
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SubgoalXL: SUBGOAL-BASED EXPERT LEARNING FOR
THEOREM PROVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal theorem proving, a field at the intersection of mathematics and computer
science, has seen renewed interest with advancements in large language models
(LLMs). This paper introduces SubgoalXL, a novel approach that synergizes
subgoal-based proofs with expert learning to enhance LLMs’ capabilities in formal
theorem proving within the Isabelle environment. SubgoalXL addresses two criti-
cal challenges: the scarcity of specialized mathematics and theorem-proving data,
and the need for improved multi-step reasoning abilities in LLMs. By optimiz-
ing data efficiency and employing subgoal-level supervision, SubgoalXL extracts
richer information from limited human-generated proofs. The framework inte-
grates subgoal-oriented proof strategies with an expert learning system, iteratively
refining formal statement, proof, and subgoal generators. Leveraging the Isabelle
environment’s advantages in subgoal-based proofs, SubgoalXL achieves a new
state-of-the-art performance of 56.1% in Isabelle on the standard miniF2F dataset,
marking an absolute improvement of 4.9%. Notably, SubgoalXL successfully
solves 41 AMC12, 9 AIME, and 3 IMO problems from miniF2F. These results
underscore the effectiveness of maximizing limited data utility and employing
targeted guidance for complex reasoning in formal theorem proving, contributing
to the ongoing advancement of AI reasoning capabilities.

1 INTRODUCTION

Formal theorem proving, a field at the intersection of mathematics and computer science, has flour-
ished alongside the development of languages like Lean (de Moura et al., 2015) and Isabelle (Paulson,
1994). These two prominent communities have been instrumental in advancing the field’s core
challenge: mechanizing mathematical reasoning and proof verification (Li et al., 2020). Through the
creation of rigorously verified proofs, this discipline strengthens the foundations of mathematical
certainty, potentially opening doors to new mathematical discoveries.

The field has recently garnered renewed attention, driven by advancements in large language models
(LLMs). Despite their impressive capabilities, current LLMs often face limitations in performing
complex reasoning tasks required for formal theorem proving, including the need for logically
rigorous, multi-step proofs (Wu et al., 2022; Jiang et al., 2022a; Zhao et al., 2024; Xin et al., 2023;
Lin et al., 2024). Conventional approaches struggle to align informal human intuition with the strict
formalism required by theorem-proving languages, leading to inefficiencies in generating high-quality
proofs. This highlights a pressing need to refine models that not only handle the depth of logical
reasoning but also make more efficient use of available data while bridging the gap between informal
and formal mathematical reasoning.

In this work, we introduce SubgoalXL (Figure 1), a novel approach that synergizes subgoal-based
proofs with expert learning to enhance LLMs’ capabilities in formal theorem proving. SubgoalXL
tackles the scarcity of specialized mathematics and theorem-proving data (Lin et al., 2024; Wu
et al., 2024) by maximizing data utility through subgoal-level decomposition of proofs, allowing
for more granular supervision and iterative refinement. This approach extracts deeper structural
information from human-generated proofs by focusing on intermediate subgoals, effectively breaking
down the reasoning process into smaller, manageable steps. Consequently, SubgoalXL enhances
multi-step reasoning abilities, ensuring that each generated subgoal aligns with both the informal
intuition and the formal proof structure. At its core, SubgoalXL integrates subgoal-oriented strategies

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Informal Statement
When Rachel divides her favorite number by 7, she gets a
remainder of 5. What will the remainder be if she multiplies
her favorite number by 5 and then divides by 7? Show that it
is 4.

Formal Statement + Formal Proof
(Subgoal-Based Proof as Inline Comments)

theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

proof -
(* Step 1: Given 𝑛 ≡ 5 (mod 7), substitute 5 for 𝑛 in
5 ∗ 𝑛 mod 7. *)
have c0: "(5 * n) mod 7 = (5 * 5) mod 7"
using h0
by simp

(* Step 2: Calculate 25 mod 7 = 4. *)
then have "\<dots> = 4"
by simp

(* Step 3: Thus, 5 ∗ 𝑛 mod 7 simplifies to 4. *)
then have "(5 * n) mod 7 = 4"
using c0
by simp

(* Therefore, the remainder when 5 times Rachel's favorite
number is divided by 7 is 4. *)
then show ?thesis
by simp

qed

Informal Proof
Let 𝑛 be Rachel's favorite number. Then 𝑛 ≡ 5 (mod 7), so
5𝑛 ≡ 5 . 5 ≡ 25 ≡ 4 (mod 7).

(a) Subgoal-based Proof

Informal
Stat.

Subgoal-based
Proof

F. Stat.
Generator

Subgoal
Generator

Gene
rate Score

Sa
mp

leUpdate
Formal
Stat.

Informal
Stat.

Subgoal-based
Proof

F. Proof
Generator

P. Subgoal
Generator

Gene
rate Score

Sa
mp

leUpdate

F. Stat.
Generator

Formal
Proof

Formal
Stat.

Generate

Formal
Stat.

Informal
Stat.

Formal
Proof Subgoal

Generator

F. Proof
Generator

Gene
rate Score

Sa
mp

le

Update
Subgoal-based

Proof

(b) Expert Learning Framework

Figure 1: Left: Examples of informal statement, informal proof, formal statement, formal proof, and
subgoal-based proof. Right: Overview of the subgoal-based expert learning framework. Abbrevia-
tions: “Stat.” for “Statement”, “F.” for “Formal”, and “P.” for “Posterior”. Each iteration samples
subgoal-based proofs, formal statements, and formal proofs from their optimal distributions.

with an expert learning framework, refining the formal statement, proof, and subgoal generators
through sampling from estimated optimal distributions, thereby improving the LLMs’ proficiency in
navigating intricate logical structures and producing accurate formal proofs.

Leveraging the Isabelle environment’s advantages in subgoal-based proofs, SubgoalXL significantly
advances theorem-proving capabilities. It achieves a new state-of-the-art performance of 56.1% in
Isabelle on the standard miniF2F dataset (Zheng et al., 2021), an absolute improvement of 4.9% over
Zheng et al. (2023). SubgoalXL successfully solves 41 AMC12, 9 AIME, and 3 IMO problems
from miniF2F. The iterative expert learning process drives steady performance gains, underscoring
SubgoalXL’s robustness and effectiveness. These results highlight the critical role of maximizing
limited data utility and employing effective guidance for complex reasoning, complementing large-
scale data efforts (Wu et al., 2024; Xin et al., 2024a;b).

2 RELATED WORK

Formal theorem proving has advanced significantly through machine learning, focusing on enhancing
proof search strategies and leveraging Large Language Models (LLMs) for autoformalization Polu
& Sutskever (2020); Polu et al. (2022); Jiang et al. (2022a). Improvements in the proof search
include self-supervised strategies in Expert Iteration (Polu et al., 2022) and PACT (Han et al., 2021),
integrations of language models with automated provers in HyperTree Proof Search (HTPS)(Lample
et al., 2022) and Thor(Jiang et al., 2022b), and transformer-based premise selection in Magnusham-
mer (Mikuła et al., 2023). Despite these advancements, scalability remains a challenge due to
the increasing complexity of theorems. The application of LLMs for autoformalization and proof
generation has also been explored, with Wu et al. (2022) and Jiang et al. (2022a) demonstrating
the conversion of mathematical problems into formal specifications. Baldur (First et al., 2023)
further enhances proving capabilities by producing full proofs and incorporating a proof repair model.
Additionally, LEGO-Prover (Xin et al., 2023) and Lyra Zheng et al. (2023) contribute uniquely to
theorem proving by focusing on the incremental development of reusable theorems and integrating
error messages from external verifiers for proof post-processing, respectively. DeepSeek-Prover (Xin

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2024a) highlights the potential of large-scale synthetic data, while Lean-STaR (Lin et al., 2024)
leverages informal information to boost theorem-proving capabilities by training language models to
produce informal thoughts before each proof step. InternLM2-StepProver (Wu et al., 2024) addresses
data scarcity by utilizing extensive formal data from Lean 4 repositories on GitHub. Zhao et al. (2024)
introduce a subgoal-based demonstration learning framework that constructs and refines distinct
subgoals for each example, significantly enhancing proof search efficiency in LLMs.

Nevertheless, challenges remain in addressing data scarcity and enhancing deep, multi-step rea-
soning in formal theorem proving. Building upon the insights from subgoal-based demonstration
learning (Zhao et al., 2024), we introduce SubgoalXL, a novel framework that combines subgoal-
based proofs with an expert learning system. This approach iteratively enhances formal statement,
proof, and subgoal generation, aiming to improve data efficiency and achieve robust performance.
SubgoalXL complements existing methods by focusing on maximizing the utility of limited data and
refining complex reasoning strategies.

3 APPROACH

3.1 PROBLEM FORMALIZATION

Suppose we have an informal dataset I = {(sIi , pIi)}
|I|
i=1, where sIi is an informal statement and

pIi is an informal proof. Similarly, we have a formal dataset F = {(SF
i ,PF

i)}|F|
i=1, where SF

i is a
formal statement and PF

i is a formal proof. The goal is to train a language model pfpg(p,P | s,S)
using both I and F. Consequently, given a new informal statement s and its formal version S, the
model can generate both the informal proof p and the formal proof P, following the distribution
pfpg(p,P | s,S). In this paper, we treat (p,P) as a sequence of language tokens, with p representing
the prefix and P representing the suffix. In cases where an informal proof p is available, the model
can directly generate the formal proof P following pfpg(P | s,S, p).
The challenges mainly lie in (1) the limited effectiveness of informal proofs in I due to discrep-
ancies between human-written informal proofs and the established practices of formal proofs in
theorem-proving languages; and (2) the difficulty in constructing the full training dataset, which
requires aligned (s,S, p,P) quadruples. Inspired by Zhao et al. (2024), we use subgoal-based
proofs (Figure 1a) to replace informal proofs in I, achieving better consistency with the structure of
formal proofs (see §3.2). Additionally, we develop an expert learning framework (Figure 1b) that
samples (s,S, p,P) quadruples by estimating their optimal distributions through iterative refinement,
leveraging probabilistic modeling and gradient estimation techniques (see §3.3).

3.2 SUBGOAL-BASED PROOF

To annotate subgoal-based proofs for the informal statements in I, we begin by manually creating
demonstration examples to serve as input for in-context learning (see Figure 1a). We select a subset
of problems from the miniF2F validation set and manually construct the verified formal proof for
each problem. Then, we prompt GPT-4o to generate subgoal-based proofs g, conditioned on the
informal statement s, formal statement S, and formal proof P. This process ensures that: (1) the
subgoal-based proofs are produced by autoregressive models; (2) they exhibit a consistent style,
reducing the learning burden, as noted by Gu et al. (2018); and (3) each subgoal corresponds to a
corresponding formal intermediate goal in Isabelle. These demonstrations are then used as in-context
examples to annotate subgoal-based proofs for the informal statements in I (see Appendix C for
further details).

3.3 SUBGOAL-BASED EXPERT LEARNING

We introduce the SubgoalXL framework, which comprises a formal proof generator (pfpg), a formal
statement generator (pfsg), and a subgoal generator (psg). Inspired by gradient estimation in proba-
bilistic modeling (Schulman et al., 2015), this framework estimates optimal training data distributions

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for each component and iteratively refines these components by fine-tuning on data sampled from the
respective distributions.1 The overall algorithm is presented in Algorithm 1.

Components. The core components include a formal statement generator, a formal proof generator,
and a subgoal generator. The formal statement generator annotates formal statements for informal
ones in I following pfsg(S | s). Subsequently, the formal proof generator produces formal proofs for
the informal data in I, based on pfpg(P | s,S, g) and using subgoal-based proofs (see §3.2). The
subgoal generator labels subgoal-based proofs for formal data in F according to psg(g | s,S) after
informal statements have been generated for each data point in F (refer to Appendix D.2 for details).

Additionally, the formal proof generator assesses the performance of the subgoal generator by
evaluating the likelihood of reconstructing formal proofs in F. Conversely, the subgoal generator
evaluates the formal statement generator by assessing the likelihood of reconstructing subgoal-
based proofs in I. We also introduce an auxiliary component, the posterior subgoal generator
ppsg(g | s,S,P), which evaluates the formal proof generator based on the likelihood of reconstructing
subgoal-based proofs in I. The formal statement generator, formal proof generator, and subgoal
generator iteratively improve through expert learning, with only the formal proof generator used
during testing.

Initialization. We begin by annotating the formal statements and proofs for the informal dataset I
using in-context learning, retaining only those verified by Isabelle. Next, we annotate the informal
statements and proofs for the formal dataset F in the same manner. The initial formal proof generator,
denoted as p(0)fpg , is then trained on {(sIi ,SI

i , g
I
i ,P

I
i)}

|I|
i=1∪{(sFi ,SF

i , pFi ,P
F
i)}|F|

i=1. Similarly, the for-

mal statement generator p(0)fsg and subgoal generator p(0)sg are trained on {(sIi ,SI
i)}

|I|
i=1∪{(sFi ,SF

i)}|F|
i=1

and {(sIi ,SI
i , g

I
i)}

|I|
i=1 ∪ {(sFi ,SF

i , pFi)}
|F|
i=1, respectively.

For training the posterior subgoal generator ppsg, we first obtain a version of the formal proof with

all in-line comments removed, denoted as P. This component is trained on {(sIi ,SI
i ,P

I

i , g
I
i)}

|I|
i=1 ∪

{(sFi ,SF
i ,P

F

i , p
F
i)}

|F|
i=1. The posterior subgoal generator remains fixed during the expert learning

process.

Expert Learning. Given the uncertainty in the quality of generated statements and proofs, we
employ probabilistic modeling to compute the reward for each component. This allows us to derive
the optimal distribution from which we sample statements and proofs in each iteration. For instance,
in training the formal proof generator, the optimization objective in the k-th iteration is:

max
p

E(S,P)∼p[log ppsg(g | s,S,P)]− βDKL[p(S,P | s, g)∥p(k−1)(S,P | s, g)], (1)

where p(S,P | s, g) = pfpg(P | s,S, g)pfsg(S | s) and log ppsg(g | s,S,P) represents the reward
which is derived using gradient estimators (Schulman et al., 2015). Intuitively, within the informal
dataset, the formal statement and proof are treated as random variables, with optimal selections
maximizing the likelihood of reconstructing the informal proof or subgoal-based proof. We also
include KL-constraint terms to prevent overoptimization towards the reward. The optimal distribution
of the formal proof is given by:

p⋆(S,P | s, g) = 1

Z(s, g)
p(k−1)(S,P | s, g) exp

(
1

β

(
log ppsg(g | s,S,P)

))
, (2)

where Z(s, g) =
∑

S,P p(k−1)(S,P | s, g) exp
(

1
β

(
log ppsg(g | s,S,P)

))
. The optimal distribu-

tions for formal statements p⋆fsg(S | s) and subgoal-based proofs p⋆sg(g | s,S) follow a similar pattern,
as detailed in Appendix D.3.

Let Ŝ(k) and (S̃(k), P̃(k)) be drawn from the distributions p⋆fsg(S | s) and p⋆(S,P | s, g), respectively,
for the informal dataset. Similarly, let g(k) be drawn from the distribution p⋆sg(g | s,S) for the formal

1We do not include an iterative bootstrapping process for an informal statement generator, as generating
informal statements from formal statements is significantly less challenging than the other three tasks. Instead,
we annotate the informal statements for each formal statement in the formal dataset using in-context learning.
The prompt template can be found in Appendix D.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

dataset. In the k-th iteration, the formal statement generator updates with samples from {(s, Ŝ(k))},
while the formal proof generator is trained on {(s, S̃(k), g, P̃(k))}∪{(s,S, g(k),P)}. Simultaneously,
the subgoal generator refines its parameters using {(s, Ŝ, g(k))}. These updates are augmented by
the corresponding training data generated during the initialization phase, contributing to increased
data diversity and model robustness throughout training.

Diversity Efforts. We employ various strategies to enhance the diversity of model outputs, thereby
improving the efficiency of the search process. (1) During the initialization phase, we train four
distinct language models for the formal proof generator. These models are derived from combinations
of two prompt templates (see Appendix D.1) and two proof lengths. For the proof lengths, one model
retains the entire dataset, while the other selectively excludes shorter proofs based on indicators
drawn from Bernoulli distributions. 2 (2) In each iteration of the expert learning phase, we reinitialize
the components from the Llama-3-8B rather than from the previous iteration’s checkpoints.

Algorithm 1 Subgoal-based Expert Learning

Requires: I: informal dataset (I = {sIi , pI
i }

|I|
i=1).

F: formal dataset (F = {SF
i ,PF

i }
|F|
i=1).

Kmax: maximum iterations for expert learning.
m: sample size in expert learning.

1: D
(0)
fsg ,D

(0)
fpg ,D

(0)
sg ,Dpsg ← ∅ ▷ Initialize datasets for training all components

2: for i = 1 to |I| do
3: Annotate subgoal-based proof gI

i , formal statement SI
i , and formal proof PI

i for (sIi , p
I
i).

4: Remove inline comments in PI
i to obtain P

I

i .
5: Update D

(0)
fsg ← D

(0)
fsg ∪ {(s

I
i ,S

I
i)} and D

(0)
fpg ← D

(0)
fpg ∪ {(s

I
i ,S

I
i , g

I
i ,P

I
i)}.

6: Update D
(0)
sg ← D

(0)
sg ∪ {(sIi ,SI

i , g
I
i)} and Dpsg ← Dpsg ∪ {(sIi ,SI

i ,P
I

i , g
I
i)}.

7: end for
8: for i = 1 to |F| do
9: Annotate informal statement sFi and informal proof pF

i for (SF
i ,PF

i).
10: Update D

(0)
fsg , D(0)

fpg , D(0)
sg , and Dpsg accordingly.

11: end for
12: Fine-tune models to obtain p

(0)
fsg , p(0)fpg , p(0)sg , and ppsg using D

(0)
fsg , D(0)

fpg , D(0)
sg , and Dpsg respectively.

13: for k = 1 to Kmax do ▷ Begin expert learning iterations
14: D

(k)
fsg ← D

(0)
fsg , D(k)

fpg ← D
(0)
fpg , D(k)

sg ← D
(0)
sg .

15: for i = 1 to |I| do
16: for j = 1 to m do
17: Sample S

(k)
i,j according to Eq.3, then update D

(k)
fsg ← D

(k)
fsg ∪ {(s

I
i ,S

(k)
i,j)}.

18: Sample (S
(k)
i,j ,P

(k)
i,j) according to Eq.2, then update D

(k)
fpg ← D

(k)
fpg ∪ {(s

I
i ,S

(k)
i,j , gI

i ,P
(k)
i,j)}.

19: end for
20: end for
21: for i = 1 to |F| do
22: for j = 1 to m do
23: Sample g

(k)
i,j according to Eq.4.

24: Update D
(k)
sg ← D

(k)
sg ∪ {(sFi ,SF

i , g
(k)
i,j)} and D

(k)
fpg ← D

(k)
fpg ∪ {(s

F
i ,S

F
i , g

(k)
i,j ,P

F
i)}.

25: end for
26: end for
27: Fine-tune models to obtain p

(k)
fsg , p(k)fpg , and p

(k)
sg using D

(k)
fsg , D(k)

fpg , and D
(k)
sg respectively.

28: end for

4 EXPERIMENTS

4.1 DATASET AND EVALUATION

Dataset. We evaluate our approach using the miniF2F dataset (Zheng et al., 2021), which includes
488 formal mathematical problems from high-school competitions, expressed in three formal lan-

2For formal proofs with lengths 1, 2, and 3, the drop rates are 0.8, 0.6, and 0.4, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

guages: Lean, HOL-Light, and Isabelle. The dataset is split into a validation set and a test set, each
containing 244 problems. These problems come from three different sources: 260 problems are from
the MATH dataset (Hendrycks et al., 2021), 160 problems are from real high-school mathematical
competitions (AMC, AIME, and IMO), and 68 problems are designed to match the difficulty level of
these competitions.

Evaluation. The task involves generating formal sketches for problems in the miniF2F dataset.
The validity of a formal sketch must meet two criteria: it should not contain “cheating” keywords
like “sorry” and “oops” that end a proof prematurely, and it must be verifiable by the interactive
theorem prover Isabelle. To facilitate working with Isabelle, we use the Portal-to-Isabelle API
introduced by Jiang et al. (2022a). We use the pass rate to measure our results, reporting it for both
the miniF2F-valid set and the miniF2F-test set. Further details about the formal environments are
provided in Appendix A.

4.2 BASELINES

To assess the performance of our approach, we compare it against several established baselines.

Symbolic Automated Provers. We first apply Sledgehammer, a proof automation tool extensively
used within the Isabelle environment. Sledgehammer incorporates a 120-second timeout and utilizes
five automated theorem provers (Z3, CVC4, SPASS, Vampire, E). Following Jiang et al. (2022a), we
enhance Sledgehammer with a set of 11 common tactics (e.g., auto, simp, blast, fastforce, force, eval,
presburger, sos, arith, linarith, auto simp: field simps). If these tactics fail or take longer than 10
seconds, the system defaults to the basic Sledgehammer configuration.

Search-based Approaches. We also employ search-based methods, particularly Monte-Carlo tree
search (Silver et al., 2016), to explore proof possibilities. This includes Thor (Jiang et al., 2022b)
and a version enhanced with expert iteration on autoformalized data (Thor+expert iteration (Wu
et al., 2022)). Thor integrates language models with automated theorem provers to efficiently
select premises from large libraries, while Thor+expert iteration further refines this by training on
autoformalized theorems.

LLM-based Approaches. In the LLM-based category, we evaluate several frameworks: Draft,
Sketch, and Prove (DSP) (Jiang et al., 2022a), LEGO-Prover (Xin et al., 2023), Lyra (Zheng et al.,
2023), and Subgoal-Prover (Zhao et al., 2024). DSP uses the 540B Minerva model (Lewkowycz
et al., 2022) to generate formal sketches from informal proofs. LEGO-Prover incrementally develops
reusable theorems to enhance proof efficiency, while Lyra integrates feedback from external verifiers
to optimize the verification process. Subgoal-Prover improves LLM performance in formal theorem
proving by replacing informal proofs with subgoal-based proofs and using diffusion models to
organize demonstrations optimally. Notably, all these methods employ Sledgehammer for consistency
across evaluations.

Comparisons with theorem proving methods based on Lean (de Moura et al., 2015), a system utilizing
distinct tactics and automation mechanisms that are not directly comparable to Isabelle, are deferred
to Appendix B for thorough analysis.

4.3 IMPLEMENTATION DETAILS

We collected past AMC8, AMC10, AMC12, AIME, and IMO problems from the AOPS website 3

and combined them with training data from GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021) to build the informal dataset. The formal dataset was constructed using the AFP-
2021 4 library and the HOL library from Isabelle 2021 5. This resulted in a total of 18k
⟨Informal Statement, Informal Proof⟩ pairs and 195k ⟨Formal Statement,Formal Proof⟩ pairs. To

3https://artofproblemsolving.com/community
4https://www.isa-afp.org/release/afp-2021-10-22.tar.gz
5https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021_

linux.tar.gz

6

https://artofproblemsolving.com/community
https://www.isa-afp.org/release/afp-2021-10-22.tar.gz
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021_linux.tar.gz
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021_linux.tar.gz

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on the miniF2F dataset. Methods marked with † incorporate human-written
informal proofs either fully or partially during the proof search process. Bold numbers denote the
highest performance achieved.

Model Base miniF2F-valid miniF2F-test
Sledgehammer - 9.9% 10.4%
Sledgehammer+heuristic - 18.0% 20.9%

Thor (Jiang et al., 2022b) - 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022) - 37.3% 35.2%

DSP (Jiang et al., 2022a)† Codex 42.6% 39.3%
Subgoal-Prover (Zhao et al., 2024) GPT-3.5-Turbo 48.0% 45.5%
LEGO-Prover (Xin et al., 2023)† GPT-3.5-Turbo 55.3% 50.0%
Lyra (Zheng et al., 2023)† GPT-4 55.3% 51.2%

SubgoalXL (ours)† Llama-3-8B 61.9% 56.1%

prevent data leakage, we filtered out problems that had more than 10% 3-gram overlap with those
from the miniF2F dataset.

For the initialization phase, we employed a mixture of deepseek-math-base and Llama-3-8B, with a
maximum generation length of 2048 tokens and temperature settings of 0.6 and 0.8. This yielded
27k quadruples for the informal dataset and 174k quadruples for the formal dataset. The training of
Llama-3-8B was performed with a learning rate of 1e-5 over 3 epochs, utilizing a sequence length of
8192 tokens. These hyperparameters were also applied during the expert learning phase. All training
was performed on a single SN20 node.

For the expert learning phase, we retained 11k problems from the informal dataset (after excluding
GSM8K problems) and 10k problems from the formal dataset (after selecting 10k problems from
the HOL library). The maximum number of expert learning iterations, Kmax, was set to 3, with a
sample size m of 2. At each iteration, we trained 4 formal proof generators using combinations of
two prompt templates and two proof lengths, leading to a total of 16 models after 3 iterations. The
number of verified proofs generated during each iteration was 3156, 3592, and 4117, respectively.
Adding the 27k verified proofs obtained during the initialization phase, a total of 38k verified proofs
were generated.

For inference, each model generated 512 samples with and without human-written informal proofs,
resulting in a total of 16384 proof attempts across all iterations for the miniF2F dataset. This includes
8192 attempts with human-written informal proofs and 8192 attempts without them. The inference
process was executed across 4 SN40 nodes.

Verification was carried out using both Isabelle 2021 and Isabelle 2022. A formal proof was deemed
correct if it passed verification in either version of Isabelle. The verification process was conducted
on 2048 CPUs.

4.4 MAIN RESULTS

Our main experimental results, as shown in Table 1, highlight several important findings: (1)
SubgoalXL achieves the best performance, setting a new state-of-the-art with 56.1% on the miniF2F-
test dataset, surpassing previous methods by an absolute improvement of up to 4.9%. (2) The success
of both SubgoalXL and Subgoal-Prover emphasizes the effectiveness of subgoal-based proofs in
enhancing the capabilities of large language models in formal theorem proving. (3) The benefits of
expert iteration are evident, as demonstrated by the performance gains of Thor + expert iteration and
SubgoalXL, reinforcing the value of iterative refinement in boosting theorem proving accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation study results on the miniF2F dataset.

Model miniF2F-valid miniF2F-test
SubgoalXL 46.3% 39.3%

-subgoal 34.8% 36.5%

5 ANALYSIS

5.1 ABLATION STUDY

In our study, we conducted ablation experiments on our proposed model using a search budget of 64
to assess the impact of the subgoal-based framework. We evaluated two configurations: the complete
model and a variant without subgoal-based proofs (-subgoal). Results in Table 2 demonstrate the
importance of the subgoal-based component, as removing it (-subgoal) led to a significant decrease in
performance. Specifically, the full model achieved 46.3% on the miniF2F-valid and 39.3% on the
miniF2F-test, whereas the -subgoal variant saw a reduction to 34.8% on miniF2F-valid and 36.5% on
miniF2F-test.

Table 3: Impact of human-written informal proofs on the performance of SubgoalXL on the miniF2F
dataset. The miniF2F benchmark includes human-written informal proofs for each problem, provided
by the benchmark’s publishers.

Model miniF2F-valid miniF2F-test
SubgoalXL (w/o informal proof) 59.4% 52.5%
SubgoalXL (with informal proof) 57.8% 52.1%

5.2 IMPACT OF HUMAN-WRITTEN INFORMAL PROOFS

We investigated the effect of human-written informal proofs on the performance of our model by
conducting experiments with and without these proofs, using a search budget of 8192. Table 3
presents the results on the miniF2F-valid and miniF2F-test datasets. Our model without informal
proofs achieved 59.4% on miniF2F-valid and 52.5% on miniF2F-test, while the version incorporating
informal proofs reached 57.8% on miniF2F-valid and 52.1% on miniF2F-test. These results suggest
that the inclusion of human-written informal proofs does not significantly enhance the model’s
performance. Our model’s generation of subgoal-based proofs appears to be more effective than
utilizing informal proofs in certain scenarios (refer to §5.6 for detailed examples).

iter-0 iter-1 iter-2 iter-3
Iterations

54

55

56

57

58

59

60

61

62

Pa
ss

 R
at

e
(%

)

Validation - Without Informal
Validation - With Informal
Validation - Overall

(a) Validation pass-rate over iterations

iter-0 iter-1 iter-2 iter-3
Iterations

48

50

52

54

56

Pa
ss

 R
at

e
(%

)

Test - Without Informal
Test - With Informal
Test - Overall

(b) Test pass-rate over iterations

Figure 2: Pass-rate comparisons across different iterations on the miniF2F dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 ITERATIVE PERFORMANCE ANALYSIS

To evaluate our model’s iterative improvement, we conducted experiments with and without human-
written informal proofs, tracking validation and test pass rates over several iterations in the expert
learning process. Figures 2a and 2b present these pass rates across four iterations. In the miniF2F-
valid split (Figure 2a), the model without informal proofs began at 54.92% in iteration 0 and plateaued
at 59.43% by iteration 2, maintaining this performance in iteration 3. The model with informal
proofs started at 54.10%, peaking at 57.79% in iteration 3. Overall validation performance increased
consistently from 58.20% in iteration 0 to 61.89% in iteration 3. In the miniF2F-test split (Figure 2b),
the model without informal proofs improved from 47.13% in iteration 0 to 52.46% in iteration 3,
while the model with informal proofs started at 48.36% and reached 52.05% by iteration 3. Overall
test performance increased from 51.23% in iteration 0 to 56.15% in iteration 3. These results indicate
that our subgoal-based framework drives iterative performance improvements, with the exclusion of
informal proofs often yielding better results.

iter 1 iter 2 iter 3
Iterations

0
5

10
15
20
25
30
35
40
45
50

Pa
ss

 R
at

e
(%

)

32.2%
36.6%

42.0%

Figure 3: Synthetic proof pass-rate over iterations.

5.4 SYNTHETIC PROOF PASS RATE ANALYSIS

We analyzed the pass rates of synthetic proofs over three iterations to evaluate the iterative learning
process. The results, depicted in Figure 3, show a steady increase in performance. In iteration 1, the
pass rate was 32.18%. This improved to 36.63% in iteration 2 and further to 41.98% in iteration 3.
These results indicate a consistent improvement in the generation of synthetic proofs as the iterations
progress, highlighting the effectiveness of the iterative learning framework in enhancing the model’s
proof generation capabilities.

5.5 ERROR ANALYSIS IN PROOF GENERATION

To gain insights into the errors encountered during proof generation, we categorized and quantified
various error types. The results, depicted in Figure 4, reveal the frequency of each error category. The
most prevalent error was “Outer syntax error” with 1, 510, 737 occurrences, followed by “Failed to
finish proof” (127, 082), and “Undefined fact” (124, 611). Other notable errors included “Type unifica-
tion failed” (90, 664), “Timeout” (74, 459), and “Failed to apply initial proof method“ (58, 659). This
detailed error analysis highlights common failure points in the proof generation process, providing a
clear direction for targeted improvements.

5.6 CASE STUDY

We evaluated the effectiveness of subgoal-based proofs versus informal proofs using a specific
theorem. As shown in Figure 5, the leftmost example represents a successful proof using subgoal-
based methods, while the other examples depict failed attempts using informal proofs. The subgoal-
based proof demonstrated robustness and effectiveness, whereas the informal proof attempts failed to
sufficiently establish the necessary conditions, leading to incomplete proofs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Count 1e6

Outer syntax error
Failed to finish proof

Undefined fact
Type unification failed

Timeout
Failed to apply initial proof method

Inner syntax error
Failed to refine any pending goal

Illegal application of proof command in 'prove' mode
More instantiations than variables in theorem

Inner lexical error
No type arity

Failed to replayZ3 proof step
Undefined case

Failed to retrieve literal fact
Failed to apply proof method

Entity to be defined occurs on rhs
Unbound schematic variable

Illegal application of proof command in 'state' mode
Bad arguments on lhs

Er
ro

r
Ty

pe
s

1,510,737

127,082

124,611

90,664

74,459

58,659

19,857

11,499

9,214

6,786

6,348

4,867

3,825

3,794

3,119

2,998

1,301

1,043

894

762

Figure 4: Counts of Different Error Types

theorem mathd_numbertheory_435:
fixes k :: nat
assumes "0 < k"
and "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"

shows "5 \<le> k"
proof -
(* We will show that for any positive integer 𝑛, 6𝑛 + 𝑘 is relatively prime to each of

6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 (This is true by assumption). *)
have "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
using assms(2)
sledgehammer

moreover have "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
using assms(3)
sledgehammer

moreover have "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"
using assms(4)
sledgehammer

(* We will show that for any positive integer 𝑛, 6𝑛 + 𝑘 is relatively prime to each of
6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 (This is true by assumption). *)
ultimately have "\<forall> n. coprime (6 * n + k) (6 * n + 3) \<and> coprime (6 * n

+ k) (6 * n + 2) \<and> coprime (6 * n + k) (6 * n + 1)"
sledgehammer

(* Now we will show that 𝑘 is at least 5. Suppose that 𝑘 < 5. Then 𝑘 = 1, 2, 3, 4. We will
show that for each of these values of 𝑘, there exists a positive integer 𝑛 such that 6𝑛 +
𝑘 is not relatively prime to one of 6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1. *)
have "k \<ge> 5"
proof (rule ccontr)
assume "\<not> 5 \<le> k"
then have "k < 5"
sledgehammer

with assms(1)
consider "k=1" | "k=2" | "k=3" | "k=4"
sledgehammer

then show False
proof cases
case 1
then have "gcd (6 * 2 + k) (6 * 2 + 1) \<noteq> 1"
sledgehammer

then show False
sledgehammer

next
case 2
then have "gcd (6 * 5 + k) (6 * 5 + 3) \<noteq> 1"
sledgehammer

then show False
sledgehammer

next
case 3
then have "gcd (6 * 4 + k) (6 * 4 + 2) \<noteq> 1"
sledgehammer

then show False
sledgehammer

next
case 4
then have "gcd (6 * 2 + k) (6 * 2 + 3) \<noteq> 1"
sledgehammer

then show False
sledgehammer

qed
qed
(* Thus 𝑘 is at least 5. *)
then show?thesis
sledgehammer

qed

theorem mathd_numbertheory_435:
fixes k :: nat
assumes "0 < k"
and "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"

shows "5 \<le> k"
proof -
(* Obviously, we have that 𝑘 > 3, because otherwise two of the integers would be

identical and not be relatively prime. *)
have "k > 3" using assms
sledgehammer

(* Start by testing 𝑘 = 4. 6𝑛 + 4 and 6𝑛 + 3 are relatively prime because they are
consecutive integers, but 6𝑛 + 4 and 6𝑛 + 2 are both even and are therefore not relatively
prime. *)
have "k \<noteq> 4" using assms
sledgehammer

(* The next candidate to test is 𝑘 = 5. Firstly, we have that
𝑔𝑐𝑑 6𝑛 + 5, 6𝑛 + 3 = 𝑔𝑐𝑑 6𝑛 + 3, 6𝑛 + 5 − 6𝑛 + 3

= 𝑔𝑐𝑑 6𝑛 + 3,2
Since 6𝑛 + 3 is always odd, the two integers 6𝑛 + 5 and 6𝑛 + 3 are relatively prime.
Secondly,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 2 = 𝑔𝑐𝑑 6𝑛 + 2, 6𝑛 + 5 − 6𝑛 + 2
= 𝑔𝑐𝑑(6𝑛 + 2,3)

Note that 6𝑛 + 3 is always divisible by 3, so 6𝑛 + 2 is never divisible by 3. As a result, we
have that 6𝑛 + 5 and 6𝑛 + 2 are relatively prime. Finally,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 1 = 𝑔𝑐𝑑 6𝑛 + 1, 6𝑛 + 5 − 6𝑛 + 1
= 𝑔𝑐𝑑(6𝑛 + 1,4)

Note that 6𝑛 + 1 is always odd, so 6𝑛 + 5 and 6𝑛 + 1 are also relatively prime. Therefore,
the smallest positive integer 𝑘 that permits 6𝑛 + 𝑘 to be relatively prime with each of
6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 is 𝑘 = 5.*)
have "k = 5" using assms
sledgehammer

then show?thesis
sledgehammer

qed

theorem mathd_numbertheory_435:
fixes k :: nat
assumes "0 < k"
and "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"

shows "5 \<le> k"
proof -
(* Obviously, we have that 𝑘 > 3, because otherwise two of the integers would be

identical and not be relatively prime. *)
have "k > 3" using assms
sledgehammer

(* Start by testing 𝑘 = 4. 6𝑛 + 4 and 6𝑛 + 3 are relatively prime because they are
consecutive integers, but 6𝑛 + 4 and 6𝑛 + 2 are both even and are therefore not relatively
prime. The next candidate to test is 𝑘 = 5. *)
have "5 \<le> k" using assms
sledgehammer

(* Firstly, we have that
𝑔𝑐𝑑 6𝑛 + 5, 6𝑛 + 3 = 𝑔𝑐𝑑 6𝑛 + 3, 6𝑛 + 5 − 6𝑛 + 3

= 𝑔𝑐𝑑 6𝑛 + 3,2
Since 6𝑛 + 3 is always odd, the two integers 6𝑛 + 5 and 6𝑛 + 3 are relatively prime.
Secondly,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 2 = 𝑔𝑐𝑑 6𝑛 + 2, 6𝑛 + 5 − 6𝑛 + 2
= 𝑔𝑐𝑑(6𝑛 + 2,3)

Note that 6𝑛 + 3 is always divisible by 3, so 6𝑛 + 2 is never divisible by 3. As a result, we
have that 6𝑛 + 5 and 6𝑛 + 2 are relatively prime. Finally,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 1 = 𝑔𝑐𝑑 6𝑛 + 1, 6𝑛 + 5 − 6𝑛 + 1
= 𝑔𝑐𝑑(6𝑛 + 1,4)

Note that 6𝑛 + 1 is always odd, so 6𝑛 + 5 and 6𝑛 + 1 are also relatively prime. Therefore,
the smallest positive integer 𝑘 that permits 6𝑛 + 𝑘 to be relatively prime with each of
6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 is 𝑘 = 5.*)
then show?thesis
sledgehammer

qed

Success (w/ Subgoal-Based Proof) Failure 1 (w/ Informal Proof) Failure 2 (w/ Informal Proof)

Figure 5: Case study comparing subgoal-based and informal proofs. The left example shows a
successful attempt using subgoal-based proofs, while the right examples depict failed attempts with
informal proofs.

6 CONCLUSION

In conclusion, SubgoalXL marks a significant step forward in AI-powered theorem proving within
the Isabelle environment. By addressing the challenges of complex multi-step reasoning, SubgoalXL
demonstrates the efficacy of integrating subgoal-based proofs with an expert learning framework.
This method iteratively refines three key components: a formal statement generator, a formal proof
generator, and a subgoal generator, leading to improved performance on theorem-proving tasks. The
empirical results confirm the effectiveness of SubgoalXL, achieving state-of-the-art performance on
the standard miniF2F dataset with a score of 56.1% . This work paves the way for further innovations
in applying AI to tackle advanced mathematical challenges in formal theorem proving.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378–388. Springer, 2015.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. arXiv preprint arXiv:2303.04910, 2023.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1l8BtlCb.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022a.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź,
Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
models and automated theorem provers. Advances in Neural Information Processing Systems, 35:
8360–8373, 2022b.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. Advances in Neural Information Processing Systems, 35:26337–26349, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson. Modelling high-level mathematical
reasoning in mechanised declarative proofs. arXiv preprint arXiv:2006.09265, 2020.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024.

Maciej Mikuła, Szymon Antoniak, Szymon Tworkowski, Albert Qiaochu Jiang, Jin Peng Zhou,
Christian Szegedy, Łukasz Kuciński, Piotr Miłoś, and Yuhuai Wu. Magnushammer: A transformer-
based approach to premise selection. arXiv preprint arXiv:2303.04488, 2023.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Lawrence C Paulsson and Jasmin C Blanchette. Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. In Proceedings of the 8th
International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia.
EPiC, volume 2, 2012.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

11

https://openreview.net/forum?id=B1l8BtlCb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in neural information processing systems, 28, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Information
Processing Systems, 35:32353–32368, 2022.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. Lean-github: Compiling github lean repositories
for a versatile lean prover. arXiv preprint arXiv:2407.17227, 2024.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries.
arXiv preprint arXiv:2310.00656, 2023.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Subgoal-based demonstration learning for formal
theorem proving. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
60832–60865. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
zhao24h.html.

Chuanyang Zheng, Haiming Wang, Enze Xie, Zhengying Liu, Jiankai Sun, Huajian Xin, Jianhao
Shen, Zhenguo Li, and Yu Li. Lyra: Orchestrating dual correction in automated theorem proving.
arXiv preprint arXiv:2309.15806, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

12

https://proceedings.mlr.press/v235/zhao24h.html
https://proceedings.mlr.press/v235/zhao24h.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A FORMAL ENVIRONMENT AND PROOF TOOLS

Interactive Theorem Provers. Interactive Theorem Provers (ITPs), such as Isabelle (Paulson,
1994), are essential tools in modern mathematical verification. They help incorporate mathematical
definitions and theorems into a consistent logical framework, such as Higher-Order Logic or De-
pendent Type Theory, which their kernels implement. The kernel is vital in the verification process,
carefully checking each theorem to ensure it is correctly recognized by the ITP, thus maintaining
system integrity. Using an ITP involves expressing the theorem in its programming language and then
breaking it down into simpler goals or subgoals. A theorem is proven once it is reduced to known
facts. We chose Isabelle for our paper because it has an intuitive interface, supports various logical
frameworks, and offers a comprehensive library of formalized mathematics.

Sledgehammer. Sledgehammer (Paulsson & Blanchette, 2012) is a powerful tool for automating
reasoning within the interactive theorem prover Isabelle. It works by translating the goals expressed in
Isabelle/HOL’s higher-order logic into other types of logic, such as first-order logic. These translated
goals are then sent to automated theorem provers like E, CVC4, Z3, Vampire, and SPASS. If any of
these automated provers succeed in finding proof, Sledgehammer reconstructs the proof within the
Isabelle/HOL framework using certified provers, such as metis, meson, and smt. This reconstructed
proof, being more understandable to humans, greatly improves the system’s usability and enhances
the efficiency and effectiveness of interactive theorem proving.

B COMPARATIVE ANALYSIS WITH LEAN-BASED METHODS

Table 4: Performance on the miniF2F dataset. Methods marked with † integrate human-written
informal proofs, either in full or partially, during the proof search. Methods denoted by ‡ employ a
tree search strategy, where the search budget is structured as N × M, representing N search trees with
M as the budget per tree.

Model Base Synthetic Size Search Budget miniF2F-valid miniF2F-test
Lean-based

HTPS (Lample et al., 2022)‡ - - - 58.6% 41.0%
Lean-STaR (Lin et al., 2024)‡ InternLM2-Math-plus 50k Theorems 64 × 50 - 46.3%
DeepSeek-Prover (Xin et al., 2024a) DeepSeekMath-Base 712k Theorems 65536 - 50.0%
InternLM2-StepProver (Wu et al., 2024)‡ InternLM2-Math-plus 1.155B Tokens 64 × 3200 63.9% 54.5%
DeepSeek-Prover-V1.5 (Xin et al., 2024b)‡ DeepSeekMath-Base 9B Tokens 32 × 6400 - 63.5%

Isabelle-based
Sledgehammer - - - 9.9% 10.4%
Sledgehammer+heuristic - - - 18.0% 20.9%
Thor (Jiang et al., 2022b)‡ - - 300 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022)‡ - - - 37.3% 35.2%
DSP (Jiang et al., 2022a)† Codex - 100 42.6% 39.3%
Subgoal-Prover (Zhao et al., 2024) GPT-3.5-Turbo - 100 48.0% 45.5%
LEGO-Prover (Xin et al., 2023)† GPT-3.5-Turbo - 100 55.3% 50.0%
Lyra (Zheng et al., 2023)† GPT-4 - 200 55.3% 51.2%

SubgoalXL (ours)† Llama-3-8B 38k Theorems 16384 61.9% 56.1%

In this section, we provide a detailed analysis and discussion of the performance of our approach
in relation to Lean-based theorem proving methods, including HTPS (Lample et al., 2022), Lean-
STaR (Lin et al., 2024), DeepSeek-Prover (Xin et al., 2024a), InternLM2-StepProver (Wu et al., 2024)
and DeepSeek-Prover-V1.5 (Xin et al., 2024b). Lean employs a unique set of tactics and automation
techniques that differ significantly from those used in the Isabelle proof assistant, making direct
comparisons within the main body of our evaluation less meaningful.

Table 4 demonstrates the significant performance variation across Lean-based and Isabelle-based
approaches on the miniF2F dataset. Lean-based methods generally operate on a much larger scale,
utilizing between 15× and 120× more synthesized proofs than Isabelle-based systems. For example,
DeepSeek-Prover-V1.5 employs 9 billion tokens of synthesized data, while our approach uses only
38k theorems. Furthermore, these Lean methods typically operate with a search budget that is
approximately 12.5× larger than ours. InternLM2-StepProver, for instance, operates with a search
budget of 64 × 3200, compared to our search budget of 16,384.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Despite this, SubgoalXL outperforms most Lean-based methods, achieving 56.1% on the miniF2F-
test dataset compared to 54.5% for InternLM2-StepProver and 50.0% for DeepSeek-Prover. On
the miniF2F-valid dataset, SubgoalXL also exhibits strong performance, further demonstrating
the efficiency of our subgoal-based approach, even with significantly smaller synthetic data and
a more moderate search budget. These results suggest that our approach is highly effective in
optimizing formal theorem-proving tasks. A potential direction for future work is to scale up the
size of synthesized proofs and the search budget, which could further enhance performance and
competitiveness, particularly in comparison to resource-intensive Lean-based methods.

C MORE DETAILS ABOUT SUBGOAL-BASED PROOF

After creating 26 demonstration examples, as detailed in §3.2, we used the prompt shown in Figure 6
to annotate subgoal-based proofs for the problems in the informal dataset.

Prompt to generate subgoal-based proofs
System:
To generate a subgoal-based proof from an informal statement and informal proof,
systematically decompose the informal proof into smaller logical steps (subgoals), then
prove each subgoal to logically build towards proving the main theorem.

User:
text \<open>
Informal Statement:
When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it
is 4.

Informal Proof:
Let 𝑛 be Rachel's favorite number. Then 𝑛≡5 (mod 7), so 5𝑛≡5∙5≡25≡4 (mod 7).
\<close>

Assistant:
Step 1: Given 𝑛≡5 (mod 7), substitute 5 for 𝑛 in (5∗𝑛) mod 7.
Step 2: Calculate 25 mod 7=4.
Step 3: Thus, (5∗𝑛) mod 7 simplifies to 4.
Therefore, the remainder when 5 times Rachel's favorite number is divided by 7 is 4.

User:
text \<open>
Informal Statement:
{informal_statement}

Informal Proof:
{informal_proof}
\<close>

Assistant:

Figure 6: Prompt to generate subgoal-based proofs.

D MORE DETAILS ABOUT EXPERT LEARNING

D.1 IMPLEMENTATION DETAILS OF EACH COMPONENT

The prompt templates for the formal statement generator, subgoal generator, and posterior subgoal
generator are shown in Figures 7-9, respectively. To improve the diversity of outputs generated by
the formal proof generator, we employ two distinct prompt templates, as illustrated in Figures 10 and
11. In this study, all components are initialized with Llama-3-8B.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Prompt for formal statement generator
Translate the informal statement into a formal statement by defining variables and
assumptions explicitly, and then stating the main claim clearly using precise mathematical
notation.

Informal Statement
{informal_statement}

Formal Statement
{formal_statement}

Figure 7: Prompt for formal statement generator.

Prompt for subgoal generator
Generate a subgoal-based proof by identifying and breaking down the critical steps needed
to achieve the overall proof, explaining each subgoal with clear mathematical reasoning
and ensuring logical progression from one subgoal to the next until the final proof is
achieved.

Informal Statement
{informal_statement}

Formal Statement
{formal_statement}

Subogal-based Proof
{subgoal_based_proof}

Figure 8: Prompt for subgoal generator.

Prompt for posterior subgoal generator
Generate a subgoal-based proof by breaking down the formal proof into critical steps,
providing clear mathematical reasoning for each subgoal, and ensuring logical progression
from one subgoal to the next until the final proof is achieved.

Informal Statement
{informal_statement}

Formal Statement
{formal_statement}

Formal Proof
{formal_proof}

Subogal-based Proof
{subgoal_based_proof}

Figure 9: Prompt for posterior subgoal generator.

D.2 ANNOTATION OF FORMAL AND INFORMAL DATA

For the problems within the informal dataset, we employed a mixture of deepSeek-math-base
and Llama-3-8B using the prompt templates illustrated in Figures 12 and 13 to generate their
corresponding formal statements and proofs. For the problems in the formal dataset, we use the
prompt template shown in Figure 14 to annotate their informal statements and proofs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt for formal proof generator (Template 1)
Problem:
{informal_statement}

Proof:
{formal_statement}

{formal proof}

Figure 10: Prompt for formal proof generator (template 1).

Prompt for formal proof generator (Template 2)
(For problems from the formal dataset)
Develop formal proofs using Isabelle, leveraging auxiliary tools such as Sledgehammer to
enhance the proving process.

Input
(* Informal Statement:
{informal_statement} *)
{formal_statement}

Output
{formal_proof}

(For problems from the informal dataset)
Utilize Isabelle for the systematic verification of theorem proofs, employing Sledgehammer
as a supplementary tool. Approach the problem in a step-by-step manner.

Problem
{informal_statement}

Isabelle Proof
{formal_statement}

{formal_proof}

Figure 11: Prompt for formal proof generator (template 2).

D.3 OPTIMAL DISTRIBUTIONS FOR FORMAL STATEMENTS AND SUBGOAL-BASED PROOFS

The optimal distribution for the formal statement at the k-th iteration is given by:

p⋆fsg(S | s) = 1

Z(s)
p
(k−1)
fsg (S | s) exp

(
1

β
(log psg(g | s,S))

)
, (3)

where Z(s) =
∑

S p
(k−1)
fsg (S | s) exp

(
1
β (log psg(g | s,S))

)
.

Similarly, the optimal distribution for the subgoal-based proof at the k-th iteration is determined by:

p⋆sg(g | s,S) = 1

Z(s,S)
p(k−1)

sg (g | s,S) exp
(
1

β
(log pfpg(P | s,S, g))

)
, (4)

where Z(s,S) =
∑

g p
(k−1)
sg (g | s,S) exp

(
1
β (log pfpg(P | s,S, g))

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Prompt to generate formal statements
System:
Use Isabelle to formalize informal mathematical problems by defining the necessary
variables and assumptions, followed by constructing the precise theorem statements.

User:
text \<open>
When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it
is 4.
\<close>

Assistant:
theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

User:
text \<open>
{informal_statement}
\<close>

Assistant:

Figure 12: Prompt to generate formal statements.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt to generate formal proofs
System:
Use Isabelle to systematically prove theorem statements. Use tools like sledgehammer to
assist in proving.

User:
text \<open>
When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it
is 4.
\<close>

theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

Assistant:
proof -
(* Step 1: Given 𝑛 ≡ 5 (mod 7), substitute 5 for 𝑛 in 5 ∗ 𝑛 mod 7. *)
have c0: "(5 * n) mod 7 = (5 * 5) mod 7"
using h0
by simp

(* Step 2: Calculate 25 mod 7 = 4. *)
then have "\<dots> = 4"
by simp

(* Step 3: Thus, 5 ∗ 𝑛 mod 7 simplifies to 4. *)
then have "(5 * n) mod 7 = 4"
using c0
by simp

(* Therefore, the remainder when 5 times Rachel's favorite number is divided by 7 is 4. *)
then show ?thesis
by simp

qed

User:
text \<open>
{informal_statement}
\<close>

{formal_statement}

Assistant:

Figure 13: Prompt to generate formal proofs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt to generate informal statements and proofs
System:
Clearly state the problem, simplify and explain each step in plain language, summarize the
result, and use LaTeX for mathematical expressions.

User:
theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

proof -
(* Step 1: Given 𝑛 ≡ 5 (mod 7), substitute 5 for 𝑛 in 5 ∗ 𝑛 mod 7. *)
have c0: "(5 * n) mod 7 = (5 * 5) mod 7"
using h0
by simp

(* Step 2: Calculate 25 mod 7 = 4. *)
then have "\<dots> = 4"
by simp

(* Step 3: Thus, 5 ∗ 𝑛 mod 7 simplifies to 4. *)
then have "(5 * n) mod 7 = 4"
using c0
by simp

(* Therefore, the remainder when 5 times Rachel's favorite number is divided by 7 is 4. *)
then show ?thesis
by simp

qed

Assistant:
Problem

When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it
is 4.

Solution

Let 𝑛 be Rachel's favorite number. Then 𝑛≡5 (mod 7), so 5𝑛≡5∙5≡25≡4 (mod 7).

User:
{formal_statement}
{formal_proof}

Assistant:

Figure 14: Prompt to generate informal statements and proofs.

19

	Introduction
	Related Work
	Approach
	Problem Formalization
	Subgoal-based Proof
	Subgoal-based Expert Learning

	Experiments
	Dataset and Evaluation
	Baselines
	Implementation Details
	Main Results

	Analysis
	Ablation Study
	Impact of Human-Written Informal Proofs
	Iterative Performance Analysis
	Synthetic Proof Pass Rate Analysis
	Error Analysis in Proof Generation
	Case Study

	Conclusion
	Formal Environment and Proof Tools
	Comparative Analysis with Lean-based Methods
	More Details about Subgoal-based Proof
	More Details about Expert Learning
	Implementation Details of Each Component
	Annotation of Formal and Informal Data
	Optimal Distributions for Formal Statements and Subgoal-Based Proofs

