
Soft-mask: Adaptive Substructure Extractions for Graph Neural
Networks

Mingqi Yang

Dalian University of Technology

Dalian, China

yangmq@mail.dlut.edu.cn

Yanming Shen
∗

Dalian University of Technology

Dalian, China

shen@dlut.edu.cn

Heng Qi

Dalian University of Technology

Dalian, China

hengqi@dlut.edu.cn

Baocai Yin

Dalian University of Technology

Peng Cheng Laboratory

Dalian, China

ybc@dlut.edu.cn

ABSTRACT
For learning graph representations, not all detailed structureswithin

a graph are relevant to the given graph tasks. Task-relevant struc-

tures can be 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 or 𝑠𝑝𝑎𝑟𝑠𝑒 which are only involved in sub-

graphs or characterized by the interactions of subgraphs (a hier-

archical perspective). A graph neural network should be able to

efficiently extract task-relevant structures and be invariant to ir-

relevant parts, which is challenging for general message passing

GNNs. In this work, we propose to learn graph representations

from a sequence of subgraphs of the original graph to better cap-

ture task-relevant substructures or hierarchical structures and skip

𝑛𝑜𝑖𝑠𝑦 parts. To this end, we design soft-mask GNN layer to extract

desired subgraphs through the mask mechanism. The soft-mask is

defined in a continuous space to maintain the differentiability and

characterize the weights of different parts. Compared with exist-

ing subgraph or hierarchical representation learning methods and

graph pooling operations, the soft-mask GNN layer is not limited

by the fixed sample or drop ratio, and therefore is more flexible to

extract subgraphs with arbitrary sizes. Extensive experiments on

public graph benchmarks show that soft-mask mechanism brings

performance improvements. And it also provides interpretability

where visualizing the values of masks in each layer allows us to

have an insight into the structures learned by the model.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by classification.

KEYWORDS
deep learning, graph neural networks, graph representation lean-

ring

∗
Corresponding author

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449929

ACM Reference Format:
Mingqi Yang, Yanming Shen, Heng Qi, and Baocai Yin. 2021. Soft-mask:

Adaptive Substructure Extractions for Graph Neural Networks. In Pro-
ceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubl-
jana, Slovenia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3442381.3449929

1 INTRODUCTION
Graph structure data is ubiquitous. Molecules, social networks, and

many other applications can be modeled as graphs. Recently, graph

neural networks (GNNs) have shown their power in graph repre-

sentation learning [2, 9, 13]. General GNNs follow neighborhood

aggregation (or message passing) scheme [8], where node repre-

sentations are computed iteratively by aggregating transformed

representations of its neighbors. The aggregation operation on each

node is shared with the same parameters, with structural informa-

tion learned implicitly.

One issue of this kind of scheme is that task-relevant structural

information is likely to be mixed up with irrelevant (or noisy) parts,

making it indistinguishable for the downstream processing, espe-

cially for long-range dependency captured by higher layers in a

deep model [4, 17, 22]. To handle this, one possible strategy is to

improve the ability to distinguish different graph topologies. Hope-

fully, useful structural information will be retained and passed to

the higher layers for further processing. This strategy is followed by

GIN [32] whose ability to distinguish different graph structures is

equivalent to 1-order Weisfeiler-Lehman (WL) graph isomorphism

test. Other GNN implementations [5, 18, 19] with discrimination

power in analogy to high-order WL test are also proposed.

Ideally, GNNs should behave in an 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 manner. For noisy

graphs, the learned representations should correspond to the sub-

graph with noisy parts not involved. To achieve this, one basic

idea is to restrict all layers learing on the same subgraph. It can be

considered that a 𝑘-layer GNN learns on a sequence of subgraphs

of length 𝑘 .

For graphs characterized with hierarchical structures, to explic-

itly capture the hierarchical structures, the neural network should

also encode them in a hierarchical manner. We explain this moti-

vation empirically with a simple example of hierarchical graphs

with a height of 2 as given in Figure 1 (a), where the structure is

identified by three individual parts (in different colors) and their

ar
X

iv
:2

20
6.

05
49

9v
1

 [
cs

.L
G

]
 1

1
Ju

n
20

22

https://doi.org/10.1145/3442381.3449929
https://doi.org/10.1145/3442381.3449929
https://doi.org/10.1145/3442381.3449929

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia M. Yang and Y. Shen, et al.

(a) (b)

Figure 1: An example of hierarchical graph structures.

interactions. Figure 1 (b) demonstrates that in this graph, nodes

can be divided into two groups:

• Leaf node. Nodes only have connections within each part

such as white nodes in Figure 1(b);

• Root node. Nodes have connections with other parts or

shared with other parts such as black nodes in Figure 1(b).

Clearly, the interactions among different parts are only decided

by root nodes. By removing all leaf nodes, we obtain a 𝑟𝑒𝑑𝑢𝑐𝑒𝑑

subgraph that only demonstrates the interactions among different

parts. To explicitly capture the interactions among different parts,

the aggregation in lower layers should be only conducted on leaf

nodes to encodes each part individually. Then root nodes are taken

into consideration to encode the interactions of each part in higher

layers. This requires that each layer of a neural network should

be flexible to learn on any given subgraphs, and correspondingly

the final representations are learned from a sequence of subgraphs.

Since hierarchical graph structures can be viewed recursively as

each individual part and their interactions, this mechanism is natu-

ral to be extended to hierarchical graphs with heights larger than

2.

According to the above analysis, learning graph representations

from a sequence of subgraphs actually unifies subgraph represen-

tation learning and hierarchical representation learning. To reach

this goal, there are two main challenges:

• How to efficiently represent any random subgraph in each

layer while maintaining differentiability?

• How to decide the sequence of subgraphs learned by the

model?

GAM [16] extracts desired substructures by representing a graph

with a fixed-length sequence of nodes sampled from the original

graph. Top-𝑘 graph poolings [7, 14, 15] score the importance of

each node and drop low score nodes and related edges layer by

layer. These strategies can dynamically focus on informative parts,

making the neural network more robust in dealing with noisy

graphs. However, GAM requires the sampled node sequence to be

with the fixed length, and top-𝑘 poolings require a fixed drop ratio.

These limitations can be obstacles to represent desired subgraphs

with arbitrary scales.

To address these issues, we propose soft-mask GNN (SMG) layer.

It extracts subgraphs of any size by controlling node masks. Then

the problem of finding the desired subgraph is converted to finding

proper mask assignments. We theoretically show that the learned

representation by a soft-mask GNN layer with proper mask assign-

ments is equivalent to the corresponding subgraph representation.

Stacking multiple such layers leads to the learned representation of

a sequence of subgraphs that can be used to capture the 𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒

substructures as well as hierarchical structures. Different from gen-

eral GNNs that follow 𝑑𝑒𝑛𝑠𝑒 aggregation where the aggregation is

conducted on all nodes, the aggregation in a soft-mask GNN layer

can adaptively 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 the aggregation of undesired parts while

maintaining differentiability, which we call 𝑠𝑝𝑎𝑟𝑠𝑒 aggregation.

The soft-mask GNN layer applies continuous mask values in

order to maintain the differentiability of the networks. It character-

izes the weights of different parts within a graph, which can also be

considered as a global attention mechanism. This global attention

mechanism provides interpretability, where visualizing mask value

distributions in different layers on some public graph benchmarks

provides insights of informative parts or hierarchical structures

learned by the model.

Our contributions are summarized as follows:

• We propose the soft-mask GNN layer which achieves a kind

of sparse aggregation in general GNNs. It is used to represent

any given subgraph with an arbitrary size.

• We theoretically analyze that by learning a graph representa-

tion from a sequence of individual subgraphs of the original

graph, our model is capable of extracting any desired sub-

structures or hierarchical structures.

• We evaluate the soft-mask GNN on public graph benchmarks

and show a significant improvement over state-of-the-art

approaches. Furthermore, by visualizing the mask values in

different layers, we provide insights on structural informa-

tion learned by the model.

2 PRELIMINARIES
2.1 Notations
For a graph 𝐺 , we denote the set of edges, nodes and node feature

vectors respectively by 𝐸𝐺 ,𝑉𝐺 and𝑋𝐺 .N(𝑣) is the set of 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
of node 𝑣 , i.e.,N(𝑣) = {𝑢 ∈ 𝑉𝐺 | (𝑢, 𝑣) ∈ 𝐸𝐺 }. Let ˆN(𝑣) = {𝑣}∪N (𝑣).
Let 𝑆 be a subset of nodes, i.e., 𝑆 ⊆ 𝑉𝐺 . Then the subgraph 𝐺𝑆 of 𝐺

is the graph whose vertex set is 𝑆 and whose edge set consists of

all of the edges in 𝐸𝐺 that have both endpoints in 𝑆 . Also, we use

[𝑛] to denote {1, 2, ..., 𝑛} and {{...}} to denote a multiset, i.e., a set

with possibly repeating elements.

2.2 Graph Neural Networks
GNNs learn the representation vector of a node, h𝑣 , or the entire
graph, h𝐺 , from a graph, utilizing both node features and the struc-

ture of the graph. Most proposed GNNs fit within the neighborhood

aggregation framework [8]. Formally, the 𝑘-th layer of a GNN is

h(𝑘)𝑣 = Update(h(𝑘−1)𝑣 ,Aggregate({{h(𝑘−1)𝑢 |𝑢 ∈ N (𝑣)}})) . (1)

The node representations from the last iteration are then passed to

a classier for node classification. For graph-level tasks such as graph

classification, the Readout function is needed which aggregates all

node representations from the last iteration to obtain the entire

graph representation

h𝐺 = Readout({{h(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺 }}), (2)

Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

where h(𝐾)𝑣 is node representations learned by a 𝐾-layer GNN. h𝐺
is then passed to a classifier for graph classification.

Aggregate(.) in Equation 1 is used to aggregate neighbors’ repre-

sentations to generate current node representation, and Readout(.)

in Equation 2 is used to aggregate all node representations to gen-

erate the entire graph representation. In order for the GNNs to be

invariant to graph isomorphism, Aggregate(.) and Readout(.) should

be permutation invariant. Meanwhile, Equation 1 and Equation 2

should be differentiable to make the network trainable through

backpropagation.

3 SOFT-MASK GNN
In this section, we first present the SMG layer and explain how

it is used to extract the desired subgraph by controlling the mask

assignments. Then, we show how a multi-layer SMG learns sub-

graph representations and hierarchical representations respectively

with corresponding subgraph sequences. We also present a method

to compute mask assignments, which can automatically extract

substructures or hierarchical structures through backpropagation.

Finally, we generalize the SMG to multi-channel scenarios.

3.1 Sparse Aggregation and Subgraph
Representation Learning

GNN operation is viewed as a kind of smoothing operation [4, 17,

22], where each node exchanges feature information with its neigh-

bors. This kind of scheme does not skip irrelevant parts explicitly.

On the contrary, our SMG layer extracts substructures as follows:

h(𝑘)𝑣 = ReLU(W(𝑘)
1
𝑚

(𝑘)
𝑣 [h(𝑘−1)𝑣 | |

∑︁
𝑢∈N(𝑣)

𝑚
(𝑘)
𝑢 h(𝑘−1)𝑢]),

(3)

where𝑚
(𝑘)
𝑣 ∈ [0, 1] refers to the soft-mask of node 𝑣 at the 𝑘-th

layer, | | denotes concatenation operation, and W(𝑘)
1

∈ R𝑑×𝑑 is a

trainable matrix, where 𝑑 is the dimension of node representations.

The computation of𝑚
(𝑘)
𝑣 will be presented in Section 3.3. The SMG

layer should satisfy the following constraints:

• The linear transformationW(𝑘)
1

does not include constant

part (i.e., bias);

• The activation function (ReLU) satisfies 𝜎 (0) = 0;

• The aggregation operator (SUM) is 𝑧𝑒𝑟𝑜 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 , which is

formally defined as follows:

Zero invariant. The aggregation function 𝑓 : {{R𝑚}} → R𝑛 is

zero invariant if and only if

𝑓 (S) =
{
0 S = ∅
𝑓 (S/{0}) otherwise,

where S is a multiset of vectors. Note that the SUM operator is zero

invariant while the MEAN is not.

With the above restrictions, setting𝑚
(𝑘)
𝑣 = 0 leads to h(𝑘)𝑣 = 0

and h(𝑘)𝑢 = ReLU(W(𝑘)
1
𝑚

(𝑘)
𝑢 [h(𝑘−1)𝑢 | |∑𝑢′∈N(𝑢)/{𝑣 }𝑚

(𝑘)
𝑢′ h(𝑘−1)

𝑢′])
for any 𝑢 ∈ N (𝑣), which is said that node 𝑣 is inaccessible for its

neighbors. Therefore, for any subgraph𝐺𝑆 of𝐺 , the 1-layer SMG to-

gether with a zero invariant Readout function can represent𝐺𝑆 and

completely skip other parts by controlling the mask assignments

as follows:

h𝐺 |𝑚 (1)
𝑣 =1,𝑣∈𝑉𝐺𝑆

;𝑚
(1)
𝑣 =0,𝑣∈𝑉𝐺 /𝑉𝐺𝑆

=
∑︁
𝑣∈𝑉𝐺𝑆

h(1)𝑣 +
∑︁

𝑣∈𝑉𝐺 /𝑉𝐺𝑆

h(1)𝑣

=
∑︁
𝑣∈𝑉𝐺𝑆

ReLU(W(1)
1

[x𝑣 | |
∑︁

𝑢∈N𝐺𝑆
(𝑣)

x𝑢]) + 0

= h𝐺𝑆
|
𝑚

(1)
𝑣 =1,𝑣∈𝑉𝐺𝑆

.

It removes the restriction of general GNNs that the aggregation is

conducted on all nodes, and therefore we call it as 𝑠𝑝𝑎𝑟𝑠𝑒 aggre-

gation. The selected subgraph includes all nodes with mask 1 and

related edges.

In a multi-layer SMG, nodes with 𝑚
(𝑘)
𝑣 = 0 are not actually

removed. The GNN operation in the following layers would also

involve them. In order to represent the subgraph𝐺𝑆 , a basic idea

is to restrict all layers to learn on the same subgraph 𝐺𝑆 by as-

signing 𝑚
(𝑘)
𝑣 = 1 for all 𝑣 ∈ 𝑉𝐺𝑆

and 𝑚
(𝑘)
𝑢 = 0 for all 𝑢 ∈

𝑉𝐺/𝑉𝐺𝑆
in all layers. This corresponds to a specific subgraph se-

quence that all subgraphs are the same. However, not all masks

assigned on nodes in different layers have an effect on the final

representations, and masks in some layers can take arbitrary val-

ues. Since different masks lead to a different subgraph sequence,

this means that the required subgraph representation may corre-

spond to a different subgraph sequence. To explain this, we use

H(𝑘)
𝐺

= {{h(𝑘)𝑣 |𝑣 ∈ 𝑉𝐺 }} = SMG𝑘 (X𝐺 ,A𝐺 ,M) to denote the set

of node representations learned by a 𝑘-layer SMG, where the in-

put M ∈ [0, 1]𝑘×𝑛 is the preassigned masks at all 𝑘 layers with

M𝑘,𝑣 = 𝑚
(𝑘)
𝑣 . M defines a sequence of subgraphs of length 𝑘 .

Ĥ(𝑘)
𝐺

= {{ ˆh(𝑘)𝑣 |𝑣 ∈ 𝑉𝐺 }} = SMG𝑘 (X𝐺 ,A𝐺 , 1) is the set of node

representations learned by 𝑘-layer SMG with M = 1𝑘×𝑛 , and corre-

spondingly
ˆh(𝑘)𝑣 = ReLU(W(𝑘)

1
[ˆh(𝑘−1)𝑣 | |∑𝑢∈N(𝑣) ˆh

(𝑘−1)
𝑢]).

Lemma 3.1. For any subgraph 𝐺𝑆 of 𝐺 , Let H(𝐾)
𝐺

= {{h(𝑘)𝑣 |𝑣 ∈
𝑉𝐺 }} and Ĥ(𝐾)

𝐺𝑆
= {{ ˆh(𝑘)𝑣 |𝑣 ∈ 𝑉𝐺𝑆

}}. Then we have h(𝐾)𝑣 = ˆh(𝐾)𝑣 for
any 𝑣 ∈ 𝑉𝐺𝑆

, if the following condition holds,

M𝑘,𝑣 =𝑚
(𝑘)
𝑣 =

0 {𝑣} ⊆ 𝑉𝐺/𝑉𝐺𝑆

∧N𝐺 (𝑣) ∩𝑉𝐺𝑆
≠ ∅

∧𝑘%2 = 1

1 {𝑣} ⊆ 𝑉𝐺𝑆
∧ {𝑘} ⊆ [𝐾] .

We prove Lemma 3.1 in Appendix A. Lemma 3.1 shows that we

can obtain the node representations that are equivalent to node

representations of any subgraph by controlling the assignments

of M. Meanwhile, M (or the subgraph sequences) is not unique

for the given subgraph. This subgraph extraction mechanism takes

effects implicitly by imposing restrictions on a combination of linear

transformations, non-linear activation functions and aggregators.

Compared with existing graph sampling [16] or graph pooling

[3, 7, 14, 15], the benefit is that it does not require setting a fixed

sample or drop ratio and can extract the desired subgraph with

arbitrary sizes. For learning the graph-level representations, we

have the following theorem.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia M. Yang and Y. Shen, et al.

Theorem 3.2. Let h𝐺 = SUM(H(𝐾)
𝐺

) and ˆh𝐺𝑆
= SUM(Ĥ(𝐾)

𝐺𝑆
),

where𝐺𝑆 can be any subgraph of 𝐺 . Then there exist assignments of
M such that h𝐺 = ˆh𝐺𝑆

.

We prove Theorem 3.2 in Appendix B. Lemma 3.1 and Theorem

3.2 indicate that the representation of any given subgraph corre-

sponds to a group of M (or a group of subgraph sequences). Then,

the problem of representing the desired subgraphs is converted to

finding properM.

3.2 Hierarchical Representation Learning

MaskConv

Embedding
Conv

MaskConv

Embedding
Conv

MaskConv

Embedding
Conv

MaskConv

Embedding
Conv

(X, A)

SMGk1

SMGk2

R
ead

o
u

t

Figure 2: Capture the hierarchical structures by stacking
multiple SMGs.

Graphs built from the real-world can inherently have hierarchical

structures. In the previous section, we have shown how a multi-

layer SMG represents a given subgraph with proper assignments

ofM. In this section, we show how to control the assignments of

M to capture the hierarchical structures of a graph.

A hierarchical graph as given in Figure 1(a) is characterized by

each individual part and their interactions. Meanwhile, each part is

composed of interactions of several smaller parts, making the graph

structure identification recursive. To capture hierarchical structures,

the neural network should first encode each local part individually

and then encodes their interactions. From the node perspective,

leaf nodes are aggregated first and then root nodes are taken into

consideration. This corresponds to stacking multiple SMGs, where

each SMG𝑘𝑖 learns node representations of the subgraph 𝐺𝑆𝑖 with

input node features being node representations learned by previ-

ous GNN𝑘𝑖−1 . In the 𝑖-th GNN𝑘𝑖 , H
★
𝐺

= SMG𝑘𝑖 (H
★−𝑘𝑖
𝐺

,A𝐺 ,M𝐺𝑆𝑖
),

whereM𝐺𝑆𝑖
is the assignment corresponding to 𝐺𝑆𝑖 according to

Lemma 3.1, and 𝑘𝑖 is the number of layers of SMG𝑘𝑖 . In the initial

step, H0

𝐺
= X𝐺 .

We explain this process with the hierarchical graph example

in Figure 1. The hierarchical structure is characterized by three

individual parts and their interactions. We use a stacked 2 SMGs to

learn on this graph as showed in Figure 2. Based on the observation

of Lemma 3.1, the representation learned by SMG𝑘1 corresponds to

subgraph 1 with only leaf nodes involved, leading to the learned

node representations limited within the corresponding part. Also,

the representation learned by SMG𝑘2 corresponds to subgraph 2

consisting of root nodes (colored with black) and leaf nodes (colored

with gray) which capture each part as well as their interactions.

Consistently, to extend to hierarchical graphs with heights larger

than 2, stacking more SMGs with each one learning on a specific

subgraph is required. Interactions of different parts at low levels

are captured by lower SMGs, and those at high levels are captured

by higher SMGs.

We have shown how to capture hierarchical structures by stack-

ing multi SMGs with each one corresponding to a subgraph as

analyzed in Lemma 3.1. This assumes the knowledge of the hierar-

chical structures of the graph. However, the hierarchical structures

are not a priori knowledge and should be captured by the neural

network itself. Thanks to

H(𝐾)
𝐺

= SMG𝑘𝐿 (H
(𝐾−𝑘𝐿)
𝐺

,A𝐺 ,M𝐺𝑆𝐿
)

= SMG𝑘𝐿 (SMG
𝑘𝐿−1

(...SMG𝑘1 (X𝐺 ,A𝐺 ,M𝐺𝑆
1

),
A𝐺 ,M𝐺𝑆𝐿−1

),A𝐺 ,M𝐺𝑆𝐿
)

= SMG𝐾 (X𝐺 ,A𝐺 ,
𝐿

| |
𝑖=1

M𝐺𝑆𝑖
)

= SMG𝐾 (X𝐺 ,A𝐺 ,M𝐺),
which means that any required stacked 𝐿 SMGs with each one

learning on a specific subgraph are equivalent to the same number

layers of SMG with mask assignments M𝐺 = | |𝐿𝑖=1M𝐺𝑆𝑖
. We can

obtain the required stacked 𝐿 SMGs with proper assignments ofM𝐺 .

Then, the problem of capturing hierarchical structures is converted

to finding the assignments ofM𝐺 .
The flexibility of M𝐺 enables SMG to extract much richer struc-

tural information, beyond the general dense aggregation based

GNNs. We have shown that a single layer SMG can only capture

subgraphs, while a multi-layer SMG can capture hierarchical struc-

tures of graphs. When 𝐿 > 1 and 𝐺𝑆𝑖 is restricted to be a subgraph

of 𝐺𝑆𝑖−1 for all 𝑖 ∈ [𝐿 − 1], SMG works in a similar way as top-𝑘

based graph poolings [3, 7, 14, 15] that iteratively remove some

nodes and related edges layer by layer. However, the interactions

of different parts as given in Figure 1 cannot be captured by this

kind of scheme, since previously skipped nodes in lower layers will

not be involved in higher layers.

3.3 Mask Assignments Computations
In this section, we present the method to compute the assignments

of M𝐺 . We use a separate GNN layer, called GNN-𝑤 to learn the

assignments of M𝐺 . The value assigned on node 𝑣 in the 𝑘-th layer

is

MG𝑘,𝑣 =𝑚
(𝑘)
𝑣

= MLP
(𝑘) (ReLU([L(𝑘)

1
(𝑚 (𝑘−1)

𝑣 h(𝑘−1)𝑣) | |∑︁
𝑢∈N(𝑣)

L(𝑘)
2

(𝑚 (𝑘−1)
𝑢 h(𝑘−1)𝑢)])),

(4)

where L(𝑘)
1

and L(𝑘)
2

are affine maps, MLP is a 2-layer perceptron

with output feature dimension of 1. The activation function in

Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

the last layer of MLP is Sigmoid, making𝑚
(𝑘)
𝑣 ∈ (0, 1). Note that

the constant parts (i.e. bias) in L(𝑘)
1

, L(𝑘)
2

and MLP is required.

Otherwise,𝑚
(𝑘−1)
𝑣 h(𝑘−1)𝑣 = 0 and𝑚

(𝑘−1)
𝑢 h(𝑘−1)𝑢 = 0 will lead𝑚

(𝑘)
𝑣

always fixed to 0.5.

The value of 𝑚
(𝑘)
𝑣 assigned on each node is from 0 to 1, not

discrete mask value 0 or 1 as expected. Fortunately, in a SMG layer,

h(𝑘)𝑣 = 𝑓 ({𝑚 (𝑘)
𝑖

|𝑖 ∈ ˆN(𝑣)}) = ReLU(W(𝑘)
1
𝑚

(𝑘)
𝑣 [h(𝑘−1)𝑣 | |∑

𝑢∈N(𝑣)𝑚
(𝑘)
𝑢 h(𝑘−1)𝑢]) is continuous for𝑚 (𝑘)

𝑖
∈ [0, 1] where 𝑖 ∈

ˆN(𝑣). Therefore we have lim

𝑚
(𝑘)
𝑖

→0
+
𝑓 (𝑚 (𝑘)

𝑖
, ...) = 𝑓 (0, ...) and

lim

𝑚
(𝑘)
𝑖

→1
−
𝑓 (𝑚 (𝑘)

𝑖
, ...) = 𝑓 (1, ...) for any 𝑖 ∈ ˆN(𝑣), making it possible

to use𝑚
(𝑘)
𝑣 to approximate the mask value 0 or 1.

The benefit of soft-mask is that the weights are taken into consid-

eration. As h(𝑘)𝑣 represents a𝑘-hop subtree rooted on 𝑣 that captures

the structural information of local 𝑘-hop substructure rooted on

𝑣 ,𝑚
(𝑘)
𝑣 multiplies with h(𝑘)𝑣 gives the weight of that substructure

for the following aggregation operation that takes h(𝑘)𝑣 as inputs.

For nodes with 0 weights, it is equivalent to drop them and related

edges.

To maintain zero invariant, we use SUM as Readout function as

presented in Theorem 3.2. We also use jumping concatenation as

given in [33],

h𝐺 =
𝐾

| |
𝑘=1

(
𝑁∑︁
𝑖=1

h(𝑘)
𝑖

) . (5)

Equation 5 utilizes node representations from different layers to

compute the entire graph representation h𝐺 . Since a node repre-
sentation in the 𝑘-th layer h(𝑘)𝑣 encodes the 𝑘-hop substructure

with the weight 𝑚
(𝑘)
𝑣 , when implementing Readout function as

Equation 5, the weight of h(𝑘)𝑣 is considered over all substructures

with different hops.

3.4 Multi-channel Soft-mask GNN Model
We generalize the soft-mask mechanism to a multi-channel sce-

nario. To this end, GNN-𝑤 computes a mask value for each channel

of a node representation such that𝑚
(𝑘)
𝑣 ∈ (0, 1)𝑑 , where 𝑑 is the di-

mension of node representations. This is done by setting the output

feature dimension of MLP in Equation 4 to be 𝑑 . Correspondingly,

the SMG layer (Equation 3) is rewritten as

h(𝑘)𝑣 =ReLU(𝑚 (𝑘)
𝑣 ⊙ W(𝑘)

2
[h(𝑘−1)𝑣 | |∑︁

𝑢∈N(𝑣)
𝑚

(𝑘)
𝑢 ⊙ h(𝑘−1)𝑢]), (6)

where ⊙ is element-wise multiplication, and W(𝑘)
2

∈ R𝑑×𝑑 . Before
the GNN operation in the first layer, we use a linear transformation

to make the dimension of the input node features equal to the

number of hidden units. Intuitively, multi-channel SMG allows us

to conduct sparse aggregation on each channel respectively. General

SMG can be regarded as a special case of multi-channel SMG where

the values on each channel are the same.

4 DISCUSSION
Comparisons with GAT. In GAT, the attention coefficients of a

node are different for its neighbors. This is because, in node level

predictions, a node has varying impacts to its neighbors. For graph

level predictions, the aim is to embed node features as well as graph

topology, and therefore the impact of nodes should be considered

over the entire graph. We can see that GAT applies 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑

attention for learning node representations, while SMG applies

𝑔𝑙𝑜𝑏𝑎𝑙 attention for learning the entire graph representation. Also

note that due to the neighborhood normalization in GAT, GAT

cannot completely skip some nodes and related edges. In our ex-

periments, we give detailed comparisons about these two kinds of

strategies on graph level tasks, even though there are relatively few

attempts that apply GAT to graph level predictions.

Comparisons with top-𝑘 based poolings. Top-𝑘 based pool-

ings [3, 7, 14, 15] compute the attention coefficients among all nodes,

making the learned representations focus on informative parts. To

handle this, all top-𝑘 based methods physically remove nodes and

related edges with low attention weights. The drawback of this

kind of mechanism is that it requires to manually set the drop-ratio,

which can be a limitation for capturing desired subgraphs with

arbitrary sizes. Soft-mask mechanism is proposed without this lim-

itation, and therefore SMG should be more adaptive in graphs with

arbitrary scales. Furthermore, in top-𝑘 based poolings, the learned

subgraph of the current layer is the subgraph of the previous layer.

This can be a limitation for the model to extract hierarchical struc-

tures, as we explained in Section 3.2.

5 EXPERIMENTS
In this section, we evaluate soft-mask GNN and its variants on

both graph classification and graph regression tasks. The code is

available at https://github.com/qslim/soft-mask-gnn.

5.1 Datasets
For graph classification task, our experiments are conducted on 10

real-world graph datasets from [11, 34], including both bioinfor-

matics datasets and social network datasets. Detailed statistics are

given in Table 1. For graph regression task, we use QM9 dataset

[23, 24, 30], which is composed of 134K small organic molecules.

The task is to predict 12 targets for each molecule. All data is ob-

tained from pytorch-geometric library [6].

5.2 Graph Classification Task
We follow the standard ways to evaluate models on classification

datasets which perform 10-fold cross validation and report average

accuracy [18, 32, 35]. We use Adam optimizer [12] with learning

rate ∈ {0.005, 0.001, 0.0005} and learning rate decay ∈ [0.7, 1] ev-
ery {50, 100} epochs. Other hyperparameters settings are: (1) the

number of hidden units ∈ {32, 64, 128} for bioinformatics datasets,

and {64, 128, 256} for social network datasets; (2) the number of

layers ∈ {2, 3, 4, 5}; (3) the batch size ∈ {64, 128}; (4) the dropout
ratio ∈ {0, 0.5}. We run 10 independent times with selected hyper-

parameters to obtain the final accuracy on each dataset. For graphs

without node attributes, we use one-hot encoding of node degrees.

We evaluate the following variants of our proposed soft-mask

GNN. SMG represents soft-mask GNN with GNN-𝑤 implemented

https://github.com/qslim/soft-mask-gnn

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia M. Yang and Y. Shen, et al.

Table 1: Graph classification results. The top 2 performance approaches are highlighted in bold. We report the results in the
original papers by default. When the results are not given in the original papers, we report the best testing results given in
[10, 31, 36].

dataset MUTAG PROTEINS NCI1 COLLAB ENZYMES IMDB-B IMDB-M RDT-B RDT-M5K RDT-12K

graphs 188 1113 4110 5000 600 1000 1500 2000 4999 11929

classes 2 2 2 3 6 2 3 2 5 11

avg # nodes 17.9 39.1 29.9 74.5 32.6 19.8 13.0 429.6 508.5 391.4

GK [26] 81.58±2.11 71.67±0.55 62.49±0.27 72.84±0.28 32.70±1.20 65.87±0.98 43.89±0.38 77.34±0.18 41.01±0.17 31.82±0.08
RW [29] 79.17±2.1 59.57±0.1 NA NA 24.16±1.64 NA NA NA NA NA

PK [20] 76±2.7 73.68±0.7 82.54±0.5 NA NA NA NA NA NA NA

WL [25] 84.11±1.9 74.68±0.5 84.46 ± 0.5 NA 52.22±1.26 73.40±4.63 49.33±4.75 81.0±3.10 49.44±2.36 38.18±1.30
FGSD [28] 92.12 73.42 79.80 80.02 NA 73.62 52.41 NA NA NA

AWE [10] 87.87±9.76 NA NA 73.93±1.94 35.77±5.93 74.45±5.83 51.54±3.61 87.89±2.53 50.46±1.91 39.20±2.09
DGCNN [36] 85.83±1.66 75.54±0.94 74.44±0.47 73.76±0.49 51.0±7.29 70.03±0.86 47.83±0.85 NA NA NA

PSCN [21] 88.95±4.4 75±2.5 74.44±0.5 73.76±0.5 NA 45.23±2.84 45.23±2.84 86.30±1.58 49.10±0.70 41.32±0.42

DCNN [1] NA 61.29±1.60 56.61±1.04 52.11±0.71 NA 49.06±1.37 33.49±1.4 NA NA NA

ECC [27] 76.11 NA 76.82 NA 45.67 NA NA NA NA NA

DGK [34] 87.44±2.72 75.68±0.54 80.31±0.46 73.09±0.25 53.43±0.91 66.96±0.96 44.55±0.52 78.04±0.39 41.27±0.18 32.22±0.10
CapsGNN [31] 86.67±6.88 76.28±3.63 78.35±1.55 79.62±0.91 54.67±5.67 73.10±4.83 50.27±2.54 NA 52.88±1.48 46.62±1.90
DiffPool [35] NA 76.25 NA 75.48 62.53 NA NA NA NA 47.08

GIN [32] 89.4±5.6 76.2±2.8 82.7±1.7 80.2±1.9 NA 75.1 ± 5.1 52.3±2.8 92.4±2.5 57.5 ± 1.5 NA

Top-𝑘 Pool [15] NA 71.86±0.97 67.45±1.11 NA NA NA NA NA NA NA

PPGNN [18] 90.55 ± 8.7 77.2 ± 4.73 83.19 ± 1.11 80.16±1.11 NA 72.6±4.9 50±3.15 NA NA NA

SMG 89.2±6.22 76.8 ± 4.15 83.3 ± 1.88 83.2 ± 1.60 59.0±5.07 74.8±6.63 52.0±4.11 92.9 ± 2.84 57.3±2.09 51.2 ± 1.40
SMG-JK 89.3±7.12 76.3±4.57 83.0±2.25 82.7 ± 1.57 60.3 ± 5.26 75.0±6.24 52.3±3.20 93.1 ± 2.25 57.5 ± 1.56 51.3 ± 1.52
M-SMG-JK 89.6±7.38 76.1±4.04 82.8±1.73 82.6±1.54 57.3±5.63 75.0 ± 5.95 52.7 ± 3.71 91.7±2.08∗ 57.0±1.85∗ 49.2±1.13∗
Rank 3

𝑟𝑑
2
𝑛𝑑

2
𝑛𝑑

1
𝑠𝑡

2
𝑛𝑑

2
𝑛𝑑

1
𝑠𝑡

1
𝑠𝑡

1
𝑠𝑡

1
𝑠𝑡

by Equation 4.M-SMG represents multi-channel soft-mask GNN

implemented by Equation 6. JK represents the Readout operation

implemented by Equation 5.

Comparisons with baselines. Table 1 presents a summary of

classification results. Baselines include kernel-based methods and

GNN methods. The last row indicates the ranking of our models.

M-SMG-JK fails to converge on REDDIT due to a large number of

nodes, and therefore their results (marked with
∗
) are computed

with the MEAN readout function. Note that SMG based models

achieve the top 2 performance in 9 out of 10 datasets. Especially,

SMG and SMG-JK are more competitive on large graphs, e.g., COL-

LAB and three REDDIT datasets. This is because, in a large graph,

task-relevant structures should not be characterized in every sin-

gle detailed structure. It is more efficient to focus on the relevant

substructures or the hierarchical structure of a graph.

Representation Power of SMG Models. Figure 3 gives train-
ing set performance. Since our proposed soft mask mechanism

tries to minimize the impact of irrelevant parts and only learns

from the desired subgraph in each layer, we can see that SMG and

SMG-JK boost training set performance significantly. Our models

fit especially well on large and sparse graphs as given in REDDIT

datasets, where GAT fails to fit them. The multi-layer SMG always

outperforms SMG-1-layer, except for COLLAB where both models

achieve the highest accuracies. This is because graphs in COLLAB

have dense connections as visualized in Figure 5 in Appendix C,

and exploring 1-hop neighbors can be sufficient to get an overview

of graphs. For large and sparse graphs, structural information may

be characterized by long-range dependencies that can be captured

by exploring larger hops in higher layers. GAT suffers from the

impact of irrelevant parts, making them not benefit from the deeper

structures used for capturing long-range dependencies. The per-

formance differences between GAT and SMG show that skipping

noisy nodes and related edges makes the model better fit training

data.

Visualizing Weight Distributions. We give weights distribu-

tions
1
of REDDIT on all layers computed by SMG as shown in

Figure 4. More visualization results on other datasets are provided

in the Appendix. We interpret weight distributions from two per-

spectives: (1) How the weights are related to graph structures in

a single layer; (2) How weights change over different layers. All

graphs are randomly sampled from the corresponding datasets. We

use the depth of color to represent the weights of nodes.

From visualizations, the weights of nodes have significant differ-

ences and weight distributions do have strong relations to graph

structures. Graphs in REDDIT are characterized by tree-like struc-

tures, where most nodes lie in the root and are densely connected.

This is also reflected from the layout in Figure 4 where nodes close

to the root are at the center of the layout and their dense connec-

tions form a clique with overlaps. Viewed on different layers, the

weights move from leaf parts to the root part. In the first layer, the

weights are completely distributed on leaf parts with almost zero

weights on the root part, indicating that the learned node represen-

tations skip the root part. In higher layers, the weights of the root

part are increased. This can be the evidence that the hierarchical

structures are captured by SMG. Node representations in the last

layer (Layer 4 in Figure 4) are used to compute the final graph

representation and the zero weights are not involved in the final

graph representation since the Readout operation is zero invariant.

1
Graphs are visualized by graphviz. There are different layout engines provided by

Graphviz. For large graphs in REDDIT and COLLAB, we use sfdp to provide a friendly

view. For small graphs in PROTEINS and NCI1, we use neato to give detailed structure

information.

Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0 200 400 600 800
Epoch

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 a

cc
ur

ac
y

ENZYMES

0 100 200 300 400
Epoch

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

NCI1

0 100 200 300 400
Epoch

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

 a
cc

ur
ac

y

COLLAB

0 100 200 300 400 500 600
Epoch

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

REDDIT-BINARY

0 100 200 300 400 500 600
Epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

REDDIT-MULTI-12K

SMG-1-layer
GAT-JK
SMG-JK
SMG

Figure 3: Training set performance.

Table 2: Mean absolute errors on the QM9 dataset. The top 2 best-performing GNNs are highlighted in bold.

target 𝜇 𝛼 𝜖ℎ𝑜𝑚𝑜 𝜖𝑙𝑢𝑚𝑜 Δ𝜖 ⟨𝑅2 ⟩ 𝑍𝑃𝑉𝐸 𝑈0 𝑈 𝐻 𝐺 𝐶𝑣

DTNN [30] 0.244 0.95 0.00388 0.00512 0.0112 17 0.00172 2.43 2.43 2.43 2.43 0.27

MPNN [8] 0.358 0.89 0.00541 0.00623 0.0066 28.5 0.00216 2.05 2 2.02 2.02 0.42

PPGNN [18] 0.0934 0.318 0.00174 0.0021 0.0029 3.78 0.000399 0.022 0.0504 0.0294 0.024 0.144

SMG-JK 0.4709 0.3415 0.0033 0.0036 0.0049 23.64 0.000236 0.0248 0.0247 0.0225 0.0244 0.130
M-SMG-JK 0.4395 0.2899 0.0030 0.0032 0.0045 21.90 0.000196 0.0212 0.0202 0.0214 0.0212 0.1157
Rank 4

𝑡ℎ
1
𝑠𝑡

2
𝑛𝑑

2
𝑛𝑑

2
𝑛𝑑

3
𝑟𝑑

1
𝑠𝑡

1
𝑠𝑡

1
𝑠𝑡

1
𝑠𝑡

1
𝑠𝑡

1
𝑠𝑡

Weights distributions in Layer 4 show that only some of the node

representations participate in the computation of the final graph

representation.

Note that the weight differences become less significant in higher

layers. This is because the weight of a node actually characterizes

the weight of a subtree rooted on that node. In higher layers, the sub-

trees become larger and have more overlaps, making them similar.

On most datasets we test, weight distributions change dynamically

in different layers. The substructures assigned with low weights

in lower layers can be assigned with high weights in higher lay-

ers, which is consistent with our analysis. Note that this kind of

phenomenon cannot be captured by top-𝑘 based poolings.

5.3 Graph Regression Task
Following the standard dataset splits described in [18, 30], the QM9

dataset is randomly split into 80% train, 10% validation and 10% test.

We evaluate SMG-JK andM-SMG-JK with the following parameters:

number of layers ∈ {3, 4}; hidden units = 64; batch size = 64; learning
rate ∈ {0.001, 0.0005, 0.0001}; learning rate decay ∈ [0.75, 1] every
{20, 30, 50} epochs. Both models are trained for 500 epochs. Table

2 compares the mean absolute error of our methods with state-of-

the-art approaches. All results of these approaches are taken from

the original papers. Note that our methods achieve the lowest error

on 7 out of the 12 targets.

6 CONCLUSION
Motivated by effectively skipping irrelevant parts of graphs, we

propose soft-mask GNN (SMG) layer, which learns graph represen-

tations from a sequence of subgraphs. We show its capability for

explicitly extracting desired substructures or hierarchical structures.

Experimental results on benchmark graph classification and graph

regression datasets demonstrate that SMG gains significant im-

provements and the visualizations of masks provide interpretability

of structures learned by the model.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science Foun-

dation of China under Grants U1811463, 62072069, and U19B2039,

and also in part by the Innovation Foundation of Science and Tech-

nology of Dalian under Grants 2018J11CY010 and 2019J12GX037.

REFERENCES
[1] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In Advances in Neural Information Processing Systems. 1993–2001.
[2] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[3] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro

Liò. 2018. Towards sparse hierarchical graph classifiers. arXiv preprint
arXiv:1811.01287 (2018).

[4] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-Smoothing Problem for Graph Neural Networks from

the Topological View.. In AAAI. 3438–3445.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia M. Yang and Y. Shen, et al.

0.50 0.1 0.2 0.3 0.4 10.6 0.7 0.8 0.9

Weight color map

Layer 1 Layer 2 Layer 3 Layer 4

Layer 3 Layer 4Layer 1 Layer 2

Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4

Figure 4: Weight distributions of 4 graphs sampled from REDDIT-BINARY, REDDIT-MULTI-5K and REDDIT-MULTI-12K.

[5] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. 2019. On the equiv-

alence between graph isomorphism testing and function approximation with

gnns. In Advances in Neural Information Processing Systems. 15868–15876.
[6] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[7] Hongyang Gao and Shuiwang Ji. 2019. Graph U-Nets. arXiv preprint
arXiv:1905.05178 (2019).

[8] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

1263–1272.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[10] Sergey Ivanov and Evgeny Burnaev. 2018. Anonymous Walk Embeddings. In

Proceedings of the 35th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.).

PMLR, Stockholmsmässan, Stockholm Sweden, 2191–2200. http://proceedings.

mlr.press/v80/ivanov18a.html

[11] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion

Neumann. 2016. Benchmark Data Sets for Graph Kernels. http://graphkernels.

cs.tu-dortmund.de.

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).

http://proceedings.mlr.press/v80/ivanov18a.html
http://proceedings.mlr.press/v80/ivanov18a.html
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Boris Knyazev, Graham W Taylor, and Mohamed R Amer. 2019. Understanding

attention in graph neural networks. arXiv preprint arXiv:1905.02850 (2019).
[15] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-Attention Graph Pooling.

arXiv preprint arXiv:1904.08082 (2019).
[16] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph classification

using structural attention. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 1666–1674.

[17] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph

convolutional networks for semi-supervised learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[18] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019.

Provably Powerful Graph Networks. arXiv preprint arXiv:1905.11136 (2019).
[19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:

Higher-order graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 4602–4609.

[20] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting.

2016. Propagation kernels: efficient graph kernels from propagated information.

Machine Learning 102, 2 (2016), 209–245.

[21] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In International Conference on Machine
Learning. 2014–2023.

[22] Kenta Oono and Taiji Suzuki. 2019. Graph neural networks exponentially lose

expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019).

[23] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole

Von Lilienfeld. 2014. Quantum chemistry structures and properties of 134 kilo

molecules. Scientific data 1 (2014), 140022.
[24] Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond.

2012. Enumeration of 166 billion organic small molecules in the chemical universe

database GDB-17. Journal of chemical information and modeling 52, 11 (2012),

2864–2875.

[25] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[26] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten

Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In

Artificial Intelligence and Statistics. 488–495.
[27] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned

filters in convolutional neural networks on graphs. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 3693–3702.

[28] Saurabh Verma and Zhi-Li Zhang. 2017. Hunt for the unique, stable, sparse and

fast feature learning on graphs. In Advances in Neural Information Processing
Systems. 88–98.

[29] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M

Borgwardt. 2010. Graph kernels. Journal of Machine Learning Research 11, Apr

(2010), 1201–1242.

[30] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-

niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a

benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.
[31] Zhang Xinyi and Lihui Chen. 2019. Capsule Graph Neural Network. In Interna-

tional Conference on Learning Representations. https://openreview.net/forum?id=

Byl8BnRcYm

[32] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[33] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018).
[34] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 1365–1374.

[35] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. In Advances in Neural Information Processing Systems. 4800–4810.
[36] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-

to-end deep learning architecture for graph classification. In Thirty-Second AAAI
Conference on Artificial Intelligence.

A PROOF OF LEMMA 3.1
Proof. When 𝐾=1, for any 𝑣 ∈ 𝑉𝐺𝑆

,𝑚
(1)
𝑣 = 1 and

h(1)𝑣 =ReLU(W(1)
1

x𝑣 +
∑︁

𝑢∈N𝐺 (𝑣)∩𝑉𝐺𝑆

𝑚
(1)
𝑢 W(1)

2
x𝑢+∑︁

𝑢∈N𝐺 (𝑣)∩(𝑉𝐺 /𝑉𝐺𝑆
)
𝑚

(1)
𝑢 W(1)

2
x𝑢).

To prove

∑
𝑢∈N𝐺 (𝑣)∩(𝑉𝐺 /𝑉𝐺𝑆

)𝑚
(1)
𝑢 W(1)

2
x𝑢 = 0, we only need to

consider the case thatN𝐺 (𝑣)∩ (𝑉𝐺/𝑉𝐺𝑆
) ≠ ∅. For any𝑢 ∈ N𝐺 (𝑣)∩

(𝑉𝐺/𝑉𝐺𝑆
), we have (i) {𝑢} ⊆ 𝑉𝐺/𝑉𝐺𝑆

; (ii)N𝐺 (𝑢) ∩𝑉𝐺𝑆
≠ ∅, since

{𝑣} ⊆ N𝐺 (𝑢) ∩𝑉𝐺𝑆
; (iii) 𝐾%2 = 1. According to given condition of

M,𝑚
(1)
𝑢 = 0. Then we have

h(1)𝑣 = ReLU(W(1)
1

x𝑣 +
∑︁

𝑢∈N𝐺 (𝑣)∩𝑉𝐺𝑆

W(1)
2

x𝑢 + 0)

= ReLU(W(1)
1

x𝑣 +
∑︁

𝑢∈N𝐺𝑆
(𝑣)

W(1)
2

x𝑢)

= t(1)𝑣 .

Suppose when 𝐾 = 𝑘 − 1, for any 𝑣 ∈ 𝑉𝐺𝑆
, h(𝑘−1)𝑣 = t(𝑘−1)𝑣 holds.

For any 𝑣 ∈ 𝑉𝐺𝑆
,

h(𝑘)𝑣 =ReLU(W(𝑘)
1

h(𝑘−1)𝑣 +
∑︁

𝑢∈N𝐺 (𝑣)∩𝑉𝐺𝑆

𝑚
(𝑘)
𝑢 W(𝑘)

2
h(𝑘−1)𝑢

+
∑︁

𝑢∈N𝐺 (𝑣)∩(𝑉𝐺 /𝑉𝐺𝑆
)
𝑚

(𝑘)
𝑢 W(𝑘)

2
h(𝑘−1)𝑢).

If 𝑘%2 = 1,𝑚
(𝑘)
𝑢 = 0 for any 𝑢 ∈ N𝐺 (𝑣) ∩ (𝑉𝐺/𝑉𝐺𝑆

) (the same as

𝐾=1) and
∑
𝑢∈N𝐺 (𝑣)∩(𝑉𝐺 /𝑉𝐺𝑆

)𝑚
(𝑘)
𝑢 W(𝑘)

2
h(𝑘−1)𝑢 = 0. If 𝑘%2 = 0,

then (𝑘 −1)%2 = 1,𝑚
(𝑘−1)
𝑢 = 0 for any𝑢 ∈ N𝐺 (𝑣) ∩ (𝑉𝐺/𝑉𝐺𝑆

) (the
same as 𝐾=1), thus h(𝑘−1)𝑢 = 0 and

∑
𝑢∈N𝐺 (𝑣)∩(𝑉𝐺 /𝑉𝐺𝑆

)𝑚
(𝑘)
𝑢 W(𝑘)

2

h(𝑘−1)𝑢 = 0. Therefore, we have

h(𝑘)𝑣 = ReLU(W(𝑘)
1

h(𝑘−1)𝑣 +
∑︁

𝑢∈N𝐺 (𝑣)∩𝑉𝐺𝑆

𝑚
(𝑘)
𝑢 W(𝑘)

2
h(𝑘−1)𝑢)

= ReLU(W(𝑘)
1

t(𝑘−1)𝑣 +
∑︁

𝑢∈𝑉𝐺𝑆

𝑚
(𝑘)
𝑢 W(𝑘)

2
t(𝑘−1)𝑢)

= t(𝑘)𝑣 .

Finally, we can conclude that ∀𝑣 ∈ 𝑉𝐺𝑆
, h(𝐾)𝑣 = t(𝐾)𝑣 . □

B PROOF OF THEOREM 3.2
Proof. From Lemma 3.1, the problem is converted to find the as-

signments ofM such that h(𝐾)𝑣 = 0 for any 𝑣 ∈ 𝑉𝐺/𝑉𝐺𝑆
. Meanwhile,

the assignments of M should be consistent with that in Lemma 3.1.

Thus, a simple assignments ofM is

M𝑘,𝑣 =𝑚
(𝑘)
𝑣 =

0 {𝑣} ⊆ 𝑉𝐺/𝑉𝐺𝑆

∧((N𝐺 (𝑣) ∩𝑉𝐺𝑆
≠ ∅

∧𝑘%2 = 1) ∨ 𝑘 = 𝐾)
1 {𝑣} ⊆ 𝑉𝐺𝑆

∧ {𝑘} ⊆ [𝐾] .

https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/forum?id=ryGs6iA5Km

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia M. Yang and Y. Shen, et al.

Note that

h𝐺 = SUM({{h(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺 }})

= SUM({{h(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺𝑆
}} ∪ {{h(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺/𝑉𝐺𝑆

}}),

where {{h(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺/𝑉𝐺𝑆
}} = {{0}}. According to Lemma 1, we

have

h𝐺 = SUM({{h(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺𝑆
}})

= SUM({{t(𝐾)𝑣 |𝑣 ∈ 𝑉𝐺𝑆
}})

= t𝐺𝑆
.

□

C MORE VISUALIZATION RESULTS
Graphs in COLLAB have dense connections. For nodes with a large

number of neighbors, their values of representation vectors may

increase rapidly. Therefore, in a general GNN, these nodes will

dominate the entire graph representation. Figure 5 shows that in

a soft-mask GNN, nodes with many neighbors learn relative low

weights to restrict the fast growth of values of representation vec-

tors.

For small graphs in NCI1 as given in Figure 6, task-relevant

structures should be considered in the entire graph. The weight

distributions in different layers show that the aggregation operation

is conducted on most of the nodes, but with different weights.

Graphs in PROTEINS as given in Figure 7 have node attributes,

thus the weight distributions are also related to node attributes.

Nodes with 0 weights in the first layer mean that node attributes

are not included in the final graph representation, which provides

a way to find out task-relevant node attributes.

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Figure 5: Weight distributions of 2 graphs sampled from COLLAB.

Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4

Figure 6: Weight distributions of 2 graphs sampled from NCI1.

Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Layer 1 Layer 2 Layer 3

Layer 1 Layer 2 Layer 3

Figure 7: Weight distributions of 2 graphs sampled from PROTEINS.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Graph Neural Networks

	3 Soft-mask GNN
	3.1 Sparse Aggregation and Subgraph Representation Learning
	3.2 Hierarchical Representation Learning
	3.3 Mask Assignments Computations
	3.4 Multi-channel Soft-mask GNN Model

	4 Discussion
	5 Experiments
	5.1 Datasets
	5.2 Graph Classification Task
	5.3 Graph Regression Task

	6 Conclusion
	Acknowledgments
	References
	A Proof of Lemma 3.1
	B Proof of Theorem 3.2
	C More Visualization Results

