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Abstract

Noisy labels are a pervasive challenge in modern supervised learning, especially1

in high-stakes domains such as healthcare, where model reliability is critical. De-2

tecting and mitigating the influence of mislabeled data is essential to improving3

both performance and interpretability. Building on insights from training dynam-4

ics, we propose Local Consistency across Training Epochs (LoCaTE), a family5

of data-filtering methods that leverages over-parameterized neural networks to6

distinguish clean samples from mislabeled ones. Our approach integrates both7

local neighborhood information and per-epoch behavior to identify noise and en-8

hance robustness. Evaluated on CIFAR-10/100 under four canonical noise regimes9

as well as Clothing-1M, LoCaTE achieves competitive F1 scores and improves10

downstream accuracy by up to seven percentage points. We additionally conduct11

ablations by studying the performance of LoCaTE on a single epoch. These results12

highlight LoCaTE as a practical, low-overhead tool for reliable training on noisy13

datasets.14

1 Introduction15

Supervised learning relies on large, labeled datasets to learn, generalize, and provide useful predictions.16

The accurate curation of such large datasets is often infeasible. As such, real-life applications use17

approximate methods to generate labels, ranging from Amazon Mechanical Turk [50] to keyword-18

based web scraping [3] and the use of pseudo-labels [31]. Unfortunately, prior work has found that19

such labels are noisy — at least 6% of the labels in ImageNet-1k are incorrect [34]. This is not a20

unique occurrence: Clothing-1M [50] exhibits an approximated 38% noise rate, while 20% of the21

labels in WebVision are estimated to be incorrect. The presence of noisy labels in benchmarking22

datasets not only results in an inaccurate estimation of model performance, but also can destabilize23

models trained on such data, leading to a significant drop in performance on the true labels [4]. With24

deep classification models being deployed in safety-critical domains like healthcare, finance, and law25

[11, 39, 23, 1, 26, 32], it is important to learn models which are robust to noisy labels.26

Most work in noisy label detection has followed one of two independent approaches: detecting27

mislabeled samples and filtering them in downstream training [46, 18, 54], or developing training28

algorithms which are inherently robust to label noise [12, 24, 35, 28]. In this work, we focus on29

the former direction, for the following reasons. First, every detection method naturally induces a30

downstream filtering procedure, allowing us to not only improve final model accuracy but also to31

rigorously evaluate detection quality. The impact of removal or relabeling can be further studied,32

e.g. via the use of influence functions [20]. Second, methods to detect and remove mislabeled33

samples have applications beyond just removing such samples when training downstream models.34

Such data-filtering methods shed light on tradeoffs between performance and fairness [41], improve35

future data collection practices, and ensure accurate benchmarking [17]. Finally, by examining which36
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Figure 1: The general workflow for LoCaTE-P. The method first perturbs the sample x using known
affine transforms to obtain x′ and evaluates the divergence between the model’s predictions on x, x′

across epochs, then passes this to a simple classifier. A similar procedure is conducted to obtain
LoCaTE-M, with a different choice of metric, and where the perturbations x′ are the nearest neighbors
of x.

samples are detected as mislabeled, we draw connections to foundational questions in deep learning,37

such as the geometry of the optimization landscape [8, 59] and the generalization behavior of modern38

neural networks [48].39

Existing label noise detection methods can often be computationally expensive, requiring access to40

pretrained embeddings like CLIP [60] or requiring additional training of complex models. In this41

work, we provide a lightweight label error detection solution.42

Recent filtering work has explored the interaction between memorization and noisy labels [27, 52].43

The memorization hypothesis posits that over-parametrized neural networks begin by learning the44

easier, dominant patterns before overfitting to the more difficult patterns. With the intuition that45

mislabeled samples are more difficult to learn, many methods have been developed to mitigate noisy46

labels based on training dynamics [56, 55, 27, 25].47

We propose a method for noisy label detection based on tracking per-sample neighborhood dynamics48

during neural network training. Local Consistency across Training Epochs (LoCaTE) combines49

local neighborhood information on training samples across different training epochs. We track two50

signals: (1) whether a sample’s prediction disagrees with the plurality label of its k-nearest neighbors51

in the current logit space, and (2) the degree to which a small augmentation of the input shifts its52

predicted label distribution. Intuitively, both metrics measure how the model’s learned mapping53

stretches or compresses distances in a sample’s immediate neighborhood, either across the nearest54

neighbors (LoCaTE-M) or under infinitesimal perturbations (LoCaTE-P), thereby quantifying how55

local distances scale and how decision boundaries evolve in the representation space. As outlined56

in Figure 1, we record these signals during training. If a small subset (≤ 5%) with clean labels57

is available, we can fit a lightweight logistic regressor to generate a probability of a sample being58

mislabeled. We later ablate this clean subset by choosing the epochs of interest heuristically.59

We evaluate LoCaTE on four benchmark noise regimes (symmetric, asymmetric, instance, and60

human) on CIFAR-10/100 [21] using two complementary metrics: F1 for direct label-error detection,61

and downstream test accuracy when training on a filtered dataset. We then conduct ablations to62

evaluate the sensitivity of LoCaTE to hyperparameters, including one on Clothing-1M [50] in the63

absence of clean labels. We find that LoCaTE has competitive F1 scores, while adding comparatively64

little training overhead and maintaining robustness to hyperparameters.65
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Contributions The contributions of this paper can be summarized as follows.66

1. We introduce LoCaTE: a class of easy-to-measure signals integrating local information and67

training dynamics.68

2. We provide both theoretical and conceptual justification for these metrics with connections69

to the optimization landscape of label noise.70

3. We empirically evaluate two instances of LoCaTE on CIFAR-10/100, showing that they71

establish competitive results in both F1 and downstream accuracy.72

4. We demonstrate that LoCaTE is robust to variation in hyperparameters.73

2 Related Works74

The simplest example of label noise is class-conditioned noise (CCN), which assumes that the75

probability that a sample’s noisy label depends on its true class and is independent of the instance (the76

feature): Pr[Ỹ |Y,X] = Pr[Ỹ |Y ]. In other words, the change in labels is governed by a transition77

matrix T whose entries are Ti,j = Pr[Ỹ = j|Y = i]. Other techniques have been proposed to78

specifically handle the more realistic instance noise, where T = Tx varies per instance. We outline79

some of the aforementioned techniques in the remainder of this section, referring the reader to Song80

et al. [44], Yuan et al. [55] for a broader overview of literature on noisy labels.81

Loss Functions In general, one class of methods intended to mitigate label noise design robust loss82

functions—e.g. symmetric losses are provably tolerant to class-conditioned noise [9] but often exhibit83

slow convergence. Interpolative losses interpolate between two loss functions: Generalized Cross84

Entropy (GCE) [58] interpolates between MAE and cross-entropy (CE) via a Box–Cox transform,85

yielding improved downstream test accuracy. One can also interpolate in a different fashion between86

MAE and CE, yielding the Generalized Jensen-Shannon loss [7]. Given knowledge of the transition87

matrix, backward loss correction can “undo” label flips [36], and numerous works aim to estimate88

T itself [29, 53, 57, 51, 15]. In practice, loss-based methods are easy to implement but suffer from89

convergence and training difficulties. Moreover, they do not address the direct question of detecting90

and removing label noise: is a given sample mislabeled?91

Dynamics-aware Algorithms Another class of methods that does not detect label noise directly92

involves dynamics-aware training algorithms: early stopping provably and empirically prevents93

memorization of noisy labels in over-parameterized nets [25, 56], and tracking how quickly each94

sample’s prediction stabilizes over epochs yields another filter-based approach [55].95

Data Filtering via Training Dynamics Training dynamics rely on a signal that evolves over96

training epochs to extract information about training samples. While dynamics-aware training97

algorithms use signals to inform early stopping, regularization, etc, dynamics can also be used to98

predict whether a specific sample is mislabeled. Some dynamic-signal methods use training-time99

margins100

Mt(x, ỹ) = ft(x)ỹ −max
j ̸=ỹ

ft(x)j

averaged over epochs: AUM thresholds this mean margin to flag noise [37], and DynaCor refines101

this with discriminative classification [18]. While they are also training dynamics methods, these102

approaches focus on detection and so they can also be evaluated as binary classifiers (accuracy,103

AUROC, F1) rather than by downstream test accuracy. Our proposed method LoCaTE falls into this104

category — leveraging information from across epochs for maximal performance. The multi-epoch105

condition will be relaxed later, demonstrating competitive performance when only a single epoch is106

used as well.107

Data Filtering via Clusterability To detect whether a specific sample is mislabeled, one can look108

at the sample’s nearest neighbors in some appropriate embedding space. Nearest-neighbor-based109

filters assume clusterability in some embedding: Deep k-NN [2] and SimiFeat [61, 60] apply majority110

voting in logit or pretrained feature space to spot mislabeled samples.111
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LoCaTE uses a similar framework, aggregating labels from neighbors computed using the model’s112

own logit embeddings. The method’s novelty lies in its ability to combine information from different113

epochs, with the ability to identify critical epochs. By providing a lightweight classifier, not only can114

LoCaTE be applied on further training instances, but the simple classifier can also be used to gain115

insights into the interaction between noisy labels and training dynamics. More generally, LoCaTE116

provides a class of flexible methods that can be fine-tuned for various learning tasks, noise regimes,117

and datasets.118

3 Methods119

Let X be our input (feature) space, and let Y = {1, . . . , C} be our output (label) space. Let120

D̃ = {(xj , ỹj)
i=n
i=1} be our noisy training set, where ỹj ∈ {1, . . . , C} represents the noisy label.121

The corresponding true labels are denoted by yi, and also lie in the discrete space {1, . . . , C}. This122

assumption is known as closed label noise [45].123

The classical supervised learning task is to learn a classifier f : X → Y which minimizes124

E(x,y)∼D[ℓ(f ;x, y)]. By abuse of notation, our classifier f will produce a probability distribu-125

tion on Y . In other words, f : X → ∆C . We will use t to denote our training epochs, which range126

from t = 1 to t = T . The model ft is the model obtained after the t-th epoch of training. Let ŷ(t)i to127

denote the prediction of the model ft of the sample xi:128

ŷ
(t)
i = argmaxjft(x)j .

Our proposed signals will take the following general form, capturing information about the training129

evolution (epochs) per data sample.130

Definition 3.1 (LoCaTE Signal). Let x be a training sample and let t be a training epoch. Given Pt,x131

a probability distribution on X and d a metric on ∆C , we define the training signal associated with132

Pt(x) as133

st(x) = Ex′∼Pt(x)

[
d
(
ft(x), ft(x

′)
)]
. (1)

The intention here is that Pt(x) is a probability distribution that is nearby to x at epoch t, which134

changes dynamically over time. The samples x′ ∈ Pt(x) are intended to be both semantically and135

geometrically close to x, particularly at certain critical epochs (related to overfitting). For cleanly136

labeled samples, we expect nearby samples to have nearby predictions. Mislabeled samples often137

create bubbles of their noisy class surrounded by regions of their true class [59], and are often found138

closer to a decision boundary between two classes [42]. As such, we expect the signal values to be139

significantly higher, provided that the perturbations are not too small.140

We note that there is a connection between the perturbations here, and adversarial attacks [10].141

However, in our case, these perturbations are intended to be somewhat random. Fawzi et al. [8] show142

that for random perturbations to elicit similar adversarial phenomena, they would need to be an order143

of magnitude of the square root of the relevant dimension. Hence, our methodology leverages small,144

semantic-preserving perturbations — well below the O(
√
d) adversarial threshold, to robustly detect145

local instability in high-dimensional embedding spaces without inadvertently triggering adversarial146

effects.147

Definition 3.2 (Dynamic Neighborhood of a Training Sample). Given a training sample x at time t,148

we define its k-Neighborhood Nt,k as the k training samples x′ ∈ D̃ with the nearest images to that149

of x, where the images are generated by ft.150

Mathematically,151

Nt,k(x) = argminkx′∥ft(x)− ft(x
′)∥2, (2)

where ft refers to the model’s logits at training epoch t.152

With this notation, we are ready to introduce our metrics. The first metric, known as the majority153

metric, focuses on the predictions of the neighbors.154

Definition 3.3 (Majority Metric). We define the majority metric, majt,k(x), as the indicator variable155

of whether the label assigned by ft to x agrees with the plurality (mode) label among its neighbors.156

That is,157

majt,k(x) = 1[ỹ ̸= mode
(
{ŷ(t)x′ : x′ ∈ Nt,k(x)}

)
]. (3)
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Note that this can be clearly written as a LoCaTE signal. Let Pt,k(x) denote the uniform distribution158

over the k nearest neighbors Nt,k(x) of the sample x at epoch t. Define the distance metric159

dmaj,t,k
(
ft(x), ft(x

′)
)

= 1
[
argmax

c
f
(c)
t (x) ̸= argmax

c
f
(c)
t (x′)

]
,

where f
(c)
t (x) is the logit assigned to class c by the model ft.160

With this choice, the generic training–signal template161

st(x) = Ex′∼Pt,k(x)

[
dmaj,t,k

(
ft(x), ft(x

′)
)]

reduces to the fraction of neighbors whose predicted label disagrees with that of x. We use this162

continuous version during training as it gives better single-epoch thresholding properties.163

Definition 3.4 (Local Perturbation Metric). Let G be a space of image transformations g : X → X .164

The local perturbations metric is given by165

pert,G(x) = Eg∈G(x)

[
∥ft(x)− ft(g(x))∥1

]
. (4)

Consider the case where G consists of common image augmentations [16] such as random crops,166

rotations, and small noises. In this case, G maintains semantic similarity, for many image classification167

tasks. Hence a perfect model would be invariant under G: f(x) = (f ◦ g)(x) [22]. One can achieve168

such invariance by using equivariant networks in the case where G has a group structure [40], or by169

augmenting the training dataset with elements of its orbit under G [38].170

In our case, we apply neither of those strategies, hence the models we train are susceptible to171

adversarial attacks [10, 30]. The metric pert,G(x) hence measures the susceptibility of the model to172

perturbations of the form G. In the case where an adversary is allowed to only choose adversarial173

perturbations generated by G, a small value of pert,G(x) suggests complete invariance. This is used174

as a proxy to detect label noise.175

4 Theory176

In this section, we provide some theoretical evidence which suggests that the values of our signals are177

higher for noisy labels. Following Zhu et al. [60], we introduce the assumption of k-NN clusterability.178

Assumption 4.1 ((k, δk)-NN Clusterability). We say that a data set D satisfies the clusterability179

(k, δk) if for all x ∈ D, the feature x and its k nearest neighbors x1, · · · , xk belong to the same true180

class with probability at least 1− δk.181

Because we are interested in the setting of over-trained, over-parameterized networks; we will also182

assume that the model achieves zero training loss. We discuss how relaxing this assumption affects183

the results in the appendix.184

Assumption 4.2 (Memorization). For sufficiently large epochs, we assume that ỹ = ŷ.185

Theorem 4.1. Assume class-conditioned noise with Ti,i >
1
2 . Then, for α := 1− Ti,i denoting the186

noise rate, we have that187

Pr
[
majt,k(x) = 1

∣∣ ỹ = y
]
≤ δk + exp

(
−2k

(
1
2 − α

)2)
(5)

Theorem 4.2. Assume symmetric noise with a noise rate α < C−1
C . Then,188

Pr
[
majt,k(x) = 0 | ỹ ̸= y

]
≤ δk + exp

(
− ((C−1)k−αC)2

C(C−1)((C−1)k+αC)

)
(6)

Note that this implies a bound on the AUROC. We defer this result and an extension of theoretical189

bounds to the perturbation metric, along with proofs, to Appendix A.190

5 Experiments191

Since the intermediate goal is to detect mislabeled samples, we learn a classifier h:

h : (s1(x), s2(x), · · · , sT (x)) 7→ {0, 1},

where 1 (positive) corresponds to a mislabeled sample and 0 (negative) corresponds to a clean sample.192
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Datasets and Noise We evaluate our method on CIFAR-10 and CIFAR-100 with four noise types193

[21], a common setup to evaluate label noise detection and mitigation. The first noise type is194

symmetric (class-conditioned noise) with α = 0.6. The second is asymmetric (class-conditioned195

noise) with α = 0.3, where the transitions are cyclic to the next class: i 7→ (i + 1) (mod C).196

Instance-dependent noise (α = 0.4) is generated using a random projection of our image space197

to capture some features, and human noise (α ≈ 0.09) is obtained using human annotations [47].198

Further details of the noising procedure can be found in the appendix. Later in this section, we also199

evaluate our methodology on Clothing-1M [50].200

Models and Training We train a ResNet-34 [13] on CIFAR-10 and CIFAR-100 for 200 epochs.201

During training, we record our two signals at every 10 epochs and use them to build a classifier. We202

also log the signals every epoch for the first 15 epochs; these tend to be extremely informative as we203

will empirically demonstrate.204

For the classifier h, we use a simple logistic regression model trained on a small labeled subset of D̃,205

where we assume access to the true labels y as well. In the upcoming section, we show how we can206

relax this assumption by choosing a threshold-based classifier at an appropriate epoch.207

LoCaTE-M, LoCaTE-P are the method using the majority and perturbation metric, respectively.208

LoCaTE-M+P is obtained by training a concatenated version of the M, P metrics on a 5% cleanly-209

labeled validation set. Note that the assumption of having access to a small, cleanly-labeled gold-210

standard for validation is not uncommon [15, 14], and can be achieved in the active labeling case. An211

explicit statement of the algorithm is stated in Appendix D.212

The perturbation metric LoCaTE-P generates small, semantically-equivalent perturbations of x. We213

do this via image augmentations [16] such as RandomCrop, RandomFlip, RandomRotate which214

are not included as data augmentations when training the model, as well as adding small Gaussian215

noise with µ = 0 and σ2 = 0.1. The can be generalized to general image augmentations.216

Evaluation Metrics We evaluate the performance of this classifier in two ways:217

1. Label Error Detection: We evaluate the F1 score of classification against the true labels.218

2. Downstream Test Accuracy: We clean the dataset by removing positively-predicted sam-219

ples and retrain on this new dataset, measuring the downstream test accuracy.220

Baselines We compare our method against the following baselines:221

• AUM [37]: computes the average margin over training epochs, treating persistently low222

values as a signal of mislabeling. The margin is defined as the logit at the noisy label minus223

the largest other logit.224

• CL [33]: estimates a joint distribution between noisy and ground truth labels under CCN225

assumption, applying the notion of confidence to label quality.226

• Deep k-NN [2]: embeds samples using the model’s logits and removes those whose label227

disagrees with the majority of their k nearest neighbors, thereby mitigating label noise.228

• CORES [5]: a method of progressively sieving out corrupted examples with a particular229

choice for training loss.230

• SimiFeat [60]: extracts pretrained features, then applies k-NN majority voting with Bayesian231

thresholding on those embeddings to score and filter out likely noisy labels. A key factor in232

this method is the clusterability assumption.233

• DynaCor [18]: trains an auxiliary classifier on the time-series of per-epoch margins, aug-234

mented with synthetic corruptions, to predict whether each sample is clean or mislabeled.235

As this is a label noise detection method, we primarily classify using F1 score, defined as the harmonic236

mean of precision and recall. We favor F1 over raw accuracy because label-noise detection is a highly237

imbalanced task. A model that trivially predicts “clean” for every sample xcan achieve deceptively238

high accuracy while failing to retrieve the mislabeled points of interest due to low noise rates; the F1239

score penalizes such behavior by weighting precision and recall equally. Accordingly, we report F1 as240

our primary metric throughout this work, and we also provide the area under the ROC curve (AUROC)241
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as a complementary, threshold-independent measure of performance, which sheds some light into the242

distribution of the signals since AUROC = Pr[signal(mislabeled sample) > signal(clean sample)].243

6 Results244

6.1 Label Error Detection Performance245

In Table 1, we show the results of using LoCaTE to detect label noise in the four benchmark noise246

regimes. We find that our method is in the top-2 for most noise types, and that it outperforms all247

baselines in CIFAR-100’s instance noise. More generally, we find that our method performs relatively248

well under instance noise, where mislabeled samples often lie close to decision boundaries between249

classes [59, 42]. By measuring perturbation divergence—that is, the change in model predictions250

under semantic-preserving augmentations—we directly quantify the local instability around these251

boundary points. Likewise, the majority-voting baseline exploits agreement among nearest neighbors252

in the logit space to capture semantic proximity and flag potential mislabels.253

Table 1: F1 score of classification under different noise types on CIFAR-10 and CIFAR-100,
reporting mean and the standard deviation computed across 3 random seeds. Results of other methods
are obtained from [18, 60]. The top 2 performing methods (up to significance) for each noise type are
bolded.

CIFAR-10 CIFAR-100

Method Sym. Asym. Inst. Human Sym. Asym. Inst. Human

Baseline 75.0 56.2 57.1 16.5 75.0 56.2 57.1 16.5
Deep k-NN 82.4 75.2 63.1 56.2 70.7 56.8 63.4 57.4

AUM 75.4 ± 0.2 46.4 ± 0.3 57.7 ± 0.0 16.7 ± 0.0 75.8 ± 0.2 46.7 ± 0.3 57.8 ± 0.1 58.0 ± 0.2
CL 88.7 ± 0.6 91.9 ± 0.1 82.5 ± 0.4 57.0 ± 0.3 77.9 ± 0.4 62.4 ± 0.2 67.3 ± 0.3 65.2 ± 0.2

CORES 92.9 ± 0.2 26.7 ± 0.4 49.2 ± 1.2 63.6 ± 0.6 66.3 ± 0.4 33.8 ± 0.5 39.2 ± 0.5 31.9 ± 0.5
SimiFeat-V 94.6 ± 0.1 84.7 ± 0.2 83.7 ± 0.1 69.4 ± 0.2 88.0 ± 0.1 70.3 ± 0.1 77.8 ± 0.1 76.2 ± 0.1
SimiFeat-R 92.9 ± 1.8 84.0 ± 0.1 86.9 ± 0.1 68.8 ± 0.3 89.7 ± 0.1 66.2 ± 0.1 75.5 ± 0.1 77.8 ± 0.1
DynaCor 93.6 ± 0.2 94.2 ± 0.5 91.5 ± 0.3 72.6 ± 2.5 91.3 ± 0.5 79.2 ± 0.6 79.5 ± 1.1 77.3 ± 0.5

LoCaTE-M 91.5 ± 0.3 91.7 ± 0.4 90.1 ± 0.1 64.5 ± 6.4 89.4 ± 0.5 83.1 ± 0.5 88.7 ± 0.3 72.1 ± 0.3
LoCaTE-P 86.9 ± 0.1 74.0 ± 2.3 87.7 ± 0.1 51.6 ± 0.3 83.4 ± 0.6 57.9 ± 0.2 81.6 ± 0.5 71.5 ± 0.7

LoCaTE-M+P 91.5 ± 0.0 91.6 ± 0.2 90.3 ± 0.2 62.9 ± 0.2 89.6 ± 0.1 82.9 ± 0.2 88.5 ± 0.1 72.6 ± 0.2

6.2 Accuracy of Downstream Models254

One common application of data filtering is to train downstream models on the filtered data. We train255

models using data filtered from LoCaTE-M on CIFAR-10. In Figure 2, we find that test accuracy256

increases monotonically until reaching around 60% removal rate, corresponding to the rate of noise257

in the actual dataset (symmetric noise). This method also achieves competitive downstream training258

accuracy: removing 60% of samples then training achieves a 7% improvement over using Generalized259

Cross Entropy’s truncated loss trained on the noisy data. A smaller 2% improvement is obtained for260

pretrained models. Given that the F1 scores are high, removing the highest percentiles of data leads261

to mostly removing mislabeled samples, and this leads to improved downstream generalization. Past262

the α% point, we begin increasingly removing clean samples, which leads to a drop in performance.263

When removing almost all data, we see the expected convergence between Cross Entropy and264

Generalized Cross Entropy.265

6.3 Single-Epoch LoCaTE266

In this section we examine several strategies for selecting a critical epoch—a single epoch t at which267

the signal st(x) is measured. As discussed earlier, LoCaTE-M is relatively robust to this choice: with268

an appropriate epoch, one can attain nearly the same performance (in terms of F1 score) as when269

aggregating information across all epochs.270

Empirically, the epoch that maximizes the F1 score typically coincides with, or lies very close to,271

the epoch of peak validation accuracy on the (noisy) training data. Figure 4 illustrates this trend by272

plotting epoch-specific F1 scores over the first 50 training epochs.273
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(a) Randomly-initialized model (b) Pretrained model

Figure 2: Test accuracy after filtering with LoCaTE-M and downstream training on CIFAR-10 with
symmetric noise.

Figure 3: F1 score across epochs for asymmetric noise (α = 0.3). The optimal F1 is obtained by
choosing, for each epoch t, the threshold that maximizes the F1 score of st(x). The percentile F1

is computed by labeling as noisy the top α% of samples ranked by st(x). We restrict t to the range
1 ≤ t ≤ 50 and display the validation score across clean and noisy CIFAR-10.

In Table 4 and Table 5, we compare various epoch-selection heuristics for symmetric and asymmetric274

noise on CIFAR-10 respectively. The percentile F1 score is obtained by marking the top α% of275

scores as noisy.276

Across these noise regimes, selecting the epoch of highest (or second-highest) validation accuracy277

yields the smallest drop in F1 relative to the full logistic-regression classifier. In other words, a278

simple validation-based heuristic is sufficient to match LoCaTE-M’s performance while avoiding the279

computational cost of aggregating signals across all epochs. See Appendix D.1 for more details.280

6.4 No Clean Labels281

We also evaluate our method on Clothing-1M [50], a dataset of a million clothing items across282

14 classes. The majority of the dataset comes without any clean labels. In fact, the noise rate in283

Clothing-1M is estimated to be around 38.5% [43]. This experiment allows us to simulate the efficacy284

of LoCaTE in two important regimes: larger, real-world datasets, as well as the lack of clean labels285

(we do not use the Clothing-1M clean validation subset for training our classifier). We simply average286

the LoCaTE-M metrics across different epochs, and remove the values with the top p% values, and287

then re-train and evaluate the downstream test accuracy on Clothing-1M’s clean validation set.288
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Table 2: CIFAR-10 under asymmetric (α = 0.3) and instance (α = 0.4) noise. Means ± s.d.; ∆F1

is relative to logistic regression on all epochs. The ’Best Epoch’ column corresponds to different
heuristics for selecting the single best epoch to compute LoCaTE in the absence of labeled data.

Method Asymmetric (α = 0.3) Instance (α = 0.4)

Best Epoch Percentile F1 (%) ∆F1 (%) Best Epoch Percentile F1 (%) ∆F1 (%)

Agreement Max 40.0 ± 10.0 46.4 ± 0.3 −48.1 ± 0.4 43.3 ± 7.6 57.1 ± 0.3 −36.9 ± 0.4
Agreement Min 0.0 ± 0.0 61.2 ± 0.7 −31.7 ± 0.6 0.0 ± 0.0 85.5 ± 0.2 −5.5 ± 0.3
Entropy Max 0.0 ± 0.0 61.2 ± 0.7 −31.7 ± 0.6 0.0 ± 0.0 85.5 ± 0.2 −5.5 ± 0.3
Entropy Min 40.0 ± 10.0 46.4 ± 0.3 −48.1 ± 0.4 43.3 ± 7.6 57.1 ± 0.3 −36.9 ± 0.4
First Train Decrease 17.0 ± 7.0 46.3 ± 2.8 −48.3 ± 3.1 31.7 ± 7.6 57.1 ± 0.3 −36.9 ± 0.4
Noisy Validation Max 4.0 ± 0.0 85.2 ± 0.6 −4.9 ± 0.8 2.7 ± 0.6 88.8 ± 0.4 −1.8 ± 0.4
Noisy Validation Post Max 5.3 ± 0.6 84.9 ± 1.2 −5.2 ± 1.5 4.0 ± 0.0 87.4 ± 0.5 −3.3 ± 0.5

Clean Validation Max 2.7 ± 1.2 79.6 ± 4.3 −11.1 ± 4.8 2.7 ± 0.6 88.8 ± 0.4 −1.8 ± 0.4
Clean Validation Post Max 4.3 ± 0.6 85.7 ± 0.4 −4.2 ± 0.6 3.7 ± 0.6 88.0 ± 0.6 −2.7 ± 0.6
Overall Best Percentile F1 4.7 ± 0.6 85.8 ± 0.4 −4.1 ± 0.7 2.3 ± 0.6 88.8 ± 0.3 −1.8 ± 0.3
Logistic Regression — 89.5 ± 0.3 — — 90.5 ± 0.1 —

Table 3: Test accuracy of various methods when trained on Clothing-1M using ResNet-50. Results
are displayed in mean ± stdev, with loss correction results taken directly from [36]. LoCaTE-M (p)
trains a model, removes the samples with the top p% LoCaTE metrics (averaged acoss epochs), and
then retains using CE.

Cross Entropy GCE (q=0.7) Backward T̂ Forward T̂ LoCaTE-M (p = 10%) LoCaTE-M (p = 20%) LoCaTE-M (p = 40%)

Test Accuracy 67.9± 0.3 69.0± 0.0 69.1 69.8 69.9± 0.8 69.3± 0.2 69.6± 0.2

While the averaging is a basic priot that does not take into account the results from Section 6.3, the289

results in Table 3 still demonstrate that LoCaTE outperforms some noise-aware loss functions.290

7 Conclusion291

Our approach connects neighborhood-based voting methods, perturbation-based sensitivity, and292

training dynamics signals to measure how local distances scale in the learned representation, yielding293

a robust noisy-label detector. By combining spatial consistency with dynamics over epochs, we294

achieve F1 performance across four baseline noise patterns, often surpassing much more complex295

models and methodologies. One advantage of this dual-signal design is that it adapts flexibly to296

various noise structures and hyperparameters, demonstrating that local curvature in logit space is297

a powerful indicator of mislabels. Our method is relatively best suited for instance noise, where it298

relatively performs better than other noise types.299

Limitations Our pipeline relies on a small clean validation set to train the final logistic-regression300

classifier, which may introduce labeling costs and risk of misalignment if the validation data poorly301

reflects the training noise. As a future study, it would be of interest to investigate the impact of302

using incorrect labels to train this lightweight classifier. In addition to the base model, fitting the LR303

detector adds a slight computational overhead—both in terms of neighbor searches (and their storage304

per epoch), but it remains efficient relative to other methods.305

Future Work Future work could explore relabeling instead of removing, as well as the reweighting306

data by their likelihood of cleanliness, 1−h(x), instead of completely removing it. A critical question307

for future work is how noise-mitigation methods affect fairness across subpopulations. Loss-based308

approaches [58] and early stopping [56] are designed to prevent overfitting to “difficult” or noisy309

labels, yet those very examples may correspond disproportionately to minority or underrepresented310

groups. Investigating group-wise performance and developing fairness-aware noise filters will311

be essential to ensuring equitable model behavior. In the case of LoCaTE-M, we observe that312

removal of a large percentage of data in CIFAR-10/100 leads to amplifying noise in certain classes.313

Understanding how noise removal methods create or amplify disparities across classes is an area of314

future work. Finally, in the absence of clean labels, the methodology in Table 3 averages LoCaTE-M315

values across epochs. However, as Section 6.3 suggests, there are more optimal weightings that can316

be deduced without clean labels. We hope to systematically address this question of optimal epoch317

and percentile selection in future works.318
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eration due to laws or regulations in their jurisdiction).669

10. Broader impacts670

Question: Does the paper discuss both potential positive societal impacts and negative671

societal impacts of the work performed?672

Answer: [Yes]673

Justification: Yes, the conclusion and Appendix discuss this. In particular, we discuss the674

fairness aspect of mitigating label noise.675

Guidelines:676

• The answer NA means that there is no societal impact of the work performed.677

• If the authors answer NA or No, they should explain why their work has no societal678

impact or why the paper does not address societal impact.679

• Examples of negative societal impacts include potential malicious or unintended uses680

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations681

(e.g., deployment of technologies that could make decisions that unfairly impact specific682

groups), privacy considerations, and security considerations.683

• The conference expects that many papers will be foundational research and not tied684

to particular applications, let alone deployments. However, if there is a direct path to685

any negative applications, the authors should point it out. For example, it is legitimate686

to point out that an improvement in the quality of generative models could be used to687

generate deepfakes for disinformation. On the other hand, it is not needed to point out688

that a generic algorithm for optimizing neural networks could enable people to train689

models that generate Deepfakes faster.690

• The authors should consider possible harms that could arise when the technology is691

being used as intended and functioning correctly, harms that could arise when the692

technology is being used as intended but gives incorrect results, and harms following693

from (intentional or unintentional) misuse of the technology.694

• If there are negative societal impacts, the authors could also discuss possible mitigation695

strategies (e.g., gated release of models, providing defenses in addition to attacks,696

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from697

feedback over time, improving the efficiency and accessibility of ML).698

11. Safeguards699

Question: Does the paper describe safeguards that have been put in place for responsible700

release of data or models that have a high risk for misuse (e.g., pretrained language models,701

image generators, or scraped datasets)?702

Answer: [NA]703

Justification: All data is publicly available, and we foresee no possible misuse of this704

research as it involves smaller neural networks.705

Guidelines:706

• The answer NA means that the paper poses no such risks.707

• Released models that have a high risk for misuse or dual-use should be released with708

necessary safeguards to allow for controlled use of the model, for example by requiring709

that users adhere to usage guidelines or restrictions to access the model or implementing710

safety filters.711

• Datasets that have been scraped from the Internet could pose safety risks. The authors712

should describe how they avoided releasing unsafe images.713

• We recognize that providing effective safeguards is challenging, and many papers do714

not require this, but we encourage authors to take this into account and make a best715

faith effort.716
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12. Licenses for existing assets717

Question: Are the creators or original owners of assets (e.g., code, data, models), used in718

the paper, properly credited and are the license and terms of use explicitly mentioned and719

properly respected?720

Answer: [Yes]721

Justification: We cite and credit the creators.722

Guidelines:723

• The answer NA means that the paper does not use existing assets.724

• The authors should cite the original paper that produced the code package or dataset.725

• The authors should state which version of the asset is used and, if possible, include a726

URL.727

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.728

• For scraped data from a particular source (e.g., website), the copyright and terms of729

service of that source should be provided.730

• If assets are released, the license, copyright information, and terms of use in the731

package should be provided. For popular datasets, paperswithcode.com/datasets732

has curated licenses for some datasets. Their licensing guide can help determine the733

license of a dataset.734

• For existing datasets that are re-packaged, both the original license and the license of735

the derived asset (if it has changed) should be provided.736

• If this information is not available online, the authors are encouraged to reach out to737

the asset’s creators.738

13. New assets739

Question: Are new assets introduced in the paper well documented and is the documentation740

provided alongside the assets?741

Answer: [NA]742

Justification: Upon acceptance, we will make public a Github repository of this work. This743

is the only asset, and the code is accompanied by comments and documentation.744

Guidelines:745

• The answer NA means that the paper does not release new assets.746

• Researchers should communicate the details of the dataset/code/model as part of their747

submissions via structured templates. This includes details about training, license,748

limitations, etc.749

• The paper should discuss whether and how consent was obtained from people whose750

asset is used.751

• At submission time, remember to anonymize your assets (if applicable). You can either752

create an anonymized URL or include an anonymized zip file.753

14. Crowdsourcing and research with human subjects754

Question: For crowdsourcing experiments and research with human subjects, does the paper755

include the full text of instructions given to participants and screenshots, if applicable, as756

well as details about compensation (if any)?757

Answer: [NA]758

Justification: No crowdsourcing or research with human subjects is involved.759

Guidelines:760

• The answer NA means that the paper does not involve crowdsourcing nor research with761

human subjects.762

• Including this information in the supplemental material is fine, but if the main contribu-763

tion of the paper involves human subjects, then as much detail as possible should be764

included in the main paper.765

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,766

or other labor should be paid at least the minimum wage in the country of the data767

collector.768
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15. Institutional review board (IRB) approvals or equivalent for research with human769

subjects770

Question: Does the paper describe potential risks incurred by study participants, whether771

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)772

approvals (or an equivalent approval/review based on the requirements of your country or773

institution) were obtained?774

Answer: [NA]775

Justification: IRB approval is not required as we do not work with human subjects.776

Guidelines:777

• The answer NA means that the paper does not involve crowdsourcing nor research with778

human subjects.779

• Depending on the country in which research is conducted, IRB approval (or equivalent)780

may be required for any human subjects research. If you obtained IRB approval, you781

should clearly state this in the paper.782

• We recognize that the procedures for this may vary significantly between institutions783

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the784

guidelines for their institution.785

• For initial submissions, do not include any information that would break anonymity (if786

applicable), such as the institution conducting the review.787

16. Declaration of LLM usage788

Question: Does the paper describe the usage of LLMs if it is an important, original, or789

non-standard component of the core methods in this research? Note that if the LLM is used790

only for writing, editing, or formatting purposes and does not impact the core methodology,791

scientific rigorousness, or originality of the research, declaration is not required.792

Answer: [NA]793

Justification: This research/method does not significantly involve LLMs. The proofs in A.3794

were adapted/generalized using LLMs.795

Guidelines:796

• The answer NA means that the core method development in this research does not797

involve LLMs as any important, original, or non-standard components.798

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)799

for what should or should not be described.800
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A Theoretical Results801

Lemma A.1 (Bernoulli’s Coupling). Let q ∈ (0, 1). Let X1, · · · , Xk are independent Bernoulli802

variables with parameters pi such that q > pi for all i, and Sk = X1 + · · ·+Xk be their sum. Then803

for all m, we have that804

Pr[Sk ≥ m] ≤ Pr[Bin(k, q) ≥ m].

Proof. This is a classic application of coupling. Generate U1, · · · , Un i.i.d. drawn from the uniform805

distribution on [0, 1]. Set Xi = 1[Ui ≤ pi] and Yi = 1[Ui ≤ q]. Note that since q > pi, we have that806

Xi ≤ Yi a.s. since the event [Ui ≤ pi] is a subset of the event [Ui ≤ q]. Summing up this inequality,807

we get that808

Sk =
∑

Xi ≤
∑

Yi ∼ Bin(k, q).

Hence for any threshold m, the event [Sk ≥ m] is a subset of the event [Bin(k, q) ≥ m], and the809

inequality follows.810

Theorem A.2. Assume class-conditioned noise with Ti,i >
1
2 . One has that811

Pr
[
majt,k(x) = 1

∣∣ ỹ = y
]
≤ δk + exp

(
−2k

(
1
2 − α

)2)
(7)

Theorem A.3. Assume symmetric noise with a parameter α < C−1
C . One has that812

Pr
[
majt,k(x) = 0

∣∣ ỹ ̸= y
]
≤ δk + exp

(
− ((C − 1)k − αC)

2

C(C − 1) ((C − 1)k + αC)

)
(8)

Proof of Theorem A.2. Let Xi = 1[ỹi ̸= y|ỹ = y]. Let A be the event that y = y1 = · · · = yk. Note
that by the union bound, we have

E[Xi|A] = Pr[ỹi ̸= y|ỹ = y,A] = Pr[ỹi ̸= yi|ỹ = y,A] ≤ α.

Moreover, those events are independent, so

Pr[Sk ≥
k

2
|ỹ = y,A] ≤ exp(−2k(1

2
− α)2).

Note also that Pr[Ac] ≤ δk by the clusterability assumption. Combining this with the law of total813

probability, Pr[Sk ≥ k
2 |ỹ = y] can be written as814

Pr[Sk ≥
k

2
|ỹ = y,A] Pr[A] + Pr[Sk ≥

k

2
|ỹ = y,Ac] Pr[Ac] ≤ exp(−2k(1

2
− α)2) + δk.

Finally, observe that majt,k(x) = 1 implies that ŷ is not the mode of its neighbors, and so at least815

half of the Xi’s occured. That is,816

Pr[majt,k(x) = 1|ỹ = y] ≤ Pr[Sk ≥
k

2
|ỹ = y] ≤ exp(−2k(1

2
− α)2) + δk,

as desired.817

Proof of Theorem A.3. Similarly, set Xi = 1[ỹi = y|ỹ ̸= y]. Note that majt,k(x) = 0 implies that ŷ818

is the mode among the neighbors, and so at least k
C of the Xi’s must occur. Similarly conditioning on819

A, we see that the probability of Xi’s occurring corresponds to the probability of a label corruption820

to the class y, which, which is upper bounded by α
C−1 in the symmetric setting. Since α

C−1 < 1
C , we821

apply Chernoff to get822
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Pr

[
Sk ≥

k

2

∣∣∣∣ ỹ ̸= y, A

]
≤ exp

(
−

(
(C − 1)k − αC

)2
C(C − 1)

[
(C − 1)k + αC

]) .

The δk comes from the law of total expectation, as usual.823

A.1 Continuous LoCaTE824

We can also relax the assumption and prove an analogous result for another LoCaTE signal. We first825

define the relaxation of complete memorization.826

Definition A.1 (ϵ-Memorization). We say that model f trained on a dataset D has ϵ-memorized its827

training dataset D if sup(x,y)∈D ∥f(x)− y∥ ≤ ϵ.828

We consider a continuous version of the previous signals, given by the following definition.829

Definition A.2 (Neighborhood Metric). We define a neighborhood-based distance metric as830

nk(x) =
1

k

∑
xi∈Nx

∥f(x)− f(xi)∥. (9)

In the following results, we interpret the true and noisy labels y and ỹ as one-hot encodings. The831

noise in this case in generated by symmetric noise with a parameter α.832

Lemma A.4. Let D be a dataset. Assume that the model f has ϵ-memorized D̃. If x is cleanly833

labeled (so ỹ = y), then for any s > 0, we have that834

Pr[nk(x) ≥ 2ϵ+ (1 + s)α
√
2] ≤ δk + exp(−2ks2α2). (10)

Proof. By the triangle inequality, we have that835

nk(x) =
1

k

∑
xi∈Nx

∥f(x)− f(xi)∥ ≤
1

k

∑
xi∈Nx

(∥f(x)− ỹ∥+ ∥ỹ − ỹi∥+ ∥ỹi − f(xi)∥).

The first and last terms are upper-bounded by ϵ each, following the memorization assumption. We836

further expand the middle term via the triangle inequality:837

1

k

∑
xi∈Nx

∥ỹ − ỹi∥ ≤
1

k

∑
xi∈Nx

(∥ỹ − y∥+ ∥y − yi∥+ ∥yi − ỹi∥).

The first term is zero, since x is a clean label. The second term measures the difference between a838

point’s label and its neighbors’ labels, and is controlled by the clusterability assumption. The final839

term is controlled by the noise rate. This,840

nk(x) ≤ 2ϵ+
1

k

∑
xi∈Nx

(∥ỹ − y∥+ ∥yi − ỹi∥).

Define S = 1
k

∑
xi∈Nx

(∥ỹ − y∥ + ∥yi − ỹi∥), let A be the event that y1, · · · , yk all equal y.841

Conditioning S on B, the second term disappears and we are left with a Bernoulli. Note that842

Pr[A] ≤ δk, and by the law of total expectation:843

Pr[nk(x) ≥ 2ϵ+ (1 + s)α
√
2] ≤ δk + Pr[Bin(k, α) ≥ k(1 + s)α],

which we can upper bound via Chernoff to be844

δk + exp(−2ks2α2).

845
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A.2 AUROC Bounds846

We can also use these results to get AUROC bounds.847

Lemma A.5. Let (X,Y ) be a random pair with X,Y ∈ {0, 1}. Define848

α = Pr[X = 1 | Y = 0], β = Pr[X = 0 | Y = 1].

If the classifier’s score is the binary variable X , then the area under its ROC curve satisfies849

AUROC = 1− α+ β

2
.

Proof. Take two independent copies (X(1), Y (1)) and (X(0), Y (0)) of (X,Y ), conditioning on850

Y (1) = 1 and Y (0) = 0. By the “probability-of-ranking” definition,851

AUROC = Pr
[
X(1) > X(0)

]
+

1

2
Pr
[
X(1) = X(0)

]
.

Because X is binary,852

Pr[X(1) > X(0)] = (1− β)(1− α),

the tie events are (1, 1) and (0, 0) with probabilities (1− β)α and β(1− α), respectively. Hence853

AUROC = (1− β)(1− α) +
1

2

[
(1− β)α+ β(1− α)

]
= 1− α+ β

2
.

854

Corollary A.5.1. Under symmetric noise with α < 1
2 , one has that855

AUROC ≥ 1− δk − exp
(
− 2k(

1

2
− α)2

)
− exp

(
−

(
(C − 1)k − αC

)2
C(C − 1)

[
(C − 1)k + αC

]) .
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A.3 Additional Theory856

In this subsection, we provide additional theory that relaxes the previous assumptions. Most impor-857

tantly, we relax the memorization assumption and provide bounds on the performance of LoCaTE858

relative to the empirical loss of the model.859

Lemma A.6 (CE tail bound). Let p ∈ (0, 1] be the model probability assigned to the evaluated class860

and ℓ = − log p its cross-entropy (natural logarithm). If E[ℓ] ≤ ε, then for any τ ∈ (0, 1),861

Pr[p ≤ τ ] = Pr[ℓ ≥ − log τ ] ≤ ε

− log τ
.

In particular, for any τ ∈ (1/2, 1), Pr[p ≤ τ ] ≤ ε/(− log τ) and hence Pr[argmaxc pc ̸=862

(evaluated class)] ≤ ε/(− log τ).863

Proof. Apply Markov’s inequality on the nonnegative ℓ: for a > 0, Pr[ℓ ≥ a] ≤ E[ℓ]/a. Set864

a = − log τ . If p > τ > 1/2 then p > maxc̸=y pc (since
∑

c pc = 1), so the argmax is the evaluated865

class.866

Theorem A.7 (Clean false positives under low CE). Assume CCN with per-class noise ≤ α < 1
2 and867

(k, δk)-clusterability. Fix any τ ∈ (1/2, 1). Let Lclean := E[− log py(X) | clean] and let L̄ be the868

empirical training CE at the epoch. Then for any clean sample (x, y),869

Pr[majk(x) = 1] ≤ δk + exp
[
−2k

(
1
2−qτ

)2]
, qτ := α + (1− α)︸ ︷︷ ︸

% clean labels

· Lclean

− log τ
≤ α +

L̄

− log τ
.

In particular, if qτ < 1
2 , the clean FPR decays as e−Ω(k).870

Proof. Let B be the clusterability event that the k neighbors of x all have true label y; Pr[B] ≥ 1−δk.871

Conditional on B, a random neighbor Z is clean with probability ≥ 1 − α and mislabeled with872

probability ≤ α (by CCN).873

For a clean neighbor Z, Lemma A.6 with threshold τ > 1/2 gives874

Pr[ŷ(Z) ̸= y | clean] ≤ Pr[py(Z) ≤ τ | clean] ≤ Lclean

− log τ
.

For a mislabeled neighbor (worst case for us), upper bound the disagreement with y by 1. Therefore,875

under B,876

Pr[ŷ(Z) ̸= y] ≤ α · 1 + (1− α) · Lclean

− log τ
= qτ .

Assuming conditional independence of the k neighbor predictions given B, the number of neighbors877

disagreeing with y is Bin(k, qτ ), hence878

Pr[majk(x) = 1 | B] = Pr[Bin(k, qτ ) ≥ k/2] ≤ exp
[
− 2k (1/2− qτ )

2
]

by Hoeffding. Unconditioning adds the δk term. Finally, L̄ = (1 − α)Lclean + αLmis implies879

(1− α)Lclean ≤ L̄, yielding the displayed bound.880

B Critical Epochs881

In this section we examine several strategies for selecting a critical epoch—a single epoch t at which882

the signal st(x) is measured. As discussed earlier, LoCaTE-M is highly robust to this choice: with883

an appropriate epoch, one can attain nearly the same performance (in terms of F1 score) as when884

aggregating information across all epochs.885

Empirically, the epoch that maximizes the F1 score typically coincides with, or lies very close to,886

the epoch of peak validation accuracy. Figure 4 in the Appendix illustrates this trend by plotting887

epoch-specific F1 scores over the first 50 training epochs.888

We further compare the best single-epoch classifier with the full logistic-regression classifier used in889

LoCaTE-M. Table 4 and Table 5 report results for symmetric and asymmetric noise, respectively,890
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Figure 4: F1 score across epochs. The optimal F1 is obtained by choosing, for each epoch t, the
threshold that maximises the F1 score of st(x). The percentile F1 is computed by labelling as noisy
the top α% of samples ranked by st(x). We restrict t to the range 1 ≤ t ≤ 50.

Table 4: CIFAR-10 (symmetric noise). Means and standard deviations are shown; ∆F1 is measured
relative to the logistic-regression classifier trained on scores from all epochs.

Method Best Epoch Percentile F1 (%) ∆F1 (%)

Max Agreement of LoCaTE-M 38.3± 5.8 75.2± 0.3 −17.8± 0.3
Min Agreement of LoCaTE-M 0.3± 0.6 86.4± 2.0 −5.6± 2.2
Max Entropy of LoCaTE-M 4.3± 2.5 88.0± 2.0 −3.8± 2.1
First Drop in Train Acc. 30.3± 22.4 79.5± 7.8 −13.1± 8.5
Max Validation Acc. 3.3± 2.3 88.9± 0.5 −2.9± 0.5
2nd-Highest Val. Acc. 5.3± 1.5 89.2± 0.4 −2.5± 0.3
Logistic Regression — 91.5± 0.1 0

Table 5: CIFAR-10 (asymmetric noise). Means and standard deviations are shown; ∆F1 is measured
relative to the logistic-regression classifier trained on scores from all epochs.

Method Best Epoch Percentile F1 (%) ∆F1 (%)

Max Agreement of LoCaTE-M 41.7± 7.6 46.2± 0.2 −48.0± 0.2
Min Agreement of LoCaTE-M 0.0± 0.0 59.7± 1.9 −32.9± 2.1
Max Entropy of LoCaTE-M 0.0± 0.0 59.7± 1.9 −32.9± 2.1
Min Entropy of LoCaTE-M 41.7± 7.6 46.2± 0.2 −48.0± 0.2
First Drop in Train Acc. 23.0± 15.7 54.6± 14.7 −38.6± 16.6
Max Validation Acc. 2.7± 1.2 79.8± 4.5 −10.3± 4.9
2nd-Highest Val. Acc. 4.3± 1.2 83.1± 2.4 −6.7± 2.6
Logistic Regression — 89.0± 0.1 0

under a variety of epoch-selection heuristics. The percentile F1 score is obtained by marking the top891

α% of scores as noisy.892

Across both noise regimes, selecting the epoch with the highest (or second-highest) validation893

accuracy yields the smallest drop in F1 relative to the full logistic-regression classifier. In other894

words, a simple validation-based heuristic is sufficient to match LoCaTE-M’s performance while895

avoiding the computational cost of aggregating signals across all epochs.896
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C Robustness to Hyperparameters897

We demonstrate the robustness of our method to the relevant hyperparameters. There are two model-898

related hyperparameters involved: the number of samples used to train the classifier, and the epochs899

at which the data is collected.900

(a) F1 as a function of the number of neighbors k. (b) F1 as a function of test set size.

Figure 5: LoCaTE-M is robust to (a) the choice of k and (b) the amount of gold-standard data
available for training the classifier h.

Figure 5a shows that increasing the number of nearest neighbors used in LoCaTE-M does not have a901

significant impact over the F1 obtained: with the largest change observed for human noise with an902

around 5% increase in F1. Even then, this improvement is not monotonic, suggesting that the hyper-903

parameter k can be fine-tuned to obtain optimal performance. Likewise, Figure 5b demonstrates,904

with confidence intervals, that training the classifier h on a very small, cleanly-labeled subset of the905

data, is sufficient.906

The use of logistic regression allows user to shed light on the inner-workings of the dataset-specific907

noise by reviewing the regressor’s weights. A natural question to ask is whether a classifier is908

necessary to achieve this result. In other words, can applying a one-dimensional threshold over our909

metric at single epoch achieve similar (or better) F1 scores. Our results, summarized in Table 6 for910

LoCaTE-P, show that an almost identical F1 is obtained at the best epoch. We discuss strategies to911

discover this best epoch in Section 6.3. This epoch is generally early on, characterizing the critical912

phase where the model goes from learning new patterns to memorization. Moreover, the primary913

impact of the classifier is actually on the AUROC, as the F1 often does not improve by much.914

Table 6: Epoch-based vs. classifier-based performance of LoCaTE-P across noise types (F1 and
AUROC).

Dataset Metric Sym. Asym. Inst. Human

CIFAR-10

Best Epoch F1 (%) 89.5 ± 0.3 87.7 ± 0.6 88.5 ± 0.2 64.4 ± 5.4
Classifier F1 (%) 91.5 ± 0.3 91.7 ± 0.4 90.1 ± 0.2 64.5 ± 6.4
Absolute ∆F1 (pp) 2.0 ± 0.5 3.9 ± 0.8 1.7 ± 0.3 0.1 ± 1.2
Relative ∆F1 (%) 2.2 ± 0.5 4.5 ± 0.9 1.9 ± 0.4 0.0 ± 1.8

Best Epoch AUROC (%) 86.9 ± 0.2 87.0 ± 4.4 90.0 ± 0.1 76.6 ± 2.7
Classifier AUROC (%) 94.4 ± 1.2 96.6 ± 1.7 96.2 ± 0.8 86.5 ± 4.5
Absolute ∆AUROC (pp) 7.5 ± 1.0 9.6 ± 2.8 6.2 ± 0.8 9.9 ± 1.8
Relative ∆AUROC (%) 8.6 ± 1.1 11.2 ± 3.7 6.9 ± 0.9 12.9 ± 1.8

CIFAR-100

Best Epoch F1 (%) 89.4 ± 0.3 80.9 ± 6.1 88.2 ± 0.1 70.7 ± 0.1
Classifier F1 (%) 89.9 ± 1.2 86.0 ± 5.3 89.2 ± 1.0 72.1 ± 0.3
Absolute ∆F1 (pp) 0.5 ± 0.9 5.0 ± 0.9 1.0 ± 0.9 1.5 ± 0.2
Relative ∆F1 (%) 0.6 ± 1.1 6.3 ± 1.5 1.2 ± 1.0 2.1 ± 0.3

Best Epoch AUROC (%) 85.7 ± 0.8 91.7 ± 0.6 90.3 ± 0.2 79.6 ± 1.7
Classifier AUROC (%) 95.7 ± 0.2 98.5 ± 0.2 97.2 ± 0.0 91.9 ± 0.6
Absolute ∆AUROC (pp) 10.0 ± 0.9 6.8 ± 0.8 6.9 ± 0.2 12.3 ± 2.2
Relative ∆AUROC (%) 11.6 ± 1.2 7.4 ± 1.0 7.6 ± 0.2 15.5 ± 3.1

These results underscore a practical strength of LoCaTE: its performance is largely insensitive915

to needing the entire training trajectory. One epoch, chosen carefully, suffices. Because a near-916

optimal F1 is achieved with a single early checkpoint, practitioners can skip most signal logging,917

hyperparameter sweeps, and extended over-training, use only a tiny clean subset, and still enjoy918

similar F1 scores from the logistic regression trained across all epochs. This robustness makes919
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LoCaTE attractive for real-world pipelines where compute budgets and annotation resources are tight.920

In the appendix, we detail how this optimal epoch can be found in terms of classic training signals.921
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D Experimental Details922

All experiments were conducted using a node of up to 8 A100 GPU’s. Unless othewise specified, all923

standard deviations are computed using 3 random seeds.924

D.1 Algorithmic Description925

While we initially described the algorithm, the pseudocode for LoCaTE is provided here.926

Algorithm 1 LOCATE EXPERIMENTAL PIPELINE

Require: Noisy data D̃ = {(xi, ỹi)}ni=1, epochs T , log interval ∆t = 10
Require: k nearest-neighbors, perturbation family G, gold-subset size p%

Phase 1 — Backbone training & signal logging
1: for t← 1 to T do ▷ # SGD over noisy data
2: One epoch of SGD on D̃ ▷ # cross-entropy loss
3: if t ≤ 15 or t mod ∆t = 0 then ▷ # sparse logging schedule
4: for all (xi, ỹi) ∈ D̃ do ▷ # compute per-sample signals
5: ŷ

(t)
i ← argmaxc fθt(xi)c ▷ # predicted label

6: majt,k(xi)← 1
[
ŷ
(t)
i ̸= modexj∈Nt,k(xi) ŷ

(t)
j

]
7: pert,G(xi)← Eg∼G

[
∥fθt(xi)− fθt(gxi)∥1

]
8: Store st(xi)←

(
majt,k, pert,G

)
Phase 2 — Train the noise-detector

9: for all xi do
10: s(xi)←

[
st1(xi), . . . , stm(xi)

]
▷ # trajectory features

11: Select p% gold subset with trusted labels yi
12: Train logistic regression h on {(s(xi),1[ỹi ̸= yi])} ▷ # predict noise

Phase 3 — Clean dataset & retrain
13: Dclean ← {(xi, ỹi) | h(s(xi)) = 0}
14: Re-initialize θ and retrain fθ on Dclean
15: fθ⋆ ← best checkpoint by validation accuracy

return detector h, cleaned model fθ⋆

D.2 Hyperparameter Configuration927

All runs share a single training recipe so that performance differences are attributable only to the928

noise settings.929

• Backbone & init. A ResNet-34 [13] initialized with ImageNet weights930

(initialization=pretrained).931

• Loss. Standard cross-entropy (loss_fn=cross_entropy).932

• Optimizer. Adam [19] with learning rate 10−3 and weight decay 0.001.933

• Training Batch size. 256.934

• Inference Batch size. 1024 used for forward passes to compute neighborhoods and LoCaTE935

signals.936

• Training schedule. 250 epochs. epoch_skip=5, early-epoch cutoff at 15.937

• Embedding. Dynamic feature obtained by the logit space of the model, with snapshots every938

epoch_skip epochs; computing k = 50 neighbors using FAISS [6].939

D.3 Noisy Data940

In addition to symmetric and asymmetric noise, which are special classes of class-conditioned noise,941

we also evaluate our method under two complementary corruption regimes.942

(i) Human noise. We use the crowdsourced labels released by Wei et al. [47], which capture realistic943

annotator mistakes.944
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(ii) Instance-dependent noise. Following Xia et al. and Zhu et al. [49, 61], we corrupt an average of945

α = 0.4 of the training labels with the projection-matrix scheme:946

1. Draw a per-instance flip probability qn ∼ N[0,1](η, 0.1
2).947

2. Sample a projection matrix W ∈ RS×K with Wij ∼ N (0, 1).948

3. Compute class scores p = qn SoftMax(xnW ), set pyn = 0, and renormalize so
∑

k pk = 1.949

4. With probability 1− qn keep the clean label; otherwise draw the noisy label ỹn ∼ Cat(p).950

The use of the same projection matrix W implies that similar features have similar noise patterns.951

For more, see Appendix D from [61].952

D.4 Clothing-1M953

For the Clothing-1M experiment, we use the labels from the dataset itself, which are estimated have954

a noise-rate of 38.5%. This is meant to simulate real-world noise. The experimental procedure is955

nearly identical, except that we use a ResNet-34 [13] with a SGD optimizer and a learning rate of956

10−2. Due to the size of the dataset, we only compute the nearest k = 15 neighbors.957
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