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ABSTRACT

Recent work has shown that Large Language Models (LLMs) can be incredibly
effective for offline reinforcement learning (RL) by representing the traditional
RL problem as a sequence modelling problem (Chen et al., 2021; Janner et al.,
2021). However many of these methods only optimize for high returns, and may
not extract much information from a diverse dataset of trajectories. Generalized
Decision Transformers (GDTs) (Furuta et al., 2021) have shown that by utilizing
future trajectory information, in the form of information statistics, can help extract
more information from offline trajectory data. Building upon this, we propose
Skill Decision Transformer (Skill DT). Skill DT draws inspiration from hindsight
relabelling (Andrychowicz et al., 2017) and skill discovery methods to discover a
diverse set of primitive behaviors, or skills. We show that Skill DT can not only
perform offline state-marginal matching (SMM), but can discovery descriptive be-
haviors that can be easily sampled. Furthermore, we show that through purely
reward-free optimization, Skill DT is still competitive with supervised offline RL
approaches on the D4RL benchmark.

1 INTRODUCTION

Reinforcement Learning (RL) has been incredibly effective in a variety of online scenarios such
as games and continuous control environments (Li, 2017). However, they generally suffer from
sample inefficiency, where millions of interactions with an environment are required. In addition,
efficient exploration is needed to avoid local minimas (Pathak et al., 2017; Campos et al., 2020).
Because of these limitations, there is interest in methods that can learn diverse and useful primitives
without supervision, enabling better exploration and re-usability of learned skills (Eysenbach et al.,
2018; Strouse et al., 2021; Campos et al., 2020). However, these online skill discovery methods still
require interactions with an environment, where access may be limited.

This requirement has sparked interest in Offline RL, where a dataset of trajectories is provided.
Some of these datasets (Fu et al., 2020) are composed of large and diverse trajectories of varying
performance, making it non trivial to actually make proper use of these datasets; simply applying
behavioral cloning (BC) leads to sub-optimal performance. Recently, approaches such as the Deci-
sion Transformer (DT) (Chen et al., 2021) and the Trajectory Transformer (TT) (Janner et al., 2021),
utilize Transformer architectures (Vaswani et al., 2017) to achieve high performance on Offline RL
benchmarks. Furuta et al. (2021) showed that these methods are effectively doing hindsight infor-
mation matching (HIM), where the policies are trained to estimate a trajectory that matches given
target statistics of future information. The work also generalizes DT as an information-statistic con-
ditioned policy, Generalized Decision Transformer (GDT). This results in policies with different
capabilities, such as supervised learning and State Marginal Matching (SMM) (Lee et al., 2019),
just by simply varying different information statistics.

In the work presented here, we take inspiration from the previously mentioned skill discovery meth-
ods and introduce Skill Decision Transformers (Skill DT), a special case of GDT, where we wish
to condition action predictions on skill embeddings and also future skill distributions. We show
that Skill DT is not only able to discovery a number of discrete behaviors, but it is also able to ef-
fectively match target trajectory distributions. Furthermore, we empirically show that through pure
unsupervised skill discovery, Skill DT is actually able to discover high performing behaviors that
match or achieve higher performance on D4RL benchmarks (Fu et al., 2020) compared to other
state-of-the-art offline RL approaches.
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Figure 1: Skill Decision Transformer. States are encoded and clustered via VQ-VAE codebook
embeddings. A Causal Transformer, similar to the original DT architecture, takes in a sequence of
states, a latent skill distribution, represented as the normalized summed future counts of VQVAE
encoding indices (details can be found in the ”generate histogram” function in A.5), and the corre-
sponding skill encoding of the state at timestep t.

Our method predicts actions, conditioned by previous states, skills, and distributions of future skills.
Empirically, we show that Skill DT can not only perform SMM on target trajectories, but can also
match or achieve higher performance on D4RL benchmarks (Fu et al., 2020) compared to other
state-of-the-art offline RL approaches. Skill DT also has the added benefit of using discrete skills,
which are useful for easily sampling diverse behaviors.

2 RELATED WORK

2.1 SKILL DISCOVERY

Many skill methods attempt to learn a latent skill conditioned policy π(a|s, z), where state s ∼
p(s) and skill z ∼ Z, that maximizes mutual information between S and Z (Gregor et al., 2016;
Sharma et al., 2019; Eysenbach et al., 2018). Another way of learning meaningful skills is through
variational inference, where z is learned via a reconstruction loss (Campos et al., 2020). Explore,
Discover and Learn (EDL) (Campos et al., 2020) is an approach, which discovers a discrete set of
skills by encoding states via a VQ-VAE: p(z|s), and reconstructing them: p(s|z). We use a similar
approach, but instead of reconstructing states, we utilize offline trajectories and optimize action
reconstruction directly (p(a|s, z)). Since our policy is autoregressive, our skill encoding actually
takes into account temporal information, leading to more descriptive skill embeddings. Offline
Primitive Discovery for Accelerating Offline Reinforcement Learning (OPAL) (Ajay et al., 2020),
also discovers offline skills temporally, but instead uses a continuous distribution of skills. These
continuous skills are then sample by a hierarchical policy that is optimized by task rewards. Because
our approach is completely supervised, we wish to easily sample skills. To simplify this, we opt to
use a discrete distribution of skills. This makes it trivial to query the highest performing behaviors,
accomplished by just iterating through the discrete skills.

2.2 STATE MARGINAL MATCHING

State marginal matching (SMM) (Lee et al., 2019) involves finding policies that minimize the dis-
tance between the marginal state distribution that the policy represents pπ(s), and a target distribu-
tion p∗(s). These objectives have an advantage over traditional RL objectives in that they do not
require any rewards and are guided towards exploration (Campos et al., 2020). CDT has shown
impressive SMM capabilities by utilizing binned target state distributions to condition actions in
order to match the given target state distributions. However, using CDT in a real environment is
difficult because target distributions must be provided, while Skill DT learns discrete skills that can
be sampled easily. Also, CDT requires a low dimensional state space, while Skill DT in theory can
work on any type of input as long as it can be encoded effectively into a vector.
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3 PRELIMINARIES

In this work, we consider learning in environments modelled as Markov decision processes (MDPs),
which can be described using varibles (S,A, P,R), where S represents the state space, A represents
the action space, and P (st+1|st, at) represents state transition dynamics of the environment.

3.1 GENERALIZED DECISION TRANSFORMER

The Decision Transformer (DT) (Chen et al., 2021) represents RL as a sequence modelling problem
and uses a GPT architecture Alec Radford & Sutskever (2018) to predict actions autoregressively.
Specifically, DT takes in a sequence of RTGs, states, and actions, where Rt =

∑T
t rt, and trajectory

τ = (R0, s0, a0, ..., R|τ |, s|τ |, a|τ |). DT uses K previous tokens to predict at with a deterministic
policy which is optimized by a mean squared error loss between target and predicted actions. For
evaluation, a target return R̂target is provided and DT attempts to achieve the targeted return in
the actual environment. Furuta et al. (2021) introduced a generalized version of DT, Generalized
Decision Transformer (GDT). GDT provides a simple interface for representing a variety of different
objectives, configurable by different information statistics (for consistency, we represent variations
of GDT with πgdt):

τt = st, at, rt, ..., sT , aT , rT , Iϕ = information statistics function

Generalized Decision Transformer (GDT):

πgdt(at|Iϕ(τ0), s0, a0..., Iϕ(τt), st−1, at−1)

Decision Transformer (DT):

πgdt
dt (at|Iϕdt(τ0), s0, a0, ..., I

ϕ
dt(τt), st−1, at−1), where Iϕdt(τt) =

∑T
t γ ∗ rt, γ = discount factor

Categorical Decision Transformer (CDT):

πgdt
cdt (at|I

ϕ
cdt(τ0), s0, a0, ..., I

ϕ
cdt(τt), st, at), where Iϕcdt(τt) = histogram(st, ..., sT )

CDT is the most similar to Skill DT – CDT captures future trajectory information using future state
distributions, represented as histograms for each state dimension, essentially binning and counting
the bin ids for each state dimension. Skill DT instead utilizes learned skill embeddings to generate
future skill distributions, represented as histograms of full embeddings. In addition, Skill DT also
makes use of the representation learnt by the skill embedding by also using it in tandem with the
skill distributions.

4 SKILL DECISION TRANSFORMER

4.1 FORMULATION

Our Skill DT architecture is very similar to the original Decision Transformer presented in Chen
et al. (2021). While the classic DT uses summed future returns to condition trajectories, we instead
make use of learned skill embeddings and future skill distributions, represented as a histogram of
skill embedding indices, similar to the way Categorical Decision Transformer (CDT) (Furuta et al.,
2021) utilizes future state counts. One notable difference Skill DT has to the original Decision
Transformer (Chen et al., 2021) and the GDT (Furuta et al., 2021) variant is that we omit actions in
predictions. This is because we are interested in SMM through skills, where we want to extract as
much information from states.

Formally, Skill DT represents a policy:

π(at|Zt−K , zt−K , st−K , ...Zt−1, zt−1, st−1),

where K is the context length, and θ are the learnable parameters of the model. States are encoded
as skill embeddings ẑt, which are then quantized using a learned codebook of embeddings z =
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argminn||ẑ − zn||22. The future skill distributions are represented as the normalized histogram of
summed future one hot encoded skill indices: Zt =

∑T
t one hot(zt). Connecting this to GDT, our

policy can be viewed as:

πgdt
skill(at|I

ϕ
skill(τ0), s0, ..., I

ϕ
skill(τt), st), where Iϕskill(τt) = (histogram(zt, ..., zT ), zt).

4.1.1 HINDSIGHT SKILL RE-LABELLING

Hindsight experience replay (HER) is a method that has been effective in improving sample-
efficiency of goal-oriented agents (Andrychowicz et al., 2017; Rauber et al., 2017). The core concept
revolves around goal relabelling, where trajectory goals are replaced by achieved goals vs. inteded
goals. This concept of re-labelling information has been utilized in a number of works (Ghosh
et al., 2019; Zheng et al., 2022; Faccio et al., 2022), to iteratively learn an condition predictions on
target statistics. Bi-Directional Decision Transformer (BDT) (Furuta et al., 2021), utilizes an anti-
causal transformer to encode trajectory information, and passes it into a causal transformer action
predictor. At every training iteration, BDT re-labels trajectory information with the anti-causal trans-
former. Similarly, Skill DT re-labels future skill distributions at every training iteration. Because
the skill encoder is being updated consistently and skill representations change during training, the
re-labelling of skill distributions is required to ensure stability in action predictions.

4.2 ARCHITECTURE

VQ-VAE Skill Encoder. Many previous works have represented discrete skills as categorical vari-
ables, sampled from a categorical distribution prior (Strouse et al., 2021; Eysenbach et al., 2018).
VQ-VAEs (van den Oord et al., 2017) have shown impressive capabilities with discrete variational
inference in the space of computer vision (Razavi et al., 2019; Esser et al., 2020), planning (Ozair
et al., 2021), and online skill discovery (Campos et al., 2020). Because of this, we use a VQ-VAE to
quantize encoded states into a set of continuous skill embeddings. We encode states into vectors z,
and quantize to nearest skill embeddings ẑ. To ensure stability, we minimize the loss:

V QLOSS(z, ẑ) = MSE(z, ẑ) (1)

Where ẑ is the output of the MLP encoder and z is the nearest embedding in the VQ-VAE codebook.

Optimizing this loss minimizes the distance of our skill encodings with their corresponding nearest
VQ-VAE embeddings. This is analagous to clustering, where we are trying to minimize the distance
between datapoints and their actual cluster centers. In practice, we optimize this loss using an
exponential moving average, as detailed in Lai et al. (2022).

Causal Transformer. The Causal Transformer portion of Skill DT shares a similar architecture
to that of the original DT (Chen et al., 2021), utilizing a GPT (Alec Radford & Sutskever, 2018)
model. It takes in input the last K states st−K:t, skill encodings zt−K:t, and future skill embedding
distributions Zt−K:t. As mentioned above, the future skill embedding distributions are calculated
by generating a histogram of skill indices from timestep t : T , and normalizing them so that they
add up to 1. For states and skill embedding distributions, we use learned linear layers to create token
embeddings. To capture temporal information, we also learn a timestep embedding that is added to
each token. Note that we don’t tokenize our skill embeddings because we want to ensure that we
don’t lose important skill embedding information. It’s important to note that even though we don’t
add timestep embeddings to the skill embeddings, they still capture temporal behavior because the
attention mechanism (Vaswani et al., 2017) of the causal transformer attends the embeddings to tem-
porally conditioned states and skill embedding distributions. The VQ-VAE and Causal Transformer
components are shown visually in Fig. 1.

4.3 TRAINING PROCEDURE

Training Skill DT is very similar to how other variants of GDT are trained (CDT, BDT, DT, etc.).
First, before every training iteration we re-label skill distributions for every trajectory using our VQ-
VAE encoder. Afterwards, we sample minibatches of sequence length K, where timesteps are sam-
pled uniformly. Specifically, at every training iteration, we sample τ = (st, ...st+K , at, ...at+K),
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Figure 2: Training procedure for Skill Decision Transformer. sub-trajectories of states of length k are
sampled from the dataset and encoded into in latents and discretized. All three variables are passed
into the causal transformer to output actions. The VQVAE parameters and Causal Transformer
parameters are backpropagated directly using an MSE loss and VQ-VAE regularization loss, shown
in 1

where t is sampled uniformly for each trajectory in the batch. The sampled states, (st, ...st+K), are
encoded into skill embeddings using the VQVAE encoder. We then pass in the states, encoded skills,
and skill distributions into the causal transformer to output actions. Like the original DT (Chen et al.,
2021), we also did not find it useful to predict states or skill distributions, but it could be useful for
actively predicting skill distributions without having to actually provide states to encode. This is
a topic we hope to explore more in the future. The VQVAE encoder and causal transformer are
updated by backpropagation through an MSE loss between target actions and predicted actions and
the VQVAE regularization loss referenced in 1. The simplified training procedure is shown in Al-
gorithm 1.

Algorithm 1 Offline Skill Discovery with Skill Decision Transformer

Initialize offline dataset D, Causal Transformer fθ, VQVAE Encoder eϕ, context length K, num
updates per iteration J

for training iterations i = 1...N do
Sample timesteps uniformly: t ∈ 1, ...max len

Label dataset trajectories with skill distributions Zτt =
∑T

t one hot(zt) for all t, ..|τ |
Sample batch of trajectory states: τ = (st, ...st+K , at, ...at+K)

for j = 1...J do
ẑτt:t+K

= (eϕ(st), ...eϕ(st+K)) Encode skills
zτt:t+K

= quantize(ẑτt:t+K
) Quantize skills with VQVAE

âτt:t+K
= fθ(Zτt , zτt , st, ..., Zτt+K

, zτt+K
, st+K)

Lθ,ϕ = 1
K

∑t+K
t (at − ât)

2 + V QLOSSϕ(zτt:t+K
, ẑτt:t+K

)

backprop Lθ,ϕ w.r.t θ, ϕ
end for

end for

5 EXPERIMENTS

5.1 TASKS AND DATASETS

For evaluating the performance of Skill DT, we use tasks and datasets from the D4RL benchmark
(Fu et al., 2020). D4RL has been used as a standard for evaluating many offline RL methods (Kumar
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et al., 2020; Chen et al., 2021; Kostrikov et al., 2021; Zheng et al., 2022). We evaluate our methods
on mujoco gym continuous control tasks, as well as two antmaze tasks. Images of some of these
environments can be seen in A.4

5.2 EVALUATING SUPERVISED RETURN

Can Skill DT achieve near or competitive performance, using only trajectory information,
compared to supervised offline RL approaches?

Mujoco Mean Results
Env Name DT CQL IQL OPAL KMeans

DT
Skill
DT
(best
skill)

num
skills
(Skill
DT)

Dataset
Max
Reward

walker2d-medium 74 79 78.3 — 76 82 10 92
halfcheetah-medium 43 44 47 — 43 44 10 45
ant-medium 94 — 101 — 100 106 10 107
hopper-medium 68 58 66 — 66 76 32 100
halfcheetah-medium-replay 37 46 44 — 39 41 32 42
hopper-medium-replay 63 95 95 — 71 81 32 99
antmaze-umaze 59 75 88 — 73 100 32 100
antmaze-umaze-diverse 53 84 62 — 67 100 32 100
antmaze-medium-diverse 0 61 71 — 0 13 64 100
antmaze-medium-play 0 54 70 81 0 0 64 100

Table 1: Average normalized returns on Gym and AntMaze tasks. We obtain some results as
reported on other works (Chen et al., 2021; Kumar et al., 2020; Kostrikov et al., 2021; Zheng et al.,
2022), and calculate Skill DT’s returns as an average over 4 seeds (for gym) and 15 (for antmaze).
Skill DT outperforms the baselines on most tasks, but fails to beat them on replay tasks and antmaze-
medium. However, Skill DT can consistently solve the antmaze-umaze tasks.

Other offline skill discovery algorithms optimize hierarchical policies via supervised RL, utilizing
the learned primitives to maximize rewards of downstream tasks (Ajay et al., 2020). However,
because we are interested in evaluating Skill DT without rewards, we have to rely on learning
enough skills such that high performing trajectories are represented. To evaluate this in practice,
we run rollouts for each unique skill and take the maximum reward achieved. Detailed python
sudocode for this is provided in A.5. For a close skill-based comparison to Skill DT, we use a K-
Means augmented Decision Transformer (K-Means DT). K-Means DT differs from Skill DT in that
instead of learning skill embeddings, instead we cluster states via K-Means and utilize the cluster
centers as the skill embeddings.

Surprisingly, through just pure unsupervised skill discovery, we are able to achieve competitive re-
sults on Mujoco continuous control environments compared to state-of-the-art offline reinforcement
learning algorithms (Kumar et al., 2020; Kostrikov et al., 2021; Chen et al., 2021). As we can see
in our results in Table 1, Skill DT outperforms other baselines on most of the tasks and DT on all
of the tasks. However, it performs worse than the other baselines on the antmaze-medium / -replay
tasks. We hypothesize that Skill DT performs worse in these tasks because they contain multimodal
and diverse behaviors. We think that with additional return context or online play, Skill DT may
be able to perform better in these environments, and we hope to explore this as future work. Skill
DT, like the original Decision Transformer (Chen et al., 2021), also struggles on harder exploration
problems like the antmaze-medium environments. Methods that perform well on these tasks usually
utilize dynamic programming like Trajectory Transformer(Janner et al., 2021) or hierarchical rein-
forcement learning like OPAL (Ajay et al., 2020). Even though Skill DT performs marginally better
than DT, there is still a lot of room for improvement in future work.
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6 DISCUSSION

6.1 ABLATION STUDY

What is the effect of the number of skills?

Ablation Results
Env Name 5 skills 10 skills 16 skills 32 skills
walker2d-medium 80 82 82 82
halfcheetah-medium 44 44 44 44
ant-medium 100 106 106 106
hopper-medium 65 70 76 76
hopper-medium-replay 28 31 46 81
halfcheetah-medium-replay 34 39 41 41
ant-umaze 80 100 100 100
ant-umaze-diverse 66 100 100 100

Table 2: Best reward obtained from skills for a varying number of skills

Because Skill DT is a completely unsupervised algorithm, evaluating supervised return requires
evaluating every learnt skill and taking the one that achieves the maximum reward. This means
we are relying entirely on Skill DT’s ability to capture behaviors from high performing trajecto-
ries from the offline dataset. We found that increasing the number of skills has less of an effect on
performance, in environments that have a large number of successful trajectories (-medium environ-
ments). We hypothesize that these datasets have unimodal behaviors, and Skill DT does not need
many skills to capture descriptive information from the dataset. However, for multimodal datasets
(such as the -replay environments), Skill DT’s performance improves with an increasing number of
skills. In general, using a larger number of skills can help performance, but the tradeoff is increased
computation time because each skill needs to be evaluated in the environment. These results are
reported in Table 2. Images of skills learnt can be seen in A.4

6.2 SMM WITH LEARNED SKILLS

How well can Skill DT reconstruct target trajectories and perform SMM in a zero shot man-
ner?

Ideally, if an algorithm is effective at SMM, it should be able to reconstruct a target trajectory in an
actual environment. That is, given a target trajectory, the algorithm should be able to rollout a sim-
ilar trajectory. The original DT can actually perform SMM well, on offline trajectories. However,
when actually attempting this in an actual environment, it is unable to reconstruct a target trajec-
tory because it is unable to be conditioned on accurate future state trajectory information. Skill DT,
similar to CDT, is able to perform SMM in an actual environment because it encodes future state
information into skill embedding histograms. The practical process for this is fairly simple and de-
tailed in Algorithm 2. In addition to state trajectories, learned skill distributions of the reconstructed
trajectory and the target trajectory should also be close. We investigate this by looking into target
trajectories from antmaze-umaze-v2, antmaze-umaze-diverse-v2. For a more challenging example,
we handpicked a trajectory from antmaze-umaze-diverse that is unique in that it has a loop. Even
though the trajectory is unique, Skill DT is still able to roughly recreate it in a zero shot manner
(Fig. 3), with rollouts also including a loop in the trajectory. Additional results can be found in A.3.
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(a) Target antmaze-umaze trajectory (b) Target antmaze-umaze-diverse skill dist.

(c) reconstructed trajectories

(d) reconstructed skill dist.

Figure 3: From the antmaze-umaze-diverse Environment: The target trajecty is complex, with a loop
and with noisy movement. Reconstructed rollouts also contain a loop

6.3 SKILL DIVERSITY AND DESCRIPTIVENESS

How diverse and descriptive are the skills that Skill DT discovers?.

In order to evaluate Skill DT as a skill discovery method, we must show that behaviors are not
only diverse but are descriptive, or more intuitively, distinguishable. We are able to visualize the
diversity of learned behaviors by plotting each trajectory generated by a skill on both antmaze-umaze
and ant environments, shown below. To visualize Skill DT’s ability to describe states, we show the
the projected skill embeddings and quantized skill embedding clusters (Fig. 5). For a diversity
metric, we utilize a Wasserstein Distance metric between skill distributions (normalized between [0,
1]), similar to the method proposed in (Furuta et al., 2021). We report this metric in Table 3.

Wasserstein Distances
Env Name min max avg
walker2d-medium 0.007 0.015 0.010
ant-medium 0.007 0.012 0.008
hopper-medium-replay 0.009 0.036 0.027
halfcheetah-medium-replay 0.011 0.033 0.019
ant-umaze-diverse 0.008 0.026 0.011

Table 3: Wasserstein distance metric (computed between each skill and all others). In tasks with
unimodal behaviors (-medium), Skill DT discovers skills that result in trajectories that are more
similar to eachother than more complex tasks (-replay and antmaze)
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Figure 5: t-SNE projections of Ant-v2 states. Left: States are encoded into unquantized skill em-
beddings and projected via TSNE. Right: States are encoded into quantized skill embeddings and
projected via TSNE

Figure 4: Left: ant-umaze-v2, Right: ant-umaze-diverse-v2. Trajectories made using 32 skills for
both ant-umaze variants. The diverse variant contains lots of noisy trajectories, but Skill DT is still
learn diverse and distinguishable skills

6.4 LIMITATIONS AND FUTURE WORK

Our approach is powerful because it is unsupervised, but it is also limited because of it. Because we
do not have access to rewards, we rely on pure offline diversity to ensure that high performing tra-
jectories are learned and encoded into skills that can be sampled. However, this is not very effective
for tasks that require dynamic programming or longer sequence prediction. Skill DT could bene-
fit from borrowing concepts from hierarchical skill discovery (Ajay et al., 2020) to re-use learned
skills on downstream tasks by using an additional return-conditioned model. In addition, it would be
interesting to explore an online component to the training procedure, similar to the work in Zheng
et al. (2022).

7 CONCLUSION

We proposed Skill DT, a variant of Generalized DT, to explore the capabilities of offline skill dis-
covery with sequence modelling. We showed that a combination of LLMs, hindsight-relabelling
can be incredibly useful for extracting information from diverse offline trajectories.. On standard
offline RL environments, we showed that Skill DT is capable of learning a rich set of behaviors and
can perform zero-shot SMM through state-encoded skill embeddings. Skill DT can further be im-
proved by adding an online component, a hierarchical component that utilizes returns, and improved
exploration.
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Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. CoRR, abs/1711.00937, 2017. URL http://arxiv.org/abs/1711.00937.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer, 2022. URL https:
//arxiv.org/abs/2202.05607.

11

https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2202.01987
http://arxiv.org/abs/1906.05274
https://arxiv.org/abs/2106.04615
https://arxiv.org/abs/2106.04615
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1711.06006
http://arxiv.org/abs/1906.00446
http://arxiv.org/abs/1907.01657
http://arxiv.org/abs/1907.01657
https://arxiv.org/abs/2107.14226
https://arxiv.org/abs/2107.14226
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2202.05607
https://arxiv.org/abs/2202.05607


Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASET STATISTICS

Dataset Stats
Env Name state

dim
act dim num

trajec-
tories

avg
dataset
reward

max
dataset
reward

min
dataset
reward

avg
dataset
d4rl

max
dataset
d4rl

min
dataset
d4rl

walker2d -
medium

17 6 1190 2852 4227 -7 62 92 0

halfcheetah
-medium

17 6 1000 4770 5309 -310 41 45 0

ant -
medium

111 8 1202 3051 4187 -530 80 107 -5

hopper
-medium

11 3 2186 1422 3222 316 44 100 10

halfcheetah
-medium
-replay

17 6 202 3093 4985 -638 27 42 -3

hopper-
medium
-replay

11 3 1801 529 3193 -0.5 17 99 1

antmaze-
umaze

29 8 2815 0.5 1 0 52 100 0

antmaze-
umaze
-diverse

29 8 1011 0.012 1 0 1.2 100 0

antmaze-
medium
-diverse

29 8 1137 0.125 1 0 12.5 100 0

antmaze-
medium
-play

29 8 1204 0.2 1 0 20.0 100 0

Table 4: Dataset statistics

A.2 HYPERPARAMETERS

Common Hyper Parameters for Causal Transformer
hyperparameter value
Number of layers 4
Number of attention heads 4
Embedding dimension 256
Context Length 20
Dropout 0.0
Batch Size 256
Updates between rollouts 50
lr 1e-4
gradient norm 0.25

Table 5

A.3 FEW SHOT TARGET TRAJECTORY RECONSTRUCTION

Skill DT, like other skill discovery methods, can use its state-to-skill encoder to guide its actions
towards a particular goal. In this case, we are interested in recreating target trajectories as close as
possible. The detailed algorithm for few shot skill reconstruction: 5
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(a) Target Ant Skill Distribution (b) Reconstructed Ant Skill Distribution

Figure 7: From the Ant-v2 Environment: Skill distributions of a target trajectory and the recon-
structed trajectory from rolling out in the environment. Because Ant-v2 is a simpler environment,
we can see that the reconstructed skill distributions are very close to the target.

(a) Target antmaze-umaze x-y trajectory (b) Reconstructed antmaze-umaze x-y trajectory

(c) Target antmaze-umaze skill dist. (d) Reconstructed antmaze-umaze skill dist.

Figure 6: From the Antmaze-Umaze Envidiverseronment: One of the longer and highest performing
trajectories in the dataset is reconstructed by Skill DT. The trajectory is not quite identical to the
target, but it follows a similar path, where it hugs the edges of the maze just like the target.

Algorithm 2 Reconstructing target trajectories

Initialize target trajectory τ , skill encoder Eϕ, Skill DT transformer π
1. (starget0 , ..., stargetT )← τ, ▷ Extract states from target trajectory
2. (z0, ..., zT ), (zindex0, ..., zindexT ) = Eϕ(s

target
0 , ..., stargetT ), ▷ encode states

3. (Z0, ..., ZT ) = histogram(zindex0, ..., zindexT ), ▷ Create skill distributions by creating a
histogram of skill encoding indices
4. ∼ π(a|Z0, z0, s0, ...), ▷ rollout in real environment, see A.5 for details
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A.4 TRAJECTORY SKILL VISUALIZATIONS

Figure 8: Skills learned in the ant-medium-v2 environment. Each row corresponds to a skill

Figure 9: Skills learned in the halfcheetah-medium-replay-v2 environment. Each row corresponds
to a skill

Figure 10: Skills learned in the hopper-medium-replay-v2 environment. Each row corresponds to a
skill
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Figure 11: Skills learned in the walker-medium-v2 environment. Each row corresponds to a skill

Figure 12: Skills learned in the ant-umaze-diverse-v2 environment. Each row corresponds to a skill
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A.5 EVALUATING SKILL DT’S PERFORMANCE

Because Skill DT is a purely unsupervised algorithm, to evaluate the performance in an actual en-
vironment, we perform rollouts for each skill and evaluate each to determine which is the best. To
do this, we first populate a buffer of skills (here we denote with z) and skill histograms Z. When
we rollout in the actual environment, the causal transformer utilizes this buffer to actually make
predictions. However, it updates the skill encodings that it actually sees in the environment at each
timestep. This is because even though the policy is completely conditioned to follow a single skill,
it may end up reaching states that are classified under another. Python sudocode shown below:

def generate_histogram(one_hot_skill_ids):
trajectory_length = len(one_hot_skill_ids)
histogram = torch.tensor(copy(one_hot_skill_ids))

# reverse order
for i in range(trajectory_length-1, -1, -1):

if i != trajectory_length - 1
histogram[i] = histogram[i] + histogram[i+1]

return histogram / histogram.sum(-1) # normalize in range [0, 1]

def evaluate_skill_dt(skill_dt, env, max_steps, context_len):
num_skills = skill_dt.num_skills
rewards = []
for skill_id in range(num_skills):

skill_ids = repeat(skill_id, max_steps)
# create on_hot skill ids
# ex: one_hot([1,1], 5) = [[0, 1, 0, 0, 0],[0, 1, 0, 0, 0]]
one_hot_skill_ids = one_hot(skill_ids, num_skills)

# initialize_state
state = env.reset()
t = 0
total_reward = 0

state_buffer = zeros(max_steps)
z_buffer = zeros(max_steps)

while t < max_steps:
# z is vqvae embedding
# skill_id is the index of the vqvae embedding in codebook
z, skill_id = skill_dt.encode_skill(state)
one_hot_skill_ids[t] = one_hot(skill_id)
Z = skill_dt.generate_histogram(one_hot_skill_ids) # create

histograms
state_buffer[t] = state
z_buffer[t] = z
if t < context_len:

curr_states = state_buffer[t:t+context_len]
curr_z = z_buffer[t:t+context_len]
curr_Z = Z[t:t+context_len]
actions = skill_dt.causal_transformer(curr_Z, curr_z,

curr_states)
action = actions[t]

else:
curr_states = state_buffer[t-context_len+1:t+1]
curr_z = z_buffer[t-context_len+1:t+1]
curr_Z = Z[t-context_len+1:t+1]
actions = skill_dt.causal_transformer(curr_Z, curr_z,

curr_states)
action = actions[-1]

state, reward, done = env.step(action)
total_reward += reward
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if done:
break

rewards.append(total_reward)
return max(rewards)
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