
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLIPNET: FOURIER LIPSCHITZ SMOOTH POLICY
NETWORK FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) is an effective method for decision-making and
control tasks. However, RL-trained policies encounter the action fluctuation prob-
lem, where consecutive actions significantly differ despite minor variations in ad-
jacent states. This problem results in actuators’ wear, safety risk, and performance
reduction in real-world applications. To address the problem, we identify the two
fundamental reasons causing action fluctuation, i.e. policy non-smoothness and
observation noise, then propose the Fourier Lipschitz Smooth Policy Network
(FlipNet). FlipNet adopts two innovative techniques to tackle the two reasons
in a decoupled manner. Firstly, we prove the Jacobian norm is an approxima-
tion of Lipschitz constant and introduce a Jacobian regularization technique to
enhance the smoothness of policy network. Secondly, we introduce a Fourier fil-
ter layer to deal with observation noise. The filter layer includes a trainable filter
matrix that can automatically extract important observation frequencies and sup-
press noise frequencies. FlipNet can be seamlessly integrated into most existing
RL algorithms as an actor network. Simulated and real-world experiments show
that FlipeNet has excellent action smoothness and noise robustness, achieving a
new state-of-the-art performance. The code and videos are publicly available 1.

1 INTRODUCTION

Deep reinforcement learning (RL) has become a powerful approach for addressing optimal control
tasks in physical environments (Guan et al., 2021; Li, 2023). Neural networks, capable of modeling
complex nonlinear functions (Hornik et al., 1989; Kidger & Lyons, 2020), are commonly used as
the container for the control policy fitted by RL. However, RL-trained policies often encounter the
action fluctuation problem, where consecutive actions exhibit significant variations despite minor
differences in the adjacent observations. While this problem is often overlooked during simulation
and training stages, it will result in serious issues in real-world application like performance re-
duction, actuators’ wear, and safety risk (Song et al., 2023). This problem is prevalent in various
scenarios, including drone control (Mysore et al., 2021; Shi et al., 2019), robot arm manipulation
(Yu et al., 2021), and autonomous driving (Cai et al., 2020; Chen et al., 2021; Wasala et al., 2020).

In order to make RL more applicable in real-world scenarios, researchers are working hard to solve
the problem. CAPS (Mysore et al., 2021) and L2C2 (Kobayashi, 2022) introduce penalty terms in
actor loss, which indicate the action similarity in successive time steps or the action similarity under
close states. SR2L (Shen et al., 2020; Zhao et al., 2022) trains policy network using adversarial
noise, which maximizes the action difference under actual state and adversarial state. PIC (Chen
et al., 2021) and TAAC (Yu et al., 2021) design two-stage policies by using one network to output
the current action, and the other to output action inertia scalar or make choice between the current
and the last action. MLP-SN (Takase et al., 2020) and LipsNet (Song et al., 2023) smoothes control
action by constraining the Lipschitz constant of policy network. However, CAPS and L2C2 suffer
from sensitive hyperparameter tuning, and their sampling of close states complicate RL algorithms.
SR2L, PIC, and TAAC need special policy evaluation or policy improvement mechanisms, which
means they cannot be used in traditional RL algorithms. MLP-SN suffers from several performance
loss and LipsNet is limited to the network with piecewise linear activation functions. Furthermore,

1Project page: https://iclr-anonymous-2025.github.io/FlipNet

1

https://iclr-anonymous-2025.github.io/FlipNet

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

none of them have directly dealt with the observation noise. There is still an open challenge to
smooth control action in a way that is effective, simple, and applicable across various RL algorithms.

RL Env

Control outputs

FlipNet
(ours)

MLP

Replace

Actor Critic

Fluctuated action

Smooth action

Figure 1: FlipNet outputs smooth action.

In this paper, we propose a novel policy
network structure, named Fourier Lipschitz
Smooth Policy Network (FlipNet), achieving
action smoothing in RL effectively, simply and
flexibly. We identify the fundamental rea-
sons for causing action fluctuation are the non-
smoothness of policy network and the exis-
tence of observation noise. FlipNet adopts two
corresponding techniques to directly tackle
them. Firstly, we propose Jacobian regulariza-
tion technique to constrain the Lipschitz con-
stant of policy network. We prove the Jaco-
bian norm is an approximation of neural net-
work’s Lipschitz constant, thereby enhancing
the smoothness of policy function fitted in the
policy network by regularizing the Jacobian
norm. Secondly, we propose a Fourier filter
layer to filter observation noise. In this layer,
fast Fourier transform (FFT) is used to obtain
the frequency features of sequential observations, and a trainable filter matrix is used to automati-
cally extract important frequencies in observation and suppress noise frequencies. Finally, we pack-
age FlipNet as an user-friendly PyTorch module. FlipNet has three superiorities compared to previ-
ous works: (1) FlipNet directly tackles the two fundamental reasons causing action fluctuation, while
previous works do not consider them at the same time; (2) The user-friendly packaging of FlipNet
does not disturb original RL algorithm, allowing application in various RL algorithms, including
TRPO (Schulman et al., 2015), TD3 (Fujimoto et al., 2018), and DSAC (Duan et al., 2021), etc.; (3)
FlipNet has better overall performance, including the control performance and action smoothness.

Experiment results. Simulated and physical experiments verify that FlipNet has achieved the state-
of-the-art (SOTA) performance. For the simulated tasks, we conduct experiments on the double
integrator environment and DeepMind control suite benchmark (DMControl). For example, in DM-
Control’s walker environment, FlipNet increases the total average return (TAR) by 3.4% and reduces
the action fluctuation ratio (AFR) by 35.5% compared to LipsNet, which is the previous SOTA net-
work. Additionally, an experiment of physical vehicle robot is implemented to test on real-world
application, where the vehicle robot is going to track given trajectories and avoid moving obsta-
cle under various noise levels. Results show that FlipNet increases the average TAR by 5.8% and
reduces the average AFR by 90.0% compared to the multilayer perceptron (MLP).

Technical contributions. FlipNet is a novel network, addressing the action fluctuation problem in
the real-world applications of RL. Our contributions are four-fold: (1) We identify the two funda-
mental reasons that cause action fluctuation, and propose a policy network named FlipNet to tackle
the two reasons in a decoupled manner; (2) We demonstrate that the Jacobian norm serves as an
approximation of Lipschitz constant, and propose a Jacobian regularization technique to enhance
the smoothness of policy network; (3) We propose a trainable Fourier filter layer, capable of auto-
matically extracting valuable observation frequencies while suppressing noise frequencies; (4) We
conduct extensive experiments on both simulated and real-world tasks to validate FlipNet’s SOTA
performance. The code is publicly released to facilitate the implementation and future research.

2 PRELIMINARIES

2.1 ACTOR-CRITIC REINFORCEMENT LEARNING

Actor-critic method, consisting of an actor network and a critic network as shown in Figure 1, forms
the backbone of many RL algorithms. The actor network fits a policy π : S → A that mapping
from state space to action space. Therefore, the actor network is also called as policy network. The
goal of RL is to train a policy π maximizing the expected return: Jπ = Eτ∼ρπ

[∑T
t=0 γ

trt

]
, where

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ρπ is the distribution of state-action trajectory induced by policy π, T is the termination time of an
episode, 0 ≤ γ ≤ 1 is the discount factor, and rt represents the reward. The critic network fits
a value function V (s) or Q(s, a), mapping from the state-action pairs to the expected returns, to
evaluate the actions taken by the actor.

In policy evaluation phase, the critic is updated by minimizing the temporal difference (TD) error.
For example, the Q-value network in DDPG (Lillicrap et al., 2015) parameterized by φ is updated
by

min
φ

(
Es,a,r,s′∼D

[
Qφ(s, a)− r − γQφtarg

(s′, a′)
])2

, (1)

where D is the replay buffer, s′ is the next state, a′ is the next action obtained by the target actor
network, and Qφtarg is the return estimated by the target critic network.

In policy improvement phase, the actor is updated by maximizing the expected return predicted by
the critic. Taking DDPG as an example again, the actor network is updated by minimizing the actor
loss function:

L = Es∼D [−Qφ(s, π(s))] . (2)

2.2 ACTION FLUCTUATION RATIO

Action fluctuation ratio (AFR) is an index to quantitatively measure the fluctuation level of control
action (Chen et al., 2021; Song et al., 2023). It is defined as

ξ(π) = Eτ∼ρπ

[
1

T

T∑
t=1

||at − at−1||

]
, (3)

where ρπ is the distribution of state-action trajectory induced by policy π, T is the termination time
of episodes, at and at−1 are two adjacent actions, and ∥ · ∥ is the norm of action difference vector 2.

Beside the total average return (TAR), AFR is also an important indicator to evaluate policies’ per-
formance in the real world. The smaller AFR is, the smoother action sequence policy π has.

3 METHODOLOGY

3.1 REASONS IDENTIFICATION OF ACTION FLUCTUATION

To ensure that RL agents produce smooth actions, it is necessary to first identify the root cause of
action fluctuation. In decison-making and control tasks, the actions are calculated by the policy
network π according to the current observation ot, i.e. at = π(ot). And the current observation ot
is composed by the current state st and observation noise ξt, i.e. ot = st + ξt. The rate of action
change over time is dat

dt = dπ(ot)
dot

· dotdt , then we can derive that∥∥∥∥datdt

∥∥∥∥ ≤ ∥∥∥dπ(ot)
dot

∥∥∥ ·(∥∥∥∥dstdt

∥∥∥∥+ ∥∥∥dξt
dt

∥∥∥) . (4)

To mitigate action fluctuation, ∥dat

dt ∥ must be controlled within a reasonable range. From Equation
(4), we know

∥∥dat

dt

∥∥ is affected by three parts: a red term of policy derivative, reflecting the level
of policy smoothness; a blue term of noise change rate, reflecting the level of observation noise;
and an inherent derivative term of the target dynamics system.

Based on the above analysis, the two fundamental reasons that causes action fluctuation can be
identified: (1) the non-smoothness of policy network, and (2) the existence of observation noise.

Non-smoothness of policy network. A non-smooth policy network means that RL fits a non-
smooth policy function mapping from the state to control action. The mapping function has signif-
icant output differences even the inputs are closely adjacent. Consequently, when the state changes

2Throughout the paper, ∥ · ∥ denotes the 2-norm of a vector or a matrix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

with time, a non-smooth action sequence is generated. Appendix C visualizes the effect of a non-
smooth policy.

Existence of observation noise. The noise results in the discontinuous changes in observations,
making the actions produced by the policy network at the adjacent time stamps erratically differ.
Even if the policy function fitted by the policy network is smooth enough, actions can still be fluc-
tuated because of the erratic observation noise.

Observation noise

Jacobian regularization

Fourier filter layer

Two techniques

Policy non-smoothness

Two reasons

tackle

Figure 2: The proposed two techniques address the two fundamental reasons that cause action
fluctuation in a straightforward, direct, and decoupled manner.

Therefore, the control action won’t be smooth enough unless the two fundamental reasons are both
under control. Previous works do not identify the two reasons clearly, and none of them consider
the two aspects at the same time. Although some works recognize the effect of observation noise,
they choose to improve the robustness by reducing the Lipschitz constant of policy network (Takase
et al., 2020; Song et al., 2023), i.e. enhancing the smoothness of policy network, rather than directly
filtering observation noise. Such a non-decoupled approach results in actions being insufficiently
smooth, and a loss of performance when sufficient action smoothness is required. In this paper, we
propose the Jacobian regularization technique and the Fourier filter layer to respectively tackle the
two fundamental reasons in a straightforward, direct, and decoupled manner, as shown in Figure 2.

3.2 JACOBIAN REGULARIZATION

Definition 3.1 (Local Lipschitz Constant). Suppose f : Rn → Rm is a continuous neural network.
The K(x) is defined as the local Lipschitz constant of f on the neighborhood of x:

K(x) = max
x1,x2∈B(x,ρ)

∥f(x1)− f(x2)∥
∥x1 − x2∥

, (5)

where B(x, ρ) denotes the open ball area with radius ρ > 0 centered at the point x in the Euclidean
space, i.e. B(x, ρ) = {x′ : ∥x′ − x∥ < ρ}.

Lipschitz constant characterizes the landscape smoothness of a function. By viewing the policy
network as a mapping function, Lipschitz constant could reflect the smoothness of the policy func-
tion fitted by RL. A lower Lipschitz constant means a smoother policy function, which leads to
smoother actions (Ames et al., 2016; Kobayashi, 2022; Song et al., 2023; Takase et al., 2020).
MLP-SN (Takase et al., 2020) constrains the Lipschitz constant by applying spectral normalization
(SN) (Miyato et al., 2018) on each layer of policy network. However, applying SN usually leads
to severe performance loss, because the desired network-wise Lipschitz continuity is realized by
layer-wise Lipschitz constraints (Bhaskara et al., 2022; Wu et al., 2021). LipsNet (Song et al., 2023)
proposes a network-wise method, Multi-dimensional Gradient Normalization (MGN), to constrain
the Lipschitz constant. However, MGN needs to set an initial Lipschitz constant manually, which
may damage RL’s exploration ability. And MGN needs to calculate Jacobian matrix during forward
propagation, which makes the policy network not applicable in high real-time tasks.

To overcome the above challenges, we propose the Jacobian regularization method to conveniently
reduce the Lipschitz constant of policy network. The Jacobian norm is commonly used as an index
of function’s smoothness and robustness (Hoffman et al., 2019; Lee et al., 2023). In Theorem 3.1,
we prove that Jacobian norm is an approximation of the local Lipschitz constant.
Theorem 3.1 (Lipschitz’s Jacobian Approximation). For a continuously differential neural network
f : Rn → Rm, the Jacobian norm ∥∇xf∥ is an approximation of the local Lipschitz constant of f
on the infinitesimal neighborhood of x, i.e. K(x) ≈ ∥∇xf∥.

Proof. See Appendix A in the supplementary material.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

According to Theorem 3.1, the Jacobian norm is an approximation of local Lipschitz constant and
we know that Lipschitz constant reflects function’s landscape smoothness, therefore we can conve-
niently enhance the policy smoothness by reducing Jacobian norm. The tailored actor loss becomes

L′ = L+ λk ∥∇f∥ , (6)

where L is the original actor loss, and λk is a coefficient. The proposed Jacobian regularization is
superior to the Lipschitz constraint methods used in MLP-SN and LipsNet because: (1) Jacobian
regularization is a network-wise rather than layer-wise constraint method, avoiding severe perfor-
mance loss; (2) Jacobian regularization does not need to set a initial Lipschitz constant manually,
not damaging the exploration ability of RL; (3) Jacobian regularization dose not need to calculate
Jacobian matrix during forward propagation, applicable in high real-time tasks.

3.3 FOURIER FILTER LAYER

Fourier Transform is a widely used frequency analysis tool, which can also be employed in neural
networks for feature extraction (Lee-Thorp et al., 2022; Rao et al., 2021). To mitigate the action
fluctuation caused by observation noise, we propose the Fourier filtering layer based on Fourier
Transform. The workflow of Fourier filter layer is shown in Figure 3.

𝑥 𝑋

෨𝑋
𝐻⊤

෤𝑥

FFT
𝑜𝑡

𝑜𝑡−𝑁+1
conjugate

symmetrize
⊙ IFFT

෤𝑜𝑡

෤𝑜𝑡−𝑁+1

…

…

Figure 3: Workflow of Fourier filter layer. Firstly, FFT converts historical observations to fre-
quency feature matrix X . Then, half of X is multiplied by a trainable filter matrix H , and a complete
matrix X̃ is generated by conjugate symmetrizing. Finally, IFFT converts X̃ to filtered time-domain
signals.

Given N historical observations ot, ot−1, · · · , ot−N+1 ∈ RD where D denotes the dimension of
features, the Fourier filter layer concatenates them as a matrix x ∈ RN×D, and calculates the fre-
quency feature matrix X ∈ CN×D using 2D discrete Fourier transformation:

Xu,v =

N−1∑
n=0

D−1∑
d=0

xn,d · e−j2π(un
N + vd

D), (7)

where xn,d denotes the d-th feature of the n-th observation signal, Xu,v denotes the element located
at the u-th row and v-th column of the frequency feature matrix X , and j represents the imaginary
unit. When the length of historical observations is less than N , the missing parts are padded with 0.
In FFT, Zero-padding does not alter the primary frequency components of the signal, and it merely
increases the spectral resolution (Jung et al., 2019). The magnitude of Xu,v denotes the signal
intensity at the frequency combination (u, v), where u and v are frequency indices rather than the
actual frequency values. Since the observations only consist of real values, the resulting matrix X
exhibits conjugate symmetry, i.e. Xu,v = XN−u,D−v . It means that half of X could represent the
complete information contained in the signal.

Then, half of X , denoted as Xhalf ∈ CN×⌊D
2 ⌋+1, is subjected to a Hadamard product with a trainable

filter matrix H ∈ CN×⌊D
2 ⌋+1. After that, a complete matrix X̃ ∈ CN×D is restored by conjugate

symmetrizing the product matrix:

X̃ = symmetrize(Xhalf ⊙H). (8)

By choosing H as a complex matrix instead of real matrix, the Fourier filtering layer can not only
alter frequency amplitudes but also perform feature extraction. The magnitudes of the elements in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

H determine which frequency is suppressed or strengthened. To enable the noise filtering capability
of policy network, we encourage the magnitudes of elements in H to be as small as possible. In
this way, policy network can automatically extract valuable frequencies and filter out less relevant
frequencies where noise may exist. Consequently, the actor loss is tailored from L′ in Equation (6)
into

L′′ = L+ λk ∥∇f∥+ λh ∥H∥F , (9)
where ∥H∥F is the Frobenius norm of H , and λh is a coefficient.

Finally, the resulted frequency feature matrix X̃ is recovered to the time-domain signals by 2D
inverse discrete Fourier transformation:

x̃n,d =
1

ND

N−1∑
u=0

D−1∑
v=0

X̃u,v · ej2π(
un
N + vd

D). (10)

Because X̃ is a conjugate symmetric matrix, the matrix x̃ ∈ RN×D becomes a real matrix. By
slicing rows from the matrix x̃, the filtered features õt, õt−1, · · · , õt−N+1 ∈ RD are obtained. The
signal õt, representing the filtered feature corresponding to the current timestamp, is selected as the
input for subsequent layers. The subsequent layers form a subnetwork f , which is processed by
Jacobian regularization for a low Lipschitz constant. The overall structure of FlipNet is shown in
Figure 4. The pseudocode of FlipNet is illustrated in Appendix B.

𝑜𝑡 𝑜𝑡−1 𝑜𝑡−𝑁+1

𝑎𝑡 ∇ℒ′′

Subnetwork 𝑓 with
Low Lipschitz Constant

Fourier Filter Layer

෤𝑜𝑡 ෤𝑜𝑡−1 ෤𝑜𝑡−𝑁+1

…

…

ℒ′′ = ℒ + 𝜆𝑘 ∇𝑓 + 𝜆ℎ 𝐻 𝐹

Fourier Filter Layer

FFT

IFFT

×

trainable

filter matrix

frequency

feature

Jacobian Regularization

Figure 4: Overall structure of FlipNet. Historical observations are processed by Fourier filter layer,
where a trainable filter matrix is used for frequency selection. The filtered feature õt is inputted into
a subnetwork whose Lipschitz constant is constrained by Jacobian regularization. The parameters
in FlipNet are updated by tailored actor loss L′′.

3.4 USER-FRIENDLY PACKAGING

Figure 5: User-friendly deployment.

To facilitate research and usage, we package FlipNet as
an user-friendly PyTorch (Paszke et al., 2019) module. A
backward hook function is used in the module. When net-
work’s backward propagation is called, the hook function
will awake to automatically replace the gradient derived
from L by the gradient derived from L′′. In this way,
users don’t need to redefine the actor loss and any other
elements in RL, making FlipNet applicable in almost all
actor-critic RL algorithms like DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), PPO
(Schulman et al., 2017), TRPO (Schulman et al., 2015), SAC (Haarnoja et al., 2018) and DSAC
(Duan et al., 2021), etc. As shown on the right, practitioners can use FlipNet just like using an MLP.
The code is publicly available at 3.

3Project page: https://iclr-anonymous-2025.github.io/FlipNet

6

https://iclr-anonymous-2025.github.io/FlipNet

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 DOUBLE INTEGRATOR

Double integrator is a classic linear quadratic control task, which is commonly used to test the
performance of controllers. In the environment, a particle is moving along an axis without resistance
(Song et al., 2023). The observations include position x and velocity v of the particle. The control
action is particle acceleration a that parallel to the axis. A schematic diagram of the environment is
shown in Figure 6.

0

𝑥

𝑣

Figure 6: Double integrator.

The reward function is r = −2x2 − v2 − a2, which incen-
tives the particle to remain stable at the origin, i.e. x = 0, v =
0, a = 0. The Infinite-time Approximate Dynamic Program-
ming (INFADP) (Li, 2023), a model-based RL algorithm, is
used for train without noise. When testing policy networks, the
particle has nonzero initial position and velocity, and the noise
for each observation dimension is distributed in U(−0.2, 0.2).
More details and hyperparameters are shown in Appendix D.

The results are presented in Figure 7 and 8. In Figure 7(a), 30 episodes are simulated starting from
the same initial state. The solid line and shadow area respectively denote the mean and standard
deviation of actions. The shadow areas imply the action fluctuation amplitude of FlipNet is much
smaller than that of MLP, and is on par with LipsNet. Figure 7(b) depicts action trajectories for a
single episode, which reveals that FlipNet has better action continuity than LipsNet under the same
level of action fluctuation amplitude. This conclusion is confirmed again by Figure 7(c), where
action trajectories are decomposed by FFT and the action frequency induced by FlipNet is shown to
be more distributed in the low-frequency range.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Ac
tio

n

MLP
LipsNet-L
FlipNet

(a) Action fluctuation amplitude

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

1.0

0.5

0.0

0.5

Ac
tio

n

MLP
LipsNet-L
FlipNet

(b) Action trajectory

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Am
pl

itu
de

MLP
LipsNet-L
FlipNet

(c) Action frequency spectrum

Figure 7: Action in double integrator environment. (a) The action fluctuation amplitude of Flip-
Net is smaller than that of MLP, and is on par with LipsNet. (b) FlipNet has better action continuity
than MLP and LipsNet. (c) FlipNet’s action frequency is more distributed in the low-frequency
range.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

100

90

80

70

60

50

To
ta

l a
ve

ra
ge

 re
tu

rn

MLP
CAPS
L2C2
MLP-SN
LipsNet-G
LipsNet-L
FlipNet (ours)

(a) TAR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

0.0

0.1

0.2

0.3

0.4

0.5

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

MLP
CAPS
L2C2
MLP-SN
LipsNet-G
LipsNet-L
FlipNet (ours)

(b) AFR

 forward
 speed

 backward
 speed

control
performance
(low-noise)

action
smoothness
(low-noise)

control
performance
(high-noise)

 action
 smoothness
 (high-noise)

MLP
CAPS
L2C2
MLP-SN
LipsNet-G
LipsNet-L
FlipNet

(c) Performance radar chart

Figure 8: Performance comparison in double integrator environment. (a) The TAR of FlipNet
declines at the slowest rate when noise increases. (b) The AFR of FlipNet grows at the slowest rate
when noise increases. (c) FlipNet has the best overall performance compared to previous works.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

To further evaluate FlipNet, we set different observation noise amplitudes and compare with previ-
ous works. As Figure 8(a) shows, when noise increases, FlipNet maintains the highest TAR and its
TAR declines at the slowest rate. As Figure 8(b) shows, when noise increases, FlipNet maintains the
lowest AFR and its AFR grows at the slowest rate. We then compare the performance in high-noise
environment, i.e. noise amplitude is 0.3. Compared to LipsNet-L, the previous SOTA network, Flip-
Net achieves an 8.2% increase in TAR and a 75.0% reduction in AFR. Therefore, FlipNet achieves
a new SOTA performance with a significant advantage in action smoothness.

Furthermore, an ablation study for the two techniques in FlipNet is implemented in Appendix E, the
sensitivity analysis for hyperparameters λk and λk is provided in Appendix F, and the sensitivity
analysis for hyperparameter N is provided in Appendix G. Additionally, policy networks’ compu-
tational efficiency are evaluated in Appendix H, including the time usages of forward and backward
propagations. Based on all the above results, a performance radar chart is depicted in Figure 8(c),
which implies the overall performance of FlipNet is much better than previous works.

4.2 DEEPMIND CONTROL SUITE

(a) Cartpole (b) Reacher (c) Cheetah (d) Walker

Figure 9: DeepMind control suite benchmark.

The DeepMind Control Suite (DMControl)
(Tassa et al., 2018) consist of several well-
designed continuous control tasks. Currently,
it stands as one of the most recognized bench-
marks in the fields of RL and continuous con-
trol (Mu et al., 2022). In this paper, we focus
on four of its environments: Cartpole, Reacher,
Cheetah, and Walker. The visualization of these
environments are shown in Figure 9, and more
information are described in Appendix I.

We employ the Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), a
model-free RL algorithm, for training. The hyperparameters for TD3 remain consistent across all
environments, except for the coefficients λk, λh, and the length of historical observations N . All
hyperparameters are listed in Appendix J. To evaluate comprehensively, networks are tested on both
noise-free and noisy environments. Figure 10 visualizes the results in noisy environments. The
learned filter matrix H is visualized in Figure 24 to show the noise filtering ability of FlipNet. All
results are summarized in Table 11 and 12, from which we can find that FlipNet has the highest TAR
and the lowest AFR in all cases. For example, FlipNet increases the TAR by 3.4% and reduces the
AFR by 35.5% in Walker environment compared to LipsNet, which is the previous SOTA network.
Appendix K shows a comparison in Cartpole environment between FlipNet and reward penalty
method. All these results imply that FlipNet has perfect action smoothness and noise robustness.

Cartpole Reacher Cheetah Walker
Environment

0

250

500

750

1000

To
ta

l a
ve

ra
ge

 re
tu

rn MLP
LipsNet-G
LipsNet-L
FlipNet

(a) TAR

Cartpole Reacher Cheetah Walker
Environment

0

1

2

Ac
tio

n
flu

ct
ua

tio
n

ra
tio MLP

LipsNet-G
LipsNet-L
FlipNet

(b) AFR

Figure 10: Performance comparison in DMControl. The figure shows networks’ TAR and AFR
in noisy environments. FlipNet has the highest TAR and the lowest AFR in all cases.

4.3 MINI-VEHICLE DRIVING

Vehicle trajectory tracking is an important task in autonomous driving (Guan et al., 2022; Mu et al.,
2020). To validate FlipNet in the real world, we conduct an experiment on physical vehicles. As
Figure 26 shows, the vehicle moves by two differential wheels, aiming to track reference trajectory
and velocity while avoiding obstacle. The observations and actions are listed in Table 15. We set
up four diverse scenarios, as described in Table 1 and visualized in Figure 28. Detailed introduction

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of the vehicle, control mode, and scenarios are described in Appendix L. The Distributional Soft
Actor-critic (DSAC) (Duan et al., 2021), a model-free RL algorithm, is used for training. The
tests in all scenarios are accomplished by the same networks. For real-world highway vehicles, RL
observations rely on perception results where sensor noise is amplified by perception algorithms. To
precisely simulate such scenario, we assigned various noise amplitudes. A test video is available 4.

Table 1: Scenario descriptions in mini-vehicle driving environment.

Scenario RL robot Obstacle robot Description

1 go straight static RL robot goes straight and avoids static obstacle
2 go straight moving RL robot goes straight and avoids moving obstacle
3 turn left moving RL robot turns left and avoids moving obstacle
4 go straight aggressive RL robot goes straight and avoids aggressive obstacle

In scenario 3 with 10 times noise, the results are shown in Figure 11, its video snapshots are recorded
in Figure 12. The RL robot successfully tracks the reference trajectory and avoids obstacle by
slightly shifting to yield. As shown in Figure 11(d)(e), it is evident that FlipNet produces much
smoother control actions than MLP. The smoother actions result in smoother vehicle states, i.e.
speed and yaw rate, which are shown in Figure 11(b)(c). These results consistently hold true across
all scenarios, as illustrated in Appendx M. Furthermore, in scenario 4 with 10 times noise, the RL
robot driven by MLP crashes while FlipNet successfully completes the task, as shown in Figure 47
and 48.

Obstacle

RL robot

RL robot

Reference

trajectory

Obstacle

(a) Scenario illustration

5 4 3 2 1 0 1
X

0

1

2

3

4

5

6

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(b) Vehicle trajectory (MLP)

5 4 3 2 1 0 1
X

0

1

2

3

4

5

6
Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(c) Vehicle trajectory (FlipNet)

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

MLP
FlipNet

(d) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

MLP
FlipNet

(e) Action 2: Yaw acceleration

Figure 11: Result of scenario 3. The noise amplitude is 10. (a) The RL robot aims to turn left.
(b,c) The vehicle states and trajectories produced by MLP and FlipNet. (d,e) The control actions
produced by MLP and FlipNet. FlipNet produces much smoother control actions than MLP.

The learned filter matrix H is visualized in Figure 13 to show the noise filtering ability of FlipNet.
Figure 13(a) and (b) show the frequency distributions of observation in noise-free and noisy environ-
ments. Figure 13(c) implies that the learned filter matrix mainly focus on the frequencies containing
observation information, and rarely focus on the frequencies containing noises. In other words,
FlipNet can automatically extract the important frequencies and filter out the noise frequencies.

The average TAR and AFR for the first three scenarios are depicted in Figure 14. As Figure 14(a)
shows, when noise increases, FlipNet maintains the highest TAR and its TAR declines much slower
than MLP’s. As Figure 14(b) shows, when noise increases, FlipNet maintains the lowest AFR and

4Project page: https://iclr-anonymous-2025.github.io/FlipNet

9

https://iclr-anonymous-2025.github.io/FlipNet

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) t=0s (b) t=6s (c) t=11s (d) t=18s

Figure 12: Snapshots of scenario 3. The figures are the video snapshots of Figure 11(c). The RL
robot first shifts to the left to yield, then resumes tracking the reference trajectory.

0 1 2 3 4 5
Observation dimension

0

5

10

15

19

Hi
st

or
ica

l o
bs

v.
ra

nk

0.1

0.2

0.3

0.4

0.5

(a) Obsv. frequency (noise = 0)

0 1 2 3 4 5
Observation dimension

0

5

10

15

19

Hi
st

or
ica

l o
bs

v.
ra

nk
0.1

0.2

0.3

0.4

0.5

(b) Obsv. frequency (noise = 10)

0 1 2 3 4 5
Observation dimension

0

5

10

15

19

Hi
st

or
ica

l o
bs

v.
ra

nk

0.1

0.2

0.3

0.4

0.5

(c) Filter matrix

Figure 13: Filter matrix and observation frequency in mini-vehicle driving environment. The
color in (a) and (b) represents the intensity of frequency. The color in (c) represents the magnitude
of elements in matrix H . The color distribution in (c) implies FlipNet can automatically extract the
important frequencies and filter out the noise frequencies.

its AFR grows much slower than MLP’s. In the high-noise environment, i.e. noise amplitude is 20,
FlipNet achieves an 5.9% increase in TAR and a 90.0% reduction in AFR. The results imply FlipNet
has much better action smoothness and noise robustness. More results can be found in Appendix M.

0 5 10 15 20
Noise amplitude

240

245

250

255

260

To
ta

l a
ve

ra
ge

 re
tu

rn

MLP
FlipNet

(a) Average TAR

0 5 10 15 20
Noise amplitude

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

MLP
FlipNet

(b) Average AFR

Figure 14: Performance trend in mini-vehicle driving environment. The curves show the average
TAR and AFR for the first three scenarios. (a) The TAR of FlipNet declines much slower than MLP’s
when noise increases. (b) The AFR of FlipNet grows much slower than MLP’s when noise increases.
It implies that FlipeNet has much better action smoothness and noise robustness.

5 CONCLUSION

In this paper, we identify the two fundamental reasons causing action fluctuation, and propose the
Fourier Lipschitz Smooth Policy Network (FlipNet). FlipNet adopts two innovative techniques to
directly tackle the two reasons. Firstly, we prove the Jacobian norm is an approximation of Lipschitz
constant and introduce the Jacobian regularization to enhance the policy smoothness. Secondly, we
introduce a Fourier filter layer to deal with observation noise. The layer includes a trainable filter
matrix that can automatically extract valuable frequencies and suppress noise frequencies. FlipNet
can be easily used as actor networks in most RL algorithms. Simulated and real-world experiments
show that FlipeNet has excellent action smoothness and noise robustness, achieving a new SOTA
performance. We hope that the research could contribute to the applications of RL in the real world.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2016.

Vineeth S Bhaskara, Tristan Aumentado-Armstrong, Allan D Jepson, and Alex Levinshtein. Gran-
gan: Piecewise gradient normalization for generative adversarial networks. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3821–3830, 2022.

Peide Cai, Xiaodong Mei, Lei Tai, Yuxiang Sun, and Ming Liu. High-speed autonomous drifting
with deep reinforcement learning. IEEE Robotics and Automation Letters, 5(2):1247–1254, 2020.

Chen Chen, Hongyao Tang, Jianye Hao, Wulong Liu, and Zhaopeng Meng. Addressing action
oscillations through learning policy inertia. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7020–7027, 2021.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Yang Guan, Shengbo Eben Li, Jingliang Duan, Jie Li, Yangang Ren, Qi Sun, and Bo Cheng. Direct
and indirect reinforcement learning. International Journal of Intelligent Systems, 36(8):4439–
4467, 2021.

Yang Guan, Yangang Ren, Qi Sun, Shengbo Eben Li, Haitong Ma, Jingliang Duan, Yifan Dai, and
Bo Cheng. Integrated decision and control: toward interpretable and computationally efficient
driving intelligence. IEEE Transactions on Cybernetics, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regularization.
arXiv preprint arXiv:1908.02729, 2019.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

Yongchul Jung, Jaechan Cho, Seongjoo Lee, and Yunho Jung. Area-efficient pipelined fft processor
for zero-padded signals. Electronics, 8(12):1397, 2019.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on Learning Theory, pp. 2306–2327. PMLR, 2020.

Taisuke Kobayashi. L2c2: Locally lipschitz continuous constraint towards stable and smooth re-
inforcement learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4032–4039. IEEE, 2022.

Sungyoon Lee, Jinseong Park, and Jaewook Lee. Implicit jacobian regularization weighted with
impurity of probability output. In International Conference on Machine Learning, pp. 19141–
19184. PMLR, 2023.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4296–4313,
2022.

Shengbo Eben Li. Reinforcement learning for sequential decision and optimal control. Springer
Verlag, Singapore, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

Yao Mu, Baiyu Peng, Ziqing Gu, Shengbo Eben Li, Chang Liu, Bingbing Nie, Jianfeng Zheng, and
Bo Zhang. Mixed reinforcement learning for efficient policy optimization in stochastic environ-
ments. In 2020 20th International Conference on Control, Automation and Systems (ICCAS), pp.
1212–1219. IEEE, 2020.

Yao Mark Mu, Shoufa Chen, Mingyu Ding, Jianyu Chen, Runjian Chen, and Ping Luo. Ctrlformer:
Learning transferable state representation for visual control via transformer. In International
Conference on Machine Learning, pp. 16043–16061. PMLR, 2022.

Siddharth Mysore, Bassel Mabsout, Renato Mancuso, and Kate Saenko. Regularizing action poli-
cies for smooth control with reinforcement learning. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1810–1816. IEEE, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. Advances in neural information processing systems, 34:980–993, 2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement learning
with robust and smooth policy. In International Conference on Machine Learning, pp. 8707–
8718. PMLR, 2020.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 International Conference on Robotics and Automation (ICRA),
pp. 9784–9790. IEEE, 2019.

Xujie Song, Jingliang Duan, Wenxuan Wang, Shengbo Eben Li, Chen Chen, Bo Cheng, Bo Zhang,
Junqing Wei, and Xiaoming Simon Wang. Lipsnet: a smooth and robust neural network with
adaptive lipschitz constant for high accuracy optimal control. In International Conference on
Machine Learning, pp. 32253–32272. PMLR, 2023.

Ryoichi Takase, Nobuyuki Yoshikawa, Toshisada Mariyama, and Takeshi Tsuchiya. Stability-
certified reinforcement learning via spectral normalization. arXiv preprint arXiv:2012.13744,
2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Asanka Wasala, Donal Byrne, Philip Miesbauer, Joseph O’Hanlon, Paul Heraty, and Peter Barry.
Trajectory based lateral control: A reinforcement learning case study. Engineering Applications
of Artificial Intelligence, 94:103799, 2020.

Yi-Lun Wu, Hong-Han Shuai, Zhi-Rui Tam, and Hong-Yu Chiu. Gradient normalization for gener-
ative adversarial networks. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 6373–6382, 2021.

Haonan Yu, Wei Xu, and Haichao Zhang. Taac: Temporally abstract actor-critic for continuous
control. Advances in Neural Information Processing Systems, 34:29021–29033, 2021.

Zhigen Zhao, Simiao Zuo, Tuo Zhao, and Ye Zhao. Adversarially regularized policy learning guided
by trajectory optimization. In Learning for Dynamics and Control Conference, pp. 844–857.
PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THEORETICAL RESULTS

Lemma A.1 (Equivalent Form of Lipschitz Constant). Suppose f : Rn → Rm is a continuously
differential neural network. Then its local Lipschitz constant K(x) has an equivalent form besides
equation (5):

K(x) = max
x′∈B(x,ρ)

∥∇f(x′)∥ . (11)

Proof. We assume the real local Lipschitz constant of f over B(x, ρ) is Kx, which means Kx =

maxx1,x2∈B(x,ρ)
∥f(x1)−f(x2)∥

∥x1−x2∥ . The following proof is similar to that of (Song et al., 2023).

(a) Firstly, we prove that ∥∇f(x′)∥ ≤ Kx,∀x′ ∈ B(x, ρ). Because the local Lipschitz constant is
Kx, we know that

∥f(x1)− f(x2)∥ ≤ Kx∥x1 − x2∥, ∀x1, x2 ∈ B(x, ρ). (12)

Let h(t) = f(x′ + t · v) where x′ ∈ B(x, ρ), t ∈ R, and v ∈ Rn, then its first-order derivative
function is h′(t) = ∇f(x′ + t · v) · v. From the Newton-Leibniz formula, we know

h(α)− h(0) =

∫ α

0

h′(t) dt,

which means

f(x′ + α · v)− f(x′) =

∫ α

0

∇f(x′ + t · v) · v dt.

By taking the 2-norm on both sides and considering the condition (12), we get∥∥∥∥∫ α

0

∇f(x′ + t · v) dt · v
∥∥∥∥ = ∥f(x′ + α · v)− f(x′)∥

≤ αKx∥v∥.
Divide α on both sides then let α→ 0+, get

∥∇f(x′) · v∥ ≤ Kx ∥v∥ , ∀v.
From the definition of matrix norm, we know

∥∇f(x′)∥ = max
v ̸=0

∥∇f(x′) · v∥
∥v∥

≤ Kx,∀x′ ∈ B(x, ρ).

(b) Secondly, we prove that maxx′∈B(x,ρ) ∥∇f(x′)∥ ≥ Kx. Let h(t) = f(x1 + t(x2 − x1)) where
t ∈ (0, 1) and x1, x2 ∈ B(x, ρ), then its first-order derivative function is h′(t) = ∇f(x1 + t(x2 −
x1)) · (x2 − x1). From the Newton-Leibniz formula, we know

h(1)− h(0) =

∫ 1

0

h′(t) dt,

which means

f(x2)− f(x1) =

∫ 1

0

∇f(x1 + t(x2 − x1)) · (x2 − x1) dt

=

(∫ 1

0

∇f(x1 + t(x2 − x1)) dt

)
(x2 − x1).

Take the 2-norm on both sides, get

∥f(x2)− f(x1)∥ =
∥∥∥∥(∫ 1

0

∇f(x1 + t(x2 − x1)) dt

)
(x2 − x1)

∥∥∥∥
≤
∥∥∥∥∫ 1

0

∇f(x1 + t(x2 − x1)) dt

∥∥∥∥ ∥x2 − x1∥

≤
(∫ 1

0

∥∇f(x1 + t(x2 − x1))∥ dt

)
∥x2 − x1∥

≤ max
x′∈B(x,ρ)

∥∇f(x′)∥ · ∥x2 − x1∥ .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Therefore,

max
x′∈B(x,ρ)

∥∇f(x′)∥ ≥ ∥f(x1)− f(x2)∥
∥x1 − x2∥

, ∀x1, x2 ∈ B(x, ρ),

which means

max
x′∈B(x,ρ)

∥∇f(x′)∥ ≥ max
x1,x2∈B(x,ρ)

∥f(x1)− f(x2)∥
∥x1 − x2∥

= Kx.

Considering both (a) and (b), we know that ∥∇f(x′)∥ ≤ Kx,∀x′ ∈ B(x, ρ) and
maxx′∈B(x,ρ) ∥∇f(x′)∥ ≥ Kx. Therefore, we can conclude that maxx′∈B(x,ρ) ∥∇f(x′)∥ =
Kx.

Theorem A.2 (Lipschitz’s Jacobian Approximation). For a continuously differential neural network
f : Rn → Rm, the Jacobian norm ∥∇xf∥ is an approximation of the local Lipschitz constant of f
on the infinitesimal neighborhood of x, i.e. K(x) ≈ ∥∇xf∥.

Proof. By Definition 3.1 and Lemma A.1, we know that

K(x) = max
x1,x2∈B(x,ρ)

∥f(x1)− f(x2)∥
∥x1 − x2∥

= max
x′∈B(x,ρ)

∥∇f(x′)∥

= max
δ∈B(0,ρ)

∥∇f(x+ δ)∥ .

By conducting the first-order Taylor expansion for ∥∇f(x+ δ)∥, we get that

K(x) = max
δ∈B(0,ρ)

[
∥∇xf(x)∥+ (∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
= ∥∇xf(x)∥+ max

δ∈B(0,ρ)

[
(∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
.

We know that ρ → 0 because B(0, ρ) is a infinitesimal neighborhood of x, then δ → 0 holds.
Therefore, K(x) ≈ ∥∇xf(x)∥.

B PSEUDOCODE OF FLIPNET

Algorithm 1 Forward and backward propagation of FlipNet

Require: historical observations ot, ot−1, · · · , ot−N+1, actor loss L, network parameter θ.

1: /* Forward propagation */
2: x← [ot ot−1 · · · ot−N+1]

⊤

3: X ← FFT(x)

4: X̃ = symmetrize(Xhalf ⊙H).

5: x̃← IFFT
(
X̃
)

6: õt ← the first row in x̃
7: at ← f(õt)

8: /* Backward propagation */
9: L′′ ← L+ λk ∥∇õtf∥+ λh ∥H∥F

10: θnew ← θ − η∇θL′′

Ensure: control action at, updated network parameter θnew.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C FUNDAMENTAL REASONS OF ACTION FLUCTUATION

Non-smoothness of policy network. A non-smooth policy network means that RL fits a non-
smooth policy function mapping from the state to control action. The mapping function has signif-
icant output differences even the inputs are closely adjacent. Consequently, when the state changes
with time, a non-smooth action sequence is generated. Figure 15 visualizes the effect of policy
non-smoothness.

(a) Smooth policy function (b) Smooth action trajectory

(c) Non-smooth policy function (d) Non-smooth action trajectory

Figure 15: Effect of policy non-smoothness.

Existence of observation noise. The noise results in the discontinuous changes in observations,
making the actions produced by the policy network at the adjacent time stamps erratically differ.
Even if the policy function fitted by the policy network is smooth enough, actions can still be fluc-
tuated because of the erratic observation noise.

D DOUBLE INTEGRATOR: DETAILED IMPLEMENTATION AND RESULTS

The double integrator is a classic control task with linear dynamics and quadratic cost function,
namely linear quadratic (LQ) control task. The environment used in this paper is a particle-moving
environment. We train in noise-free environment and test in noisy environment with various noise
level to comprehensively evaluate policy networks. We use a model-based RL algorithm, INFADP
(Li, 2023), to train different policy networks including MLP (Rumelhart et al., 1986), MLP-SN
(Takase et al., 2020), LipsNet-G (Song et al., 2023), LipsNet-L (Song et al., 2023), and FlipNet.
The hyperparameters for INFADP are listed in Table 2.

We set 5 different observation noise amplitudes and compare the performances of MLP, MLP-SN,
LipsNet-G, LipsNet-L, and FlipNet. Table 3 and Table 4 summarize the TAR and AFR, respectively.
Figure 8 shows the variation trends of TAR and AFR as the noise increases. As shown in Figure 8(a),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the TAR of FlipNet decreases much slower than that of the other networks. As shown in Figure 8(b),
the AFR of FlipNet increases much slower than that of the other networks. These results indicate
that FlipNet has superior action smoothness and noise robustness compared to previous works.

Table 2: Hyperparameters for INFADP.

Hyperparameter Value

Replay buffer capacity 100000
Buffer warm-up size 1000
Batch size 64
Discount γ 0.99
Target network soft-update rate τ 0.2
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 1
Action bound [−5, 5]
Exploration noise std. deviation 0
Hidden layers in subnetwork f [64, 64]
Activations in subnetwork f ReLU
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 3 · 10−4

Critic learning rate 8 · 10−4

length of historical obsv. N 8
coefficient λk 0.01
coefficient λh 1

Table 3: Comparison of TAR on double integrator environment. The observation noise in each
dimension is distributed in U(−σ, σ). The data in this table is visualized in Figure 8(a).

Noise Methods
σ MLP CAPS L2C2 MLP-SN LipsNet-G LipsNet-L FlipNet

0.01 -51.0 ± 0.1 -52.1 ± 0.1 -55.0 ± 0.1 -62.0 ± 0.1 -53.2 ± 0.1 -55.3 ± 0.1 -56.5 ± 0.1

0.05 -53.5 ± 0.2 -53.0 ± 0.2 -55.4 ± 0.4 -62.3 ± 0.4 -54.3 ± 0.3 -55.6 ± 0.4 -56.8 ± 0.2

0.1 -59.5 ± 0.6 -56.9 ± 0.6 -57.5 ± 0.5 -62.8 ± 0.7 -54.2 ± 0.7 -56.0 ± 0.6 -57.1 ± 0.6

0.2 -78.4 ± 1.8 -67.9 ± 1.0 -63.4 ± 1.5 -65.9 ± 1.7 -59.8 ± 1.1 -58.7 ± 1.4 -57.9 ± 0.6

0.3 -103.2 ± 3.7 -85.9 ± 3.0 -82.3 ± 4.4 -71.8 ± 2.3 -74.3 ± 2.1 -65.3 ± 1.6 -59.9 ± 1.9

Table 4: Comparison of AFR on double integrator environment. The observation noise in each
dimension is distributed in U(−σ, σ). The data in this table is visualized in Figure 8(b).

Noise Methods
σ MLP CAPS L2C2 MLP-SN LipsNet-G LipsNet-L FlipNet

0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

0.05 0.11 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.01 ± 0.01

0.1 0.19 ± 0.01 0.15 ± 0.01 0.10 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.02 ± 0.01

0.2 0.34 ± 0.02 0.26 ± 0.01 0.20 ± 0.01 0.13 ± 0.01 0.17 ± 0.01 0.12 ± 0.01 0.03 ± 0.01

0.3 0.48 ± 0.02 0.37 ± 0.02 0.33 ± 0.02 0.20 ± 0.01 0.28 ± 0.01 0.20 ± 0.01 0.05 ± 0.01

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E ABLATION STUDY FOR TWO TECHNIQUES

In this appendix, we implement ablation study for the two techniques proposed in our paper, i.e.
Jacobian regularization and Fourier filter layer. The two techniques respectively tackle the two
fundamental reasons of action fluctuation, as described in Section 3.1. The Jacobian regularization
enhances the smoothness of policy network by introducing the Jacobian norm in actor loss function.
Similarly, the Fourier filter layer enhance the noise robustness of policy network by introducing the
Frobenius norm of the filter matrix in actor loss function. The resulted actor loss is illustrated in
Equation 9:

L′′ = L+ λk ∥∇f∥+ λh ∥H∥F .

In order to validate the effectiveness of each technique, the two coefficients λk and λh are set to
zero in turn. The performance result on double integrator environment is shown in Figure 16. The
performance result on DMControl’s Cheetah and Walker environments is shown in Table 5. These
results shows that setting either coefficient to zero will lead to a rapid decrease in TAR and a rapid
increase in AFR when the noise increases. It indicates that both the Jacobian regularization and
Fourier filter layer are effective techniques and they are both indispensable.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

100

90

80

70

60

50

To
ta

l a
ve

ra
ge

 re
tu

rn

k = 0, h = 1
k = 0.01, h = 0
k = 0.01, h = 1

(a) TAR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

0.0

0.1

0.2

0.3

0.4

0.5
Ac

tio
n

flu
ct

ua
tio

n
ra

tio
k = 0, h = 1
k = 0.01, h = 0
k = 0.01, h = 1

(b) AFR

Figure 16: Ablation study for Jacobian regularization and Fourier filter layer on double inte-
grator environment.

Table 5: Ablation study on Cheetah and Walker. The result shows that setting either coefficient
to zero will lead to an increase in AFR, which indicates the two techniques are all effective and
indispensable.

Environment λk λh Total average return Action fluctuation ratio

Cheetah
10−3 10−3 822 ± 11 0.94 ± 0.01

0 10−3 822 ± 15 1.08 ± 0.02

10−3 0 821 ± 17 1.21 ± 0.02

Walker
10−2 10−3 961 ± 12 0.78 ± 0.01

0 10−3 958 ± 15 0.98 ± 0.02

10−2 0 940 ± 14 1.89 ± 0.01

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F SENSITIVITY ANALYSIS FOR λk AND λh

In this appendix, we provide the sensitivity analysis for the hyperparameters λk and λh. We de-
sign experiments to demonstrate that the two hyperparameters have low sensitivity, making FlipNet
convenient for tuning and easy to use.

Similar to the approach in Appendix E, we fix one hyperparameter and then vary the other to observe
the changes in TAR and AFR on double integrator environment. As shown in Figure 17, when λh

is fixed at 1 and λk varies between 0.001, 0.01, and 0.1, the performance differences are significant.
However, when λh is fixed at 1 and λk varies between 0.01 and 0.02, the performances are essentially
consistent. A similar phenomenon can also be found for hyperparameter λh, as shown in Figure 18.
When λk is fixed at 0.01 and λh varies between 0.1, 1 and 10, the performance differences are
significant. However, when λh is fixed at 1 and λk varies between 1 and 2, the performances are
essentially consistent.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

120

110

100

90

80

70

60

To
ta

l a
ve

ra
ge

 re
tu

rn

k = 0.001, h = 1
k = 0.01, h = 1
k = 0.02, h = 1
k = 0.1, h = 1

(a) TAR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

k = 0.001, h = 1
k = 0.01, h = 1
k = 0.02, h = 1
k = 0.1, h = 1

(b) AFR

Figure 17: Sensitivity analysis for λk.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

140

130

120

110

100

90

80

70

60

To
ta

l a
ve

ra
ge

 re
tu

rn

k = 0.01, h = 0.1
k = 0.01, h = 1
k = 0.01, h = 2
k = 0.01, h = 10

(a) TAR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Observation noise amplitude

0.00

0.05

0.10

0.15

0.20

0.25

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

k = 0.01, h = 0.1
k = 0.01, h = 1
k = 0.01, h = 2
k = 0.01, h = 10

(b) AFR

Figure 18: Sensitivity analysis for λh.

The above results imply that the hyperparameter λk and λh have low sensitivity. Only the magnitude
of hyperparameters have a significant impact on performance, while changing the hyperparameters
within an appropriate magnitude has a minimal effect on performance. Therefore, when tuning
parameters, the user only need to set an appropriate magnitude. It makes FlipNet convenient for
tuning and easy to use.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G SENSITIVITY ANALYSIS FOR N

In this appendix, we provide the sensitivity analysis for hyperparameter N , which represents the
length of historical observations. We design experiments to demonstrate that N exhibits low sensi-
tivity when the length of historical observations is sufficiently long, making FlipNet convenient for
tuning and easy to use.

1 2 4 8 16 32
Length of history obs. N

64

62

60

58

56

To
ta

l a
ve

ra
ge

 re
tu

rn

k = 0.01, h = 0.1, = 0.2

(a) TAR

1 2 4 8 16 32
Length of history obs. N

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

k = 0.01, h = 0.1, = 0.2

(b) AFR

Figure 19: Sensitivity analysis for N .

The values of N are set to range from 1 to 32 in the double integrator environment. The Figure 19(a)
and (b) show the trend of TAR and AFR when N changes. The result shows that the performance
no longer improves once N exceeds a threshold, suggesting a low sensitivity. Therefore, users only
need to set a relatively large value of N , making FlipNet very convenient for tuning.

H COMPUTATIONAL EFFICIENCY ANALYSIS

To evaluate the computational efficiency, we provide the detailed forward and backward processing
time of policy networks. All policy networks are from the network trained in double integrator en-
vironment. This analysis is implemented on AMD Ryzen Threadripper 3960X 24-Core Processor.
For MLP-SN, the number of power iterations is set to 1, whose time usage is included in the back-
ward stage. Similarly, the computation times for Jacobian norm and Frobenius norm in FlipeNet are
included in the backward stage. The length of historical observations used in FlipeNet is 8.

The results are summarized in Table 6. Compared to the previous SOTA network LipsNet, FlipNet
has significantly faster speed for forward propagation. This allows FlipNet to be applied in high
real-time tasks. We acknowledge that backward propagation speed of FlipNet is relatively slow, but
we have devised a solution to accelerate this in future work by using multiple forward propagation
and zero-order gradient estimation to compute the Jacobian matrix.

Table 6: Forward and backward propagation time comparison.

Settings Policy network
Propagation Batch size MLP MLP-SN LipsNet-L FlipNet

forward 1 0.10 ms 0.11 ms 0.75 ms 0.16 ms
100 0.11 ms 0.12 ms 1.41 ms 0.25 ms

backward 1 0.17 ms 0.76 ms 0.45 ms 1.98 ms
100 0.28 ms 0.89 ms 0.73 ms 2.48 ms

Since network propagation times constitute only a part of the overall RL training process, we next
compare the total training wall-clock times. Table 7 presents the wall-clock times for 1M iterations
of TD3 on the DMControl environments. The results show that, on average, the training time of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

FlipNet is 1.6 times that of MLP. The difference in wall-clock time is not as significant as the
difference in backward time shown in Table 6, as RL algorithms involve additional time-consuming
steps beyond backward, such as sampling and evaluation.

Table 7: Training wall-clock time comparison. The data show the wall-clock times used for 1M
iterations in TD3. On average, the training time of FlipNet is 1.6 times that of MLP.

Network Env TotalCartpole Reacher Cheetah Walker
MLP 120 min 118 min 128 min 125 min 491 min

FlipNet 194 min 195 min 206 min 204 min 799 min

In conclusion, FlipNet’s forward time is under 0.2 ms, making it suitable for real-time applications.
While the training wall-clock time shows a slight increase, it remains acceptable and has clear path-
ways for future optimization.

I DEEPMIND CONTROL SUITE BENCHMARK

The DeepMind Control Suite (DMControl) (Tassa et al., 2018) encompasses a collection of metic-
ulously crafted continuous control tasks. These environments feature consistent structures, rewards
that are both interpretable and normalized, facilitating a more straightforward comparison of perfor-
mance across different algorithms. Developed in Python and leveraging the MuJoCo physics engine
(Todorov et al., 2012), DMControl currently stands as one of the most esteemed benchmarks for
evaluating RL and continuous control tasks.

In DMControl, the term ”domain” denotes a specific physical model, whereas a ”task” corresponds
to an instantiation of that model with a defined Markov Decision Process (MDP) structure. For
instance, within the cartpole domain, the distinction between the swingup and balance tasks lies
in the initial orientation of the pole: it is initialized pointing downward in the swingup task and
upward in the balance task, respectively. In the following figures, we provide detailed descriptions
of the domains used in this paper, with each domain’s name followed by a tuple of three integers
that denote the dimensions of the state, action, and observation spaces, respectively, formatted as(
dim (S) ,dim (A) ,dim (O)

)
.

Figure 20: Cartpole(4, 1, 5): This domain features a cart connected to a pole via
an unactuated joint. It encompasses a set of four distinct tasks. In the context
of our experimental setup, we focus on the swingup task. Here, the pole is
initially positioned downward, and the objective is to apply appropriate forces
to the cart to swing the pole upward and maintain its upright position.

Figure 21: Reacher(4, 2, 7): This domain comprises two interconnected poles
with a sphere whose initial position is randomly determined. One end of the
linked poles is anchored at the origin of the coordinate space, while the other
remains free to move. The domain offers two distinct tasks, and we focus on
the easy task. The task requires the application of forces to the pendulum to
ensure that its endpoint remains within the red area at all times.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 22: Cheetah(18, 6, 17): This domain features a planar bipedal and it
is able to crawl forward by its two legs. It involves a single task, namely the
run task. In the initial state of the environment, the agent’s pose is random,
typically in a non-standing position. In this task, the challenge is to control the
planar biped to achieve an upright standing position and subsequently propel it
forward into a running motion with a targeted forward velocity.

Figure 23: Walker(18, 6, 24): This domain includes a planar walker. This
environment simulates a simple locomotion task of humans, with the agent pos-
sessing two legs and advancing in an upright posture. It comprises three distinct
tasks, and our experiment focus the walk task. In this task, the objective is to
control the walker to maintain an upright torso posture, achieve the specified
torso height, and maintain a consistent forward velocity.

J DMCONTROL: DETAILED IMPLEMENTATION AND RESULTS

We employ the Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), a
model-free RL algorithm, to train on DMControl. The hyperparameters for TD3 remain consistent
across all environments, except for the coefficients λk, λh, and the length of historical observations
N . The hyperparameters for TD3 are listed in Table 8. The environment-related hyperparameters
are listed in Table 9.

Table 8: Hyperparameters for TD3.

Hyperparameter Value

Replay buffer capacity 1000000
Buffer warm-up size 1000
Batch size 100
Discount γ 0.99
Target network soft-update rate τ 0.005
Target noise 0.2
Target noise limit 0.5
Exploration noise std. deviation 0.1
Policy delay times 2
Initial random interaction steps 25000
Interaction steps per iteration 50
Network update times per iteration 50
Hidden layers in subnetwork f [64, 64]
Activations in subnetwork f ReLU
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 1 · 10−3

Critic learning rate 1 · 10−3

To evaluate comprehensively, networks are tested on both noise-free and noisy environments. For
noisy environments, the noise amplitudes are listed in Table 10. We compare FlipNet with MLP,
LipsNet-G, LipsNet-L using 10 seeds. All results are summarized in Table 11 and 12, from which
we can find that FlipNet has the highest TAR and the lowest AFR in all cases. These results imply
FlipNet has good action smoothness and noise robustness.

For comparing FlipNet and MLP-SN, we train them on DMControl Reacher environment. We use
a 3-layer MLP-SN network and manually tuning its spectral norm of each layer by grid search. The

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Environment-related hyperparameters in DMControl.

Env λk λh Length of his. obsv. N

Cartpole 10−2 10−2 5
Reacher 10−2 10−3 5
Cheetah 10−3 10−3 5
Walker 10−2 10−3 10

global Lipschitz constant of MLP-SN is the product of the spectral norms of all layers. The results
are listed in Table 13, from which we can find that FlipNet outperforms MLP-SN under all hyper-
parameter setting. We refrain from comparing FlipNet to MLP-SN across all environments used in
this paper, because this would necessitate the manual tuning of spectral norm hyperparameters for
each layer, which have an unwieldy number of potential hyperparameter combinations.

Table 10: Observation noise in DMControl. The observation noise in each dimension is distributed
in U(−σ, σ).

Env Noise amplitude σ

Cartpole [0.1, 0.1, 0.1, 0.2, 0.2]

Reacher [0.001 repeats 7 times]

Cheetah [0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.5, 0.05, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

Walker [0.25 repeats 24 times]

Table 11: Total average return in DMControl.

Environment MLP LipsNet-G LipsNet-L FlipNet

noise-free
env

Cartpole 805 ± 0.8 691 ± 1.0 831 ± 0.9 841 ± 0.2

Reacher 981 ± 10 979 ± 11 983 ± 10 988 ± 10

Cheetah 816 ± 30 702 ± 10 822 ± 4 829 ± 15

Walker 926 ± 12 956 ± 20 945 ± 13 962 ± 10

noisy
env

Cartpole 763 ± 9 517 ± 41 823 ± 6 825 ± 3

Reacher 972 ± 25 973 ± 18 978 ± 17 982 ± 10

Cheetah 813 ± 29 680 ± 7 818 ± 11 822 ± 11

Walker 911 ± 26 942 ± 15 929 ± 11 961 ± 12

Additionally, the learned filter matrix H in FlipNet is visualized in Figure 24 to show the noise
filtering ability. Figure 24(a) and 24(b) show the frequency distributions of observation in noise-
free environment and noisy environment, respectively. Their shades of color represent the intensity
of frequency. The color in Figure 24(c) denotes the magnitude of elements in matrix H , which
determines which frequencies are suppressed or strengthened. The result implies that the learned
filter matrix mainly focus on the frequencies that containing observation information, and rarely
focus on the frequencies that containing noises. In other words, FlipNet can automatically extract
the important frequencies and filter out the noise frequencies.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 12: Action fluctuation ratio in DMControl.

Environment MLP LipsNet-G LipsNet-L FlipNet

noise-free
env

Cartpole 0.04 ± 0.00 0.08 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Reacher 2.07 ± 0.60 0.13 ± 0.24 0.01 ± 0.00 0.01 ± 0.00

Cheetah 1.08 ± 0.02 0.92 ± 0.01 0.94 ± 0.01 0.90 ± 0.01

Walker 1.89 ± 0.02 1.25 ± 0.02 0.93 ± 0.01 0.74 ± 0.01

noisy
env

Cartpole 0.58 ± 0.03 0.75 ± 0.09 0.17 ± 0.01 0.13 ± 0.00

Reacher 2.41 ± 0.28 0.04 ± 0.00 0.04 ± 0.03 0.01 ± 0.00

Cheetah 1.13 ± 0.02 1.00 ± 0.01 1.08 ± 0.01 0.94 ± 0.01

Walker 2.02 ± 0.03 1.68 ± 0.01 1.21 ± 0.01 0.78 ± 0.01

Table 13: Performance of FlipNet and MLP-SN on DMControl Reacher.

Network Total average return Action fluctuation ratio
Name Spectral norm

for each layer

MLP-SN

5.0 760 ± 381 0.01 ± 0.00

5.5 831 ± 102 0.01 ± 0.00

5.8 954 ± 10 0.08 ± 0.05

6.0 967 ± 28 0.13 ± 0.08

FlipNet 988 ± 10 0.01 ± 0.00

0 1 2 3 4 5 6 7 8 9 10 11 12
Observation dimension

0
1

2
3

4
5

6
7

8
9

Hi
st

or
ica

l o
bs

v.
ra

nk

2

4

6

8

10

(a) Obsv. frequency (noise-free)

0 1 2 3 4 5 6 7 8 9 10 11 12
Observation dimension

0
1

2
3

4
5

6
7

8
9

Hi
st

or
ica

l o
bs

v.
ra

nk

2

4

6

8

10

(b) Obsv. frequency (noisy)

0 1 2 3 4 5 6 7 8 9 10 11 12
Observation dimension

0
1

2
3

4
5

6
7

8
9

Hi
st

or
ica

l o
bs

v.
ra

nk

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) Filter matrix

Figure 24: Filter matrix and observation frequency in walker environment. The color in (a)
and (b) represents the intensity of frequency. The color in (c) represents the magnitude of elements
in matrix H . The color distribution in (c) implies FlipNet can automatically extract the important
frequencies and filter out the noise frequencies.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

K COMPARISON TO REWARD PENALTY

Punishing the difference between consecutive actions in the reward is an effective way to smooth
the actions in some environments. However, such an approach breaks the Markov property, which
affects the performance, albeit to a minor extent in certain environments. Moreover, we found
that adding reward penalty in a sparse reward environment increases action fluctuation rather than
smoothing it, which is consistent with the finding by Chen et al. (2021) and Song et al. (2023).

Cartpole in DMControl is a sparse reward environment. The reward is 1 when the pole is within 30◦
of the vertical and 0 otherwise. We implement TD3 in this environment, punishing the difference be-
tween consecutive actions in the reward. Specifically, the new reward is r = rorigin+α ∥at+1 − at∥,
where rorigin is the original sparse reward, α is the penalty coefficient and at+1 is the output of actor
network under st+1. The experiment results are summarized in Table 14. The results imply that sim-
ply adding reward penalty in the sparse reward environment increases the action fluctuation ratio.
Superiorly, FlipNet can smooth actions even in the sparse reward environment.

Table 14: Comparison to reward penalty.

Method Penalty coefficient α Total average return Action fluctuation ratio

TD3 (MLP, reward penalty) 0.01 825 ± 0.5 0.27 ± 0.01

TD3 (MLP, reward penalty) 0.1 819 ± 0.8 0.21 ± 0.01

TD3 (MLP, reward penalty) 1 13 ± 0.5 0.02 ± 0.00

TD3 (MLP) 805 ± 0.8 0.04 ± 0.00

TD3 (LipsNet-G) 691 ± 1.0 0.08 ± 0.00

TD3 (LipsNet-L) 831 ± 0.9 0.01 ± 0.00

TD3 (FlipNet) 841 ± 0.2 0.01 ± 0.00

L MINI-VEHICLE DRIVING: INTRODUCTION OF VEHICLE AND TASK

The vehicle robot is driven by two differential wheels, which is shown in Figure 26. The task for
the robot is to track a given reference trajectory and reference velocity while avoiding obstacle. The
setting of observations and actions in this environment is described in Table 15.

Figure 25: Physical vehicle robots.

For the perception, the vehicle is equipped with LiDAR, obtaining its position by matching with
a pre-scanned point cloud map generated by SLAM. In this way, vehicle can detect its horizontal
coordinate x, vertical coordinate y, and heading angle ϕ. The vehicle is also equipped with a speed
sensor that measures the linear velocity v and angular velocity ω. To increase the complexity of
the task, another vehicle is used as a obstacle vehicle. Both vehicles can exchange real-time state
information with each other via WiFi communication.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Reference trajectory

Tangent line
𝛿𝜙

𝛿𝑦

𝑋

𝑌

𝑣

𝜔

Heading direction

Figure 26: Vehicle kinematics model. The
vehicle moves by two differential wheels,
tracking the reference trajectory.

Table 15: Variables in mini-vehicle driving env.

Variable Description

Obsv.

v longitudinal speed
ω yaw rate
δy trajectory offset
δϕ heading angle error
δv speed error
∆x obstacle’s relative x position
∆y obstacle’s relative y position
∆ϕ obstacle’s relative angle
∆v obstacle’s relative speed
∆ω obstacle’s relative yaw rate

Action v̇ longitudinal acceleration
ω̇ yaw acceleration

For the decision-making and control, a policy network trained by RL is deployed on the vehicle.
After inputting the perceived observation into the network, control actions are computed, namely
linear acceleration v̇ and angular acceleration ω̇. Then, control actions are sent to the motor to
execute the command. The overall control mode is shown in Figure 27.

As illustrated in Section 4.3, there are four diverse scenarios in this environment. The scenario
descriptions are listed in Table 1. To describe the scenario settings more clearly, Figure 28 shows
the map and vehicle routes for each scenario. Figure 29 shows the corresponding snapshot for each
scenario. In scenarios 1-3, the obstacle vehicle goes straight with constant speed. In scenario 4, the
obstacle vehicle is manipulated by human.

Sensors

LiDAR

WiFi

vehicle speed

𝑣,𝜔

𝑥, 𝑦, 𝜙

𝑥′, 𝑦′, 𝜙′, 𝑣′, 𝜔′

Policy network

FlipNet

ሶ𝑣, ሶ𝜔

vehicle pose

obstacle state

Surrounding car

(obstacle)

Reference trajectory

Action

Ego car

(RL robot)
Motor

Figure 27: Flowchart of vehicle control mode.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Reference

trajectory

Obstacle

RL robot

(a) Scenario 1

Reference

trajectory

Obstacle

RL robot

(b) Scenario 2

Obstacle

RL robot

RL robot

Reference

trajectory

Obstacle

(c) Scenario 3

Reference

trajectory

Obstacle

RL robot

(d) Scenario 4

Figure 28: Scenario illustration of mini-vehicle driving environment.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 29: Scenario snapshots of mini-vehicle driving environment.

M MINI-VEHICLE DRIVING: DETAILED IMPLEMENTATION AND RESULTS

In the training stage, observation noise is set to zero. In the vehicle testing stage, multiple different
magnitudes of observation noise are added to thoroughly test the performance of policy networks.
The noise magnitude is adjusted using the coefficient σcoef ∈ R+∪{0}, such that noise is distributed
in U(σcoef · σbase). And the baseline noise σbase is set to:

σbase =
[
0.01 π

180 0.03 π
180 0.01 0.03 0.03 π

180 0.01 π
180

]⊤
.

The reward function is defined as a constant minus the penalties related to tracking error, vehicle
instability, and collision violation:

r = 1− 0.4(δy)2 − 0.1(δϕ)2 − 1.3|δv| − 0.01ω2 − 0.01v̇2 − 0.01ω̇2 − 2 · I(ρ < 0.94),

where ρ represents the distance between the centers of the two vehicles, calculated as ρ =√
∆x2 +∆y2. The reference speed is set to 0.3m/s, meaning δv = v − 0.3.

The Distributional Soft Actor-critic (DSAC) (Duan et al., 2021), a model-free RL algorithm, is used
to train the vehicle robot. The hyperparameters for DSAC are listed in Table 16. The tests in all
scenarios are accomplished by the same networks.

All results are shown in Figure 30∼48. Table 17 lists the figure index for each scenario.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 16: Hyperparameters for DSAC.

Hyperparameter Value

Replay buffer capacity 1000000
Buffer warm-up size 10000
Batch size 256
Discount γ 0.99
Target network soft-update rate τ 0.005
Policy delay times 2
Temperature parameter α 0.2
Hidden layers in critic network [256, 256]
Activations in critic network ReLU
Hidden layers in subnetwork f [256, 256]
Activations in subnetwork f ReLU
Optimizer Adam
Critic learning rate 1 · 10−4

Actor learning rate 1 · 10−4

Coefficient λk 0.1
Coefficient λh 0.04
Length of historical obsv. N 20

Table 17: Figure indices for the results of mini-vehicle driving environment.

Scenario and network
Noise amplitude

Snapshots
0 10

Scenario 1
MLP Figure 30 Figure 32

Figure 34
FlipNet Figure 31 Figure 33

Scenario 2
MLP Figure 35 Figure 37

Figure 39
FlipNet Figure 36 Figure 38

Scenario 3
MLP Figure 40 Figure 42

Figure 44
FlipNet Figure 41 Figure 43

Scenario 4
MLP Figure 45 Figure 47

URL 5

FlipNet Figure 46 Figure 48

5Project page: https://iclr-anonymous-2025.github.io/FlipNet

29

https://iclr-anonymous-2025.github.io/FlipNet

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 30: MLP performance in scenario 1. The noise amplitude is 0.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 31: FlipNet performance in scenario 1. The noise amplitude is 0.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 32: MLP performance in scenario 1. The noise amplitude is 10.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 33: FlipNet performance in scenario 1. The noise amplitude is 10.

(a) t=0s (b) t=3s

(c) t=10s (d) t=17s

Figure 34: Snapshots of scenario 1.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 35: MLP performance in scenario 2. The noise amplitude is 0.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y
Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 36: FlipNet performance in scenario 2. The noise amplitude is 0.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 37: MLP performance in scenario 2. The noise amplitude is 10.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 38: FlipNet performance in scenario 2. The noise amplitude is 10.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) t=0s (b) t=5s

(c) t=11s (d) t=20s

Figure 39: Snapshots of scenario 2.

5 4 3 2 1 0 1
X

0

1

2

3

4

5

6

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 40: MLP performance in scenario 3. The noise amplitude is 0.

5 4 3 2 1 0 1
X

0

1

2

3

4

5

6

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 41: FlipNet performance in scenario 3. The noise amplitude is 0.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

5 4 3 2 1 0 1
X

0

1

2

3

4

5

6

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25

Ti
m

e

0 20
Time

0

0.4
Sp

ee
d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 42: MLP performance in scenario 3. The noise amplitude is 10.

5 4 3 2 1 0 1
X

0

1

2

3

4

5

6

Y

Reference trajectory
RL robot
Obstancle

0

5

10

15

20

25
Ti

m
e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 43: FlipNet performance in scenario 3. The noise amplitude is 10.

(a) t=0s (b) t=6s

(c) t=11s (d) t=18s

Figure 44: Snapshots of scenario 3.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y
Reference trajectory
RL robot
Obstancle

0

10

20

30

40

50

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25 30 35 40 45 50
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25 30 35 40 45 50
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 45: MLP performance in scenario 4. The noise amplitude is 0.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

10

20

30

40

50

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25 30 35 40 45 50
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25 30 35 40 45 50
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 46: FlipNet performance in scenario 4. The noise amplitude is 0.

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Crash!
Reference trajectory
RL robot
Obstancle

0

10

20

30

40

50

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25 30 35 40 45 50
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25 30 35 40 45 50
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 47: MLP performance in scenario 4. The noise amplitude is 10.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
X

3

2

1

0

1

2

3

Y

Reference trajectory
RL robot
Obstancle

0

10

20

30

40

50

Ti
m

e

0 20
Time

0

0.4

Sp
ee

d

0 20
Time

-1
0
1

Ya
w

 ra
te

(a) Vehicle trajectory

0 5 10 15 20 25 30 35 40 45 50
Time

1

0

1

Lo
ng

itu
di

na
l a

cc
.

(b) Action 1: Longitudinal acceleration

0 5 10 15 20 25 30 35 40 45 50
Time

2

0

2

Ya
w

 a
cc

el
ar

at
io

n

(c) Action 2: Yaw acceleration

Figure 48: FlipNet performance in scenario 4. The noise amplitude is 10.

The results of TAR and AFR for scenario 1-3 are listed in Table 18. The result for scenario 4 is
not listed because the obstacle vehicle is manipulated by human, which means each trial has great
randomness. The data in Table 18 is visualized in Figure 49. As shown in Figure 49(a)(c)(e), when
noise increases, FlipNet maintains the highest TAR and its TAR declines much slower than MLP’s.
As shown in Figure 49(b)(d)(f), when noise increases, FlipNet maintains the lowest AFR and its
AFR grows much slower than MLP’s. These results imply FlipNet has excellent action smoothness
and noise robustness.

Table 18: Performance summary in mini-vehicle driving environment.

Task setting Scenario 1 Scenario 2 Scenario 3
Policy

network
Noise

amplitude TAR AFR TAR AFR TAR AFR

FlipNet

0 234.7 0.02 252.6 0.04 287.5 0.03
1 235.2 0.02 252.0 0.04 288.5 0.03
5 232.8 0.08 254.1 0.08 289.6 0.08

10 233.6 0.14 249.6 0.16 290.3 0.14
20 224.5 0.27 252.7 0.28 281.3 0.23

MLP

0 238.4 0.04 254.6 0.17 293.5 0.15
1 237.8 0.58 250.4 0.58 293.0 0.55
5 232.7 1.68 250.0 1.62 289.6 1.58

10 225.0 2.03 247.2 2.24 283.3 2.17
20 209.8 2.53 238.9 2.65 267.9 2.65

N LIMITATIONS, FUTURE WORKS, AND COMMUNITY IMPACTS

FlipNet achieves smoother and more robust control with a slight increase in training time, as shown
in Appendix H. In the future, we plan to optimize the backward time of FlipNet. We have devised
a solution to accelerate it by using multiple forward propagation and zero-order gradient estimation
to compute the Jacobian matrix. Furthermore, we plan to introduce an attention mechanism for the
filter matrix H in the future works. In this way, H can vary according to different observation inputs.
Additionally, We are now trying to implement FlipNet on a real-world highway vehicle. Complete
results of all the above future improvements will be soon reported in our next work.

As for the positive impacts on the AI community, FlipNet addresses the action fluctuation problem
of RL. FlipNet breaks through the bottleneck of action fluctuation and poor robustness faced by
RL, which accelerates the process of RL’s real-world application. It mitigates the wear of actua-
tors, safety risks, and performance reduction caused by action fluctuation. FlipNet benefits many
industrial fields, including robot control, drone control, decision-making and control of autonomous
vehicles, and embodied AI.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0 5 10 15 20
Noise amplitude

210

215

220

225

230

235

To
ta

l a
ve

ra
ge

 re
tu

rn

MLP
FlipNet

(a) TAR in scenario 1

0 5 10 15 20
Noise amplitude

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

MLP
FlipNet

(b) AFR in scenario 1

0 5 10 15 20
Noise amplitude

240.0

242.5

245.0

247.5

250.0

252.5

255.0

To
ta

l a
ve

ra
ge

 re
tu

rn

MLP
FlipNet

(c) TAR in scenario 2

0 5 10 15 20
Noise amplitude

0.0

0.5

1.0

1.5

2.0

2.5
Ac

tio
n

flu
ct

ua
tio

n
ra

tio
MLP
FlipNet

(d) AFR in scenario 2

0 5 10 15 20
Noise amplitude

270

275

280

285

290

To
ta

l a
ve

ra
ge

 re
tu

rn

MLP
FlipNet

(e) TAR in scenario 3

0 5 10 15 20
Noise amplitude

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tio

n
flu

ct
ua

tio
n

ra
tio

MLP
FlipNet

(f) AFR in scenario 3

Figure 49: Performance trend with increasing noise in mini-vehicle driving environment.

37

	Introduction
	Preliminaries
	Actor-Critic Reinforcement Learning
	Action Fluctuation Ratio

	Methodology
	Reasons Identification of Action Fluctuation
	Jacobian Regularization
	Fourier Filter Layer
	User-friendly Packaging

	Experiments
	Double Integrator
	DeepMind Control Suite
	Mini-Vehicle Driving

	Conclusion
	Theoretical Results
	Pseudocode of FlipNet
	Fundamental Reasons of Action Fluctuation
	Double Integrator: Detailed Implementation and Results
	Ablation Study for Two Techniques
	Sensitivity Analysis for k and h
	Sensitivity Analysis for N
	Computational Efficiency Analysis
	DeepMind Control Suite Benchmark
	DMControl: Detailed Implementation and Results
	Comparison to Reward Penalty
	Mini-Vehicle Driving: Introduction of Vehicle and Task
	Mini-Vehicle Driving: Detailed Implementation and Results
	Limitations, Future Works, and Community Impacts

