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Abstract

Noisy labels are a pervasive challenge in modern supervised learning, especially
in high-stakes domains like healthcare and moderation, where model reliability is
critical. Detecting and mitigating the influence of mislabeled data is essential to
improving both performance and interpretability. Building on insights from training
dynamics, we propose Local Consistency across Training Epochs (LoCaTE), a
family of data-filtering methods that leverages over-parameterized neural networks
to distinguish clean samples from mislabeled ones. Our approach integrates both
local neighborhood information and per-epoch behavior to identify noise and
enhance robustness. Evaluated on CIFAR-10/100 under four canonical noise
regimes as well as Clothing-1M, LoCaTE achieves competitive F; scores and
improves downstream accuracy by up to seven percentage points. We additionally
conduct ablations by studying the performance of LoCaTE on a single epoch. These
results highlight LoCaTE as a practical, low-overhead tool for reliable training on
noisy datasets.

1 Introduction

Supervised learning relies on large, labeled datasets to learn, generalize, and provide useful predictions.
The accurate curation of such large datasets is often infeasible. As such, real-life applications use
approximate methods to generate labels, ranging from Amazon Mechanical Turk [50] to keyword-
based web scraping [3] and the use of pseudo-labels [31]. Unfortunately, prior work has found that
such labels are noisy — at least 6% of the labels in ImageNet-1k are incorrect [34]. This is not a
unique occurrence: Clothing-1M [50] exhibits an approximated 38% noise rate, while 20% of the
labels in WebVision are estimated to be incorrect. The presence of noisy labels in benchmarking
datasets not only results in an inaccurate estimation of model performance, but also can destabilize
models trained on such data, leading to a significant drop in performance on the true labels [4]. With
deep classification models being deployed in safety-critical domains like healthcare, finance, and law
(L1439, 231 1) 264 132], it is important to learn models which are robust to noisy labels.

Most work in noisy label detection has followed one of two independent approaches: detecting
mislabeled samples and filtering them in downstream training [46, |18 |54]], or developing training
algorithms which are inherently robust to label noise [[12} 24} [35] [28]]. In this work, we focus on
the former direction, for the following reasons. First, every detection method naturally induces a
downstream filtering procedure, allowing us to not only improve final model accuracy but also to
rigorously evaluate detection quality. The impact of removal or relabeling can be further studied,
e.g. via the use of influence functions [20]. Second, methods to detect and remove mislabeled
samples have applications beyond just removing such samples when training downstream models.
Such data-filtering methods shed light on tradeoffs between performance and fairness [41], improve
future data collection practices, and ensure accurate benchmarking [17]. Finally, by examining which
samples are detected as mislabeled, we draw connections to foundational questions in deep learning,
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Figure 1: The general workflow for LoCaTE-P. The method first perturbs the sample x using known
affine transforms to obtain 2’ and evaluates the divergence between the model’s predictions on z, 2’
across epochs, then passes this to a simple classifier. A similar procedure is conducted to obtain
LoCaTE-M, with a different choice of metric, and where the perturbations z are the nearest neighbors
of x.

such as the geometry of the optimization landscape [8][59]] and the generalization behavior of modern
neural networks [48]].

Existing label noise detection methods can often be computationally expensive, requiring access to
pretrained embeddings like CLIP [60] or requiring additional training of complex models. In this
work, we provide a lightweight label error detection solution.

Recent filtering work has explored the interaction between memorization and noisy labels [27} 52].
The memorization hypothesis posits that over-parametrized neural networks begin by learning the
easier, dominant patterns before overfitting to the more difficult patterns. With the intuition that
mislabeled samples are more difficult to learn, many methods have been developed to mitigate noisy
labels based on training dynamics (56, 53} 27, 23]

We propose a method for noisy label detection based on tracking per-sample neighborhood dynamics
during neural network training. Local Consistency across Training Epochs (LoCaTE) combines
local neighborhood information on training samples across different training epochs. We track two
signals: (1) whether a sample’s prediction disagrees with the plurality label of its k-nearest neighbors
in the current logit space, and (2) the degree to which a small augmentation of the input shifts its
predicted label distribution. Intuitively, both metrics measure how the model’s learned mapping
stretches or compresses distances in a sample’s immediate neighborhood, either across the nearest
neighbors (LoCaTE-M) or under infinitesimal perturbations (LoCaTE-P), thereby quantifying how
local distances scale and how decision boundaries evolve in the representation space. As outlined
in we record these signals during training. If a small subset (< 5%) with clean labels
is available, we can fit a lightweight logistic regressor to generate a probability of a sample being
mislabeled. We later ablate this clean subset by choosing the epochs of interest heuristically.

We evaluate LoCaTE on four benchmark noise regimes (symmetric, asymmetric, instance, and
human) on CIFAR-10/100 using two complementary metrics: F for direct label-error detection,
and downstream test accuracy when training on a filtered dataset. We then conduct ablations to
evaluate the sensitivity of LoCaTE to hyperparameters, including one on Clothing-1M [30] in the
absence of clean labels. We find that LoCaTE has competitive F; scores, while adding comparatively
little training overhead and maintaining robustness to hyperparameters.



Contributions The contributions of this paper can be summarized as follows.

1. We introduce LoCaTE: a class of easy-to-measure signals integrating local information and
training dynamics.

2. We provide both theoretical and conceptual justification for these metrics with connections
to the optimization landscape of label noise.

3. We empirically evaluate two instances of LoCaTE on CIFAR-10/100, showing that they
establish competitive results in both £ and downstream accuracy.

4. We demonstrate that LoCaTE is robust to variation in hyperparameters.

2 Related Works

The simplest example of label noise is class-conditioned noise (CCN), which assumes that the
probability that a sample’s noisy label depends on its true class and is independent of the instance (the
feature): Pr[Y]Y, X] = Pr[Y|Y]. In other words, the change in labels is governed by a transition
matrix 7" whose entries are 7; ; = Pr[Y = j|Y = i]. Other techniques have been proposed to
specifically handle the more realistic instance noise, where T' = T, varies per instance. We outline
some of the aforementioned techniques in the remainder of this section, referring the reader to Song
et al. [44]], Yuan et al. [S5] for a broader overview of literature on noisy labels.

Loss Functions In general, one class of methods intended to mitigate label noise design robust loss
functions—e.g. symmetric losses are provably tolerant to class-conditioned noise [9] but often exhibit
slow convergence. Interpolative losses interpolate between two loss functions: Generalized Cross
Entropy (GCE) [38]] interpolates between MAE and cross-entropy (CE) via a Box—Cox transform,
yielding improved downstream test accuracy. One can also interpolate in a different fashion between
MAE and CE, yielding the Generalized Jensen-Shannon loss [7]. Given knowledge of the transition
matrix, backward loss correction can “undo” label flips [36], and numerous works aim to estimate
T itself [29,153L157, 151, [15]. In practice, loss-based methods are easy to implement but suffer from
convergence and training difficulties. Moreover, they do not address the direct question of detecting
and removing label noise: is a given sample mislabeled?

Dynamics-aware Algorithms Another class of methods that does not detect label noise directly
involves dynamics-aware training algorithms: early stopping provably and empirically prevents
memorization of noisy labels in over-parameterized nets [25, 56], and tracking how quickly each
sample’s prediction stabilizes over epochs yields another filter-based approach [53].

Data Filtering via Training Dynamics Training dynamics rely on a signal that evolves over
training epochs to extract information about training samples. While dynamics-aware training
algorithms use signals to inform early stopping, regularization, etc, dynamics can also be used to
predict whether a specific sample is mislabeled. Some dynamic-signal methods use training-time
margins

My(z,9) = fi(z)5 — max fi(z);
J#y

averaged over epochs: AUM thresholds this mean margin to flag noise [37]], and DynaCor refines
this with discriminative classification [[18]. While they are also training dynamics methods, these
approaches focus on detection and so they can also be evaluated as binary classifiers (accuracy,
AUROC, F}) rather than by downstream test accuracy. Our proposed method LoCaTE falls into this
category — leveraging information from across epochs for maximal performance. The multi-epoch
condition will be relaxed later, demonstrating competitive performance when only a single epoch is
used as well.

Data Filtering via Clusterability To detect whether a specific sample is mislabeled, one can look
at the sample’s nearest neighbors in some appropriate embedding space. Nearest-neighbor-based
filters assume clusterability in some embedding: Deep k-NN [2] and SimiFeat [61,60] apply majority
voting in logit or pretrained feature space to spot mislabeled samples.



LoCaTE uses a similar framework, aggregating labels from neighbors computed using the model’s
own logit embeddings. The method’s novelty lies in its ability to combine information from different
epochs, with the ability to identify critical epochs. By providing a lightweight classifier, not only can
LoCaTE be applied on further training instances, but the simple classifier can also be used to gain
insights into the interaction between noisy labels and training dynamics. More generally, LoCaTE
provides a class of flexible methods that can be fine-tuned for various learning tasks, noise regimes,
and datasets.

3 Methods

Let X be our input (feature) space, and let ) = {1,...,C} be our output (label) space. Let
D = {(x;,7;)="} be our noisy training set, where §; € {1,...,C} represents the noisy label.
The corresponding true labels are denoted by y;, and also lie in the discrete space {1, ...,C}. This
assumption is known as closed label noise [45]].

The classical supervised learning task is to learn a classifier f : A — ) which minimizes
E(z,)~p[l(f;z,y)]. By abuse of notation, our classifier f will produce a probability distribu-

tion on ). In other words, f : X — A®. We will use ¢ to denote our training epochs, which range

fromt = 1to ¢t = T. The model f; is the model obtained after the ¢-th epoch of training. Let g],gt) to
denote the prediction of the model f; of the sample x;:

3, = argmax, ().
Our proposed signals will take the following general form, capturing information about the training
evolution (epochs) per data sample.

Definition 3.1 (LoCaTE Signal). Let = be a training sample and let ¢ be a training epoch. Given P;
a probability distribution on X and d a metric on A“, we define the training signal associated with

Pi(z) as
St(x) :Ez’NPt(m) [d(ft<x)’ft(x/))] (D

The intention here is that P;(x) is a probability distribution that is nearby to « at epoch ¢, which
changes dynamically over time. The samples =’ € P,(x) are intended to be both semantically and
geometrically close to x, particularly at certain critical epochs (related to overfitting). For cleanly
labeled samples, we expect nearby samples to have nearby predictions. Mislabeled samples often
create bubbles of their noisy class surrounded by regions of their true class [59], and are often found
closer to a decision boundary between two classes [42]. As such, we expect the signal values to be
significantly higher, provided that the perturbations are not too small.

We note that there is a connection between the perturbations here, and adversarial attacks [[10].
However, in our case, these perturbations are intended to be somewhat random. Fawzi et al. [8] show
that for random perturbations to elicit similar adversarial phenomena, they would need to be an order
of magnitude of the square root of the relevant dimension. Hence, our methodology leverages small,
semantic-preserving perturbations — well below the O(\/&) adversarial threshold, to robustly detect
local instability in high-dimensional embedding spaces without inadvertently triggering adversarial
effects.

Definition 3.2 (Dynamic Neighborhood of a Training Sample). Given a training sample x at time ¢,
we define its k-Neighborhood N i, as the k training samples 2’ € D with the nearest images to that

of x, where the images are generated by f;.
Mathematically,

Nigo(x) = argming || fo(z) — fu(a")l2, @
where f; refers to the model’s logits at training epoch ¢.

With this notation, we are ready to introduce our metrics. The first metric, known as the majority
metric, focuses on the predictions of the neighbors.
Definition 3.3 (Majority Metric). We define the majority metric, maj, (%), as the indicator variable

of whether the label assigned by f; to x agrees with the plurality (mode) label among its neighbors.
That is,

maj, () = 1[§ # mode ({7 : 2’ € N x(2)})]- 3)



Note that this can be clearly written as a LoCaTE signal. Let P, ; () denote the uniform distribution
over the & nearest neighbors NV, () of the sample x at epoch ¢. Define the distance metric

dmaj e k(fe(2), fr(2))) = l{arg max ft(c)(:zr) £ arg max ft(c) (x')},

where ft(c) (z) is the logit assigned to class ¢ by the model f;.

With this choice, the generic training—signal template

St ((E) = ]Ex/NPt,k (z) [dmaj,t,k(ft ((E)7 ft (1'/))}
reduces to the fraction of neighbors whose predicted label disagrees with that of z. We use this
continuous version during training as it gives better single-epoch thresholding properties.

Definition 3.4 (Local Perturbation Metric). Let G be a space of image transformations g : X — X.
The local perturbations metric is given by

per, o(x) = Egeqo) [ fe(x) — fe(g(x))]l1]. “4)

Consider the case where GG consists of common image augmentations [[16] such as random crops,
rotations, and small noises. In this case, G maintains semantic similarity, for many image classification
tasks. Hence a perfect model would be invariant under G: f(z) = (f o g)(z) [22]. One can achieve
such invariance by using equivariant networks in the case where G has a group structure [40]], or by
augmenting the training dataset with elements of its orbit under G [38]].

In our case, we apply neither of those strategies, hence the models we train are susceptible to
adversarial attacks [[10} [30]. The metric per, - (z) hence measures the susceptibility of the model to
perturbations of the form G. In the case where an adversary is allowed to only choose adversarial
perturbations generated by G, a small value of per, () suggests complete invariance. This is used
as a proxy to detect label noise.

4 Theory

In this section, we provide some theoretical evidence which suggests that the values of our signals are
higher for noisy labels. Following Zhu et al. [60], we introduce the assumption of k-NN clusterability.

Assumption 4.1 ((k, d;)-NN Clusterability). We say that a data set D satisfies the clusterability
(k, d) if for all x € D, the feature = and its k nearest neighbors x1, - - - , . belong to the same true
class with probability at least 1 — Jy.

Because we are interested in the setting of over-trained, over-parameterized networks; we will also
assume that the model achieves zero training loss. We discuss how relaxing this assumption affects
the results in the appendix.

Assumption 4.2 (Memorization). For sufficiently large epochs, we assume that y = g.

Theorem 4.1. Assume class-conditioned noise with T} ; > % Then, for o := 1 — T; ; denoting the
noise rate, we have that

. . 2
Prmaj, ,(z) =1 ’y =y| <o+ exp(—?k (3 — ) ) )
Theorem 4.2. Assume symmetric noise with a noise rate o < % Then,
Pr[majnk(m) =0]g+# y} <+ CXP(_C((E‘(_?;(l(>£:1(;I?+>—aC)> (6)

Note that this implies a bound on the AUROC. We defer this result and an extension of theoretical

bounds to the perturbation metric, along with proofs, to[Appendix A]

5 Experiments

Since the intermediate goal is to detect mislabeled samples, we learn a classifier h:
h: (81(1'), 82($)7 e »ST(m)) = {07 1}7

where 1 (positive) corresponds to a mislabeled sample and 0 (negative) corresponds to a clean sample.



Datasets and Noise We evaluate our method on CIFAR-10 and CIFAR-100 with four noise types
[21]], a common setup to evaluate label noise detection and mitigation. The first noise type is
symmetric (class-conditioned noise) with o = 0.6. The second is asymmetric (class-conditioned
noise) with & = 0.3, where the transitions are cyclic to the next class: i — (i + 1) (mod C).
Instance-dependent noise (o« = 0.4) is generated using a random projection of our image space
to capture some features, and human noise (o & 0.09) is obtained using human annotations [47].
Further details of the noising procedure can be found in the appendix. Later in this section, we also
evaluate our methodology on Clothing-1M [50].

Models and Training We train a ResNet-34 [13]] on CIFAR-10 and CIFAR-100 for 200 epochs.
During training, we record our two signals at every 10 epochs and use them to build a classifier. We
also log the signals every epoch for the first 15 epochs; these tend to be extremely informative as we
will empirically demonstrate.

For the classifier h, we use a simple logistic regression model trained on a small labeled subset of D,
where we assume access to the true labels y as well. In the upcoming section, we show how we can
relax this assumption by choosing a threshold-based classifier at an appropriate epoch.

LoCaTE-M, LoCaTE-P are the method using the majority and perturbation metric, respectively.
LoCaTE-M+P is obtained by training a concatenated version of the M, P metrics on a 5% cleanly-
labeled validation set. Note that the assumption of having access to a small, cleanly-labeled gold-
standard for validation is not uncommon [[15}[14]], and can be achieved in the active labeling case. An
explicit statement of the algorithm is stated in Appendix [D]

The perturbation metric LoCaTE-P generates small, semantically-equivalent perturbations of x. We
do this via image augmentations [[16] such as RandomCrop, RandomFlip, RandomRotate which
are not included as data augmentations when training the model, as well as adding small Gaussian
noise with ;2 = 0 and 02 = 0.1. The can be generalized to general image augmentations.

Evaluation Metrics We evaluate the performance of this classifier in two ways:

1. Label Error Detection: We evaluate the F; score of classification against the true labels.

2. Downstream Test Accuracy: We clean the dataset by removing positively-predicted sam-
ples and retrain on this new dataset, measuring the downstream test accuracy.

Baselines We compare our method against the following baselines:

* AUM [37]: computes the average margin over training epochs, treating persistently low
values as a signal of mislabeling. The margin is defined as the logit at the noisy label minus
the largest other logit.

* CL [33]: estimates a joint distribution between noisy and ground truth labels under CCN
assumption, applying the notion of confidence to label quality.

* Deep k-NN [2]: embeds samples using the model’s logits and removes those whose label
disagrees with the majority of their k& nearest neighbors, thereby mitigating label noise.

* CORES [3]: a method of progressively sieving out corrupted examples with a particular
choice for training loss.

 SimiFeat [60]: extracts pretrained features, then applies £-NN majority voting with Bayesian
thresholding on those embeddings to score and filter out likely noisy labels. A key factor in
this method is the clusterability assumption.

* DynaCor [18]: trains an auxiliary classifier on the time-series of per-epoch margins, aug-
mented with synthetic corruptions, to predict whether each sample is clean or mislabeled.

As this is a label noise detection method, we primarily classify using F} score, defined as the harmonic
mean of precision and recall. We favor F; over raw accuracy because label-noise detection is a highly
imbalanced task. A model that trivially predicts “clean” for every sample xcan achieve deceptively
high accuracy while failing to retrieve the mislabeled points of interest due to low noise rates; the F
score penalizes such behavior by weighting precision and recall equally. Accordingly, we report F} as
our primary metric throughout this work, and we also provide the area under the ROC curve (AUROC)



as a complementary, threshold-independent measure of performance, which sheds some light into the
distribution of the signals since AUROC = Pr[signal(mislabeled sample) > signal(clean sample)].

6 Results

6.1 Label Error Detection Performance

In we show the results of using LoCaTE to detect label noise in the four benchmark noise
regimes. We find that our method is in the top-2 for most noise types, and that it outperforms all
baselines in CIFAR-100’s instance noise. More generally, we find that our method performs relatively
well under instance noise, where mislabeled samples often lie close to decision boundaries between
classes [59,42]. By measuring perturbation divergence—that is, the change in model predictions
under semantic-preserving augmentations—we directly quantify the local instability around these
boundary points. Likewise, the majority-voting baseline exploits agreement among nearest neighbors
in the logit space to capture semantic proximity and flag potential mislabels.

Table 1: F} score of classification under different noise types on CIFAR-10 and CIFAR-100,
reporting mean and the standard deviation computed across 3 random seeds. Results of other methods
are obtained from [[18 60]]. The baseline row corresponds to the F score of the constant classifier,
which is equal to li—aa, where « is the noise rate. The top 2 performing methods (up to significance)
for each noise type are bolded.

CIFAR-10 CIFAR-100
Method Sym. Asym. Inst. Human Sym. Asym. Inst. Human

Baseline 75.0 56.2 57.1 16.5 75.0 56.2 57.1 16.5

Deep k-NN 82.4 75.2 63.1 56.2 70.7 56.8 63.4 57.4
AUM 754 +£0.2 464 +£0.3 57.7+£0.0 16.7£0.0|/75.8 £0.2 46.7 £ 0.3 57.8 £ 0.1 58.0 0.2
CL 88.74+0.6 91.9 £ 0.1 825+ 04 57.0+0.3|77.9 £ 04 624 +0.2 673 £0.3 652 +£0.2
CORES (929 4+0.2 26.7+04 492+ 1.2 63.6 £0.6/66.3 +0.4 33.8 £0.5 39.2£+0.5 31.9+0.5
SimiFeat-V [94.6 - 0.1 84.7 0.2 83.7 0.1 69.4 +0.2/88.0+ 0.1 70.3 £0.1 77.8 £0.1 76.2 £ 0.1
SimiFeat-R (92.9 £ 1.8 84.0 £ 0.1 86.9 0.1 68.8 +0.3(89.7 0.1 66.2 +0.1 75.5+ 0.1 77.8 £ 0.1
DynaCor [93.6 +=0.2 942 + 0.5 91.5+ 0.3 72.6 £2.5|91.3 £0.5 79.2 £ 0.6 795+ 1.1 77.3 £ 0.5
LoCaTE-M |91.5+0.3 91.7 £ 0.4 90.1 £0.1 64.5+6.4|89.4+£0.5 83.1+0.5 88.7+0.3 72.1 £0.3
LoCaTE-P |(86.9 £ 0.1 74 0+23 87.7+0.1 51.6+0.3({83.44+0.6 57.9+0.2 81.6 +0.5 71.5+0.7
LoCaTE-M+P|91.5 + 0.0 91.6 £ 0.2 90.3 0.2 62.9 +0.2|89.6 £ 0.1 82.9+0.2 88.5+- 0.1 72.6 £0.2

6.2 Accuracy of Downstream Models

One common application of data filtering is to train downstream models on the filtered data. We train
models using data filtered from LoCaTE-M on CIFAR-10. In[Figure 2] we find that test accuracy
increases monotonically until reaching around 60% removal rate, corresponding to the rate of noise
in the actual dataset (symmetric noise). This method also achieves competitive downstream training
accuracy: removing 60% of samples then training achieves a 7% improvement over using Generalized
Cross Entropy’s truncated loss trained on the noisy data. A smaller 2% improvement is obtained for
pretrained models. Given that the F scores are high, removing the highest percentiles of data leads
to mostly removing mislabeled samples, and this leads to improved downstream generalization. Past
the a% point, we begin increasingly removing clean samples, which leads to a drop in performance.
When removing almost all data, we see the expected convergence between Cross Entropy and
Generalized Cross Entropy.

6.3 Single-Epoch LoCaTE

In this section we examine several strategies for selecting a critical epoch—a single epoch ¢ at which
the signal s;(x) is measured. As discussed earlier, LoCaTE-M is relatively robust to this choice: with
an appropriate epoch, one can attain nearly the same performance (in terms of F score) as when
aggregating information across all epochs.

Empirically, the epoch that maximizes the F} score typically coincides with, or lies very close to,
the epoch of peak validation accuracy on the (noisy) training data. illustrates this trend by
plotting epoch-specific F scores over the first 50 training epochs.
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Figure 2: Test accuracy after filtering with LoCaTE-M and downstream training on CIFAR-10 with
symmetric noise.
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Figure 3: I score across epochs for asymmetric noise (o« = 0.3). The optimal F) is obtained by
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is computed by labeling as noisy the top a% of samples ranked by s;(x). We restrict ¢ to the range
1 <t < 50 and display the validation score across clean and noisy CIFAR-10.

In[Table 4] and [Table 3| we compare various epoch-selection heuristics for symmetric and asymmetric
noise on CIFAR-10 respectively. The percentile F score is obtained by marking the top a% of
scores as noisy.

Across these noise regimes, selecting the epoch of highest (or second-highest) validation accuracy
yields the smallest drop in F} relative to the full logistic-regression classifier. In other words, a
simple validation-based heuristic is sufficient to match LoCaTE-M’s performance while avoiding the
computational cost of aggregating signals across all epochs. See Appendix [D.T]for more details.

6.4 No Clean Labels

We also evaluate our method on Clothing-1M [30], a dataset of a million clothing items across
14 classes. The majority of the dataset comes without any clean labels. In fact, the noise rate in
Clothing-1M is estimated to be around 38.5% [43]]. This experiment allows us to simulate the efficacy
of LoCaTE in two important regimes: larger, real-world datasets, as well as the lack of clean labels
(we do not use the Clothing-1M clean validation subset for training our classifier). We simply average
the LoCaTE-M metrics across different epochs, and remove the values with the top p% values, and
then re-train and evaluate the downstream test accuracy on Clothing-1M’s clean validation set.



Table 2: CIFAR-10 under asymmetric (o = 0.3) and instance (o« = 0.4) noise. Means + s.d.; AF}
is relative to logistic regression on all epochs. The Best Epoch’ column corresponds to different
heuristics for selecting the single best epoch to compute LoCaTE in the absence of labeled data.

Method Asymmetric (o« = 0.3) Instance (o« = 0.4)
Best Epoch  Percentile Fy (%) AF; (%) Best Epoch  Percentile Fy (%) AFy (%)

Agreement Max 40.0 £ 10.0 46.4+£0.3 —48.14+0.4(43.3 £ 7.6 57.1+0.3 —36.9+ 0.4
Agreement Min 0.0+ 0.0 61.2+0.7 —31.74+0.6| 0.0+ 0.0 85.5+0.2 —5.54+0.3
Entropy Max 0.0 + 0.0 61.2 +0.7 —31.74+0.6| 0.0+ 0.0 85.5+0.2 —5.54+0.3
Entropy Min 40.0 + 10.0 46.4 £ 0.3 —48.14+0.4(43.3£7.6 57.1+0.3 —36.9+ 0.4
First Train Decrease 17.0£ 7.0 46.3 £ 2.8 —48.3+3.1(31.7+£ 7.6 57.1+£0.3 —36.9+0.4
Noisy Validation Max 4.0+ 0.0 85.2+ 0.6 —4.94+0.8|27+0.6 88.8+ 0.4 —-1.8+04
Noisy Validation Post Max | 5.3 + 0.6 84.9+1.2 —5.2+15|4.0+£0.0 87.4+0.5 —3.34+0.5
Clean Validation Max 2.7+1.2 79.6 £ 4.3 —11.14+4.8| 2.7+ 0.6 88.8+£0.4 —-1.84+04
Clean Validation Post Max | 4.3 4+ 0.6 85.7+0.4 —4.24+06 | 3.7+ 0.6 88.0 £ 0.6 —2.71+0.6
Overall Best Percentile Fy | 4.7 + 0.6 85.8 0.4 —4.14+0.7|23+0.6 88.8 +0.3 -1.84+0.3
Logistic Regression — 89.5 +£0.3 — — 90.5 £ 0.1 —

Table 3: Test accuracy of various methods when trained on Clothing-1M using ResNet-50. Results
are displayed in mean =+ stdev, with loss correction results taken directly from [36]]. LoCaTE-M (p)
trains a model, removes the samples with the top p% LoCaTE metrics (averaged acoss epochs), and
then retains using CE.
Cross Entropy  GCE (¢=0.7) Backward T Forward T LoCaTE-M (p=10%) LoCaTE-M (p =20%) LoCaTE-M (p = 40%)
Test Accuracy 67.9+0.3 69.0+0.0 69.1 69.8 69.9+0.8 69.34+0.2 69.6 +0.2

While the averaging is a basic priot that does not take into account the results from Section[6.3] the
results in Table[3]still demonstrate that LoCaTE outperforms some noise-aware loss functions.

7 Conclusion

Our approach connects neighborhood-based voting methods, perturbation-based sensitivity, and
training dynamics signals to measure how local distances scale in the learned representation, yielding
a robust noisy-label detector. By combining spatial consistency with dynamics over epochs, we
achieve [ performance across four baseline noise patterns, often surpassing much more complex
models and methodologies. One advantage of this dual-signal design is that it adapts flexibly to
various noise structures and hyperparameters, demonstrating that local curvature in logit space is
a powerful indicator of mislabels. Our method is relatively best suited for instance noise, where it
relatively performs better than other noise types.

Limitations Our pipeline relies on a small clean validation set to train the final logistic-regression
classifier, which may introduce labeling costs and risk of misalignment if the validation data poorly
reflects the training noise. As a future study, it would be of interest to investigate the impact of
using incorrect labels to train this lightweight classifier. In addition to the base model, fitting the LR
detector adds a slight computational overhead—both in terms of neighbor searches (and their storage
per epoch), but it remains efficient relative to other methods.

Future Work Future work could explore relabeling instead of removing, as well as the reweighting
data by their likelihood of cleanliness, 1 — h(x), instead of completely removing it. A critical question
for future work is how noise-mitigation methods affect fairness across subpopulations. Loss-based
approaches [58] and early stopping [56] are designed to prevent overfitting to “difficult” or noisy
labels, yet those very examples may correspond disproportionately to minority or underrepresented
groups. Investigating group-wise performance and developing fairness-aware noise filters will
be essential to ensuring equitable model behavior. In the case of LoCaTE-M, we observe that
removal of a large percentage of data in CIFAR-10/100 leads to amplifying noise in certain classes.
Understanding how noise removal methods create or amplify disparities across classes is an area of
future work. Finally, in the absence of clean labels, the methodology in Table [3|averages LoCaTE-M
values across epochs. However, as Section [6.3]suggests, there are more optimal weightings that can
be deduced without clean labels. We hope to systematically address this question of optimal epoch
and percentile selection in future works.
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A Theoretical Results

Lemma A.1 (Bernoulli’s Coupling). Let ¢ € (0,1). Let X;,--- , X} are independent Bernoulli
variables with parameters p; such that ¢ > p; for all 4, and S}, = X7 + - - - + X}, be their sum. Then
for all m, we have that

Pr[S; > m] < Pr[Bin(k, q) > m].

Proof. This is a classic application of coupling. Generate Uy, - - - , U, i.i.d. drawn from the uniform
distribution on [0, 1]. Set X; = 1[U; < p;] and ¥; = 1[U; < ¢]. Note that since ¢ > p;, we have that
X; <Y; as. since the event [U; < p;] is a subset of the event [U; < g|. Summing up this inequality,
we get that

Sk =>_ Xi <Y Vi~ Bin(k,q).

Hence for any threshold m, the event [S; > m] is a subset of the event [Bin(k, q) > m], and the
inequality follows. O

Theorem A.2. Assume class-conditioned noise with 75 ; > % One has that

2
Pr[majtk —1’y_y}<§k+exp( 2k(%— ) ) @)
Theorem A.3. Assume symmetric noise with a parameter o < £=*. One has that
(C = 1)k — aC)?
Pr =0 < 8
[maj, ;(x) = 0|§ # y] k+exp< 516 —T7(C —Th T a0 (8)
Proof of[Theorem A.2] Let X; = 1[y; # y|y = y|. Let A be the event that y = y; = - -- = y;,. Note

that by the union bound, we have
E[X;|A] = Pr[g; # yly = y, Al = Pr[g; # yilg = y, A] < o

Moreover, those events are independent, so

Pr(Si > £17 = 4, 4] < exp(~2k(5 — a)?).

Note also that Pr[A°] < §j, by the clusterability assumption. Combining this with the law of total
probability, Pr[Sy > %\g = y] can be written as

Pr[Sy >§\ y, A] Pr[A] + Pr[S), >

[\D\??‘

|7 =y, A°] Pr[A°] < exp(— 2/{(% —a)?) + 6.

Finally, observe that maj, () = 1 implies that g is not the mode of its neighbors, and so at least
half of the X;’s occured. That is,

l\v\pv
Qﬁz

1
Pr[maj, , (z) = 1| = y] < Pr[S), > =y < exp(f2k(§ —a)?) + 0y,
as desired. O

Proof of [Theorem A.3] Similarly, set X; = 1[g; = y|g # y]. Note that maj, ; (x) = 0 implies that
is the mode among the neighbors, and so at least g of the X;’s must occur. Similarly conditioning on
A, we see that the probability of X;’s occurring corresponds to the probability of a label corruption
to the class y, which, which is upper bounded by &% in the symmetric setting. Since %7 < &, we
apply Chernoff to get
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bl ((C — 1)k - aC)’?
Pr{5k22‘y7ﬁyv A} < eXP<_0(01)[(cl)k+aC}>'

The §; comes from the law of total expectation, as usual. O

A.1 Continuous LoCaTE

We can also relax the assumption and prove an analogous result for another LoCaTE signal. We first
define the relaxation of complete memorization.

Definition A.1 (e-Memorization). We say that model f trained on a dataset D has e-memorized its
training dataset D if sup(, ,yep [ f(2) —y| < e

We consider a continuous version of the previous signals, given by the following definition.
Definition A.2 (Neighborhood Metric). We define a neighborhood-based distance metric as

m(e) =1 3 17~ Sl ©)

z, ENy

In the following results, we interpret the true and noisy labels y and ¢ as one-hot encodings. The
noise in this case in generated by symmetric noise with a parameter a.

Lemma A.4. Let D be a dataset. Assume that the model f has e-memorized D. If x is cleanly
labeled (so § = y), then for any s > 0, we have that

Pr[ng(z) > 2¢ + (1 + s)av/2] < 6, 4 exp(—2ks?a?). (10)

Proof. By the triangle inequality, we have that

el

nk(fr):% Yo @) =l < o 0 (@) =gl + 17— Gill + 115 — f(za)l)-

T ENG i €Nz

The first and last terms are upper-bounded by ¢ each, following the memorization assumption. We
further expand the middle term via the triangle inequality:

1 . 1 - -
z > lg—all < z > g =yl + ly = will + v — Gil)-
T, ENg 2, ENg

The first term is zero, since x is a clean label. The second term measures the difference between a
point’s label and its neighbors’ labels, and is controlled by the clusterability assumption. The final
term is controlled by the noise rate. This,

1 _ _
ni(z) < 26+ - > U7 =yl + llys = gill)-
;€N
Define S = £ - (15 — yll + llys — %ill), let A be the event that yy,- -,y all equal y.

Conditioning S on B, the second term disappears and we are left with a Bernoulli. Note that
Pr[A] < d, and by the law of total expectation:

Prng(x) > 2¢ + (1 + s)av/2] < 8 + Pr[Bin(k, ) > k(1 + s)a],

which we can upper bound via Chernoff to be

Sk + exp(—2ks?a?).
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A.2 AUROC Bounds

We can also use these results to get AUROC bounds.
Lemma A.5. Let (X,Y) be a random pair with X, Y € {0, 1}. Define

a =Pr[X=1|Y =0], g =Pr[X=0]Y=1].
If the classifier’s score is the binary variable X, then the area under its ROC curve satisfies
AUROC = 1 — O‘gﬂ.

Proof. Take two independent copies (XY (1)) and (X(© Y (0) of (X,Y), conditioning on
Y =1 and Y(© = 0. By the “probability-of-ranking” definition,

AUROC = Po{x® > X O] %Pr[X(l) =xO0].

Because X is binary,
PX® > XO] = (1 - B)(1 - a),
the tie events are (1, 1) and (0, 0) with probabilities (1 — )« and 5(1 — «), respectively. Hence
a+f

AUROC:(1—B)(l—a)—&—%[(1—6)&—&—5(1—04)] =1- 5

Corollary A.5.1. Under symmetric noise with o < L one has that

2
AUROC > 1 — §;, —eXp(—ka(% —04)2) —exp(— ((C— l)k—aC) ) .

C(C-1)[(C = 1)k +aC]
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A.3 Additional Theory

In this subsection, we provide additional theory that relaxes the previous assumptions. Most impor-
tantly, we relax the memorization assumption and provide bounds on the performance of LoCaTE
relative to the empirical loss of the model.

Lemma A.6 (CE tail bound). Let p € (0, 1] be the model probability assigned to the evaluated class
and ¢ = —log p its cross-entropy (natural logarithm). If E[¢] < &, then for any 7 € (0, 1),

€

Prlp<7] = Pr[¢{ > —log7] < .
—log T

In particular, for any 7 € (1/2,1), Pr[p < 7] < ¢/(—log7) and hence Pr[arg max.p. #
(evaluated class)] < g/(—log 7).

Proof. Apply Markov’s inequality on the nonnegative ¢: for a > 0, Pr[¢ > a] < E[{]/a. Set
a= —log7. If p > 7 > 1/2then p > max.., p. (since ) p. = 1), so the argmax is the evaluated
class. O

Theorem A.7 (Clean false positives under low CE). Assume CCN with per-class noise < o < % and
(k, &) )-clusterability. Fix any 7 € (1/2,1). Let Lejean := E[—logp, (X) | clean] and let L be the
empirical training CE at the epoch. Then for any clean sample (x, y),

Lclean < L

Prmajy(¢) = 1] < & +exp[-2k(3-¢,)"], @ == a+ (1-a)

% clean labels

logT ot —log7’

In particular, if ¢ < 3, the clean FPR decays as e~ *(%).

Proof. Let B be the clusterability event that the k neighbors of x all have true label y; Pr[B] > 1— 0.
Conditional on B, a random neighbor Z is clean with probability > 1 — o and mislabeled with
probability < « (by CCN).

For a clean neighbor Z, Lemma with threshold 7 > 1/2 gives

Lclean

Pr[§(Z) # y | clean] < Pr[p,(Z) < 7 |clean] < log -
—logT

For a mislabeled neighbor (worst case for us), upper bound the disagreement with y by 1. Therefore,
under B,
Lclean

'—logT

Prig(Z) #y] < a1 + (1-q)

= (qr.

Assuming conditional independence of the k& neighbor predictions given B, the number of neighbors
disagreeing with y is Bin(k, ¢, ), hence

Pr[maj,(x) = 1| B] = Pr[Bin(k,¢,) > k/2]

IN

exp[ — 2k (1/2 — ¢,)?]

by Hoeftding. Unconditioning adds the J;, term. Finally, L = (1 — a)Lejean + aLpis implies
(1 = @) L¢jean < L, yielding the displayed bound. O

B Critical Epochs

In this section we examine several strategies for selecting a critical epoch—a single epoch t at which
the signal s;(z) is measured. As discussed earlier, LoCaTE-M is highly robust to this choice: with
an appropriate epoch, one can attain nearly the same performance (in terms of F; score) as when
aggregating information across all epochs.

Empirically, the epoch that maximizes the F} score typically coincides with, or lies very close to,
the epoch of peak validation accuracy. in the Appendix illustrates this trend by plotting
epoch-specific F scores over the first 50 training epochs.

We further compare the best single-epoch classifier with the full logistic-regression classifier used in
LoCaTE-M. [Table 4] and [Table 3| report results for symmetric and asymmetric noise, respectively,
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Figure 4: F score across epochs. The optimal F is obtained by choosing, for each epoch t, the
threshold that maximizes the F; score of s;(x). The percentile F is computed by labeling as noisy
the top a% of samples ranked by s;(x). We restrict ¢ to the range 1 < ¢ < 50.

Table 4: CIFAR-10 (symmetric noise). Means and standard deviations are shown; AF} is measured
relative to the logistic-regression classifier trained on scores from all epochs.

Method Best Epoch  Percentile F (%) AFy (%)
Max Agreement of LoCaTE-M ~ 38.3 £5.8 75.2+0.3 —-17.8+0.3
Min Agreement of LoCaTE-M 0.3£0.6 86.4 + 2.0 —5.6=£22
Max Entropy of LoCaTE-M 4.3+£25 88.0 £ 2.0 —-3.8£21
First Drop in Train Acc. 30.3+224 79.5£ 7.8 —13.1+8.5
Max Validation Acc. 3.3+23 88.9+0.5 —2.9+0.5
2nd-Highest Val. Acc. 5.3+ 1.5 89.2+0.4 —2.5+0.3
Logistic Regression — 91.5+0.1 0

Table 5: CIFAR-10 (asymmetric noise). Means and standard deviations are shown; A F} is measured
relative to the logistic-regression classifier trained on scores from all epochs.

Method Best Epoch  Percentile F1 (%) AFy (%)
Max Agreement of LoOCaTE-M  41.7 + 7.6 46.2+0.2 —48.0+0.2
Min Agreement of LoCaTE-M 0.0+£0.0 59.7+£1.9 —-329+21
Max Entropy of LoCaTE-M 0.0£0.0 59.7£1.9 —32.94+2.1
Min Entropy of LoCaTE-M 41.7£7.6 46.2+£0.2 —48.0+0.2
First Drop in Train Acc. 23.0+15.7 54.6 + 14.7 —38.6 = 16.6
Max Validation Acc. 2.7+1.2 79.8 £ 4.5 —-10.3+4.9
2nd-Highest Val. Acc. 4.3+1.2 83.1+24 —6.7+2.6
Logistic Regression — 89.0£0.1 0

under a variety of epoch-selection heuristics. The percentile F score is obtained by marking the top
a% of scores as noisy.

Across both noise regimes, selecting the epoch with the highest (or second-highest) validation
accuracy yields the smallest drop in F} relative to the full logistic-regression classifier. In other
words, a simple validation-based heuristic is sufficient to match LoCaTE-M’s performance while
avoiding the computational cost of aggregating signals across all epochs.
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C Robustness to Hyperparameters

We demonstrate the robustness of our method to the relevant hyperparameters. There are two model-
related hyperparameters involved: the number of samples used to train the classifier, and the epochs
at which the data is collected.

90 100

85 90 3 o g

80
g 75 Noise Types S 80 Noise Types

o o—e Sym. *—s Sym

g 70 T T ° + { e AZym. g 70 o—s Asym.
% e—e Inst. % oo Inst.
= 65 o—e Human o 60 e—e Human

60 —

55 M 50

50 40

0 10 20 30 40 50 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k (number of neighbours) Test Set Size
(a) F1 as a function of the number of neighbors k. (b) F1 as a function of test set size.

Figure 5: LoCaTE-M is robust to (a) the choice of k and (b) the amount of gold-standard data
available for training the classifier h.

shows that increasing the number of nearest neighbors used in LoCaTE-M does not have a
significant impact over the F} obtained: with the largest change observed for human noise with an
around 5% increase in Fj. Even then, this improvement is not monotonic, suggesting that the hyper-
parameter k can be fine-tuned to obtain optimal performance. Likewise, demonstrates,
with confidence intervals, that training the classifier h on a very small, cleanly-labeled subset of the
data, is sufficient.

The use of logistic regression allows user to shed light on the inner-workings of the dataset-specific
noise by reviewing the regressor’s weights. A natural question to ask is whether a classifier is
necessary to achieve this result. In other words, can applying a one-dimensional threshold over our
metric at single epoch achieve similar (or better) F; scores. Our results, summarized infor
LoCaTE-P, show that an almost identical F} is obtained at the best epoch. We discuss strategies to
discover this best epoch in Section[6.3] This epoch is generally early on, characterizing the critical
phase where the model goes from learning new patterns to memorization. Moreover, the primary
impact of the classifier is actually on the AUROC, as the F} often does not improve by much.

Table 6: Epoch-based vs. classifier-based performance of LoCaTE-P across noise types (F; and
AUROCQ).

Dataset Metric Sym. Asym. Inst. Human
Best Epoch Fy (%) 89.5+£03 87.7+06 885+02 644+£54
Classifier F1 (%) 91.5+03 91.7+£04 90.1 £02 645+64
Absolute AF (pp) 20£05 39+£08 17+£03 01+£12

CIFAR-10 Relative AFy (%) 22+05 45+£09 19£04 00=£18

Best Epoch AUROC (%) 869 +0.2 87.0+4.4 90.0£0.1 76.6 27
Classifier AUROC (%) 944 +12 966+1.7 962+08 86.5+45
Absolute AAUROC (pp) 7.5+10 96+28 62+08 99+£138
Relative AAUROC (%) 8.6+1.1 11.2+3.7 69£09 129+1.8

Best Epoch Fy (%) 89.4+03 809+6.1 882401 70.7+0.1
Classifier Fy (%) 899+ 12 860453 8924+ 1.0 72.14+03
Absolute AF; (pp) 05+09 50+09 10+09 15+02
Relative AF} (%) 06+11 63+15 124£10 21403

CIFAR-100

Best Epoch AUROC (%) 85.7+0.8 91.7£0.6 903+£02 79.6 1.7
Classifier AUROC (%)  95.7+£0.2 985+02 972+£0.0 91.9+0.6
Absolute AAUROC (pp) 10.0+09 68+08 69402 123+22
Relative AAUROC (%) 11.6+12 74+10 7.6+02 155+3.1

These results underscore a practical strength of LoCaTE: its performance is largely insensitive
to needing the entire training trajectory. One epoch, chosen carefully, suffices. Because a near-
optimal F is achieved with a single early checkpoint, practitioners can skip most signal logging,
hyperparameter sweeps, and extended over-training, use only a tiny clean subset, and still enjoy
similar F; scores from the logistic regression trained across all epochs. This robustness makes
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LoCaTE attractive for real-world pipelines where compute budgets and annotation resources are tight.
In the appendix, we detail how this optimal epoch can be found in terms of classic training signals.
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D Experimental Details

All experiments were conducted using a node of up to 8 A100 GPU’s. Unless othewise specified, all
standard deviations are computed using 3 random seeds.

D.1 Algorithmic Description

While we initially described the algorithm, the pseudocode for LoCaTE is provided here.

Algorithm 1 LOCATE EXPERIMENTAL PIPELINE

Require: Noisy data D = {(z;, §;)}/_,, epochs T, log interval At = 10
Require: k nearest-neighbors, perturbation family G, gold-subset size p%
Phase 1 — Backbone training & signal logging

1: fort < 1to T do > # SGD over noisy data
2 One epoch of SGD on D > # cross-entropy loss
3 if ¢ < 15 or ¢t mod At = 0 then > # sparse logging schedule
4 for all (2;,7;) € D do > # compute per-sample signals
5: g)i(t) « argmax, fo,(Ti)c > # predicted label
6 maj, ;. (;) 1[;&1@ # modey en, ;. (z:) ?Jj(-t)}

7 per, (i) < Egnc [l fo, (zi) — fo,(92:) 1]

8 Store s¢(x;) « (majtﬁk,pertyc)

Phase 2 — Train the noise-detector
9: for all x; do
10: (@) < [se,(x3), ..., 50, (25)] > # trajectory features

11: Select p% gold subset with trusted labels y;
12: Train logistic regression h on {(s(z;), 1[g; # vi])} > # predict noise
Phase 3 — Clean dataset & retrain
13: Dejean {(CL‘Z, gz) | h(s(ajz)) = O}
14: Re-initialize # and retrain fy on Dejean
15: fp« + best checkpoint by validation accuracy
return detector h, cleaned model fy-

D.2 Hyperparameter Configuration

All runs share a single training recipe so that performance differences are attributable only to the
noise settings.

* Backbone & init. A ResNet-34 [13] initialized with ImageNet weights

(initialization=pretrained).

Loss. Standard cross-entropy (loss_fn=cross_entropy).

Optimizer. Adam [19] with learning rate 10~3 and weight decay 0.001.

Training Batch size. 256.

Inference Batch size. 1024 used for forward passes to compute neighborhoods and LoCaTE

signals.

* Training schedule. 250 epochs. epoch_skip=5, early-epoch cutoff at 15.

* Embedding. Dynamic feature obtained by the logit space of the model, with snapshots every
epoch_skip epochs; computing k£ = 50 neighbors using FAISS [6].

D.3 Noisy Data

In addition to symmetric and asymmetric noise, which are special classes of class-conditioned noise,
we also evaluate our method under two complementary corruption regimes.

(i) Human noise. We use the crowdsourced labels released by [Wei et al.| [47], which capture realistic
annotator mistakes.
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(ii) Instance-dependent noise. Following Xia et al. and|Zhu et al.|[49]|61]], we corrupt an average of
o = 0.4 of the training labels with the projection-matrix scheme:

1. Draw a per-instance flip probability g, ~ Njo (7, 0.1%).

2. Sample a projection matrix W € R¥*X with W;; ~ N(0,1).

3. Compute class scores p = g, SoftMax(z,, W), set p,,, = 0, and renormalize so ), pr = 1.
4. With probability 1 — g¢,, keep the clean label; otherwise draw the noisy label g,, ~ Cat(p).

The use of the same projection matrix W implies that similar features have similar noise patterns.
For more, see Appendix D from [61]].

D.4 Clothing-1M

For the Clothing-1M experiment, we use the labels from the dataset itself, which are estimated have
a noise-rate of 38.5%. This is meant to simulate real-world noise. The experimental procedure is
nearly identical, except that we use a ResNet-34 [13] with a SGD optimizer and a learning rate of
10~2. Due to the size of the dataset, we only compute the nearest k = 15 neighbors.

22



	Introduction
	Related Works
	Methods
	Theory
	Experiments
	Results
	Label Error Detection Performance
	Accuracy of Downstream Models
	Single-Epoch LoCaTE
	No Clean Labels

	Conclusion
	Theoretical Results
	Continuous LoCaTE
	AUROC Bounds
	Additional Theory

	Critical Epochs
	Robustness to Hyperparameters
	Experimental Details
	Algorithmic Description
	Hyperparameter Configuration
	Noisy Data
	Clothing-1M


