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ABSTRACT

Deep reinforcement learning (RL) is an effective method for decision-making and
control tasks. However, RL-trained policies encounter the action fluctuation prob-
lem, where consecutive actions significantly differ despite minor variations in ad-
jacent states. This problem results in actuators’ wear, safety risk, and performance
reduction in real-world applications. To address the problem, we identify the two
fundamental reasons causing action fluctuation, i.e. policy non-smoothness and
observation noise, then propose the Fourier Lipschitz Smooth Policy Network
(FlipNet). FlipNet adopts two innovative techniques to tackle the two reasons
in a decoupled manner. Firstly, we prove the Jacobian norm is an approxima-
tion of Lipschitz constant and introduce a Jacobian regularization technique to
enhance the smoothness of policy network. Secondly, we introduce a Fourier fil-
ter layer to deal with observation noise. The filter layer includes a trainable filter
matrix that can automatically extract important observation frequencies and sup-
press noise frequencies. FlipNet can be seamlessly integrated into most existing
RL algorithms as an actor network. Simulated and real-world experiments show
that FlipeNet has excellent action smoothness and noise robustness, achieving a
new state-of-the-art performance. The code and videos are publicly available '.

1 INTRODUCTION

Deep reinforcement learning (RL) has become a powerful approach for addressing optimal control
tasks in physical environments (Guan et al., 2021; Li, 2023). Neural networks, capable of modeling
complex nonlinear functions (Hornik et al., 1989; Kidger & Lyons, 2020), are commonly used as
the container for the control policy fitted by RL. However, RL-trained policies often encounter the
action fluctuation problem, where consecutive actions exhibit significant variations despite minor
differences in the adjacent observations. While this problem is often overlooked during simulation
and training stages, it will result in serious issues in real-world application like performance re-
duction, actuators’ wear, and safety risk (Song et al., 2023). This problem is prevalent in various
scenarios, including drone control (Mysore et al., 2021; Shi et al., 2019), robot arm manipulation
(Yu et al., 2021), and autonomous driving (Cai et al., 2020; Chen et al., 2021; Wasala et al., 2020).

In order to make RL more applicable in real-world scenarios, researchers are working hard to solve
the problem. CAPS (Mysore et al., 2021) and L2C2 (Kobayashi, 2022) introduce penalty terms in
actor loss, which indicate the action similarity in successive time steps or the action similarity under
close states. SRZL (Shen et al., 2020; Zhao et al., 2022) trains policy network using adversarial
noise, which maximizes the action difference under actual state and adversarial state. PIC (Chen
et al., 2021) and TAAC (Yu et al., 2021) design two-stage policies by using one network to output
the current action, and the other to output action inertia scalar or make choice between the current
and the last action. MLP-SN (Takase et al., 2020) and LipsNet (Song et al., 2023) smoothes control
action by constraining the Lipschitz constant of policy network. However, CAPS and L2C2 suffer
from sensitive hyperparameter tuning, and their sampling of close states complicate RL algorithms.
SR2L, PIC, and TAAC need special policy evaluation or policy improvement mechanisms, which
means they cannot be used in traditional RL algorithms. MLP-SN suffer from several performance
loss and LipsNet is limited to the network with piecewise linear activation functions. Furthermore,
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none of them have directly dealt with the observation noise. There is still an open challenge to
smooth control action in a way that is effective, simple, and applicable across various RL algorithms.

In this paper, we propose a novel policy
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bian norm is an approximation of neural net-
work’s Lipschitz constant, thereby enhancing
the smoothness of policy function fitted in the
policy network by regularizing the Jacobian
norm. Secondly, we propose a Fourier filter
layer to filter observation noise. In this layer,
fast Fourier transform (FFT) is used to obtain
the frequency features of sequential observations, and a trainable filter matrix is used to automati-
cally extract important frequencies in observation and suppress noise frequencies. Finally, we pack-
age FlipNet as an user-friendly PyTorch module. FlipNet has three superiorities compared to previ-
ous works: (1) FlipNet directly tackles the two fundamental reasons causing action fluctuation, while
previous works do not consider them at the same time; (2) The user-friendly packaging of FlipNet
does not disturb original RL algorithm, allowing application in various RL algorithms, including
TRPO (Schulman et al., 2015), TD3 (Fujimoto et al., 2018), and DSAC (Duan et al., 2021), etc.; (3)
FlipNet has better overall performance, including the control performance and action smoothness.

FlipNet

(ours) :

Smooth action

Figure 1: FlipNet outputs smooth action.

Experiment results. Simulated and physical experiments verify that FlipNet has achieved the state-
of-the-art (SOTA) performance. For the simulated tasks, we conduct experiments on the double
integrator environment and DeepMind control suite benchmark (DMControl). For example, in DM-
Control’s walker environment, FlipNet increases the total average return (TAR) by 3.4% and reduces
the action fluctuation ratio (AFR) by 35.5% compared to LipsNet, which is the previous SOTA net-
work. Additionally, an experiment of physical vehicle robot is implemented to test on real-world
application, where the vehicle robot is going to track given trajectories and avoid moving obsta-
cle under various noise levels. Results show that FlipNet increases the average TAR by 5.8% and
reduces the average AFR by 90.0% compared to the multilayer perceptron (MLP).

Technical contributions. FlipNet is a novel network, addressing the action fluctuation problem in
the real-world applications of RL. Our contributions are four-fold: (1) We identify the two funda-
mental reasons that cause action fluctuation, and propose a policy network named FlipNet to tackle
the two reasons in a decoupled manner; (2) We demonstrate that the Jacobian norm serves as an
approximation of Lipschitz constant, and propose a Jacobian regularization technique to enhance
the smoothness of policy network; (3) We propose a trainable Fourier filter layer, capable of auto-
matically extracting valuable observation frequencies while suppressing noise frequencies; (4) We
conduct extensive experiments on both simulated and real-world tasks to validate FlipNet’s SOTA
performance. The code is publicly released to facilitate the implementation and future research.

2 PRELIMINARIES

2.1 ACTOR-CRITIC REINFORCEMENT LEARNING

Actor-critic method, consisting of an actor network and a critic network as shown in Figure 1, forms
the backbone of many RL algorithms. The actor network fits a policy 7 : S — .A that mapping from
state space to action space. Therefore, the actor network is also called as policy network. The goal
of RL is to train a policy m maximizing the expected return:
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where p; is the distribution of state-action trajectory induced by policy 7, 1" is the termination time
of an episode, 0 < v < 1 is the discount factor, and r; represents the reward. The critic network
fits a value function V() or Q(s, a), mapping from the state-action pairs to the expected returns, to
evaluate the actions taken by the actor.

In policy evaluation phase, the critic is updated by minimizing the temporal difference (TD) error.
For example, the Q-value network in DDPG (Lillicrap et al., 2015) parameterized by ¢ is updated
by

. 2
m;n (Es,a,r,s’ND [Qtp(sa a) -7 — ,watarg (S/a a/)]) ) (2)

where D is the replay buffer, s is the next state, a’ is the next action obtained by the target actor
network, and Q... is the return estimated by the target critic network.

In policy improvement phase, the actor is updated by maximizing the expected return predicted by
the critic. Take DDPG as an example again, the actor network is updated by minimizing the actor
loss function:

L =Esup [-Qu(s,m(s))] . 3)
2.2 ACTION FLUCTUATION RATIO

Action fluctuation ratio (AFR) is an index to quantitatively measure the fluctuation level of control
action (Chen et al., 2021; Song et al., 2023). It is defined as
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where p; is the distribution of state-action trajectory induced by policy 7, T is the termination time
of episodes, a; and a;_1 are two adjacent actions, and || - || is the norm of action difference vector °.
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Beside the total average return (TAR), AFR is also an important indicator to evaluate policies’ per-
formance in the real world. The smaller AFR is, the smoother action sequence policy 7 has.

3 METHODOLOGY

3.1 REASONS IDENTIFICATION OF ACTION FLUCTUATION

To ensure that RL agents produce smooth actions, it is necessary to first identify the root cause of
action fluctuation. In decison-making and control tasks, the actions are calculated by the policy
network 7 according to the current observation o;. The rate of action change over time is

dat d’]T(Ot) dOt

At do,  dt’ ©®)

To mitigate action fluctuation, || 9% || must be controlled within a reasonable range. A low ||9at ||

dm( ot ||
dos

[ 92| The first term || <5 dn( O‘) || is the policy derivative, reflecting the level of policy smoothness The

means the actions do not have sudden changes. From Equation (5), we can derive || 9% || < || <752t

second term || <5 doc | js the observatlon derivative, reflecting the level of observation noise.

Based on the above analysis, the two fundamental reasons that causes action fluctuation can be
identified: (1) the non-smoothness of policy network, and (2) the existence of observation noise.

Non-smoothness of policy network. A non-smooth policy network means that RL fits a non-
smooth policy function mapping from the state to control action. The mapping function has signif-
icant output differences even the inputs are closely adjacent. Consequently, when the state changes

Throughout the paper, || - || denotes the 2-norm of a vector or a matrix.
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with time, a non-smooth action sequence is generated. Appendix C visualizes the effect of a non-
smooth policy.

Existence of observation noise. The noise results in the discontinuous changes in observations,
making the actions produced by the policy network at the adjacent time stamps erratically differ.
Even if the policy function fitted by the policy network is smooth enough, actions can still be fluc-
tuated because of the erratic observation noise.

Two techniques ﬁ h Two reasons

Jacobian regularization Policy non-smoothness

| tackle |
Figure 2: The proposed two techniques address the two fundamental reasons that cause action
fluctuation in a straightforward, direct, and decoupled manner.

Fourier filter layer Observation noise

Therefore, the control action won’t be smooth enough unless the two fundamental reasons are both
under control. Previous works do not identify the two reasons clearly, and none of them consider
the two aspects at the same time. Although some works recognize the effect of observation noise,
they choose to improve the robustness by reducing the Lipschitz constant of policy network (Takase
et al., 2020; Song et al., 2023), i.e. enhancing the smoothness of policy network, rather than directly
filtering observation noise. Such a non-decoupled approach results in actions being insufficiently
smooth, and a loss of performance when sufficient action smoothness is required. In this paper, we
propose the Jacobian regularization technique and the Fourier filter layer to respectively tackle the
two fundamental reasons in a straightforward, direct, and decoupled manner, as shown in Figure 2.

3.2 JACOBIAN REGULARIZATION

Definition 3.1 (Local Lipschitz Constant). Suppose f : R™ — R™ is a continuous neural network.
The K (x) is defined as the local Lipschitz constant of f on the neighborhood of x:
K@)~ e M) =Sl ©
z1,22€8(z,p) |21 — 2]
where B(x, p) denotes the open ball area with radius p > 0 centered at the point x in the Euclidean
space, i.e. B(x,p) = {z’ : ||’ — z|| < p}.

Lipschitz constant characterizes the landscape smoothness of a function. By viewing the policy
network as a mapping function, Lipschitz constant could reflect the smoothness of the policy func-
tion fitted by RL. A lower Lipschitz constant means a smoother policy function, which leads to
smoother actions (Ames et al., 2016; Kobayashi, 2022; Song et al., 2023; Takase et al., 2020).
MLP-SN (Takase et al., 2020) constrains the Lipschitz constant by applying spectral normalization
(SN) (Miyato et al., 2018) on each layer of policy network. However, applying SN usually leads
to severe performance loss, because the desired network-wise Lipschitz continuity is realized by
layer-wise Lipschitz constraints (Bhaskara et al., 2022; Wu et al., 2021). LipsNet (Song et al., 2023)
proposes a network-wise method, Multi-dimensional Gradient Normalization (MGN), to constrain
the Lipschitz constant. However, MGN needs to set an initial Lipschitz constant manually, which
may damage RL’s exploration ability. And MGN needs to calculate Jacobian matrix during forward
propagation, which makes the policy network not applicable in high real-time tasks.

To overcome the above challenges, we propose the Jacobian regularization method to conveniently
reduce the Lipschitz constant of policy network. The Jacobian norm is commonly used as an index
of function’s smoothness and robustness (Hoffman et al., 2019; Lee et al., 2023). In Theorem 3.1,
we prove that Jacobian norm is an approximation of the local Lipschitz constant.

Theorem 3.1 (Lipschitz’s Jacobian Approximation). For a continuously differential neural network
f: R™ — R™, the Jacobian norm ||V, f|| is an approximation of the local Lipschitz constant of f
on the infinitesimal neighborhood of z, i.e. K(x) =~ ||V f].

Proof. See Appendix A in the supplementary material. O
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According to Theorem 3.1, the Jacobian norm is an approximation of local Lipschitz constant and
we know that Lipschitz constant reflects function’s landscape smoothness, therefore we can conve-
niently enhance the policy smoothness by reducing Jacobian norm. The tailored actor loss becomes

L' =L+ MV, (7)

where L is the original actor loss, and Ay is a coefficient. The proposed Jacobian regularization is
superior to the Lipschitz constraint methods used in MLP-SN and LipsNet because: (1) Jacobian
regularization is a network-wise rather than layer-wise constraint method, avoiding severe perfor-
mance loss; (2) Jacobian regularization does not need to set a initial Lipschitz constant manually,
not damaging the exploration ability of RL; (3) Jacobian regularization dose not need to calculate
Jacobian matrix during forward propagation, applicable in high real-time tasks.

3.3 FOURIER FILTER LAYER

Fourier Transform is a widely used frequency analysis tool, which can also be employed in neural
networks for feature extraction (Lee-Thorp et al., 2022; Rao et al., 2021). To mitigate the action
fluctuation caused by observation noise, we propose the Fourier filtering layer based on Fourier
Transform. The workflow of Fourier filter layer is shown in Figure 3.
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Figure 3: Workflow of Fourier filter layer. Firstly, FFT converts historical observations to fre-
quency feature matrix X. Then, half of X is multiplied by a trainable filter matrix H, and a complete
matrix X is generated by conjugate symmetrizing. Finally, IFFT converts X to filtered time-domain
signals.
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Given N historical observations 04,041, -+ ,0i_N4+1 € RP where D denotes the dimension of
features, the Fourier filter layer concatenates them as a matrix x € RN*D and calculates the fre-
quency feature matrix X € CV*P using 2D discrete Fourier transformation:

—-1D-1

Z Z Tnd-e J2w(%+ﬂ) ®)

n=0 d=0

where x,, 4 denotes the d-th feature of the n-th observation signal, X, , denotes the element located
at the u-th row and v-th column of the frequency feature matrix X. When the length of historical
observations is less than N, the missing parts are padded with 0. In FFT, Zero-padding does not
alter the primary frequency components of the signal, and it merely increases the spectral resolution
(Jung et al., 2019). The magnitude of X,, ,, denotes the signal intensity at the frequency combination
(u,v), where u and v are frequency indices rather than the actual frequency values. Since the
observations only consist of real values, the resulting matrix X exhibits conjugate symmetry, i.e.
Xu.v = XN—u,D—v. It means that half of X could represent the complete information contained in
the signal.

Then, half of X, denoted as X}, € CN* 1Z) 1 s subjected to a Hadamard product with a trainable

filter matrix H € CN*LZ/+1, After that, a complete matrix X € CV*P is restored by conjugate
symmetrizing the product matrix:

X = symmetrize(Xpas © H). )

By choosing H as a complex matrix instead of real matrix, the Fourier filtering layer can not only
alter frequency amplitudes but also perform feature extraction. The magnitudes of the elements in
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H determine which frequency is suppressed or strengthened. To enable the noise filtering capability
of policy network, we encourage the magnitudes of elements in H to be as small as possible. In
this way, policy network can automatically extract valuable frequencies and filter out less relevant
frequencies where noise may exist. Consequently, the actor loss is tailored from £ in Equation (7)
nto

L= LA+ NNV + M | H g s (10)
where || H ||  is the Frobenius norm of H, and Ay, is a coefficient.

Finally, the resulted frequency feature matrix X is recovered to the time-domain signals by 2D
inverse discrete Fourier transformation:

1D—
g = Z XKoo 2 (F+5), (11
u=0 v=0
Because X is a conjugate symmetric matrix, the matrix # € RY*P becomes a real matrix. By
slicing rows from the matrix , the filtered features 6;,6;_1,--- ,0;—n4+1 € R are obtained. The
signal oy, representing the filtered feature corresponding to the current timestamp, is selected as the
input for subsequent layers. The subsequent layers form a subnetwork f, which is processed by
Jacobian regularization for a low Lipschitz constant. The overall structure of FlipNet is shown in
Figure 4. The pseudocode of FlipNet is illustrated in Appendix B.
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Figure 4: Overall structure of FlipNet. Historical observations are processed by Fourier filter layer,
where a trainable filter matrix is used for frequency selection. The filtered feature o, is inputted into
a subnetwork whose Lipschitz constant is constrained by Jacobian regularization. The parameters
in FlipNet are updated by tailored actor loss £”.

3.4 USER-FRIENDLY PACKAGING

To facilitate research and usage, we package Flip-
Net as an user-friendly PyTorch (Paszke et al., 2019) net = FlipNet ()
module. A backward hook function is used in the out = net (input)
module. When network’s backward propagation is
called, the hook function will awake to automatically
replace the gradient derived from £ by the gradient
derived from £”. In this way, users don’t need to
redefine the actor loss and any other elements in RL, making FlipNet applicable in almost all actor-
critic RL algorithms like DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), PPO (Schulman
et al., 2017), TRPO (Schulman et al., 2015), SAC (Haarnoja et al., 2018) and DSAC (Duan et al.,
2021), etc. As shown on the right, practitioners can use FlipNet just like using an MLP. The code is
publicly available at °.

loss.backward ()

3Project page: https://iclr-anonymous-2025.github.io/FlipNet
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4 EXPERIMENTS

4.1 DOUBLE INTEGRATOR

Double integrator is a classic linear quadratic control task, which is commonly used to test the
performance of controllers. In the environment, a particle is moving along an axis without resistance
(Song et al., 2023). The observations include position = and velocity v of the particle. The control
action is particle acceleration a that parallel to the axis. A schematic diagram of the environment is
shown in Figure 5.

The reward function is r = —2z2 — v? — a2, which incen- »

tives the particle to remain stable at the origin, i.e. z = 0,v =

0,a = 0. The Infinite-time Approximate Dynamic Program- (') O _—
ming (INFADP) (Li, 2023), a model-based RL algorithm, is

used for train without noise. When testing policy networks, the x

particle has nonzero initial position and velocity, and the noise
for each observation dimension is distributed in U (—0.2, 0.2).
More details and hyperparameters are shown in Appendix D.

Figure 5: Double integrator.

The results are presented in Figure 6 and 7. In Figure 6(a), 30 episodes are simulated starting from
the same initial state. The solid line and shadow area respectively denote the mean and standard
deviation of actions. The shadow areas imply the action fluctuation amplitude of FlipNet is much
smaller than that of MLP, and is on par with LipsNet. Figure 6(b) depicts action trajectories for a
single episode, which reveals that FlipNet has better action continuity than LipsNet under the same
level of action fluctuation amplitude. This conclusion is confirmed again by Figure 6(c), where
action trajectories are decomposed by FFT and the action frequency induced by FlipNet is shown to
be more distributed in the low-frequency range.
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Figure 6: Action in double integrator environment. (a) The action fluctuation amplitude of Flip-
Net is smaller than that of MLP, and is on par with LipsNet. (b) FlipNet has better action continuity
than MLP and LipsNet. (c) FlipNet’s action frequency is more distributed in the low-frequency
range.
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Figure 7: Performance comparison in double integrator environment. (a) The TAR of FlipNet
declines at the slowest rate when noise increases. (b) The AFR of FlipNet grows at the slowest rate
when noise increases. (c¢) FlipNet has the best overall performance compared to previous works.
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To further evaluate FlipNet, we set different observation noise amplitudes and compare with previ-
ous works. As Figure 7(a) shows, when noise increases, FlipNet maintains the highest TAR and its
TAR declines at the slowest rate. As Figure 7(b) shows, when noise increases, FlipNet maintains the
lowest AFR and its AFR grows at the slowest rate. We then compare the performance in high-noise
environment, i.e. noise amplitude is 0.3. Compared to LipsNet-L, the previous SOTA network, Flip-
Net achieves an 8.2% increase in TAR and a 75.0% reduction in AFR. Therefore, FlipNet achieves
a new SOTA performance with a significant advantage in action smoothness.

Furthermore, an ablation study for the two techniques in FlipNet is implemented in Appendix E, the

sensitivity analysis for hyperparameters A\ and )y is provided in Appendix F, and the sensitivity

analysis for hyperparameter NV is provided in Appendix G. Additionally, policy networks’ compu-

tational efficiency are evaluated in Appendix H, including the time usages of forward and backward

propagations. Based on all the above results, a performance radar chart is depicted in Figure 7(c),

which implies the overall performance of FlipNet is much better than previous works.
s

marks in the fields of RL and continuous con- &

trol (Mu et al., 2022). In this paper, we focus

on four of its environments: Cartpole, Reacher, (8 Cartpole (b) Reacher  (¢) Cheetah  (d) Walker

Cheetah, and Walker. The visualization of these

environments are shown in Figure 8, and more
information are described in Appendix I.

4.2 DEEPMIND CONTROL SUITE

The DeepMind Control Suite (DMControl)
(Tassa et al.,, 2018) consist of several well-
designed continuous control tasks. Currently,
it stands as one of the most recognized bench-

Figure §8: DeepMind control suite benchmark.

We employ the Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018),
a model-free RL algorithm, for training. The hyperparameters for TD3 remain consistent across
all environments, except for the coefficients Ak, Az, and the length of historical observations N.
All hyperparameters are listed in Appendix J. To evaluate comprehensively, networks are tested on
both noise-free and noisy environments. Figure 9 visualizes the results in noisy environments. The
learned filter matrix H is visualized in Figure 23 to show the noise filtering ability of FlipNet. All
results are summarized in Table 10 and 11, from which we can find that FlipNet has the highest TAR
and the lowest AFR in all cases. For example, FlipNet increases the TAR by 3.4% and reduces the
AFR by 35.5% in Walker environment compared to LipsNet, which is the previous SOTA network.
Appendix K shows a comparison in Cartpole environment between FlipNet and reward penalty
method. All these results imply that FlipNet has perfect action smoothness and noise robustness.

o
g1°°° MLp L EE PR 5 MLP
® 750 Li'ps'NetAG 1 i - S, L!psNet-G
g) LipsNet-L ‘% LipsNet-L
£ 500 | FlipNet 2 FlipNet
[} o
> 21
[ = 1
5 250 5 .
o =
= o fuo

0 <o —

Cartpole Reacher Cheetah Walker Cartpole Reacher Cheetah Walker
Environment Environment
(a) TAR (b) AFR

Figure 9: Performance comparison in DMControl. The figure shows networks’ TAR and AFR in
noisy environments. FlipNet has the highest TAR and the lowest AFR in all cases.

4.3 MINI-VEHICLE DRIVING

Vehicle trajectory tracking is an important task in autonomous driving (Guan et al., 2022; Mu et al.,
2020). To validate FlipNet in the real world, we conduct an experiment on physical vehicles. As
Figure 25 shows, the vehicle moves by two differential wheels, aiming to track reference trajectory
and velocity while avoiding obstacle. The observations and actions are listed in Table 14. We set
up four diverse scenarios, as described in Table 1 and visualized in Figure 27. Detailed introduction
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of the vehicle, control mode, and scenarios are described in Appendix L. The Distributional Soft
Actor-critic (DSAC) (Duan et al., 2021), a model-free RL algorithm, is used for training. The
tests in all scenarios are accomplished by the same networks. For real-world highway vehicles, RL
observations rely on perception results where sensor noise is amplified by perception algorithms. To
precisely simulate such scenario, we assigned various noise amplitudes. A test video is available *.

Table 1: Scenario descriptions in mini-vehicle driving environment.

Scenario  RLrobot  Obstacle robot | Description

1 go straight static RL robot goes straight and avoids static obstacle

2 go straight moving RL robot goes straight and avoids moving obstacle

3 turn left moving RL robot turns left and avoids moving obstacle

4 go straight aggressive RL robot goes straight and avoids aggressive obstacle

In scenario 3 with 10 times noise, the results are shown in Figure 10, its video snapshots are recorded
in Figure 11. The RL robot successfully tracks the reference trajectory and avoids obstacle by
slightly shifting to yield. As shown in Figure 10(d)(e), it is evident that FlipNet produces much
smoother control actions than MLP. The smoother actions result in smoother vehicle states, i.e.
speed and yaw rate, which are shown in Figure 10(b)(c). These results consistently hold true across
all scenarios, as illustrated in Appendx M. Furthermore, in scenario 4 with 10 times noise, the RL
robot driven by MLP crashes while FlipNet successfully completes the task, as shown in Figure 46
and 47.

—— Reference trajectory —— Reference trajectory
e RLrobot 25 S e RLrobot 25

1 x  Obstancle
o

Lo <y x  Obstancle
Reference =
trajectory

{

F x;
obstacle (@) D040 3 1 S N

RL robot

(g) Scenario illustration (b) Vehicle trajectory (MLP) (c) Vehicle trajectory (FlipNet)
L T 1T
(d) Action 1: Longitudinal acceleration (e) Action 2: Yaw acceleration

Figure 10: Result of scenario 3. The noise amplitude is 10. (a) The RL robot aims to turn left.
(b,c) The vehicle states and trajectories produced by MLP and FlipNet. (d,e) The control actions
produced by MLP and FlipNet. FlipNet produces much smoother control actions than MLP.

The learned filter matrix H is visualized in Figure 12 to show the noise filtering ability of FlipNet.
Figure 12(a) and (b) show the frequency distributions of observation in noise-free and noisy environ-
ments. Figure 12(c) implies that the learned filter matrix mainly focus on the frequencies containing
observation information, and rarely focus on the frequencies containing noises. In other words,
FlipNet can automatically extract the important frequencies and filter out the noise frequencies.

The average TAR and AFR for the first three scenarios are depicted in Figure 13. As Figure 13(a)
shows, when noise increases, FlipNet maintains the highest TAR and its TAR declines much slower
than MLP’s. As Figure 13(b) shows, when noise increases, FlipNet maintains the lowest AFR and

*Project page: https://iclr-anonymous-2025.github.io/FlipNet
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-

(c) t=11s (d) t=18s

Figure 11: Snapshots of scenario 3. The figures are the video snapshots of Figure 10(c). The RL
robot first shifts to the left to yield, then resumes tracking the reference trajectory.
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(a) Obsv. frequency (noise = 0) (b) Obsv. frequency (noise = 10) (c) Filter matrix

Figure 12: Filter matrix and observation frequency in mini-vehicle driving environment. The
color in (a) and (b) represents the intensity of frequency. The color in (c) represents the magnitude
of elements in matrix H. The color distribution in (c) implies FlipNet can automatically extract the
important frequencies and filter out the noise frequencies.

its AFR grows much slower than MLP’s. In the high-noise environment, i.e. noise amplitude is 20,
FlipNet achieves an 5.9% increase in TAR and a 90.0% reduction in AFR. The results imply FlipNet
has much better action smoothness and noise robustness. More results can be found in Appendix M.

25| — MLP
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% 245 S

= — MLP £05

240 | —— FlipNet 00 A e
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(a) Average TAR (b) Average AFR

Figure 13: Performance trend in mini-vehicle driving environment. The curves show the average
TAR and AFR for the first three scenarios. (a) The TAR of FlipNet declines much slower than MLP’s
when noise increases. (b) The AFR of FlipNet grows much slower than MLP’s when noise increases.
It implies that FlipeNet has much better action smoothness and noise robustness.

5 CONCLUSION

In this paper, we identify the two fundamental reasons causing action fluctuation, and propose the
Fourier Lipschitz Smooth Policy Network (FlipNet). FlipNet adopts two innovative techniques to
directly tackle the two reasons. Firstly, we prove the Jacobian norm is an approximation of Lipschitz
constant and introduce the Jacobian regularization to enhance the policy smoothness. Secondly, we
introduce a Fourier filter layer to deal with observation noise. The layer includes a trainable filter
matrix that can automatically extract valuable frequencies and suppress noise frequencies. FlipNet
can be easily used as actor networks in most RL algorithms. Simulated and real-world experiments
show that FlipeNet has excellent action smoothness and noise robustness, achieving a new SOTA
performance. We hope that the research could contribute to the applications of RL in the real world.
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A THEORETICAL RESULTS

Lemma A.1 (Equivalent Form of Lipschitz Constant). Suppose f : R™ — R™ is a continuously
differential neural network. Then its local Lipschitz constant K (x) has an equivalent form besides
equation (6):

K(z) = o IVf @) (12)

Proof. We assume the real local Lipschitz constant of f over B(z, p) is K, which means K, =
mMaXy, veB(z,p) i) =f @)l The following proof is similar to that of (Song et al., 2023).

|1 —z2]|

(a) Firstly, we prove that |V f(2')|| < K,,Vz' € B(z, p). Because the local Lipschitz constant is
K., we know that

1 f(x1) = f(@2)l| < Kellz1 — 22|, V1,22 € B(z, p). (13)

Let h(t) = f(«' +t-v) where 2’ € B(z,p), t € R, and v € R™, then its first-order derivative
function is 4’ (t) = V f(z' + ¢ - v) - v. From the Newton-Leibniz formula, we know

which means o
f@ +a-v)— f(2') :/ Vi@ +t-v)-vdt.
0
By taking the 2-norm on both sides and considering the condition (13), we get
«
[ v st = 6+ a0 - @)
0

< aK|v|.

Divide « on both sides then let o — 07, get
IVf(") -l < K o], Vo
From the definition of matrix norm, we know

[Vf(&) - of

ol < K,,V2' € B(z, p).
v

N —
IV (@)l = max

(b) Secondly, we prove that max, ez, |V f(2')|| > K. Let h(t) = f(x1 + t(x2 — 1)) where
t € (0,1) and x1, x5 € B(x, p), then its first-order derivative function is h'(t) = V f(z1 + t(xo —
x1)) - (z2 — x1). From the Newton-Leibniz formula, we know

h(1) — h(0) = /01 B (t) dt,

which means

f(2) - flar) = /0 VF (@1 + s — 21)) - (22 — 21) dt

_ </01 V(@ + Hws — 1)) dt) (w2 — 21).

Take the 2-norm on both sides, get

I#te2) - sl =) (| VSt — ) at) 22 = o)

(/01 IV f (1 + t(ze — 1)) dt> 22 — 21

Vi) - — .
poax IV @ - flzz =zl

< \ -

/01 Vf(z1 + t(xze — x1)) dt‘

IN

IN
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Therefore,

max [Vf@)) > W@ ZI@I o e B, ),

o' €B(z,p) |71 — z2|
which means

max ||Vf(x’)|| > max Hf(xl) 7f($2)||
z' €B(x,p) z1,z2€8B(z,p) Hl’l — 1'2”

=K.

Considering both (a) and (b), we know that [|[Vf(2')| < K, V2’ € B(z,p) and
maxXy cp(z,p) ||Vf(2")| > K,. Therefore, we can conclude that max, gz, |V f(2')|| =
O

-
Theorem A.2 (Lipschitz’s Jacobian Approximation). For a continuously differential neural network

f: R™ — R™, the Jacobian norm ||V . f|| is an approximation of the local Lipschitz constant of f
on the infinitesimal neighborhood of x, i.e. K(z) =~ ||V, f|.

Proof. By Definition 3.1 and Lemma A.1, we know that

K@) = max @)= f@)l
e1,22€B(x,p) |21 — 2|
= max IV f(2")]]
=661131?5<)|\Vf( -

By conducting the first-order Taylor expansion for ||V f(x + d)||,

K@) = max [|[Vaf @)+ (Ve [Vaf @) 6+ 0(6)]
= Vaf @)+ max |(Va [ Vaf()) 6+ 0(6)]

We know that p — 0 because B(0, p) is a infinitesimal neighborhood of x, then 6 — 0 holds.
Therefore, K (z) = ||V, f(x)]. O

B PSEUDOCODE OF FLIPNET

Algorithm 1 Forward and backward propagation of FlipNet

Require: historical observations 04,041, -+ ,0¢_ N1, actor loss £, network parameter 6.

/+ Forward propagation =/
T [0 041 -+ 0t—N+1]T

X FFT(z)

X = symmetrize( Xyt © H).

7 « IFFT (5()

0y < the first row in T

ai < f(0r)

A A o T

8: /+ Backward propagation =/
9: L = L+ Ak |IVa, fll + An | H| p
10: Opow < 0 —nVoLl”

Ensure: control action a;, updated network parameter 6,0, .
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C FUNDAMENTAL REASONS OF ACTION FLUCTUATION

Non-smoothness of policy network. A non-smooth policy network means that RL fits a non-
smooth policy function mapping from the state to control action. The mapping function has signif-
icant output differences even the inputs are closely adjacent. Consequently, when the state changes
with time, a non-smooth action sequence is generated. Figure 14 visualizes the effect of policy
non-smoothness.
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Figure 14: Effect of policy non-smoothness.

Existence of observation noise. The noise results in the discontinuous changes in observations,
making the actions produced by the policy network at the adjacent time stamps erratically differ.
Even if the policy function fitted by the policy network is smooth enough, actions can still be fluc-
tuated because of the erratic observation noise.

D DOUBLE INTEGRATOR: DETAILED IMPLEMENTATION AND RESULTS

The double integrator is a classic control task with linear dynamics and quadratic cost function,
namely linear quadratic (LQ) control task. The environment used in this paper is a particle-moving
environment. We train in noise-free environment and test in noisy environment with various noise
level to comprehensively evaluate policy networks. We use a model-based RL algorithm, INFADP
(Li, 2023), to train different policy networks including MLP (Rumelhart et al., 1986), MLP-SN
(Takase et al., 2020), LipsNet-G (Song et al., 2023), LipsNet-L (Song et al., 2023), and FlipNet.
The hyperparameters for INFADP are listed in Table 2.

We set 5 different observation noise amplitudes and compare the performances of MLP, MLP-SN,
LipsNet-G, LipsNet-L, and FlipNet. Table 3 and Table 4 summarize the TAR and AFR, respectively.
Figure 7 shows the variation trends of TAR and AFR as the noise increases. As shown in Figure 7(a),
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the TAR of FlipNet decreases much slower than that of the other networks. As shown in Figure 7(b),
the AFR of FlipNet increases much slower than that of the other networks. These results indicate
that FlipNet has superior action smoothness and noise robustness compared to previous works.

Table 2: Hyperparameters for INFADP.

Hyperparameter Value
Replay buffer capacity 100000
Buffer warm-up size 1000
Batch size 64
Discount ~ 0.99
Target network soft-update rate 7 0.2
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 1
Action bound -5, 5]
Exploration noise std. deviation 0
Hidden layers in subnetwork f [64, 64]
Activations in subnetwork f ReLU
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 3-107*
Critic learning rate 8.1074
length of historical obsv. N 8
coefficient Ay 0.01
coefficient Ay, 1

Table 3: Comparison of TAR on double integrator environment. The observation noise in each
dimension is distributed in U(—o, o). The data in this table is visualized in Figure 7(a).

Noise amplitude

Policy network

o MLP MLP-SN  LipsNet-G  LipsNet-L.  FlipNet
0.01 -51.0 01 -62.0 t01  -53.2 +o1 =553 £01 -56.5 +o1
0.05 535 +020 623 +o04 543 +o03 -55.6 04 -56.8 +02
0.1 -59.5 06 -62.8 t07 -54.2 £o07 -56.0 06 -57.1 + 06
0.2 <784 +15  -65.9 +17  -59.8 £11 -58.7 £14 -57.9 106
0.3 -103.2 +37  -71.8 £23  -74.3 £2.1 -653 +16  -59.9 +19

Table 4: Comparison of AFR on double integrator environment. The observation noise in each
dimension is distributed in U (—o, o). The data in this table is visualized in Figure 7(b).

Noise amplitude

Policy network

o MLP MLP-SN  LipsNet-G LipsNet-L.  FlipNet
0.01 0.02 £o0o1  0.01 001 0.01 £o01 0.01 o001 0.00 +o0.01
0.05 0.11 £oor  0.03 £001  0.04 £ o0 0.03 £oo1  0.01 £on
0.1 0.19 001 0.06 £001  0.07 £o01 0.06 001 0.02 +0.01
0.2 034 £002  0.13 001 0.17 o001 0.12 £001  0.03 +o.01
0.3 0.48 ooz  0.20 001 0.28 oo 0.20 o001 0.05 £on
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E ABLATION STUDY FOR TWO TECHNIQUES

In this appendix, we implement ablation study for the two techniques proposed in our paper, i.e.
Jacobian regularization and Fourier filter layer. The two techniques respectively tackle the two
fundamental reasons of action fluctuation, as described in Section 3.1. The Jacobian regularization
enhances the smoothness of policy network by introducing the Jacobian norm in actor loss function.
Similarly, the Fourier filter layer enhance the noise robustness of policy network by introducing the
Frobenius norm of the filter matrix in actor loss function. The resulted actor loss is illustrated in
Equation 10:

L' =LA N VFI+ A 1 Hl| -

In order to validate the effectiveness of each technique, the two coefficients A and A; are set to
zero in turn. The performance result on double integrator environment is shown in Figure 15. The
performance result on DMControl’s Cheetah and Walker environments is shown in Table 5. These
results shows that setting either coefficient to zero will lead to a rapid decrease in TAR and a rapid
increase in AFR when the noise increases. It indicates that both the Jacobian regularization and
Fourier filter layer are effective techniques and they are both indispensable.
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o
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Figure 15: Ablation study for Jacobian regularization and Fourier filter layer on double inte-
grator environment.

Table 5: Ablation study on Cheetah and Walker. The result shows that setting either coefficient
to zero will lead to an increase in AFR, which indicates the two techniques are all effective and
indispensable.

Environment \ Ak \ Ah \ Total average return  Action fluctuation ratio
1073 | 1073 822 + 11 0.94 o0
Cheetah 0 10—3 822 +15 1.08 +0.02
103 0 821 +17 1.21 +o002
102 | 1073 961 + 12 0.78 +o.01
Walker 0 1073 958 +15 0.98 + 002
1072 0 940 + 14 1.89 < o0
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F SENSITIVITY ANALYSIS FOR A, AND )\,

In this appendix, we provide the sensitivity analysis for the hyperparameters A\ and \;. We de-
sign experiments to demonstrate that the two hyperparameters have low sensitivity, making FlipNet
convenient for tuning and easy to use.

Similar to the approach in Appendix E, we fix one hyperparameter and then vary the other to observe
the changes in TAR and AFR on double integrator environment. As shown in Figure 16, when A
is fixed at 1 and Ay, varies between 0.001, 0.01, and 0.1, the performance differences are significant.
However, when )y, is fixed at 1 and Ay, varies between 0.01 and 0.02, the performances are essentially
consistent. A similar phenomenon can also be found for hyperparameter A, as shown in Figure 17.
When )\, is fixed at 0.01 and )\;, varies between 0.1, 1 and 10, the performance differences are
significant. However, when )y, is fixed at 1 and Ay varies between 1 and 2, the performances are
essentially consistent.
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Figure 16: Sensitivity analysis for \j.
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Figure 17: Sensitivity analysis for ).

The above results imply that the hyperparameter )\, and A;, have low sensitivity. Only the magnitude
of hyperparameters have a significant impact on performance, while changing the hyperparameters
within an appropriate magnitude has a minimal effect on performance. Therefore, when tuning
parameters, the user only need to set an appropriate magnitude. It makes FlipNet convenient for
tuning and easy to use.
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G SENSITIVITY ANALYSIS FOR N

In this appendix, we provide the sensitivity analysis for hyperparameter [NV, which represents the
length of historical observations. We design experiments to demonstrate that [V exhibits low sensi-
tivity when the length of historical observations is sufficiently long, making FlipNet convenient for
tuning and easy to use.
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Figure 18: Sensitivity analysis for N.

The values of N are set to range from 1 to 32 in the double integrator environment. The Figure 18(a)
and (b) show the trend of TAR and AFR when IV changes. The result shows that the performance
no longer improves once N exceeds a threshold, suggesting a low sensitivity. Therefore, users only
need to set a relatively large value of N, making FlipNet very convenient for tuning.

H COMPUTATIONAL EFFICIENCY ANALYSIS

To evaluate the computational efficiency, we provide the detailed forward and backward processing
time of policy networks. All policy networks are from the network trained in double integrator en-
vironment. This analysis is implemented on AMD Ryzen Threadripper 3960X 24-Core Processor.
For MLP-SN, the number of power iterations is set to 1, whose time usage is included in the back-
ward stage. Similarly, the computation times for Jacobian norm and Frobenius norm in FlipeNet are
included in the backward stage. The length of historical observations used in FlipeNet is 8.

The results are summarized in Table 6. Compared to the previous SOTA network LipsNet, FlipNet
has significantly faster speed for forward propagation. This allows FlipNet to be applied in high
real-time tasks. We acknowledge that backward propagation speed of FlipNet is relatively slow, but
we have devised a solution to accelerate this in future work by using multiple forward propagation
and zero-order gradient estimation to compute the Jacobian matrix.

Table 6: Computation time comparison.

Settings Policy network
Propagation Batchsize | MLP  MLP-SN LipsNet-L  FlipNet
forward 1 0.10ms 0.11 ms 0.75 ms 0.16 ms
100 0.11ms 0.12ms 1.41 ms 0.25 ms
backward 1 0.17ms  0.76 ms 0.45 ms 1.98 ms
100 028 ms 0.89 ms 0.73 ms 2.48 ms
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I DEEPMIND CONTROL SUITE BENCHMARK

The DeepMind Control Suite (DMControl) (Tassa et al., 2018) encompasses a collection of metic-
ulously crafted continuous control tasks. These environments feature consistent structures, rewards
that are both interpretable and normalized, facilitating a more straightforward comparison of perfor-
mance across different algorithms. Developed in Python and leveraging the MuJoCo physics engine
(Todorov et al., 2012), DMControl currently stands as one of the most esteemed benchmarks for
evaluating RL and continuous control tasks.

In DMControl, the term “domain” denotes a specific physical model, whereas a "task’” corresponds
to an instantiation of that model with a defined Markov Decision Process (MDP) structure. For
instance, within the cartpole domain, the distinction between the swingup and balance tasks lies
in the initial orientation of the pole: it is initialized pointing downward in the swingup task and
upward in the balance task, respectively. In the following figures, we provide detailed descriptions
of the domains used in this paper, with each domain’s name followed by a tuple of three integers
that denote the dimensions of the state, action, and observation spaces, respectively, formatted as

(dim (S),dim (A) , dim (O) )

Figure 19: Cartpole(4, 1, 5): This domain features a cart connected to a pole via
an unactuated joint. It encompasses a set of four distinct tasks. In the context
of our experimental setup, we focus on the swingup task. Here, the pole is
initially positioned downward, and the objective is to apply appropriate forces
to the cart to swing the pole upward and maintain its upright position.

Figure 20: Reacher(4, 2, 7): This domain comprises two interconnected poles
with a sphere whose initial position is randomly determined. One end of the
linked poles is anchored at the origin of the coordinate space, while the other
remains free to move. The domain offers two distinct tasks, and we focus on
the easy task. The task requires the application of forces to the pendulum to
ensure that its endpoint remains within the red area at all times.

Figure 21: Cheetah(18, 6, 17): This domain features a planar bipedal and it
is able to crawl forward by its two legs. It involves a single task, namely the
run task. In the initial state of the environment, the agent’s pose is random,
typically in a non-standing position. In this task, the challenge is to control the
planar biped to achieve an upright standing position and subsequently propel it
forward into a running motion with a targeted forward velocity.

Figure 22: (18, 6, 24): This domain includes a planar walker. This
environment simulates a simple locomotion task of humans, with the agent pos-
sessing two legs and advancing in an upright posture. It comprises three distinct
tasks, and our experiment focus the walk task. In this task, the objective is to
control the walker to maintain an upright torso posture, achieve the specified
torso height, and maintain a consistent forward velocity.
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J  DMCONTROL: DETAILED IMPLEMENTATION AND RESULTS

We employ the Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), a
model-free RL algorithm, to train on DMControl. The hyperparameters for TD3 remain consistent
across all environments, except for the coefficients A\, Ay, and the length of historical observations
N. The hyperparameters for TD3 are listed in Table 7. The environment-related hyperparameters
are listed in Table 8.

Table 7: Hyperparameters for TD3.

Hyperparameter Value
Replay buffer capacity 1000000
Buffer warm-up size 1000
Batch size 100
Discount vy 0.99
Target network soft-update rate 7 0.005
Target noise 0.2
Target noise limit 0.5
Exploration noise std. deviation 0.1
Policy delay times 2
Initial random interaction steps 25000
Interaction steps per iteration 50
Network update times per iteration 50
Hidden layers in subnetwork f [64, 64]
Activations in subnetwork f ReLU
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 1-1073
Critic learning rate 1-1073

Table 8: Environment-related hyperparameters in DM Control.

Env Ak Ah Length of his. obsv. N

Cartpole 1072 1072 5
Reacher 1072 1073 5
Cheetah 10~2 1073 5
Walker 1072 1073 10

To evaluate comprehensively, networks are tested on both noise-free and noisy environments. For
noisy environments, the noise amplitudes are listed in Table 9. We compare FlipNet with MLP,
LipsNet-G, LipsNet-L. All results are summarized in Table 10 and 11, from which we can find that
FlipNet has the highest TAR and the lowest AFR in all cases. These results imply FlipNet has good
action smoothness and noise robustness.

For comparing FlipNet and MLP-SN, we train them on DMControl Reacher environment. We use
a 3-layer MLP-SN network and manually tuning its spectral norm of each layer by grid search. The
global Lipschitz constant of MLP-SN is the product of the spectral norms of all layers. The results
are listed in Table 12, from which we can find that FlipNet outperforms MLP-SN under all hyper-
parameter setting. We refrain from comparing FlipNet to MLP-SN across all environments used in
this paper, because this would necessitate the manual tuning of spectral norm hyperparameters for
each layer, which have an unwieldy number of potential hyperparameter combinations.
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Table 9: Observation noise in DM Control. The observation noise in each dimension is distributed
inU(—o,0).

Env | Noise amplitude o
Cartpole [0.1,0.1,0.1,0.2,0.2]
Reacher [0.001 repeats 7 times]
Cheetar, | [0-01,0.01,0.05,0.05,0.05,0.05,0.05, 0.05,
0.5,0.05,0.1,0.5,0.5,0.5, 0.5, 0.5, 0.5]
Walker [0.25 repeats 24 times]

Table 10: Total average return in DM Control.

Environment | MLP  LipsNet-G LipsNet-L  FlipNet
Cartpole | 805 +o0s 691 +10 831 x09 841 xo02
noise-free | Reacher | 981 + 10 979 + 1 983 +10 988 + 10

env Cheetah | 816 +30 702 + 10 822 +4 829 115
Walker | 926 + 12 956 +20 945 + 13 962 + 10

Cartpole | 763 +9 517 +4 823 +¢ 825 13
noisy Reacher | 972 +25 973 +18 978 + 17 982 + 10

env Cheetah | 813 +29 680 +7 818 +11 822 L1
Walker | 911 <26 942 +15 929 + 11 961 + 12

Table 11: Action fluctuation ratio in DM Control.

Environment |  MLP LipsNet-G  LipsNet-L  FlipNet

Cartpole | 0.04 +000  0.08 000  0.01 £000  0.01 +0.00
noise-free | Reacher | 2.07 o0  0.13 +o024 0.01 £000  0.01 +0.00

env Cheetah | 1.08 £002  0.92 + 001 094 o001 0.90 +o.01
Walker | 1.89 o002  1.25 +002 093 001 0.74 o0

Cartpole | 0.58 003 0.75 £000  0.17 £o01  0.13 £ 000
noisy Reacher | 2.41 +02s  0.04 000  0.04 003 0.01 + 000

env Cheetah | 1.13 002 1.00 +o.01 1.08 +001  0.94 + 001
Walker | 2.02 003 1.68 +o.01 1.21 001 0.78 o0

Table 12: Performance of FlipNet and MLP-SN on DMControl Reacher.

Netgvork Total average return ~ Action fluctuation ratio
pectral norm
Name
for each layer
5.0 760 + 381 0.01 +0.00
5.5 831 + 12 0.01 +0.00
MLP-SN 5.8 954 +10 0.08 +o0.0s
6.0 967 428 0.13 +o0s
FlipNet ‘ 988 + 10 0.01 =+ 0.0
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Additionally, the learned filter matrix H in FlipNet is visualized in Figure 23 to show the noise
filtering ability. Figure 23(a) and 23(b) show the frequency distributions of observation in noise-
free environment and noisy environment, respectively. Their shades of color represent the intensity
of frequency. The color in Figure 23(c) denotes the magnitude of elements in matrix H, which
determines which frequencies are suppressed or strengthened. The result implies that the learned
filter matrix mainly focus on the frequencies that containing observation information, and rarely
focus on the frequencies that containing noises. In other words, FlipNet can automatically extract
the important frequencies and filter out the noise frequencies.

° . 10 ° 10 ° 1.4
\_é — f:‘ - é - 1.2
O~ 8 O~ 8 O~
e e : 1.0
Zm 3o 3o
S< 6 S 6 S« 08
g : 4 g : 4 g : 0.6
£ 2 = 2 To 0.2

o ey £

012345678 9101112 012345678 9101112 012345678 9101112
Observation dimension Observation dimension Observation dimension
(a) Obsv. frequency (noise-free) (b) Obsv. frequency (noisy) (c) Filter matrix

Figure 23: Filter matrix and observation frequency in walker environment. The color in (a)
and (b) represents the intensity of frequency. The color in (c) represents the magnitude of elements
in matrix H. The color distribution in (c) implies FlipNet can automatically extract the important
frequencies and filter out the noise frequencies.

K COMPARISON TO REWARD PENALTY

Punishing the difference between consecutive actions in the reward is an effective way to smooth
the actions in some environments. However, such an approach breaks the Markov property, which
affects the performance, albeit to a minor extent in certain environments. Moreover, we found
that adding reward penalty in a sparse reward environment increases action fluctuation rather than
smoothing it, which is consistent with the finding by Chen et al. (2021) and Song et al. (2023).

Cartpole in DMControl is a sparse reward environment. The reward is 1 when the pole is within 30°
of the vertical and 0 otherwise. We implement TD3 in this environment, punishing the difference be-
tween consecutive actions in the reward. Specifically, the new reward iS r = Torigin + ¢ ||@t+1 — a|,
where 7,igin 18 the original sparse reward, « is the penalty coefficient and a4 is the output of actor
network under s; ;. The experiment results are summarized in Table 13. The results imply that sim-
ply adding reward penalty in the sparse reward environment increases the action fluctuation ratio.
Superiorly, FlipNet can smooth actions even in the sparse reward environment.

Table 13: Comparison to reward penalty.

Method \ Penalty coefficient o \ Total average return  Action fluctuation ratio
TD3 (MLP, reward penalty) 0.01 825 +o0s 0.27 +o.01
TD3 (MLP, reward penalty) 0.1 819 +os 0.21 +o0.01
TD3 (MLP, reward penalty) 1 13 o5 0.02 +0.00
TD3 (MLP) 805 08 0.04 +0.00
TD3 (LipsNet-G) 691 +1.0 0.08 +0.00
TD3 (LipsNet-L) 831 +09 0.01 +0.00
TD3 (FlipNet) 841 +o2 0.01 +0.00
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L MINI-VEHICLE DRIVING: INTRODUCTION OF VEHICLE AND TASK

The vehicle robot is driven by two differential wheels, which is shown in Figure 25. The task for
the robot is to track a given reference trajectory and reference velocity while avoiding obstacle. The
setting of observations and actions in this environment is described in Table 14.

Figure 24: Physical vehicle robots.

Table 14: Variables in mini-vehicle driving env.

v
Variable | Description
o\ —
I v longitudinal speed
1 . o w | yaw rate
: 71 Heading direction Sy | trajectory offset
v | 4 ; d¢ | heading angle error
8y / A li
| DY T Tangent line Obsy. | 0v | speederror
X 4 \ ....... " | Az | obstacle’s relative x position
Ref traiect Ay | obstacle’s relative y position
'''''''' eterence trajectory A¢ | obstacle’s relative angle
Av | obstacle’s relative speed
Figure 25: Vehicle kinematics model. The A.w obstacle’s relative yaw rate
. . . . v longitudinal acceleration
vehicle moves by two differential wheels, Action | . yaw acceleration

tracking the reference trajectory.

For the perception, the vehicle is equipped with LiDAR, obtaining its position by matching with
a pre-scanned point cloud map generated by SLAM. In this way, vehicle can detect its horizontal
coordinate x, vertical coordinate y, and heading angle ¢. The vehicle is also equipped with a speed
sensor that measures the linear velocity v and angular velocity w. To increase the complexity of
the task, another vehicle is used as a obstacle vehicle. Both vehicles can exchange real-time state
information with each other via WiFi communication.

For the decision-making and control, a policy network trained by RL is deployed on the vehicle.
After inputting the perceived observation into the network, control actions are computed, namely
linear acceleration © and angular acceleration w. Then, control actions are sent to the motor to
execute the command. The overall control mode is shown in Figure 26.

As illustrated in Section 4.3, there are four diverse scenarios in this environment. The scenario
descriptions are listed in Table 1. To describe the scenario settings more clearly, Figure 27 shows
the map and vehicle routes for each scenario. Figure 28 shows the corresponding snapshot for each
scenario. In scenarios 1-3, the obstacle vehicle goes straight with constant speed. In scenario 4, the
obstacle vehicle is manipulated by human.
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(c) Scenario 3 (d) Scenario 4

Figure 28: Scenario snapshots of mini-vehicle driving environment.

M MINI-VEHICLE DRIVING: DETAILED IMPLEMENTATION AND RESULTS

In the training stage, observation noise is set to zero. In the vehicle testing stage, multiple different
magnitudes of observation noise are added to thoroughly test the performance of policy networks.
The noise magnitude is adjusted using the coefficient oo € RTU {0}, such that noise is distributed
in U(0coef * Obase)- And the baseline noise oy is set to:

obase:[0.0l - 003 & 0.01 0.03 0.03 % 0.01 -

T
180 180 180 180] :

The reward function is defined as a constant minus the penalties related to tracking error, vehicle
instability, and collision violation:
r=1-0.4(0y)* —0.1(6¢)? — 1.3|6v| — 0.01w? — 0.019? — 0.01&? — 2 - I(p < 0.94),

where p represents the distance between the centers of the two vehicles, calculated as p =
v/ Az2 4+ Ay?. The reference speed is set to 0.3m/s, meaning 6v = v — 0.3.

The Distributional Soft Actor-critic (DSAC) (Duan et al., 2021), a model-free RL algorithm, is used
to train the vehicle robot. The hyperparameters for DSAC are listed in Table 15. The tests in all
scenarios are accomplished by the same networks.

All results are shown in Figure 29~47. Table 16 lists the figure index for each scenario.
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Table 15: Hyperparameters for DSAC.

Hyperparameter | Value
Replay buffer capacity 1000000
Buffer warm-up size 10000
Batch size 256
Discount ~ 0.99
Target network soft-update rate 7 0.005
Policy delay times 2
Temperature parameter o 0.2
Hidden layers in critic network [256, 256]
Activations in critic network ReLU
Hidden layers in subnetwork f [256, 256]
Activations in subnetwork f ReLU
Optimizer Adam
Critic learning rate 1-107*
Actor learning rate 1-1074
Coefficient Ay 0.1
Coefficient A\, 0.04
Length of historical obsv. NV 20

Table 16: Figure indices for the results of mini-vehicle driving environment.

Noise amplitude
Scenario and network Snapshots
0 10
MLP Figure 29 Figure 31
Scenario 1 Figure 33
FlipNet Figure 30 Figure 32
MLP Figure 34 Figure 36
Scenario 2 Figure 38
FlipNet Figure 35 Figure 37
MLP Figure 39 Figure 41
Scenario 3 Figure 43
FlipNet Figure 40 Figure 42
MLP Figure 44 Figure 46
Scenario 4 URL’
FlipNet Figure 45 Figure 47

>Project page: https:/iclr-anonymous-2025.github.io/FlipNet
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Figure 30: FlipNet performance in scenario 1. The noise amplitude is 0.
3 25 §
Reference trajectory = 14
e RLrobot £ o
29 x  Obstancle 20 2
27
1 - 0 5 10 15 20 25
oo 15 Time
..........’.ouo. ooo....... ©
> 0 a8 LIYY @ E . . . .
= (b) Action 1: Longitudinal acceleration
10
-1 S 2
3 0.4 . - 21 5 l”
2 =0 L VW W 5 ©
%) & Q 04
-29 0 > -1 g
0 20 0 20 @
Time Time g2l | , : , :
-3 v v T T T 0 > 0 5 10 15 20 25
0 1 2 )3( 4 5 Time

(a) Vehicle trajectory

(c) Action 2: Yaw acceleration

Figure 31: MLP performance in scenario 1. The noise amplitude is 10.
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Figure 37: FlipNet performance in scenario 2. The noise amplitude is 10.
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Figure 44: MLP performance in scenario 4. The noise amplitude is 0.
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Figure 45: FlipNet performance in scenario 4. The noise amplitude is 0.
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Figure 46: MLP performance in scenario 4. The noise amplitude is 10.
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Figure 47: FlipNet performance in scenario 4. The noise amplitude is 10.

The results of TAR and AFR for scenario 1-3 are listed in Table 17. The result for scenario 4 is
not listed because the obstacle vehicle is manipulated by human, which means each trial has great
randomness. The data in Table 17 is visualized in Figure 48. As shown in Figure 48(a)(c)(e), when
noise increases, FlipNet maintains the highest TAR and its TAR declines much slower than MLP’s.
As shown in Figure 48(b)(d)(f), when noise increases, FlipNet maintains the lowest AFR and its
AFR grows much slower than MLP’s. These results imply FlipNet has excellent action smoothness
and noise robustness.

Table 17: Performance summary in mini-vehicle driving environment.

Task setting Scenario 1 Scenario 2 Scenario 3

Policy -~ Noise TAR  AFR | TAR  AFR | TAR  AFR
network  amplitude

0 2347 0.02 252.6 0.04 287.5 0.03

1 235.2 0.02 252.0 0.04 288.5 0.03

FlipNet 5 232.8 0.08 254.1 0.08 289.6 0.08

10 233.6 0.14 249.6 0.16 290.3 0.14

20 224.5 0.27 252.7 0.28 281.3 0.23

0 2384 0.04 254.6 0.17 293.5 0.15

1 237.8 0.58 250.4 0.58 293.0 0.55

MLP 5 232.7 1.68 250.0 1.62 289.6 1.58

10 225.0 2.03 247.2 2.24 283.3 2.17

20 209.8 2.53 238.9 2.65 267.9 2.65

N FUTURE WORKS AND COMMUNITY IMPACTS

For the future works, we plan to optimize the backward time of FlipNet. We have devised a solution
to accelerate the backward by using multiple forward propagation and zero-order gradient estimation
to compute the Jacobian matrix. Furthermore, we plan to introduce an attention mechanism for the
filter matrix H in the future works. In this way, I can vary according to different observation inputs.
Additionally, We are now trying to implement FlipNet on a real-world highway vehicle. Complete
results of all the above future improvements will be soon reported in our next work.

As for the positive impacts on the Al community, FlipNet addresses the action fluctuation problem
of RL. FlipNet breaks through the bottleneck of action fluctuation and poor robustness faced by
RL, which accelerates the process of RL’s real-world application. It mitigates the wear of actua-
tors, safety risks, and performance reduction caused by action fluctuation. FlipNet benefits many
industrial fields, including robot control, drone control, decision-making and control of autonomous
vehicles, and embodied Al
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Figure 48: Performance trend with increasing noise in mini-vehicle driving environment.
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