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ABSTRACT

Formal theorem proving, a field at the intersection of mathematics and computer
science, has seen renewed interest with advancements in large language models
(LLMs). This paper introduces SubgoalXL, a novel approach that synergizes
subgoal-based proofs with expert learning to enhance LLMs’ capabilities in formal
theorem proving within the Isabelle environment. SubgoalXL addresses two criti-
cal challenges: the scarcity of specialized mathematics and theorem-proving data,
and the need for improved multi-step reasoning abilities in LLMs. By optimiz-
ing data efficiency and employing subgoal-level supervision, SubgoalXL extracts
richer information from limited human-generated proofs. The framework inte-
grates subgoal-oriented proof strategies with an expert learning system, iteratively
refining formal statement, proof, and subgoal generators. Leveraging the Isabelle
environment’s advantages in subgoal-based proofs, SubgoalXL achieves a new
state-of-the-art performance of 56.1% in Isabelle on the standard miniF2F dataset,
marking an absolute improvement of 4.9%. Notably, SubgoalXL successfully
solves 41 AMC12, 9 AIME, and 3 IMO problems from miniF2F. These results
underscore the effectiveness of maximizing limited data utility and employing
targeted guidance for complex reasoning in formal theorem proving, contributing
to the ongoing advancement of AI reasoning capabilities.

1 INTRODUCTION

Formal theorem proving, a field at the intersection of mathematics and computer science, has flour-
ished alongside the development of languages like Lean (de Moura et al., 2015) and Isabelle (Paulson,
1994). These two prominent communities have been instrumental in advancing the field’s core
challenge: mechanizing mathematical reasoning and proof verification (Li et al., 2020). Through the
creation of rigorously verified proofs, this discipline strengthens the foundations of mathematical
certainty, potentially opening doors to new mathematical discoveries.

The field has recently garnered renewed attention, driven by advancements in large language models
(LLMs). Despite their impressive capabilities, current LLMs often face limitations in performing
complex reasoning tasks required for formal theorem proving, including the need for logically
rigorous, multi-step proofs (Wu et al., 2022; Jiang et al., 2022a; Zhao et al., 2024; Xin et al., 2023;
Lin et al., 2024). Conventional approaches struggle to align informal human intuition with the strict
formalism required by theorem-proving languages, leading to inefficiencies in generating high-quality
proofs. This highlights a pressing need to refine models that not only handle the depth of logical
reasoning but also make more efficient use of available data while bridging the gap between informal
and formal mathematical reasoning.

In this work, we introduce SubgoalXL (Figure 1), a novel approach that synergizes subgoal-based
proofs with expert learning to enhance LLMs’ capabilities in formal theorem proving. SubgoalXL
tackles the scarcity of specialized mathematics and theorem-proving data (Lin et al., 2024; Wu
et al., 2024) by maximizing data utility through subgoal-level decomposition of proofs, allowing
for more granular supervision and iterative refinement. This approach extracts deeper structural
information from human-generated proofs by focusing on intermediate subgoals, effectively breaking
down the reasoning process into smaller, manageable steps. Consequently, SubgoalXL enhances
multi-step reasoning abilities, ensuring that each generated subgoal aligns with both the informal
intuition and the formal proof structure. At its core, SubgoalXL integrates subgoal-oriented strategies
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Informal Statement
When Rachel divides her favorite number by 7, she gets a
remainder of 5. What will the remainder be if she multiplies
her favorite number by 5 and then divides by 7? Show that it
is 4.

Formal Statement + Formal Proof 
(Subgoal-Based Proof as Inline Comments)

theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

proof -
(* Step 1: Given 𝑛 ≡ 5 (mod 7), substitute 5 for 𝑛 in
5 ∗ 𝑛 mod 7. *)
have c0: "(5 * n) mod 7 = (5 * 5) mod 7"
using h0
by simp

(* Step 2: Calculate 25 mod 7 = 4. *)
then have "\<dots> = 4"
by simp

(* Step 3: Thus, 5 ∗ 𝑛 mod 7 simplifies to 4. *)
then have "(5 * n) mod 7 = 4"
using c0
by simp

(* Therefore, the remainder when 5 times Rachel's favorite
number is divided by 7 is 4. *)
then show ?thesis
by simp

qed

Informal Proof
Let 𝑛 be Rachel's favorite number. Then 𝑛 ≡ 5 (mod 7), so
5𝑛 ≡ 5 . 5 ≡ 25 ≡ 4 (mod 7).

(a) Subgoal-based Proof
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(b) Expert Learning Framework

Figure 1: Left: Examples of informal statement, informal proof, formal statement, formal proof, and
subgoal-based proof. Right: Overview of the subgoal-based expert learning framework. Abbrevia-
tions: “Stat.” for “Statement”, “F.” for “Formal”, and “P.” for “Posterior”. Each iteration samples
subgoal-based proofs, formal statements, and formal proofs from their optimal distributions.

with an expert learning framework, refining the formal statement, proof, and subgoal generators
through sampling from estimated optimal distributions, thereby improving the LLMs’ proficiency in
navigating intricate logical structures and producing accurate formal proofs.

Leveraging the Isabelle environment’s advantages in subgoal-based proofs, SubgoalXL significantly
advances theorem-proving capabilities. It achieves a new state-of-the-art performance of 56.1% in
Isabelle on the standard miniF2F dataset (Zheng et al., 2021), an absolute improvement of 4.9% over
Zheng et al. (2023). SubgoalXL successfully solves 41 AMC12, 9 AIME, and 3 IMO problems
from miniF2F. The iterative expert learning process drives steady performance gains, underscoring
SubgoalXL’s robustness and effectiveness. These results highlight the critical role of maximizing
limited data utility and employing effective guidance for complex reasoning, complementing large-
scale data efforts (Wu et al., 2024; Xin et al., 2024a;b).

2 RELATED WORK

Formal theorem proving has advanced significantly through machine learning, focusing on enhancing
proof search strategies and leveraging Large Language Models (LLMs) for autoformalization Polu
& Sutskever (2020); Polu et al. (2022); Jiang et al. (2022a). Improvements in the proof search
include self-supervised strategies in Expert Iteration (Polu et al., 2022) and PACT (Han et al., 2021),
integrations of language models with automated provers in HyperTree Proof Search (HTPS)(Lample
et al., 2022) and Thor(Jiang et al., 2022b), and transformer-based premise selection in Magnusham-
mer (Mikuła et al., 2023). Despite these advancements, scalability remains a challenge due to
the increasing complexity of theorems. The application of LLMs for autoformalization and proof
generation has also been explored, with Wu et al. (2022) and Jiang et al. (2022a) demonstrating
the conversion of mathematical problems into formal specifications. Baldur (First et al., 2023)
further enhances proving capabilities by producing full proofs and incorporating a proof repair model.
Additionally, LEGO-Prover (Xin et al., 2023) and Lyra Zheng et al. (2023) contribute uniquely to
theorem proving by focusing on the incremental development of reusable theorems and integrating
error messages from external verifiers for proof post-processing, respectively. DeepSeek-Prover (Xin
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et al., 2024a) highlights the potential of large-scale synthetic data, while Lean-STaR (Lin et al., 2024)
leverages informal information to boost theorem-proving capabilities by training language models to
produce informal thoughts before each proof step. InternLM2-StepProver (Wu et al., 2024) addresses
data scarcity by utilizing extensive formal data from Lean 4 repositories on GitHub. Zhao et al. (2024)
introduce a subgoal-based demonstration learning framework that constructs and refines distinct
subgoals for each example, significantly enhancing proof search efficiency in LLMs.

Nevertheless, challenges remain in addressing data scarcity and enhancing deep, multi-step rea-
soning in formal theorem proving. Building upon the insights from subgoal-based demonstration
learning (Zhao et al., 2024), we introduce SubgoalXL, a novel framework that combines subgoal-
based proofs with an expert learning system. This approach iteratively enhances formal statement,
proof, and subgoal generation, aiming to improve data efficiency and achieve robust performance.
SubgoalXL complements existing methods by focusing on maximizing the utility of limited data and
refining complex reasoning strategies.

3 APPROACH

3.1 PROBLEM FORMALIZATION

Suppose we have an informal dataset I = {(sIi , pIi )}
|I|
i=1, where sIi is an informal statement and

pIi is an informal proof. Similarly, we have a formal dataset F = {(SF
i ,PF

i )}|F|
i=1, where SF

i is a
formal statement and PF

i is a formal proof. The goal is to train a language model pfpg(p,P | s,S)
using both I and F. Consequently, given a new informal statement s and its formal version S, the
model can generate both the informal proof p and the formal proof P, following the distribution
pfpg(p,P | s,S). In this paper, we treat (p,P) as a sequence of language tokens, with p representing
the prefix and P representing the suffix. In cases where an informal proof p is available, the model
can directly generate the formal proof P following pfpg(P | s,S, p).
The challenges mainly lie in (1) the limited effectiveness of informal proofs in I due to discrep-
ancies between human-written informal proofs and the established practices of formal proofs in
theorem-proving languages; and (2) the difficulty in constructing the full training dataset, which
requires aligned (s,S, p,P) quadruples. Inspired by Zhao et al. (2024), we use subgoal-based
proofs (Figure 1a) to replace informal proofs in I, achieving better consistency with the structure of
formal proofs (see §3.2). Additionally, we develop an expert learning framework (Figure 1b) that
samples (s,S, p,P) quadruples by estimating their optimal distributions through iterative refinement,
leveraging probabilistic modeling and gradient estimation techniques (see §3.3).

3.2 SUBGOAL-BASED PROOF

To annotate subgoal-based proofs for the informal statements in I, we begin by manually creating
demonstration examples to serve as input for in-context learning (see Figure 1a). We select a subset
of problems from the miniF2F validation set and manually construct the verified formal proof for
each problem. Then, we prompt GPT-4o to generate subgoal-based proofs g, conditioned on the
informal statement s, formal statement S, and formal proof P. This process ensures that: (1) the
subgoal-based proofs are produced by autoregressive models; (2) they exhibit a consistent style,
reducing the learning burden, as noted by Gu et al. (2018); and (3) each subgoal corresponds to a
corresponding formal intermediate goal in Isabelle. These demonstrations are then used as in-context
examples to annotate subgoal-based proofs for the informal statements in I (see Appendix C for
further details).

3.3 SUBGOAL-BASED EXPERT LEARNING

We introduce the SubgoalXL framework, which comprises a formal proof generator (pfpg), a formal
statement generator (pfsg), and a subgoal generator (psg). Inspired by gradient estimation in proba-
bilistic modeling (Schulman et al., 2015), this framework estimates optimal training data distributions
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for each component and iteratively refines these components by fine-tuning on data sampled from the
respective distributions.1 The overall algorithm is presented in Algorithm 1.

Components. The core components include a formal statement generator, a formal proof generator,
and a subgoal generator. The formal statement generator annotates formal statements for informal
ones in I following pfsg(S | s). Subsequently, the formal proof generator produces formal proofs for
the informal data in I, based on pfpg(P | s,S, g) and using subgoal-based proofs (see §3.2). The
subgoal generator labels subgoal-based proofs for formal data in F according to psg(g | s,S) after
informal statements have been generated for each data point in F (refer to Appendix D.2 for details).

Additionally, the formal proof generator assesses the performance of the subgoal generator by
evaluating the likelihood of reconstructing formal proofs in F. Conversely, the subgoal generator
evaluates the formal statement generator by assessing the likelihood of reconstructing subgoal-
based proofs in I. We also introduce an auxiliary component, the posterior subgoal generator
ppsg(g | s,S,P), which evaluates the formal proof generator based on the likelihood of reconstructing
subgoal-based proofs in I. The formal statement generator, formal proof generator, and subgoal
generator iteratively improve through expert learning, with only the formal proof generator used
during testing.

Initialization. We begin by annotating the formal statements and proofs for the informal dataset I
using in-context learning, retaining only those verified by Isabelle. Next, we annotate the informal
statements and proofs for the formal dataset F in the same manner. The initial formal proof generator,
denoted as p(0)fpg , is then trained on {(sIi ,SI

i , g
I
i ,P

I
i )}

|I|
i=1∪{(sFi ,SF

i , pFi ,P
F
i )}|F|

i=1. Similarly, the for-

mal statement generator p(0)fsg and subgoal generator p(0)sg are trained on {(sIi ,SI
i )}

|I|
i=1∪{(sFi ,SF

i )}|F|
i=1

and {(sIi ,SI
i , g

I
i )}

|I|
i=1 ∪ {(sFi ,SF

i , pFi )}
|F|
i=1, respectively.

For training the posterior subgoal generator ppsg, we first obtain a version of the formal proof with

all in-line comments removed, denoted as P. This component is trained on {(sIi ,SI
i ,P

I

i , g
I
i )}

|I|
i=1 ∪

{(sFi ,SF
i ,P

F

i , p
F
i )}

|F|
i=1. The posterior subgoal generator remains fixed during the expert learning

process.

Expert Learning. Given the uncertainty in the quality of generated statements and proofs, we
employ probabilistic modeling to compute the reward for each component. This allows us to derive
the optimal distribution from which we sample statements and proofs in each iteration. For instance,
in training the formal proof generator, the optimization objective in the k-th iteration is:

max
p

E(S,P)∼p[log ppsg(g | s,S,P)]− βDKL[p(S,P | s, g)∥p(k−1)(S,P | s, g)], (1)

where p(S,P | s, g) = pfpg(P | s,S, g)pfsg(S | s) and log ppsg(g | s,S,P) represents the reward
which is derived using gradient estimators (Schulman et al., 2015). Intuitively, within the informal
dataset, the formal statement and proof are treated as random variables, with optimal selections
maximizing the likelihood of reconstructing the informal proof or subgoal-based proof. We also
include KL-constraint terms to prevent overoptimization towards the reward. The optimal distribution
of the formal proof is given by:

p⋆(S,P | s, g) = 1

Z(s, g)
p(k−1)(S,P | s, g) exp

(
1

β

(
log ppsg(g | s,S,P)

))
, (2)

where Z(s, g) =
∑

S,P p(k−1)(S,P | s, g) exp
(

1
β

(
log ppsg(g | s,S,P)

))
. The optimal distribu-

tions for formal statements p⋆fsg(S | s) and subgoal-based proofs p⋆sg(g | s,S) follow a similar pattern,
as detailed in Appendix D.3.

Let Ŝ(k) and (S̃(k), P̃(k)) be drawn from the distributions p⋆fsg(S | s) and p⋆(S,P | s, g), respectively,
for the informal dataset. Similarly, let g(k) be drawn from the distribution p⋆sg(g | s,S) for the formal

1We do not include an iterative bootstrapping process for an informal statement generator, as generating
informal statements from formal statements is significantly less challenging than the other three tasks. Instead,
we annotate the informal statements for each formal statement in the formal dataset using in-context learning.
The prompt template can be found in Appendix D.2.
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dataset. In the k-th iteration, the formal statement generator updates with samples from {(s, Ŝ(k))},
while the formal proof generator is trained on {(s, S̃(k), g, P̃(k))}∪{(s,S, g(k),P)}. Simultaneously,
the subgoal generator refines its parameters using {(s, Ŝ, g(k))}. These updates are augmented by
the corresponding training data generated during the initialization phase, contributing to increased
data diversity and model robustness throughout training.

Diversity Efforts. We employ various strategies to enhance the diversity of model outputs, thereby
improving the efficiency of the search process. (1) During the initialization phase, we train four
distinct language models for the formal proof generator. These models are derived from combinations
of two prompt templates (see Appendix D.1) and two proof lengths. For the proof lengths, one model
retains the entire dataset, while the other selectively excludes shorter proofs based on indicators
drawn from Bernoulli distributions. 2 (2) In each iteration of the expert learning phase, we reinitialize
the components from the Llama-3-8B rather than from the previous iteration’s checkpoints.

Algorithm 1 Subgoal-based Expert Learning

Requires: I: informal dataset (I = {sIi , pI
i }

|I|
i=1).

F: formal dataset (F = {SF
i ,PF

i }
|F|
i=1).

Kmax: maximum iterations for expert learning.
m: sample size in expert learning.

1: D
(0)
fsg ,D

(0)
fpg ,D

(0)
sg ,Dpsg ← ∅ ▷ Initialize datasets for training all components

2: for i = 1 to |I| do
3: Annotate subgoal-based proof gI

i , formal statement SI
i , and formal proof PI

i for (sIi , p
I
i ).

4: Remove inline comments in PI
i to obtain P

I

i .
5: Update D

(0)
fsg ← D

(0)
fsg ∪ {(s

I
i ,S

I
i )} and D

(0)
fpg ← D

(0)
fpg ∪ {(s

I
i ,S

I
i , g

I
i ,P

I
i )}.

6: Update D
(0)
sg ← D

(0)
sg ∪ {(sIi ,SI

i , g
I
i )} and Dpsg ← Dpsg ∪ {(sIi ,SI

i ,P
I

i , g
I
i )}.

7: end for
8: for i = 1 to |F| do
9: Annotate informal statement sFi and informal proof pF

i for (SF
i ,PF

i ).
10: Update D

(0)
fsg , D(0)

fpg , D(0)
sg , and Dpsg accordingly.

11: end for
12: Fine-tune models to obtain p

(0)
fsg , p(0)fpg , p(0)sg , and ppsg using D

(0)
fsg , D(0)

fpg , D(0)
sg , and Dpsg respectively.

13: for k = 1 to Kmax do ▷ Begin expert learning iterations
14: D

(k)
fsg ← D

(0)
fsg , D(k)

fpg ← D
(0)
fpg , D(k)

sg ← D
(0)
sg .

15: for i = 1 to |I| do
16: for j = 1 to m do
17: Sample S

(k)
i,j according to Eq.3, then update D

(k)
fsg ← D

(k)
fsg ∪ {(s

I
i ,S

(k)
i,j )}.

18: Sample (S
(k)
i,j ,P

(k)
i,j ) according to Eq.2, then update D

(k)
fpg ← D

(k)
fpg ∪ {(s

I
i ,S

(k)
i,j , gI

i ,P
(k)
i,j )}.

19: end for
20: end for
21: for i = 1 to |F| do
22: for j = 1 to m do
23: Sample g

(k)
i,j according to Eq.4.

24: Update D
(k)
sg ← D

(k)
sg ∪ {(sFi ,SF

i , g
(k)
i,j )} and D

(k)
fpg ← D

(k)
fpg ∪ {(s

F
i ,S

F
i , g

(k)
i,j ,P

F
i )}.

25: end for
26: end for
27: Fine-tune models to obtain p

(k)
fsg , p(k)fpg , and p

(k)
sg using D

(k)
fsg , D(k)

fpg , and D
(k)
sg respectively.

28: end for

4 EXPERIMENTS

4.1 DATASET AND EVALUATION

Dataset. We evaluate our approach using the miniF2F dataset (Zheng et al., 2021), which includes
488 formal mathematical problems from high-school competitions, expressed in three formal lan-

2For formal proofs with lengths 1, 2, and 3, the drop rates are 0.8, 0.6, and 0.4, respectively.
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guages: Lean, HOL-Light, and Isabelle. The dataset is split into a validation set and a test set, each
containing 244 problems. These problems come from three different sources: 260 problems are from
the MATH dataset (Hendrycks et al., 2021), 160 problems are from real high-school mathematical
competitions (AMC, AIME, and IMO), and 68 problems are designed to match the difficulty level of
these competitions.

Evaluation. The task involves generating formal sketches for problems in the miniF2F dataset.
The validity of a formal sketch must meet two criteria: it should not contain “cheating” keywords
like “sorry” and “oops” that end a proof prematurely, and it must be verifiable by the interactive
theorem prover Isabelle. To facilitate working with Isabelle, we use the Portal-to-Isabelle API
introduced by Jiang et al. (2022a). We use the pass rate to measure our results, reporting it for both
the miniF2F-valid set and the miniF2F-test set. Further details about the formal environments are
provided in Appendix A.

4.2 BASELINES

To assess the performance of our approach, we compare it against several established baselines.

Symbolic Automated Provers. We first apply Sledgehammer, a proof automation tool extensively
used within the Isabelle environment. Sledgehammer incorporates a 120-second timeout and utilizes
five automated theorem provers (Z3, CVC4, SPASS, Vampire, E). Following Jiang et al. (2022a), we
enhance Sledgehammer with a set of 11 common tactics (e.g., auto, simp, blast, fastforce, force, eval,
presburger, sos, arith, linarith, auto simp: field simps). If these tactics fail or take longer than 10
seconds, the system defaults to the basic Sledgehammer configuration.

Search-based Approaches. We also employ search-based methods, particularly Monte-Carlo tree
search (Silver et al., 2016), to explore proof possibilities. This includes Thor (Jiang et al., 2022b)
and a version enhanced with expert iteration on autoformalized data (Thor+expert iteration (Wu
et al., 2022)). Thor integrates language models with automated theorem provers to efficiently
select premises from large libraries, while Thor+expert iteration further refines this by training on
autoformalized theorems.

LLM-based Approaches. In the LLM-based category, we evaluate several frameworks: Draft,
Sketch, and Prove (DSP) (Jiang et al., 2022a), LEGO-Prover (Xin et al., 2023), Lyra (Zheng et al.,
2023), and Subgoal-Prover (Zhao et al., 2024). DSP uses the 540B Minerva model (Lewkowycz
et al., 2022) to generate formal sketches from informal proofs. LEGO-Prover incrementally develops
reusable theorems to enhance proof efficiency, while Lyra integrates feedback from external verifiers
to optimize the verification process. Subgoal-Prover improves LLM performance in formal theorem
proving by replacing informal proofs with subgoal-based proofs and using diffusion models to
organize demonstrations optimally. Notably, all these methods employ Sledgehammer for consistency
across evaluations.

Comparisons with theorem proving methods based on Lean (de Moura et al., 2015), a system utilizing
distinct tactics and automation mechanisms that are not directly comparable to Isabelle, are deferred
to Appendix B for thorough analysis.

4.3 IMPLEMENTATION DETAILS

We collected past AMC8, AMC10, AMC12, AIME, and IMO problems from the AOPS website 3

and combined them with training data from GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021) to build the informal dataset. The formal dataset was constructed using the AFP-
2021 4 library and the HOL library from Isabelle 2021 5. This resulted in a total of 18k
⟨Informal Statement, Informal Proof⟩ pairs and 195k ⟨Formal Statement,Formal Proof⟩ pairs. To

3https://artofproblemsolving.com/community
4https://www.isa-afp.org/release/afp-2021-10-22.tar.gz
5https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021_

linux.tar.gz
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Table 1: Performance on the miniF2F dataset. Methods marked with † incorporate human-written
informal proofs either fully or partially during the proof search process. Bold numbers denote the
highest performance achieved.

Model Base miniF2F-valid miniF2F-test
Sledgehammer - 9.9% 10.4%
Sledgehammer+heuristic - 18.0% 20.9%

Thor (Jiang et al., 2022b) - 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022) - 37.3% 35.2%

DSP (Jiang et al., 2022a)† Codex 42.6% 39.3%
Subgoal-Prover (Zhao et al., 2024) GPT-3.5-Turbo 48.0% 45.5%
LEGO-Prover (Xin et al., 2023)† GPT-3.5-Turbo 55.3% 50.0%
Lyra (Zheng et al., 2023)† GPT-4 55.3% 51.2%

SubgoalXL (ours)† Llama-3-8B 61.9% 56.1%

prevent data leakage, we filtered out problems that had more than 10% 3-gram overlap with those
from the miniF2F dataset.

For the initialization phase, we employed a mixture of deepseek-math-base and Llama-3-8B, with a
maximum generation length of 2048 tokens and temperature settings of 0.6 and 0.8. This yielded
27k quadruples for the informal dataset and 174k quadruples for the formal dataset. The training of
Llama-3-8B was performed with a learning rate of 1e-5 over 3 epochs, utilizing a sequence length of
8192 tokens. These hyperparameters were also applied during the expert learning phase. All training
was performed on a single SN20 node.

For the expert learning phase, we retained 11k problems from the informal dataset (after excluding
GSM8K problems) and 10k problems from the formal dataset (after selecting 10k problems from
the HOL library). The maximum number of expert learning iterations, Kmax, was set to 3, with a
sample size m of 2. At each iteration, we trained 4 formal proof generators using combinations of
two prompt templates and two proof lengths, leading to a total of 16 models after 3 iterations. The
number of verified proofs generated during each iteration was 3156, 3592, and 4117, respectively.
Adding the 27k verified proofs obtained during the initialization phase, a total of 38k verified proofs
were generated.

For inference, each model generated 512 samples with and without human-written informal proofs,
resulting in a total of 16384 proof attempts across all iterations for the miniF2F dataset. This includes
8192 attempts with human-written informal proofs and 8192 attempts without them. The inference
process was executed across 4 SN40 nodes.

Verification was carried out using both Isabelle 2021 and Isabelle 2022. A formal proof was deemed
correct if it passed verification in either version of Isabelle. The verification process was conducted
on 2048 CPUs.

4.4 MAIN RESULTS

Our main experimental results, as shown in Table 1, highlight several important findings: (1)
SubgoalXL achieves the best performance, setting a new state-of-the-art with 56.1% on the miniF2F-
test dataset, surpassing previous methods by an absolute improvement of up to 4.9%. (2) The success
of both SubgoalXL and Subgoal-Prover emphasizes the effectiveness of subgoal-based proofs in
enhancing the capabilities of large language models in formal theorem proving. (3) The benefits of
expert iteration are evident, as demonstrated by the performance gains of Thor + expert iteration and
SubgoalXL, reinforcing the value of iterative refinement in boosting theorem proving accuracy.
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Table 2: Ablation study results on the miniF2F dataset.

Model miniF2F-valid miniF2F-test
SubgoalXL 46.3% 39.3%

-subgoal 34.8% 36.5%

5 ANALYSIS

5.1 ABLATION STUDY

In our study, we conducted ablation experiments on our proposed model using a search budget of 64
to assess the impact of the subgoal-based framework. We evaluated two configurations: the complete
model and a variant without subgoal-based proofs (-subgoal). Results in Table 2 demonstrate the
importance of the subgoal-based component, as removing it (-subgoal) led to a significant decrease in
performance. Specifically, the full model achieved 46.3% on the miniF2F-valid and 39.3% on the
miniF2F-test, whereas the -subgoal variant saw a reduction to 34.8% on miniF2F-valid and 36.5% on
miniF2F-test.

Table 3: Impact of human-written informal proofs on the performance of SubgoalXL on the miniF2F
dataset. The miniF2F benchmark includes human-written informal proofs for each problem, provided
by the benchmark’s publishers.

Model miniF2F-valid miniF2F-test
SubgoalXL (w/o informal proof) 59.4% 52.5%
SubgoalXL (with informal proof) 57.8% 52.1%

5.2 IMPACT OF HUMAN-WRITTEN INFORMAL PROOFS

We investigated the effect of human-written informal proofs on the performance of our model by
conducting experiments with and without these proofs, using a search budget of 8192. Table 3
presents the results on the miniF2F-valid and miniF2F-test datasets. Our model without informal
proofs achieved 59.4% on miniF2F-valid and 52.5% on miniF2F-test, while the version incorporating
informal proofs reached 57.8% on miniF2F-valid and 52.1% on miniF2F-test. These results suggest
that the inclusion of human-written informal proofs does not significantly enhance the model’s
performance. Our model’s generation of subgoal-based proofs appears to be more effective than
utilizing informal proofs in certain scenarios (refer to §5.6 for detailed examples).
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(a) Validation pass-rate over iterations
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Figure 2: Pass-rate comparisons across different iterations on the miniF2F dataset.
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5.3 ITERATIVE PERFORMANCE ANALYSIS

To evaluate our model’s iterative improvement, we conducted experiments with and without human-
written informal proofs, tracking validation and test pass rates over several iterations in the expert
learning process. Figures 2a and 2b present these pass rates across four iterations. In the miniF2F-
valid split (Figure 2a), the model without informal proofs began at 54.92% in iteration 0 and plateaued
at 59.43% by iteration 2, maintaining this performance in iteration 3. The model with informal
proofs started at 54.10%, peaking at 57.79% in iteration 3. Overall validation performance increased
consistently from 58.20% in iteration 0 to 61.89% in iteration 3. In the miniF2F-test split (Figure 2b),
the model without informal proofs improved from 47.13% in iteration 0 to 52.46% in iteration 3,
while the model with informal proofs started at 48.36% and reached 52.05% by iteration 3. Overall
test performance increased from 51.23% in iteration 0 to 56.15% in iteration 3. These results indicate
that our subgoal-based framework drives iterative performance improvements, with the exclusion of
informal proofs often yielding better results.
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Figure 3: Synthetic proof pass-rate over iterations.

5.4 SYNTHETIC PROOF PASS RATE ANALYSIS

We analyzed the pass rates of synthetic proofs over three iterations to evaluate the iterative learning
process. The results, depicted in Figure 3, show a steady increase in performance. In iteration 1, the
pass rate was 32.18%. This improved to 36.63% in iteration 2 and further to 41.98% in iteration 3.
These results indicate a consistent improvement in the generation of synthetic proofs as the iterations
progress, highlighting the effectiveness of the iterative learning framework in enhancing the model’s
proof generation capabilities.

5.5 ERROR ANALYSIS IN PROOF GENERATION

To gain insights into the errors encountered during proof generation, we categorized and quantified
various error types. The results, depicted in Figure 4, reveal the frequency of each error category. The
most prevalent error was “Outer syntax error” with 1, 510, 737 occurrences, followed by “Failed to
finish proof” (127, 082), and “Undefined fact” (124, 611). Other notable errors included “Type unifica-
tion failed” (90, 664), “Timeout” (74, 459), and “Failed to apply initial proof method“ (58, 659). This
detailed error analysis highlights common failure points in the proof generation process, providing a
clear direction for targeted improvements.

5.6 CASE STUDY

We evaluated the effectiveness of subgoal-based proofs versus informal proofs using a specific
theorem. As shown in Figure 5, the leftmost example represents a successful proof using subgoal-
based methods, while the other examples depict failed attempts using informal proofs. The subgoal-
based proof demonstrated robustness and effectiveness, whereas the informal proof attempts failed to
sufficiently establish the necessary conditions, leading to incomplete proofs.
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Figure 4: Counts of Different Error Types

theorem mathd_numbertheory_435:
fixes k :: nat
assumes "0 < k"
and "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"

shows "5 \<le> k"
proof -
(* We will show that for any positive integer 𝑛, 6𝑛 + 𝑘 is relatively prime to each of

6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 (This is true by assumption). *)
have "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
using assms(2)
sledgehammer

moreover have "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
using assms(3)
sledgehammer

moreover have "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"
using assms(4)
sledgehammer

(* We will show that for any positive integer 𝑛, 6𝑛 + 𝑘 is relatively prime to each of
6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 (This is true by assumption). *)
ultimately have "\<forall> n. coprime (6 * n + k) (6 * n + 3) \<and> coprime (6 * n

+ k) (6 * n + 2) \<and> coprime (6 * n + k) (6 * n + 1)"
sledgehammer

(* Now we will show that 𝑘 is at least 5. Suppose that 𝑘 < 5. Then 𝑘 = 1, 2, 3, 4. We will
show that for each of these values of 𝑘, there exists a positive integer 𝑛 such that 6𝑛 +
𝑘 is not relatively prime to one of 6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1. *)
have "k \<ge> 5"
proof (rule ccontr)
assume "\<not> 5 \<le> k"
then have "k < 5"
sledgehammer

with assms(1)
consider "k=1" | "k=2" | "k=3" | "k=4"
sledgehammer

then show False
proof cases
case 1
then have "gcd (6 * 2 + k) (6 * 2 + 1) \<noteq> 1"
sledgehammer

then show False
sledgehammer

next
case 2
then have "gcd (6 * 5 + k) (6 * 5 + 3) \<noteq> 1"
sledgehammer

then show False
sledgehammer

next
case 3
then have "gcd (6 * 4 + k) (6 * 4 + 2) \<noteq> 1"
sledgehammer

then show False
sledgehammer

next
case 4
then have "gcd (6 * 2 + k) (6 * 2 + 3) \<noteq> 1"
sledgehammer

then show False
sledgehammer

qed
qed
(* Thus 𝑘 is at least 5. *)
then show?thesis
sledgehammer

qed

theorem mathd_numbertheory_435:
fixes k :: nat
assumes "0 < k"
and "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"

shows "5 \<le> k"
proof -
(* Obviously, we have that 𝑘 > 3, because otherwise two of the integers would be

identical and not be relatively prime. *)
have "k > 3" using assms
sledgehammer

(* Start by testing 𝑘 = 4. 6𝑛 + 4 and 6𝑛 + 3 are relatively prime because they are
consecutive integers, but 6𝑛 + 4 and 6𝑛 + 2 are both even and are therefore not relatively
prime. *)
have "k \<noteq> 4" using assms
sledgehammer

(* The next candidate to test is 𝑘 = 5. Firstly, we have that
𝑔𝑐𝑑 6𝑛 + 5, 6𝑛 + 3 = 𝑔𝑐𝑑 6𝑛 + 3, 6𝑛 + 5 − 6𝑛 + 3

= 𝑔𝑐𝑑 6𝑛 + 3,2
Since 6𝑛 + 3 is always odd, the two integers 6𝑛 + 5 and 6𝑛 + 3 are relatively prime.
Secondly,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 2 = 𝑔𝑐𝑑 6𝑛 + 2, 6𝑛 + 5 − 6𝑛 + 2
= 𝑔𝑐𝑑(6𝑛 + 2,3)

Note that 6𝑛 + 3 is always divisible by 3, so 6𝑛 + 2 is never divisible by 3. As a result, we
have that 6𝑛 + 5 and 6𝑛 + 2 are relatively prime. Finally,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 1 = 𝑔𝑐𝑑 6𝑛 + 1, 6𝑛 + 5 − 6𝑛 + 1
= 𝑔𝑐𝑑(6𝑛 + 1,4)

Note that 6𝑛 + 1 is always odd, so 6𝑛 + 5 and 6𝑛 + 1 are also relatively prime. Therefore,
the smallest positive integer 𝑘 that permits 6𝑛 + 𝑘 to be relatively prime with each of
6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 is 𝑘 = 5.*)
have "k = 5" using assms
sledgehammer

then show?thesis
sledgehammer

qed

theorem mathd_numbertheory_435:
fixes k :: nat
assumes "0 < k"
and "\<forall> n. gcd (6 * n + k) (6 * n + 3) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 2) = 1"
and "\<forall> n. gcd (6 * n + k) (6 * n + 1) = 1"

shows "5 \<le> k"
proof -
(* Obviously, we have that 𝑘 > 3, because otherwise two of the integers would be

identical and not be relatively prime. *)
have "k > 3" using assms
sledgehammer

(* Start by testing 𝑘 = 4. 6𝑛 + 4 and 6𝑛 + 3 are relatively prime because they are
consecutive integers, but 6𝑛 + 4 and 6𝑛 + 2 are both even and are therefore not relatively
prime. The next candidate to test is 𝑘 = 5. *)
have "5 \<le> k" using assms
sledgehammer

(* Firstly, we have that
𝑔𝑐𝑑 6𝑛 + 5, 6𝑛 + 3 = 𝑔𝑐𝑑 6𝑛 + 3, 6𝑛 + 5 − 6𝑛 + 3

= 𝑔𝑐𝑑 6𝑛 + 3,2
Since 6𝑛 + 3 is always odd, the two integers 6𝑛 + 5 and 6𝑛 + 3 are relatively prime.
Secondly,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 2 = 𝑔𝑐𝑑 6𝑛 + 2, 6𝑛 + 5 − 6𝑛 + 2
= 𝑔𝑐𝑑(6𝑛 + 2,3)

Note that 6𝑛 + 3 is always divisible by 3, so 6𝑛 + 2 is never divisible by 3. As a result, we
have that 6𝑛 + 5 and 6𝑛 + 2 are relatively prime. Finally,

𝑔𝑐𝑑 6𝑛 + 5,6𝑛 + 1 = 𝑔𝑐𝑑 6𝑛 + 1, 6𝑛 + 5 − 6𝑛 + 1
= 𝑔𝑐𝑑(6𝑛 + 1,4)

Note that 6𝑛 + 1 is always odd, so 6𝑛 + 5 and 6𝑛 + 1 are also relatively prime. Therefore,
the smallest positive integer 𝑘 that permits 6𝑛 + 𝑘 to be relatively prime with each of
6𝑛 + 3, 6𝑛 + 2, and 6𝑛 + 1 is 𝑘 = 5.*)
then show?thesis
sledgehammer

qed

Success (w/ Subgoal-Based Proof) Failure 1 (w/ Informal Proof) Failure 2 (w/ Informal Proof)

Figure 5: Case study comparing subgoal-based and informal proofs. The left example shows a
successful attempt using subgoal-based proofs, while the right examples depict failed attempts with
informal proofs.

6 CONCLUSION

In conclusion, SubgoalXL marks a significant step forward in AI-powered theorem proving within
the Isabelle environment. By addressing the challenges of complex multi-step reasoning, SubgoalXL
demonstrates the efficacy of integrating subgoal-based proofs with an expert learning framework.
This method iteratively refines three key components: a formal statement generator, a formal proof
generator, and a subgoal generator, leading to improved performance on theorem-proving tasks. The
empirical results confirm the effectiveness of SubgoalXL, achieving state-of-the-art performance on
the standard miniF2F dataset with a score of 56.1% . This work paves the way for further innovations
in applying AI to tackle advanced mathematical challenges in formal theorem proving.
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Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
models and automated theorem provers. Advances in Neural Information Processing Systems, 35:
8360–8373, 2022b.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. Advances in Neural Information Processing Systems, 35:26337–26349, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson. Modelling high-level mathematical
reasoning in mechanised declarative proofs. arXiv preprint arXiv:2006.09265, 2020.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024.

Maciej Mikuła, Szymon Antoniak, Szymon Tworkowski, Albert Qiaochu Jiang, Jin Peng Zhou,
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A FORMAL ENVIRONMENT AND PROOF TOOLS

Interactive Theorem Provers. Interactive Theorem Provers (ITPs), such as Isabelle (Paulson,
1994), are essential tools in modern mathematical verification. They help incorporate mathematical
definitions and theorems into a consistent logical framework, such as Higher-Order Logic or De-
pendent Type Theory, which their kernels implement. The kernel is vital in the verification process,
carefully checking each theorem to ensure it is correctly recognized by the ITP, thus maintaining
system integrity. Using an ITP involves expressing the theorem in its programming language and then
breaking it down into simpler goals or subgoals. A theorem is proven once it is reduced to known
facts. We chose Isabelle for our paper because it has an intuitive interface, supports various logical
frameworks, and offers a comprehensive library of formalized mathematics.

Sledgehammer. Sledgehammer (Paulsson & Blanchette, 2012) is a powerful tool for automating
reasoning within the interactive theorem prover Isabelle. It works by translating the goals expressed in
Isabelle/HOL’s higher-order logic into other types of logic, such as first-order logic. These translated
goals are then sent to automated theorem provers like E, CVC4, Z3, Vampire, and SPASS. If any of
these automated provers succeed in finding proof, Sledgehammer reconstructs the proof within the
Isabelle/HOL framework using certified provers, such as metis, meson, and smt. This reconstructed
proof, being more understandable to humans, greatly improves the system’s usability and enhances
the efficiency and effectiveness of interactive theorem proving.

B COMPARATIVE ANALYSIS WITH LEAN-BASED METHODS

Table 4: Performance on the miniF2F dataset. Methods marked with † integrate human-written
informal proofs, either in full or partially, during the proof search. Methods denoted by ‡ employ a
tree search strategy, where the search budget is structured as N × M, representing N search trees with
M as the budget per tree.

Model Base Synthetic Size Search Budget miniF2F-valid miniF2F-test
Lean-based

HTPS (Lample et al., 2022)‡ - - - 58.6% 41.0%
Lean-STaR (Lin et al., 2024)‡ InternLM2-Math-plus 50k Theorems 64 × 50 - 46.3%
DeepSeek-Prover (Xin et al., 2024a) DeepSeekMath-Base 712k Theorems 65536 - 50.0%
InternLM2-StepProver (Wu et al., 2024)‡ InternLM2-Math-plus 1.155B Tokens 64 × 3200 63.9% 54.5%
DeepSeek-Prover-V1.5 (Xin et al., 2024b)‡ DeepSeekMath-Base 9B Tokens 32 × 6400 - 63.5%

Isabelle-based
Sledgehammer - - - 9.9% 10.4%
Sledgehammer+heuristic - - - 18.0% 20.9%
Thor (Jiang et al., 2022b)‡ - - 300 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022)‡ - - - 37.3% 35.2%
DSP (Jiang et al., 2022a)† Codex - 100 42.6% 39.3%
Subgoal-Prover (Zhao et al., 2024) GPT-3.5-Turbo - 100 48.0% 45.5%
LEGO-Prover (Xin et al., 2023)† GPT-3.5-Turbo - 100 55.3% 50.0%
Lyra (Zheng et al., 2023)† GPT-4 - 200 55.3% 51.2%

SubgoalXL (ours)† Llama-3-8B 38k Theorems 16384 61.9% 56.1%

In this section, we provide a detailed analysis and discussion of the performance of our approach
in relation to Lean-based theorem proving methods, including HTPS (Lample et al., 2022), Lean-
STaR (Lin et al., 2024), DeepSeek-Prover (Xin et al., 2024a), InternLM2-StepProver (Wu et al., 2024)
and DeepSeek-Prover-V1.5 (Xin et al., 2024b). Lean employs a unique set of tactics and automation
techniques that differ significantly from those used in the Isabelle proof assistant, making direct
comparisons within the main body of our evaluation less meaningful.

Table 4 demonstrates the significant performance variation across Lean-based and Isabelle-based
approaches on the miniF2F dataset. Lean-based methods generally operate on a much larger scale,
utilizing between 15× and 120× more synthesized proofs than Isabelle-based systems. For example,
DeepSeek-Prover-V1.5 employs 9 billion tokens of synthesized data, while our approach uses only
38k theorems. Furthermore, these Lean methods typically operate with a search budget that is
approximately 12.5× larger than ours. InternLM2-StepProver, for instance, operates with a search
budget of 64 × 3200, compared to our search budget of 16,384.
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Despite this, SubgoalXL outperforms most Lean-based methods, achieving 56.1% on the miniF2F-
test dataset compared to 54.5% for InternLM2-StepProver and 50.0% for DeepSeek-Prover. On
the miniF2F-valid dataset, SubgoalXL also exhibits strong performance, further demonstrating
the efficiency of our subgoal-based approach, even with significantly smaller synthetic data and
a more moderate search budget. These results suggest that our approach is highly effective in
optimizing formal theorem-proving tasks. A potential direction for future work is to scale up the
size of synthesized proofs and the search budget, which could further enhance performance and
competitiveness, particularly in comparison to resource-intensive Lean-based methods.

C MORE DETAILS ABOUT SUBGOAL-BASED PROOF

After creating 26 demonstration examples, as detailed in §3.2, we used the prompt shown in Figure 6
to annotate subgoal-based proofs for the problems in the informal dataset.

Prompt to generate subgoal-based proofs
System:
To generate a subgoal-based proof from an informal statement and informal proof, 
systematically decompose the informal proof into smaller logical steps (subgoals), then 
prove each subgoal to logically build towards proving the main theorem.

User: 
text \<open>
### Informal Statement:
When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the 
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it 
is 4. 

### Informal Proof:
Let 𝑛 be Rachel's favorite number. Then 𝑛≡5  (mod 7), so 5𝑛≡5∙5≡25≡4 (mod 7).
\<close>

Assistant:
Step 1: Given 𝑛≡5 (mod 7), substitute 5 for 𝑛 in (5∗𝑛)  mod 7. 
Step 2: Calculate 25 mod 7=4.
Step 3: Thus, (5∗𝑛)  mod 7 simplifies to 4.
Therefore, the remainder when 5 times Rachel's favorite number is divided by 7 is 4.

User:
text \<open>
### Informal Statement:
{informal_statement}

### Informal Proof:
{informal_proof}
\<close>

Assistant:

Figure 6: Prompt to generate subgoal-based proofs.

D MORE DETAILS ABOUT EXPERT LEARNING

D.1 IMPLEMENTATION DETAILS OF EACH COMPONENT

The prompt templates for the formal statement generator, subgoal generator, and posterior subgoal
generator are shown in Figures 7-9, respectively. To improve the diversity of outputs generated by
the formal proof generator, we employ two distinct prompt templates, as illustrated in Figures 10 and
11. In this study, all components are initialized with Llama-3-8B.
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Prompt for formal statement generator
Translate the informal statement into a formal statement by defining variables and 
assumptions explicitly, and then stating the main claim clearly using precise mathematical 
notation.

### Informal Statement
{informal_statement}

### Formal Statement
{formal_statement}

Figure 7: Prompt for formal statement generator.

Prompt for subgoal generator
Generate a subgoal-based proof by identifying and breaking down the critical steps needed 
to achieve the overall proof, explaining each subgoal with clear mathematical reasoning 
and ensuring logical progression from one subgoal to the next until the final proof is 
achieved.

### Informal Statement
{informal_statement}

### Formal Statement
{formal_statement}

### Subogal-based Proof
{subgoal_based_proof}

Figure 8: Prompt for subgoal generator.

Prompt for posterior subgoal generator
Generate a subgoal-based proof by breaking down the formal proof into critical steps, 
providing clear mathematical reasoning for each subgoal, and ensuring logical progression 
from one subgoal to the next until the final proof is achieved.

### Informal Statement
{informal_statement}

### Formal Statement
{formal_statement}

### Formal Proof
{formal_proof}

### Subogal-based Proof
{subgoal_based_proof}

Figure 9: Prompt for posterior subgoal generator.

D.2 ANNOTATION OF FORMAL AND INFORMAL DATA

For the problems within the informal dataset, we employed a mixture of deepSeek-math-base
and Llama-3-8B using the prompt templates illustrated in Figures 12 and 13 to generate their
corresponding formal statements and proofs. For the problems in the formal dataset, we use the
prompt template shown in Figure 14 to annotate their informal statements and proofs.
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Prompt for formal proof generator (Template 1)
### Problem:
{informal_statement}

### Proof:
{formal_statement}

{formal proof}

Figure 10: Prompt for formal proof generator (template 1).

Prompt for formal proof generator (Template 2)
(For problems from the formal dataset)
Develop formal proofs using Isabelle, leveraging auxiliary tools such as Sledgehammer to 
enhance the proving process.

### Input
(* Informal Statement:
{informal_statement} *)
{formal_statement}

### Output
{formal_proof}

(For problems from the informal dataset)
Utilize Isabelle for the systematic verification of theorem proofs, employing Sledgehammer 
as a supplementary tool. Approach the problem in a step-by-step manner.

### Problem
{informal_statement}

### Isabelle Proof
{formal_statement}

{formal_proof}

Figure 11: Prompt for formal proof generator (template 2).

D.3 OPTIMAL DISTRIBUTIONS FOR FORMAL STATEMENTS AND SUBGOAL-BASED PROOFS

The optimal distribution for the formal statement at the k-th iteration is given by:

p⋆fsg(S | s) = 1

Z(s)
p
(k−1)
fsg (S | s) exp

(
1

β
(log psg(g | s,S))

)
, (3)

where Z(s) =
∑

S p
(k−1)
fsg (S | s) exp

(
1
β (log psg(g | s,S))

)
.

Similarly, the optimal distribution for the subgoal-based proof at the k-th iteration is determined by:

p⋆sg(g | s,S) = 1

Z(s,S)
p(k−1)

sg (g | s,S) exp
(
1

β
(log pfpg(P | s,S, g))

)
, (4)

where Z(s,S) =
∑

g p
(k−1)
sg (g | s,S) exp

(
1
β (log pfpg(P | s,S, g))

)
.
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Prompt to generate formal statements
System:
Use Isabelle to formalize informal mathematical problems by defining the necessary 
variables and assumptions, followed by constructing the precise theorem statements.

User: 
text \<open>
When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the 
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it 
is 4. 
\<close>

Assistant:
theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

User:
text \<open>
{informal_statement}
\<close>

Assistant:

Figure 12: Prompt to generate formal statements.
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Prompt to generate formal proofs
System:
Use Isabelle to systematically prove theorem statements. Use tools like sledgehammer to 
assist in proving.

User: 
text \<open>
When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the 
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it 
is 4. 
\<close>

theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

Assistant:
proof -
(* Step 1: Given 𝑛 ≡ 5 (mod 7), substitute 5 for 𝑛 in 5 ∗ 𝑛 mod 7. *)
have c0: "(5 * n) mod 7 = (5 * 5) mod 7"
using h0
by simp

(* Step 2: Calculate 25 mod 7 = 4. *)
then have "\<dots> = 4"
by simp

(* Step 3: Thus, 5 ∗ 𝑛 mod 7 simplifies to 4. *)
then have "(5 * n) mod 7 = 4"
using c0
by simp

(* Therefore, the remainder when 5 times Rachel's favorite number is divided by 7 is 4. *)
then show ?thesis
by simp

qed

User:
text \<open>
{informal_statement}
\<close>

{formal_statement}

Assistant:

Figure 13: Prompt to generate formal proofs.
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Prompt to generate informal statements and proofs
System:
Clearly state the problem, simplify and explain each step in plain language, summarize the 
result, and use LaTeX for mathematical expressions.

User: 
theorem mathd_numbertheory_335:
fixes n :: nat
assumes h0 : "n mod 7 = 5"
shows "(5 * n) mod 7 = 4"

proof -
(* Step 1: Given 𝑛 ≡ 5 (mod 7), substitute 5 for 𝑛 in 5 ∗ 𝑛 mod 7. *)
have c0: "(5 * n) mod 7 = (5 * 5) mod 7"
using h0
by simp

(* Step 2: Calculate 25 mod 7 = 4. *)
then have "\<dots> = 4"
by simp

(* Step 3: Thus, 5 ∗ 𝑛 mod 7 simplifies to 4. *)
then have "(5 * n) mod 7 = 4"
using c0
by simp

(* Therefore, the remainder when 5 times Rachel's favorite number is divided by 7 is 4. *)
then show ?thesis
by simp

qed

Assistant:
### Problem

When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the 
remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it 
is 4. 

### Solution

Let 𝑛 be Rachel's favorite number. Then 𝑛≡5  (mod 7), so 5𝑛≡5∙5≡25≡4 (mod 7).

User:
{formal_statement}
{formal_proof}

Assistant:

Figure 14: Prompt to generate informal statements and proofs.
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