledge transfer [39, |34]]. [37] declare that as
the number of samples increases, the diminishing phenomenon suggests that there is a decreasing
marginal benefit for a model to extract additional information from the data due to the presence of
information overlap. Research in natural language processing has identified significant limitations
in language models’ capacity to learn long-tail knowledge [27, 3]]. Furthermore, [46] suggests that
attempting to address this issue during the domain-specific pretraining stage is often too late.

Domain-Specific Pretraining Domain-specific pretraining, also known as domain-specific pre-
training, is highly advantageous to assist language models in requiring specialized domain knowledge.
In one approach, contextualized embeddings are adapted to text from the target domain using masked
language modeling, as detailed by Han and Eisenstein [[16]. The concept of multi-phase pretraining
involves secondary-stage unsupervised pretraining, exemplified by broad-coverage domain-specific
BERT variants like BioBERT [24]. Research by Gururangan et al. [[15] extends this by proposing
domain-adaptive pretraining (DAPT) from a broader corpus and task-specific pretraining (TAPT)
which uses unlabeled data increasingly aligned with the task distribution. These studies underscore
the importance of domain-relevant data for pretraining in both high and low-resource scenarios
(16} 15].

S Experiments

This section presents the experimental results of our model and other methods. In the experiments,
our model only undergoes a pretrained phase, reading domain-specific data once. Other methods
are pretrained on the same dataset and then continue-pretrained on domain-specific datasets. Subse-
quently, all models are used as embedding models with all parameters frozen to generate embeddings
for downstream tasks.

Dataset and Evaluation We employ Wikipedia [[13] as our pretraining dataset, which is also widely
accepted in other works [24} [10]. We adopt some legal and medical domain-specific downstream
tasks to show the effectiveness of our model. To ensure that the pretraining data do contain domain
knowledge required by the downstream tasks, we mixed a relatively small amount (less than 8%)
of legal-domain-specific data [[1] and medical-domain-specific data [9] into the pretraining data
to simulate a long-tail distribution. The datasets selected are listed in Table {] in Appendix [A]
Concurrently, we report the test perplexity of each model after the pretraining phase, serving as
evidence of model convergence. Task performances are reported by accuracy. Although we use the
method of mixing small-scale domain-specific datasets into pretraining data to simulate the long-tail
distribution in those huge corpora, we cannot fully simulate the extremely rich pretraining data used
on LLMs due to the limited training resources.

Baselines Since our strategy is not restricted to a specific model structure, we adopt both BERT [10]]
and GPT [28]] as the base models and compare all the strategies on these base models respectively.
We also compare with a Switch-MoE [[11] version of them to show the effectiveness of our routing
strategy. More Detailed implementation setting is listed in Appendix [A]

5.1 Main Result

Table [9] and Table 2] show the performance of all models/strategies under our experiment setting
with a trainable linear classifier for downstream tasks. */med means a model continue-pretrained



on medical-domain-specific data, and */legal means a model continue-pretrained on legal-domain-
specific data. We tested Cluster-guided Sparse Expert on Attention and FFN respectively, denoted as
MoA and MoF.

Table 1: Results of strategies applied on BERT

Models | Pretrain ppl | Overruling Casehold GAD EUADR SST2 | average

BERT/med 37.00 86.67 50.51 67.09 84.23 66.86 | 71.07 + 0.22
BERT/legal 37.00 86.67 50.93 66.83 84.79 65.14 | 70.87 +0.23
MoE/med 31.00 85.00 50.49 64.52 83.10 64.79 | 69.58 4+ 0.20
MokE/legal 31.00 85.83 50.30 64.32 84.79 63.88 | 69.82 +0.19
Ours/MoA 28.25 86.62 50.94 72.90 90.09 66.60 | 73.43 +0.18
Ours/MoF 34.64 89.10 50.82 71.65 91.23 67.98 | 74.16 - 0.20

BERT/med exhibited a severe forgetting issue and details will be discussed in the Appendix

Table 2: Results of strategies applied on GPT

Models | Pretrain ppl | Overruling Casehold GAD EUADR SST2 | average

GPT/med 55.59 88.33 49.82 71.56 8423 7390 | 73.57 £0.17
GPT/legal 55.59 89.17 50.58 71.69  81.69  74.50 | 73.53 £0.23
MoE/med 40.69 91.25 50.11 72.77 83.38  72.03 | 73.91 £0.12
MokE/legal 40.69 91.60 49.68 72.66 8338 7197 | 73.86 £0.23
Ours/MoA 42.99 91.68 50.70 7175 8591  74.61 | 74.93 £ 0.08
Ours/MoF 43.38 93.33 51.26 7330 85.63  76.00 | 75.90 £ 0.19

Our method outperforms other models/strategies on almost all tasks, with an average improvement
of around 3%, showing an ability to learn long-tail data from the pretraining dataset. Our method
can be applied to either the Attention module or the FFN module, and both ways will yield a better
result compared with the domain-specific pretrained baselines, showing potential for eliminating
the need for domain-specific pretraining. While in certain scenarios, domain-specific pretraining
remains indispensable due to the privacy concerns associated with proprietary data, we argue that
when pretraining datasets encompass domains similar to the proprietary one, our approach can still
facilitate an enhanced domain-specific pretraining performance. We also present the result of a larger
scale model, in Table[3] We used larger models (330M GPT-style models trained with 20B tokens)
and domain-specific tasks from the academic, environmental, and financial domains to demonstrate
the generalization capability of our method. The results indicate that our method, even without
fine-tuning, consistently outperforms baselines by an average of 3-5% in accuracy on domain-specific
tasks while maintaining comparable performance on general tasks. It is also notable that domain-
specific pretraining leads to overfitting and even catastrophic forgetting, resulting in a decrease in
performance on tasks from non-related domains. More details are shown in Appendix [A] Further
experiments show that our approach does not cause a reduction in general knowledge acquisition,
and more details are shown in Appendix

Table 3: Results of strategies applied on 330M GPT

Domain Task | GPT/tuned MoE/tuned CSE/w/o tune

academic  chem-prot 36.25 36.25 36.25
academic MAG 63.22 6491 65.47
academic rct-20k 76.95 78.28 80.15
environment  clim. det. 78.94 79.90 80.26
environment clim. sent. 66.81 68.31 69.98
financial FPB 16.83 25.00 40.11




5.2 Analysis

Expert analysis We analyze our model’s embedding space to determine if our method dispatches
embeddings correctly. We sample data and perform a forward inference pass through the model,
visualizing the dispatching path of our model. As is shown in Figure [5] our distribution strategy
correctly and effectively dispatches data from different long-tail clusters to different experts. We
further visualize the NTK in each expert of our model, and it can be observed that by dispatching
long-tail data separately, the NTK in each expert becomes more consistent. Whereas in a baseline
model, its NTK matrix shows a poor consistency of the batch data, since long-tail and non-long-tail
data are not separated.

Embedding Routing Result NTK of expert 1

)

50
25

00
25
50 ﬂ
5

50 25 00 25

S0 75 10 135 1o o 2 3 6 s 00 25 50 75 100 125 150 175 ° 5 10 15

Figure 5: a) The embedding space and routing result of our model. b) The NTK in each expert in our
model. ¢) The NTK in baseline. b) and c) are sampled from the FFN in the 10th layer.

For time overhead, the cluster initialization step is the additional computation introduced by our
method throughout the training phase, relative to both the baseline and MoE. The time complexity
of this operation will be O(nlognd') and is bounded by O(n?d’) for the worst case, where n
represents the number of sampled points. Notably, during subsequent inference stages, the quantum
of parameters activated per iteration by our algorithm aligns identically with that of both MoE and
the baseline. Since MoE and the baseline necessitate an additional fine-tuning phase, it becomes
evident that the time cost of this phase far surpasses the O(n?d’) complexity of cluster initialization.
To provide more straightforward data, the wall-clock time of training & domain-specific pretraining
of 330M models for baseline GPT, MoE, and our CSE method and are 177 hours, 205 hours, and 160
hours respectively.

6 Conclusion

In this paper, we seek to elucidate why language models require domain-specific pretraining despite
the presence of domain knowledge in their pretraining data. Our investigation uncovers that Sen-
tences with lower frequency scores show diminished gradient consistency, resulting in increased test
perplexity. This misalignment, particularly pronounced in low-frequency sentences, culminates in
elevated test perplexity, suggesting a deficiency in effectively leveraging domain-specific information.
To address this challenge, we introduce Cluster-guided Sparse Experts (CSE), grouping diverse
long-tail domain data and dispatching them to different experts to enhance gradient consistency
within each expert, thereby enabling the model to incorporate long-tail domain knowledge during
pretraining. Experiments suggest that our approach has the potential to supplant the need for a
dedicated domain-specific pretraining stage. Through this approach, long-tail domain instances
promote the formation of small, outlier clusters in the representation space, exhibiting a characteristic
signature across varying stages of training and architectural depths.
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Appendix

A Experiments

Table [d] shows the datasets used in our experiments. Table [5]shows the hyperparameters used in our
implementations. We use a machine with 8 NVIDIA GeForce RTX 3090 GPUs with 24GB GPU
memory as our experiment platform. Pretraining costs about 24 hours.

Table 4: Datasets used for experiments

Pretraining dataset ~ Description

Wikipedia ([13]) Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump with one
split per language. Each example contains the content of one
full Wikipedia article with cleaning to strip markdown and
unwanted sections.

legal([LL]) In collaboration with Ravel Law, Harvard Law Library digi-
tized over 40 million U.S. court decisions consisting of 6.7
million cases from the last 360 years into a dataset that is
widely accessible to use.

PubMed([9]) PubMed comprises more than 36 million citations for
biomedical literature from MEDLINE, life science journals,
and online books.

Finetuning task Description

Overruling ([43])) A law dataset corresponds to the task of determining when a
sentence is overruling a prior decision.

Casehold([43]) Case Holdings On Legal Decisions, comprising over 53,000+

multiple choice questions to identify the relevant holding of
a cited case.

GAD([6]) A relation extraction dataset, to decide if a gene is related to
a specific disease.

EUADR([33])) Another relation extraction dataset, to decide if a gene is
related to a specific disease.

SST2([32]) The Stanford Sentiment Treebank consists of sentences from

movie reviews and human annotations of their sentiment.

Table 5: Hyperparameters of Models

Hyperparameters BERT-based GPT-based
FFN modules 4 6
Attention modules 4 6
attention heads 8 12
our-strategy-based layers 2 2
transformer layers 12 12
Hidden dimension size 768 768
Droupt 0.1 0.1
Attention dropout 0.1 0.1
Sequence length 128 256
Batch size 100 64
Max steps 36k 300k
Learning rate decay Cosine Cosine
random seed used 14, 24 22, 80

By monitoring the validation loss of the pretraining dataset(Figure [6), we show the Catastrophic
Forgetting problem of the BERT model and its MOE method in the domain-specific finetuning phase.
Despite our attempts at various combinations of generic data and domain-specific data during domain
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finetuning, the best outcome among these still resulted in a decline in model performance on domains
unrelated to its fine-tuning, indicating a limitation in the generalizability of the adapted model. As
domain-specific finetuning proceeds, the validation loss of pretraining dataset has a significant rise
and stays well above the convergence position of pretraining.

4.3
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Figure 6: The validation loss of the pretraining dataset during the domain-specific finetuning phase.

Our training process strictly followed the basic framework of pretraining and domain-specific
pretraining, and we didn’t control the occurrence of forgetting, focusing more on the best performance.
However as shown in the appendix, we monitored the forgetting phenomenon using the test loss
on pretraining data. Specifically, BERT/med(further trained in medical), exhibited a more severe
forgetting issue, with test perplexity on pretraining data increasing by 24.33, compared to a smaller
increase of 8.41 for BERT/legal(further trained in legal). After correcting this imbalance by utilizing
early-stop to select checkpoints where each model showed similar degrees of forgetting but not
the best performance, the results came out that each domain-finetuned model outperformed on its
respective domain tasks. This further underscores the challenges posed by the fine-tuning stage,
affirming the value of our approach in not requiring domain-specific pretraining.

Table 6: Checkpoints selected with early-stop where two models show the same degree of forgetting.

Models | Casehold Overruling GAD EUADR
BERT/legal 50.26 85.83 62.01 79.15
BERT/med 49.15 85.00 64.58  81.97

B Limitations Discussions

Although we use the method of mixing small-scale domain-specific datasets into pretraining data to
simulate the long-tail distribution in those huge corpora, we cannot fully simulate the extremely rich
pretraining data used on LLMs due to the limited training resources.

C Discussions

Large Scale The maximum model scale presented in the experiment section in this paper is 330M
GPT. So, we discuss what if our proposed CSE method is applied to a larger scale.
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* Model Size: Larger models have greater learning capacities, which can enhance the GC for
long-tail knowledge given a fixed training data size.

* Window Size: A larger window size allows the model to capture longer-range relationships
within each training sequence, potentially highlighting more subtle distinctions and leading
to a more long-tail distribution.

* Training Data Size: Larger data sizes and larger window sizes might result in a higher
proportion of common data relative to long-tail clusters. The increased presence of com-
mon data and the potential subdivision of long-tail clusters into smaller groups could,
paradoxically, reduce the GC for long-tail knowledge.

Performance on Common Datasets Additionally, we have included results on general knowledge
tasks to confirm that our dedicated long-tail learning method does not compromise general knowledge
acquisition.

Table 7: Results of general tasks on BERT with the same small-scale setting in the paper

Task \ Domain Freq. Score \ Baseline(tuned) MoE(tuned) Ours(w/o tune)
COLA | general 0.389 69.22 69.32 69.42
QNLI general 0.325 65.92 65.07 66.04
MRPC | general 0.343 72.06 70.83 72.06
QQP general 0.380 70.64 69.85 70.18
SST2 general 0.327 66.86 64.79 67.98
average | general - | 68.94(-0.20) 67.97(-1.26) 69.14

Table 8: Results of general tasks tested on GPT 330M trained with 20B tokens

Task \ Domain Freq. Score \ Baseline(tuned) MoE(tuned) Ours(w/o tune)
COLA | general 0.389 69.10 69.10 69.20
QNLI general 0.325 60.17 60.06 59.72
MRPC | general 0.343 70.18 71.75 71.98
QQpP general 0.380 73.28 74.47 75.95
SST2 general 0.327 74.50 72.03 76.00
average | general - | 69.45(-1.12) 69.48(-1.09) 70.57

Experiments on A Pre-trained Model We also conducted experiments on a pre-trained 110M scale
model, wherein all methods continue training from a single pre-trained checkpoint. The outcomes
are presented in the following table. Results show that directly applying our method to a pre-trained
model still yields superior performance compared to the baseline and MoE models.

Table 9: Results of strategies applied on pre-trained model

Models | Overruling Casehold GAD EUADR SST2 average

BERT/med 85.00 51.11 70.84  89.86  64.11 72.18 £0.21
BERT/legal 85.83 51.21 66.08 88.45 61.58 70.63 £0.17
MoE/med 85.83 4991 72.18 9042 6342 72.35+0.18
MokE/legal 86.67 50.83 69.44  89.86 62.16 71.88£0.17
Ours/MoA 86.67 51.11 73.17 9296 6399 73.58 £0.19
Ours/MoF 86.67 50.77 7325  91.83 63.65 73.23 £0.18

Using both MoA and MoF  We tried this architecture using both MoA and MoF and tested it in the
same small-scale setting reported in the paper, and found that MoA+MOoF yields improvements in the
overall performance compared to MoA/MoF only.
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Table 10: Updated results of strategies applied on BERT

Models | Pretrain ppl | Overruling Casehold GAD EUADR SST2 | average
MoA 28.25 86.62 50.94 72.90 90.09 66.60 | 73.43
MoF 34.64 89.10 50.82 71.65 91.23 6798 | 74.16
MoA+MoF 28.25 87.50 50.83 79.87 93.80 67.09 | 75.82

D Analysis of Sentence Frequency Distribution and Cluster Details

D.1 Sentence Frequency Distribution and Gradient Consistency

We analyze the sentence frequency distribution using 2/3-gram averages, comparing it to gradient
consistency across different training stages. Figure [7(a)] and Figure [7(b)| illustrate the frequency
distribution of sentences based on their 2-gram and 3-gram patterns, respectively. The results are
consistent with the 1-gram analysis, confirming that despite its simplicity, the 1-gram method remains
effective in capturing sentence frequency trends. The gradient consistency results align with these
findings, reinforcing the robustness of this approach.
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Figure 7: a) 2-gram sentence frequency distribution. b) 3-gram sentence frequency distribution.

D.2 Cluster Details and Sentence Content

Figure[§]shows the detailed content of sentences within each small cluster. For example, in the "Java
Network Debug’ cluster, terms such as HTML, Javascript, and <1ink> frequently appear, indicating
strong domain coherence. This example highlights how specific topics tend to cluster together,
demonstrating the effectiveness of the clustering process.

Furthermore, we identified low-frequency sentences that are scattered across clusters, lacking clear
semantic correlation. These sentences often include irregular content such as misprinted formulas
or non-English text, which prevents them from forming coherent clusters. Figure|[§|also illustrates
the distribution and content of these low-frequency sentences, providing insight into their irregular
placement across clusters.

D.3 Methodology for Long-Tail Data Selection

We applied the Elbow method to determine a threshold of 9.37% on the curve of domain proportions,
classifying any domain with a data proportion at or below this level as a long-tail domain. By plotting
the curve of Wikipedia domains and their corresponding proportions, we identified the point (9.37%)
where the slope changes significantly, marking the transition from the head of the distribution to
the tail. Following this, we randomly selected sentences from these long-tail domains for further
analysis.
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* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
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¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
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Answer: [Yes]
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Guidelines:
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
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material?

Answer:
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results upon acceptance of this paper.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We show our experimental setting/details both in our Experiments [5|and in the
Appendix [A]
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* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We show the standard deviation of accuracy in Table[9]and Table[2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We show these in Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have checked it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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14.
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Answer: [Yes]
Justification: We cite the creators and introduce assets in the Appendix [A]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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