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ABSTRACT

Recommender systems are widely used to help users discover new items online.
A popular method for recommendations is factorization models, which predict a
user’s preference for an item based on latent factors derived from their interaction
history. However, explaining why a particular item was recommended to a user
is challenging, and current approaches such as counterfactual explanations can
be computationally expensive. In this paper, we propose a new approach called
contrapositive explanations (Contra—+ ) that leverages a different logical structure
to counterfactual explanations. We show how contrapositive explanations can be
used to explain recommendation systems, by presenting a methodology that fo-
cuses on finding an explanation in the form of ”Because the user interacted with
item j, we recommend item i to the user,” which we show is easier to compute and
find compared to traditional counterfactual approaches which aim at ”Because the
user did not interacted with item j, we did not recommend item 1 to the user,’.
We evaluate our approach on several real-world datasets and show that it provides
effective and efficient explanations compared to other existing methods.

1 INTRODUCTION

Recommender systems have become ubiquitous in online platforms to help users discover new items
of interest L et al.| (2012); |Aggarwal et al.| (2016); Beel et al.| (2016)); Jannach et al.|(2022). These
systems analyze a user’s historical interactions with items and suggest new items based on those
interactions to provide personalized recommenders that align with the user’s preferences |Lu et al.
(2015)); |Das et al.| (2017); Bobadilla et al.| (2013)); Pazzani & Billsus| (2007). Factorization models,
such as for example the Singular Value Decomposition (SVD) model, are commonly used in rec-
ommender systems|Guan et al.|(2017); Bokde et al.|(2015)) to predict a user’s preference for an item
based on latent factors derived from the user’s interaction history.

However, the “why” behind a recommendation remains a challenging issue. Counterfactual explana-
tions Wachter et al.|(2017) offer one possible approach to this problem; they attempt to demonstrate
the minimal changes needed in a user’s history that would trigger a different recommendation Tran
et al.|(2021). This, however, requires the deletion of the (user, item) pair from the user’s history and
retraining of the model, a process that is time-consuming and computationally expensive.

In order to bridge this gap, various techniques have been proposed, such as influence functions
Tran et al.| (2021); [Koh & Liang (2017). Despite their utility in computing the impact of data
removal, these methods are still challenged by their computational demands, primarily due to the
need to compute the inverse of the Hessian. This high computational cost often limits their practical
application in real-time recommender systems; which is the primary focus of this paper. In addition
to that, influence functions are only approximations and hence are less reliable when it comes to
highly non-linear models such as Deep Neural Networks |Basu et al.| (2020).

To address this issue, this paper introduces a novel approach called contrapositive explanations
(Contra+ ). The contrapositive logic involves negating and switching the order of the antecedent
and consequent of an implication statement. The proposed approach in this paper leverages this
logic to provide explanations for recommenders by first negating the user’s recommended item and
switching it with another item and secondly inspecting the resulting changes in the user’s history.
This approach avoids the need for retraining the model and provides a more efficient way to generate
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explanations. Before diving deeper into how we can utilize this logic in recommender systems, let
us take a short detour to lay out what the contrapositive logic entails in a simple example.

Example 1.1. [Toy Example] Consider the following two statements:
* A: It is raining.
* B: The road is wet.

From the above, we can make the following logical statements: A — B i.e. It was raining and this
implies that the road is wet. The logical equivalent is B — A i.e. The road is not wet which implies
that it was not raining. This is contrary to the counterfactual logic which would reason through
A — B i.e. It was not raining and this implied that the road is not wet. Note, that this is not always
the case, as a bucket of water could make the road wet. Hence, these are two distinct statements and
in this paper, in particular, we focus on trying to achieve A — B.

With this in mind, we now present how we can use contrapositive logic in explaining recommender
systems. The explanation logic that we will be using throughout the paper is the following:

Example 1.2. [Recommender System Example] Consider again the following two statements:

* A: The user u interacted with item j in the user history.

e B: The user u is recommended item 1.

Here, the objective is to find an explanation that supports the statement A — B, meaning be-
cause user u interacted with item j, item ¢ was recommended. Identifying such explanations can be
challenging and computationally intensive, as it would require exhaustively searching through all
possible combinations of a user’s history to determine which interactions, when removed, do not al-
ter the recommendation. To address this challenge, we adopt the logically equivalent contrapositive
route B — A: if item 7 is not recommended, then user v would not have interacted with item j.

Intuitively, given the predominance of user and item embeddings in most recommender systems,
our method starts by invoking B, that is, we “perturb” the user embedding to ensure item ¢ is not
recommended. Then, given this perturbed user embedding, we identify the historical item that has
lost most relevance to the user — effectively, the item with which the user would not have interacted,
denoted as A. We detail the formalization of our method in Section[3|

The key contributions of this paper are as follows:

* We propose an explanation method for recommender systems that uses contrapositive logic,
which involves negating and switching the antecedent and consequent of a user’s preference
for items. This approach reduces the computational cost and the need for model retraining.

* We propose a computationally efficient framework recommender system. Specifically, we
investigate its applicability and performance on SVD and MLP-based recommender sys-
tems, demonstrating its versatility in various experiments.

* We introduce an evaluation metric tailored for contrapositive logic, offering a new perspec-
tive to assessing explanations compared to traditional counterfactual logic. We demonstrate
on extensive experiments that our proposed method is able to outperform existing methods.

This paper is structured as follows: Section [2| gives background on recommender systems and ex-
isting explanation methods. Section [3] introduces our proposed methodology Contra+ , which is
then followed by extensive experiments in section [d] Lastly, in section [5] we conclude with the
limitations as well as future extensions to our proposed method Contra+- .

2 BACKGROUND AND RELATED WORK

2.1 FORMULATION OF RECOMMENDER SYSTEMS

Before diving into the specifics of Singular Value Decomposition (SVD) and Multi-Layer Perceptron
(MLP) models, we first establish the fundamental elements of recommender systems. The key
components for SVD and MLP models are as follows:
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* User-Item pair (u,¢): These pairs represent the interaction between user v € U and item
1 € 1, where U is the set of all users and Z,, is the set of items user u has interacted.

» Training data: The data in recommender systems usually comprises of a user-item inter-
action matrix R € R™*", with m representing the number of users and n the total number
of items. Each element R,; corresponds to the rating given by user « to item .

* User/Item embeddings (p,, ¢;): Each user u and item ¢ are represented in a latent space
through vectors, or embeddings, denoted as p,, and ¢; respectively. These embeddings are
computed during the training process (SVD or MLP) and capture the underlying character-
istics and preferences of users and items.

2.2  BRIEF OVERVIEW OF SVD AND MLP MODELS

Singular Value Decomposition: SVD is a widely used matrix factorization Bokde et al.| (2015)
model in recommender systems and allows us to predict user preferences by decomposing the user-
item interaction matrix R into two low-rank matrices: P € R™*? and Q € R**¢, according to:

R~ PQT (1)

Here, d is the pre-determined number of latent factors. Each row in the matrices P and () represents
a latent factor vector for a user and an item, respectively. These vectors, denoted as p,, and g;, serve
as embeddings that encapsulate the essential characteristics of user v and item ¢ in a d-dimensional
space. To leverage the predictive power of SVD models, we first compute an interaction score
between a user and every non-rated item. This interaction score signifies the predicted rating or
preference of user u for item ¢ and is calculated as the dot product of the corresponding user and
item embeddings. Consequently, the score function s(u, i) is defined as:

S(U7 Z) = PZ% = <pu7 Q1> )

Once, we have computed the scores between the user u and all non-rated items, we can then sort the
score and recommend the item which gave us the highest interaction score.

Multi-Layer Perceptron: On the other hand, MLP models extend beyond linear relationships cap-
tured by SVD. They leverage neural networks to process the concatenated user and item embeddings,
thereby capturing potential non-linear interactions between users and items. In this case, given the
user embedding p,, and the item embedding ¢;, the score function, denoted as s(u, ), is defined as:

s(u, 1) = MLP([pu; ¢:]; 0) 3)

Here MLP ([py; ¢;]; ) is a neural network parameterized by . Similarly to the SVD model, when
making a new recommendation for the user, we sort the score and pick the highest-scored item.
Next, we delve deeper into the specifics of these models and how explanations can be generated.

2.3 COUNTERFACTUAL EXPLANATIONS AND INFLUENCE FUNCTIONS

One of the primary ways of explaining recommender systems is through counterfactual explanations
Wachter et al.| (2017); [Tran et al.| (2021); [Yao et al.| (2022a); \Ghazimatin et al.| (2020); Kaffes et al.
(2021));|Tan et al.|(2021). These methods attempt to compute logical statements of the form A — B,
which indicates that because the user did not interact with item 7, item ¢ was not recommended. In
other words, because the removal of item j changed the recommendation for user u, item j serves
as an explanation for having had an impact on the recommendation of item <.

However, computing such counterfactual explanations can be challenging, particularly when at-
tempting to identify which historical item(s) are responsible for a given recommendation. One ap-
proach is to remove a combination of relevant item(s) from the training data and retrain the model,
but this can be computationally infeasible, particularly for large neural networks. To address this
issue, researchers have proposed alternative methods such as gradient-based [Tan et al.|(2021) and
search-based [Kaffes et al| (2021) approaches, as well as influence functions [Tran et al.| (2021);
Koh & Liang (2017), that approximate the retraining of a model when one or more data points are
removed. However, even though these methods significantly reduce the computational cost of re-
training models, these methods are not suitable for large real-time recommender systems given that
they still require significant computational requirements.
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In particular, influence functions have become popular due to their ability to approximate a re-
trained differentiable model without requiring the retraining of the entire model. However, they are
not without their own limitations, such as the need to compute the Hessian matrix, which can be
computationally infeasible for large networks, and their second-order approximation of the model,
which can result in misleading results Basu et al.|(2020). Others have tried to train surrogate models
that learn a mapping from removed items to retrained models |Yao et al.| (2022a). However, the latter
suffers from extensive offline training of the surrogate model which can be prohibitive in practice.

To address these challenges, we propose a new approach to explainable recommendation systems
based on contrapositive explanations. Unlike counterfactual explanations, which attempt to iden-
tify the necessary cause of a recommendation, contrapositive explanations focus on identifying the
sufficient conditions for a recommendation to be made. Specifically, we aim to compute logical
statements of the form B — A, which is equivalent to A — B.

3 PROPOSED METHOD: Contra+ EXPLANATIONS

In this section, we introduce our novel approach for generating what we term Contra+ explanations
for any recommender system. We start by focusing on the SVD model as a simple case study and
later explain how to apply our proposed method to any differentiable model such as MLPs.

3.1 FACTOR MODEL: SVD

Recall that the SVD model is a factorization-based approach that represents users and items in a
shared latent space. A rating for user-item pair (u, %) is predicted using a factor model, where the
interaction between the user and item is represented s(u,i) = (py, g;), where p,,q; € R? are d-
dimensional latent factors that measure the alignment between the preferences of user v and the item
1. Our goal is to arrive at the statement B — A, which means that: Because we do not recommend
item ¢ to user u, the user would not have interacted with item j.

As a first step, we start by negating the consequent: B : “we recommend item i to user u”. Our
method Contra+ first constructs a user embedding p;, for user u such that item ¢ is not recom-
mended. To achieve this, we perturb the user’s latent representation p,, in the opposite direction to
the item’s representation g;, such that the recommendation score decreases and item 7 is no longer
recommended. In other words, we enforce B, the negative for “user u is recommended item 1.
More concretely, we define a new user embedding as follows:

P, = Ypu — €q;, where e € R™ and v € [0, 1] 4)

and hence the new score for the recommendation (u, ¢) can then be expressed as:

s'(u,1) = (P, i) = ys(u,7) — elll|* < s(u, 7). o)
For simplicity of exposition, we fix v = 1 for now. Intuitively, if we choose a sufficiently large €, we

can ensure that the recommended item ¢ is no longer recommended as the score s’(u,4) will drop.
Specifically, if we want the new score to be less than S € R™T:

vs(u,i) —S
;]2

This leads us to the second step of Contra+ which is that of using p/, to determine which items
the user would have likely not interacted with. To this end, we construct the explanation set by
considering the difference between the old score s(u, h) and the new score s’'(u,h) e.g. Ap =
s(u, h) — §'(u, h), where h € Z,,. By ordering A}, (for items with a score of at least 4), we assume
that the liked items that experienced the greatest decrease in score with the new embedding p!, are
the same items that user v would not have interacted with initially. Hence we can state the negative
of the antecedent A : “user u interacted with item h” i.e. A.

s'(u,i) = ys(u,i) — |Gl < S = >

Putting both parts of Contra+ together we can make the statement B : “We did not recommend item
i to user u” and therefore A : “User u would not have interacted with item h”. Which is logically
equivalent to A — B i.e. User u interacted with item h and hence we recommended item 7. We
emphasize, that do not claim that we are able to find the one and only explanation, but rather, that
we are able to provide a contrapositive explanation which fits our logical statement B — A, which
is equivalent to A — B. This is corroborated by our extensive experiments as well.
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To further elucidate our methodology, let us examine a scenario where a user v received a recom-
mendation for the movie The Godfather II based on their previous interactions out of which one of
them was The Godfather. A useful explanation for the user would be the logical statement: ”Given
your interaction with The Godfather, you were recommended The Godfather II”’. Using our pro-
posed contrapositive approach, we generate an explanation by first generating a user embedding p!,
who was not recommended The Godfather II. If we then observe that the scores for the previously
recommended item such as The Godfather significantly decrease compared to the rating provided
by the user, we can infer that the absence of the recommendation for The Godfather II would likely
have been because of the lack of interaction with The Godfather. Hence, we can deduce that If
the movie The Godfather Il was not recommended, the user would not have interacted with The
Godfather” is logically equivalent to the explanation ”Because you interacted with The Godfather,
you were recommended The Godfather II”.

3.2 FACTOR MODEL: MLP FACTOR MODELS

Now that we have described the general framework for the SVD model the natural question is how
this is applicable to a model for which we do not necessarily have the inner product structure between
user and item embeddings (p,,, ¢;) such as MLP models. In these neural models, even though we are
still constructing p,,, g; i.e. user and item embedding respectively, we no longer compute the inner
product but rather concatenate the embeddings before pushing them through multiple MLP layers.

Hence this renders our simple user embedding modification unusable. We therefore propose an al-
ternative method for non-inner product methods which in essence only requires us to backpropagate
the scores for a given user to reduce their score for a recommended item ¢. In other words, let p,,, g;
be the user and item embeddings respectively and let MLP : R?¢ — R be the MLP that takes as
input the concatenation [p,, ¢;] and outputs the corresponding relevance score. In this case, we can
update the user embedding p,, over a k iterations as follows, where 7 is a learning rate:

Py ¢ Pu = 1V p,MLP([pu, qi]) (6)
Note that all the other parameters of the recommender systems remain the same and that we are only
modifying the embedding p,,. In this case, we again a new user embedding p!, for user u and are
able to repeat the same procedure as above, i.e. select the items that have dropped most in score in
the user history based on the new embedding as our explanation set.

We acknowledge that this computation is indeed more computationally heavy as in the SVD case
where we were only required to compute the item embedding for item ¢. However, we argue that this
computation is significantly smaller than in|Tan et al.|(2021) as we only require to backpropagate for
a single datapoint and user embedding, which is of the same complexity as a forward pass. In our
later experiments, we show that our Contra+ for MLP takes less than 1 second, whereas influence
function Koh & Liang|(2017); Basu et al.| (2020) can take at least 5 times longer.

3.3 DISCUSSION ON CONTRAPOSITIVE AND COUNTERFACTUAL EXPLANATIONS

Before moving on to our empirical findings, we first need to clearly delineate the differences and
similarities between contrapositive and counterfactual explanations within the realm of recommen-
dation systems. These two types of explanations hinge on distinct logical structures. Counterfactual
explanations follow a A — B logic, while contrapositive explanations adopt a reversed B — A
logic. In simple terms, counterfactual explanations explore what changes in recommendations B
occur upon the removal of specific elements A, whereas contrapositive explanations begin by noting
the changes in recommendations B, and then seek to identify which elements were removed A.

To further illustrate these concepts, consider a movie recommendation system. A counterfactual
explanation might highlight that removing horror films (the removal A) from a user’s watch history
leads to the system no longer recommending thriller movies (the change in recommendation B).
In contrast, a contrapositive explanation begins with an observed change in the recommendation
output—say, thriller movies are no longer suggested (the change B)—and then determines that this
change is due to the exclusion of horror films from the user’s history (the removal A). To be clear,
these two explanation methods are not exclusive of each other, i.e. a counterfactual explanation
could well possibly fulfil the conditions of contrapositive explanations and vice versa. However, the
set of explanations is not completely overlapping as is evident from the Toy ExampldI.T] (A bucket
of water can make the road wet instead of rain)
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Having established this understanding, we can now turn our attention to the recently proposed con-
cept of counterfactual backtracking von Kiigelgen et al.| (2022), which interestingly shares some
parallels with our contrapositive explanations. Traditional counterfactual reasoning, often metaphor-
ically described as creating “small miracles”, posits hypothetical scenarios where certain features of
reality are modified while others persist. Translating this into the recommendation systems domain
might entail erasing a segment of a user’s history while the remaining part stays unaltered.

However, the backtracking approach diverges from this path. Instead of crafting a new reality,
backtracking maintains the laws of the system intact and traces back changes from the outcome to
altered initial conditions. In other words, it starts from a change in recommendations and seeks to
identify what alterations in the user’s history would lead to this new outcome. In this sense, there
is an overlap between contrapositive explanations and counterfactual backtracking as both follow a
reversed reasoning, tracing back from outcomes to causes.

Both approaches allow us to imagine how varying the user’s history would lead to different recom-
mendations. But unlike traditional counterfactual reasoning—which constructs a completely new
world by altering the user’s history—both contrapositive explanations and counterfactual backtrack-
ing keep the laws of the system unaltered and examine how changes in the outcome can be traced
back to changes in initial conditions. This distinction offers an intuitively appealing and conceptu-
ally novel approach to understanding recommendation systems. Note that|von Kiigelgen et al.|(2022)
have not actually proposed a practical algorithm but rather set up a new theoretical framework.

Now that we have thoroughly explored the differences between our proposed methods to conven-
tional counterfactual methods, we move on to the experimental setting. However, it is apparent that
different metrics are needed to capture the contrapositive ideas. Hence, we developed a new metric
for contrapositive explanations M" in recommender systems which we describe in the following.

3.4 CONTRAPOSITIVE EXPLANATIONS EVALUATION METRIC

In contrast to counterfactual explanations, con-
fation changed dation not changed trapositive explanations necessitate distinctive

evaluation metrics. For counterfactual expla-

nations, performance evaluation typically in-
volves a three-step process: calculating the ex-
planations, removing these explanations from
the training data, and verifying whether these
alterations changed the recommendation. As
depicted in Figure [T} this process corresponds
to the top row, where we aim for a high ratio

@ @ (D/((1) + (2)) when removing explanations.

Conversely, contrapositive explanations aim to
maximize a different ratio: Given a change
o in recpmme;ndahon, hoyv many removals in-

1/(1+3) stigating this change align with our explana-
tions? This concept is illustrated in the left

Figure 1: We illustrate how to compute a metric column of Figure I, where the desired ratio is
of contrapositive compared to counterfactual. In @ / (@ + @) Note that these ratios echo the
counterfactual we focus on the top row and com- familiar notions of precision and recall promi-
pute 1/(1 + 2), whereas in Contrapositive we fo- nent in standard machine learning literature, as
cus on the left column and compute 1/(1 + 3) observed by [Watson et al.| (2021). However, in
this context, we’re extending these concepts to
fit within the realm of recommender systems.

(z+0)/T
‘[enjoejaajuno)

Explanation removed

Explanation not removed

4 EXPERIMENTS

4.1 EXPERIMENTAL EVALUATION

To assess the effectiveness of our proposed Contra+ explanations method, we conducted a series
of experiments on well-established benchmark datasets, namely Movielens-100k, Movielens-1M,
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and Netflix Harper & Konstan| (2015); Bennett et al.| (2007). We aim to showcase the versatility of
our approach by implementing our contrapositive strategy on two distinct model classes commonly
employed in recommender systems: Singular Value Decomposition (SVD) and Multi-Layer Percep-
tron (MLP) models [He et al.| (2017)). For a comprehensive evaluation, we compared our proposed
method against several baseline approaches. Recall, that in this paper we primarily focus on compu-
tationally very efficient methods and hence many of the aforementioned methods in the section [2.3|
are not comparable due to their computational budget.

Baselines The first baseline method, referred to as the Random method, randomly selects expla-
nations from a user’s historical data. This method serves as a fundamental sanity check to ensure
our contrapositive method outperforms arbitrary selection. The second baseline, the Item Similarity
method |Yao et al.[(2022b), selects historical items most similar to the recommended item as expla-
nations, focusing on similarity-based justifications. This is one of the most commonly used ones as
it is computationally very efficient similar to Contra+ . The final baseline for completeness is Influ-
ence Function (IF) Koh & Liang (2017), which ascertains explanations based on the historical items
with the greatest influence on the recommended item. Note that IF are computationally extremely
expensive due to the Hessian matrix. Nevertheless, we believe that IF serves as the gold standard
for the other SOTA methods mentioned in section [2.3] which in fact aim to approximate IF.

Evaluations Evaluating the quality of explanations generated by our contrapositive method in-
volves using the previously outlined evaluation metric. However, accurately computing this metric
requires a more nuanced procedure, which includes the following steps:

Firstly, we sample 10% of each user’s historical interactions, denoted as H ', and remove them from
the training dataset user-item interaction matrix R. This process is repeated 100 times per user,
yielding 100 models with different subsets { H*}1%) removed from R. From these 100 models, we
select the subsets {Hg( k)}le that led to a change in recommendation after retraining (as per the
“recommendation changed” condition/ left column in Figure . Here, o (k) signifies the indexed
subset of removals that triggered the recommendation change. We repeat this for 100 users, thus
training 10000 models. We emphasise that this retraining is purely for evaluation’s sake, the actual
explanation method Contra+ does not require retraining of models. Subsequently, we employ the
following metric for contrapositive explanations:

Hg(k) n Emethod)

|Emeth0d|

= — 7

= )
where 1 is the indicator function assessing intersection and FE,,¢¢504 being the explanation set for a
given method. Intuitively, if for every user u, the explanations (E,,c¢noq) consistently intersect with
items causing the recommendations to change (H:j( k)), then the metric M ,ptrq Will be high and

consequently also the average, thus confirming the usefulness of the contrapositive method.

contra E ’ E
o n u=1 o k=1

Lastly, even though, the main goal of this paper is to investigate contrapositive explanations, we
also include the counterfactual metric Tran et al| (2021)); [Yao et al.| (2022b) in our experiments
for completeness. The counterfactual metric works as follows. For every user, we remove the
explanations from the training dataset and subsequently retrain the model. We then compute the ratio
of the number of changed recommendations due to the removal of the explanations over the number
of users. Intuitively, if this ratio is high, this means that removing the explanations consistently
changes the recommendation and hence through the lens of counterfactual logic is considered a
good explanation. Given that we are the first to introduce contrapositive explanations to XAlI, we
believe that, even though tangential, it is important to include the counterfactual metric in order to
bridge the gap between the communities.

4.2 SVD EXPERIMENTS

To investigate the sensitivity of our method to the model size, we first conducted an ablation study
using different latent dimensions for the SVD model on the MovieLens-1M dataset. Top of Figure
[illustrates the metric M contrq On the y-axis for different latent dimensions of 32, 64, 128. Within
each subfigure, we also plot different explanation sizes of 1,2, 3 and 5, along with comparisons to
baseline methods. Similarly, we have experiments for the counterfactual metric in bottom Figure[2]

In Figure 2] our Contra+ firstly demonstrates robustness to changes in latent dimensions and sec-
ondly, outperforms the baseline by a significant margin (higher the better) on both evaluation met-
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rics, across every latent dimension as well as explanations size. Following this positive result, we
extend Contra+ to two additional datasets: the MovieLens-100k and Netflix datasets.

Dataset ML-1M: Dlmenslon 32 Dataset ML 1M: Dlmenslon 64
= Contrapositive (Ours) s Kem Si = Random = Contrapositive (Ours) e Item i - Random T W?jtasyet ML SWD“:‘:‘\EHSIGH 128
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Figure 2: Ablation study with 32 (left), 64 (middle), 128 (right) latent dimensions for the SVD. We
compare Contrapositive (Ours) against Item similarity, Influence functions and Random explanation
baselines on the M .op¢-o metric (Top) and counterfactual metric (Bottom). (The higher the better)

4.2.1 EXPERIMENTS ON ML-1M AND NETFLIX DATASETS

We further examined the efficacy of Contra+ explanations on the MovieLens-100k and Netflix
datasets. Both are widely-used datasets containing approximately 100k and 600k data points, re-
spectively. Here again, we plot the metric Mo, as well as the counterfactual metric across
different explanation sizes. As depicted in Figure [3] our proposed method Contra+ consistently
shows statistically significant improvements over our baseline comparisons across both datasets as
well as explanation sizes. It is only for MovieLens-100k, where at explanations size 5 the item
similarity baselines seem to be comparable.

Dataset ML-100K Dataset NETFLIX

= Contrapositive (Ours) W Item Similarity  # Influence W Random = Contaposiive (Ours) luence W Random

Lkbh

#of expl. 5 # of expl. 1 # of expl. 2 # of expl. 3 #of expl. 5

©

# of expl. 3

= Contrapositive (Ours) e ftem Similarity % influence W Random oes ' Contrapositive (Ours) W ktem Similarty e Influence s Random

# of expl. 1 # of expl. 2

064
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Figure 3: This compares Contrapositive (Ours) against Random, Influence functions and Item simi-
larity baselines on the ML-100K(left) and Netflix (right) datasets. Similarly to the ML-1M dataset,
the plots clearly show that our proposed method outperforms baseline methods on both the proposed
contrapositive (Top) and counterfactual metric (Bottom). (The higher the better)

4.3 MLP EXPERIMENTS

Now that we have established that our methodology works with SVD models, we also per-
form experiments using MLP models to demonstrate the versatility of our proposed method. In
this case, we conducted validation over latent dimensions of [32,64,128] and learning rates of
[0.01,0.001,0.0001], for 3-Layer neural networks and selecting the best model for each dataset
based on a held-out validation set. Further details can be found in the Appendix.

Figure[d compares our proposed method to several baselines across the three different datasets, using
the same metric as in the previous experiments. Here again, we see similar or significant improve-
ment in our proposed method compared to the baselines. For ML-100k, we see that Contra+ is
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Figure 4: Here we compare Contrapositive (Ours) against Random, Item similarity and Influence
baselines on the ML-100K, ML-1M, and Netflix datasets. The plot shows that our method outper-
forms baseline methods in most of the explanation sizes as well as datasets. (the higher the better)

able to keep up with influence functions for small explanation sizes but seems to be worse on large
sizes. In all the remaining experiments, especially the Netflix dataset, our Contra+ is on par if not
better than influence functions on both metrics. Interestingly, Contra+ performs also very well on
the counterfactual metric, which can be explained through Figure|l] Both contrapositive and coun-
terfactual metrics make use of the quantity in the top left corner in Figure(l|in their computation and
hence there is a clear correlation between the metrics.

In addition, we would like to emphasize that influence functions were only included in our exper-
iments for the sake of completeness and transparency. As mentioned earlier in Section 2.3] influ-
ence functions are computationally expensive due to Hessian computations and are thus not directly
comparable to the objective of our paper, which focuses on computationally efficient methods. Nev-
ertheless, we show that even in this case, Contra+ can perform on par or even better than influence
functions, further demonstrating the merits of Contra+ .

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we introduce a novel way to compute explanations, Contra+ , for recommender
systems through the lens of contrapositive logic. The key insight is that the statements B — A and
A — B are equivalent. In this case statement, A is “user interacted with item j” and statement B
is “user was recommended item i”. Through extensive examples as well as empirical experiments,
we have shown that our proposed method Contra+ is able to outperform conventional methods
on several datasets from a A — B logic point of view. In addition, we have also shown that
our proposed method is computationally much more efficient than methods such as the Influence
function, which requires access to the Hessian matrix of a differentiable model. Lastly, we believe
that this new way of considering explanations might open up new avenues of research in the field of
explainable Al and recommender systems. By using contrapositive logic to compute explanations,
we can provide more intuitive explanations, while also improving the efficiency of the computation.

There are however still limitations to our approach, firstly, given that we are unable to exactly re-
cover the true data distribution of what caused the model to learn a lower score s(u, 7), we are only
approximating the negation of the “did not interact with item j” statement. Even though we have
shown how effective our approach is through extensive empirical evidence, more computationally
heavy methods on how to properly select the historical items based on the perturbed user embed-
dings might improve the results. However, we stress that we are primarily interested in computa-
tionally efficient methods in this paper and hence leave this interesting avenue for future research.
Secondly, we also acknowledge that in the case of Factor models such as SVD the computational
complexity of an explanation is of the order of a recommendation, the same cannot necessarily be
said for MLP models. In the neural model case, we require a few gradient steps which can lead to
higher computational costs. However, this is still significantly cheaper than using methods such as
influence functions which are completely unusable for large neural models. Lastly, extensions to
different models outside recommender systems such as classifications or regression tasks would be
an interesting extension, however, this is outside the scope of this paper and for future work.
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A EXPERIMENTAL DETAILS
Throughout the paper, we had on-and-off access to 50 V100 GPUs with 100 CPUs.

A.1 SVD MODELS

For our SVD model, we use the Surprise|Hug/(2020) library in Python which allows us to quickly
train SVD models on datasets such as the MoiveLens 100K, MovieLens 1M and Netlfix dataset. As
mentioned in the main text, we compute the metric by firstly sampling 10% of each user’s historical
interactions, denoted as H?, and remove them from the training dataset user-item interaction matrix
R. This process is repeated 100 times per user, yielding 100 models with different subsets { H*}199
removed from R. From these 100 models, we select the subsets {Hff‘ (k) S | thatled to a change 1n
recommendation after retraining (as per the “recommendation changed” condition/ left column in
Figure . Here, o(k) signifies the indexed subset of removals that triggered the recommendation
change. We repeat this for 100 users, thus training 10000 models. We emphasise that this retraining
is purely for evaluation’s sake, the actual explanation method Contra+ does not require retraining
of models. Subsequently, we employ the following metric for contrapositive explanations:

Meontra = Z MY, where M= Ve Z

where 1 is the indicator functlon assessing intersection and Emethod being the explanation set for
a given method. Intuitively speaking, if for every user u, the explanations (E,,cthoq) consistently
intersect with items causing the recommendations to change (H “( %) ), then the metric M conirq Will

be high and consequently also the average, thus confirming the usefulness of the contrapositive
method. By measuring, how many times our explanations are intersecting with the items that cause
the recommendations to change, we are in fact in the first column of figure [I|i.e. conditioned on
the recommendation having changed, was the explanations removed? For this reason, this is a good
metric compared to existing counterfactual metrics. Note that the sum of the four squares always
has to add up to the same number and hence row 1 completely determines row 2 and similarly for
the columns.

Hu (k) n Emethod)

®)

|Emethod|

We would also like to note that, this metric indeed is hard to compute, however, only has to be done
for validation and not inference. Future work will consider possible surrogates to this metric i.e. for
example using the counterfactual metric for instance.

For the SVD model, we also have hyperparameters to tune which is that of € and ~ i.e.
P, = Ypu — €q;, where e € R™ and 7 € [0, 1] )

In order to determine which hyperparameter fits best, compute the metric M .ot On 20 held-out
users and pick the corresponding v = [0,0.1,0.2, ..., 1.0] and € accordingly. Note that € is defined
through S = [1, 2, 3, 4] and hence searching through € is searching through S, i.e. recall:

vs(u,i) — S

I? e
gl

s'(u,i) = ys(u,i) — €|l < S = e>

Note if v = 1 we in fact recover the item similarity baseline.

A.2 MLP MODELS

For MLP models we employ the same metrics as in SVD models. However, for the MLP model,
we have a few more hyperparameters that we need to tune. Recall in the formulation of the MLP
models that we update the user embedding p,, over a k iterations, where 7 is a learning rate:

Pu <= Pu = NV p,MLP([pu, ¢:]) (10)

In order to determine which hyperparameter fits compute the metric M .o On 20 held-out users.
Once, we have them we can then pick the hyperparameters k as well as n appropriately. The ranges
that we checked for & = [500, 1000, 2000] and n = [0.0001, 0.0005]. Experimentally, we note that
our method does not seem to be sensitive to k as long as the resulting score for using p/, is below 4
i.e. not recommended anymore. Interestingly higher 77 do not seem to work well. We hypothesise
that the embedding changes too quickly and hence is no longer close to the original users.
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