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ABSTRACT

We abstract the features of multi-modal data into 1) uni-modal features, which
can be learned from uni-modal training, and 2) paired features, which can only
be learned from cross-modal interaction. Multi-modal joint training is expected
to benefit from cross-modal interaction on the basis of ensuring uni-modal feature
learning. However, recent late-fusion training approaches still suffer from insuf-
ficient learning of uni-modal features on each modality, and we prove that this
phenomenon does hurt the model’s generalization ability. Given a multi-modal
task, we propose to choose targeted late-fusion learning method from Uni-Modal
Ensemble (UME) and the proposed Uni-Modal Teacher (UMT), according to the
distribution of uni-modal and paired features. We demonstrate that, under a simple
guiding strategy, we can achieve comparable results to other complex late-fusion
or intermediate-fusion methods on multi-modal datasets, including VGG-Sound,
Kinetics-400, UCF101, and ModelNet40.
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Figure 1: Overview of Modality Laziness. Although multi-modal joint training provides the op-
portunity for cross-modal interaction to learn paired features, the model easily saturates and ignores
the uni-modal features that are hard to learn but also important to generalization.

1 INTRODUCTION

Multi-modal signals, e.g., vision, sound, text, are ubiquitous in our daily life, allowing us to per-
ceive the world through multiple sensory systems. Inspired by the crucial role that multi-modal
interactions play in human perception and decision (Smith & Gasser, 2005), substantial efforts have
been made to build effective and reliable computational multi-modal systems in fields like multi-
media computing (Wang et al., 2020; Xiao et al., 2020), representation learning (Arandjelovic &
Zisserman, 2017; Radford et al., 2021) and robotics (Chen et al., 2020a).

According to how the features of multi-modal data can be learned, we abstract them into two cate-
gories: (1) uni-modal features, which can be learned from uni-modal training, and (2) paired fea-
tures, which can only be learned from cross-modal interaction. In this paper, we focus on multi-
modal tasks where uni-modal priors are meaningful 1 (Kay et al., 2017; Chen et al., 2020b). Ideally,
we hope that multi-modal joint training can learn paired features through cross-modal interactions
on the basis of ensuring that enough uni-modal features are learned.

1Uni-modal prior here means that we get predictions only according to one modality in multi-modal tasks.
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However, recent late-fusion methods still suffer from learning insufficient uni-modal representations
of each modality (Peng et al., 2022). We term this phenomenon as Modality Laziness and illustrate
that in Figure 1. We theoretically characterize Modality Laziness and prove that it does hurt the
generalization ability of the model, especially when uni-modal features are dominant in the given
task. Besides the laziness problem, another shortcoming of recent late-fusion approaches is that they
are complex to implement. For example, G-Blending (Wang et al., 2020) needs an extra split of data
to estimate the overfitting-to-generalization ratio to re-weight the losses and then re-train the model
again and again. Peng et al. (2022) proposes OGM-GE, which dynamically adjusts the gradients of
different modalities during training. However, it needs to tune too many hyper-parameters 2, includ-
ing the start and end epoch of the gradient modulation, an “alpha” used to calculate the coefficients
for the modulation and whether adaptive Gaussian noise Enhancement (GE) is needed. The more
complicated thing is that these hyper-parameters need to be re-tuned on new datasets.

To this end, more simple and effective methods are urgently needed. We pay attention to the learning
of uni-modal features and propose to choose targeted late-fusion training method from Uni-Modal
Ensemble (UME) and proposed Uni-Modal Teacher (UMT) according to the distribution of uni-
modal and paired features. If both uni-modal and paired features are essential, UMT is effective,
which helps multi-modal models better learn uni-modal features via uni-modal distillation; if both
modalities have strong uni-modal features and paired features are not important enough, UME is
properer, which combines predictions of uni-modal models and completely avoids insufficient learn-
ing of uni-modal features. We also provide an empirical trick to decide which one to use. Under
this guidance, we achieve comparable results to other complex late-fusion or intermediate-fusion
methods on multiple multi-modal datasets, including VGG-Sound (Chen et al., 2020b), Kinetics-
400 (Kay et al., 2017), UCF101 (Soomro et al., 2012) and ModelNet40 (Wu et al., 2022).

2 RELATED WORK

Multi-modal training approaches aim to train a multi-modal model by using all modalities simul-
taneously (Liang et al., 2021), including audio-visual classification (Peng et al., 2022; Xiao et al.,
2020; Panda et al., 2021), action recognition (Wang et al., 2020; Panda et al., 2021), visual ques-
tion answering (Agrawal et al., 2018) and RGB-D segmentation (Park et al., 2017; Hu et al., 2019;
Seichter et al., 2020). There are several different fusion methods, including early/middle fusion (Se-
ichter et al., 2020; Nagrani et al., 2021; Wu et al., 2022) and late fusion (Wang et al., 2020; Peng
et al., 2022; Fayek & Kumar, 2020). In this paper, we mainly consider the late-fusion methods
following Wang et al. (2020), which is convenient and straightforward to evaluate the learning of
uni-modal features. We demonstrate that simple late-fusion approaches can outperform approaches
with more complex model architecture (Wu et al., 2022; Xiao et al., 2020).

Multi-modal learning theory. The research on multi-modal learning theory is still at an early age.
A line of work focuses on understanding multi-view tasks (Amini et al., 2009; Xu et al., 2013; Arora
et al., 2016; Allen-Zhu & Li, 2020), and our assumption on the data structure partially stems from
Allen-Zhu & Li (2020). Huang et al. (2021) explains multi-modal learning is potentially better than
uni-modal learning and Huang et al. (2022) explains why failure exists in multi-modal learning. Our
paper investigates the different types of features in multi-modal data and provides solutions for the
weakness of multi-modal learning.

Knowledge distillation was introduced to compress the knowledge from an ensemble into a smaller
and faster model but still preserve competitive generalization power (Buciluǎ et al., 2006; Hinton
et al., 2015; Tian et al., 2019; Gou et al., 2021; Allen-Zhu & Li, 2020). In this paper, we propose
Uni-Modal Teacher to leverage uni-modal distillation for joint training to help the learning of uni-
modal features, without involving cross-modal knowledge distillation (Pham et al., 2019; Gupta
et al., 2016; Tan & Bansal, 2020; Garcia et al., 2018; Luo et al., 2018).

3 ANALYSIS, LEARNING GUIDANCE AND THEORY

In this section, we show the drawbacks and advantages of joint training. On one hand, joint training
results in insufficient learning of uni-modal features (Modality Laziness). On the other hand, it

2https://github.com/GeWu-Lab/OGM-GE_CVPR2022
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Table 1: Top 1 test accuracy (in %) of linear evaluation on encoders from various multi-modal late-
fusion training methods and uni-modal training on VGG-Sound and UCF101.

Method VGG-Sound UCF101
RGB Encoder Audio Encoder RGB Encoder Opt-Flow Encoder

Linear-Fusion 15.56 43.44 75.66 48.08
MLP-Fusion 14.52 40.01 75.65 51.89

Attention-Fusion 13.31 43.97 74.84 7.72
G-Blending 17.69 43.90 74.91 44.49
OGM-GE 15.60 41.95 73.54 65.03

Uni-Modal Training 23.17 45.15 77.08 74.99

(a) RGB encoder evaluation on VGG-Sound. (b) Optical flow encoder evaluation on UCF101.

Figure 2: By building a linear classifier on encoders and checking the top-1 accuracy, we evaluate the
RGB encoder in VGG-Sound and the optical flow encoder in UCF101 from different multi-modal
late-fusion methods.

allows interactions between modalities to learn representations beyond uni-modal features, namely
paired features. Based on this, we offer guidance on multi-modal late-fusion learning. Finally, we
provide a theoretical analysis of Modality Laziness and justification for our solution.

Discussion. The importance of uni-modal prior varies across different multi-modal tasks. In tasks
like video classification (Chen et al., 2020b) and action recognition (Feichtenhofer et al., 2016;
Wang et al., 2020), uni-modal models can achieve good performance alone, suggesting that uni-
modal priors in these settings are essential. Visual question and answering (VQA) (Agrawal et al.,
2018) is a counter example. Specifically, the same image with different text questions may have
totally different labels, making it pointless to check its uni-modal accuracy. In this paper, we focus
on the tasks where uni-modal priors are essential, following Wu et al. (2022); Peng et al. (2022).

3.1 INSUFFICIENT LEARNING OF UNI-MODAL FEATURES IN MULTI-MODAL TRAINING

This subsection illustrates that existing multi-modal late-fusion training methods suffer from Modal-
ity Laziness. Even recent methods, G-Blending (Wang et al., 2020) and OGM-GE (Peng et al.,
2022), are no exception.

In multi-modal late-fusion learning, each modality is encoded by its corresponding encoder and
then a fusion module is applied on top of them to produce outputs. By building a classifier on frozen
encoder (Chen et al., 2020c), we assess the learned representations of the encoder:

• As Table 1 shows, all encoders from multi-modal training are worse than those from uni-
modal training, especially the RGB encoder in VGG-Sound and optical flow encoder in
UCF101. No matter which optimizer is used (Appendix A.3).
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Table 2: Top-1 test accuracy of multi-modal models and uni-modal models on certain classes of
VGG-Sound. Avg Pred: average the two uni-modal models’ predictions directly. Linear Clf: train
a multi-modal classifier on top of uni-modal trained encoders. Naive Fusion: train a multi-modal
late-fusion model from scratch.

Class ID 164 303 33 255 91 4 152 127 68 155 mean acc

Uni-RGB 3 2 4 3 4 12 2 0 15 5 5
Uni-Audio 30 7 34 10 43 50 18 0 53 32 27.7

Avg Pred 37 10 37 7 28 63 21 0 51 30 28.4
Linear Clf 35 15 33 27 60 65 26 2 53 49 36.5

Naive Fusion 43 18 48 22 55 67 26 4 72 40 39.5

Algorithm 1 Uni-Modal Teacher (UMT) for late-fusion learning
Input: Uni-modal supervised pre-trained models Fm1

pretrain, F
m2
pretrain, random initialized late-

fusion multi-modal model Fmm, iteration number N , loss weight λtask, λdistill.
for 0 to N do

Sample multi-modal data {Xm1 , Xm2 , Y } ∼ D.
Compute uni-modal pre-trained features fm1

pre, f
m2
pre of the data by Fm1

pretrain, F
m2
pretrain.

Compute the prediction and features Ŷ , fm1 , fm2 from multi-modal model.
Compute the losses between Ŷ , fm1 , fm2 and Y, fm1

pre, f
m2
pre and multiply by the

λtask, λdistill, λdistill, respectively.
Update the multi-modal model by SGD or its variant.

end for
Return: A multi-modal model trained by UMT.

• As Figure 2 shows, throughout the training process, the two encoders mentioned above not
only cannot achieve comparable performance to their uni-modal counterparts but are far
worse than them.

3.2 HOW DOES A MODEL BENEFIT FROM MULTI-MODAL TRAINING?

In Sec 3.1, we empirically show that recent late-fusion methods suffer from insufficient learning
of uni-modal features. Combining predictions from uni-modal trained models avoids laziness by
nature, which raises another question: How does a multi-modal model benefit from multi-modal
training? We answer this question by investigating different models on VGG-Sound and find that
the model learns some representations beyond uni-modal features.

As Table 2 shows, in certain classes of VGG-Sound, the accuracy of naive fusion (navie fusion
or naive multi-modal late-fusion learning means no carefully designed tricks are used) exceeds the
sum of the accuracy of the two uni-modal models. Besides, we evaluate two other methods. One
is to directly average the uni-modal models’ predictions, which has little cross-modal interaction.
The other one is to train a multi-modal linear classifier on top of uni-modal pre-trained encoders,
where modalities can interact with each other through the linear layer. We find that naive fusion
training, which owns maximum freedom of cross-modal interaction among these models, gets the
best mean accuracy across these classes, suggesting that joint training enables the model to learn
representations beyond uni-modal features, which we term as paired features. They are a type of
feature that uni-modal training cannot learn.

We offer more explanations on paired features in Appendix A.10. We also analyze more datasets
and find that different datasets have different characteristics, we put more experimental analysis and
interpretation in Appendix A.7.

3.3 GUIDANCE ON MULTI-MODAL LEARNING

Given a multi-modal task, if both uni-modal features and paired features are essential, Uni-Modal
Teacher (UMT) is effective; if both modalities have strong uni-modal features and paired features
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are not important enough, simply combining the predictions of uni-modal models works well, which
is named as Uni-Modal Ensemble (UME).

UMT. Uni-Modal Teacher (UMT) is proposed for late-fusion joint training. It distills the pre-trained
uni-modal features to the corresponding parts of multi-modal late-fusion models. Distilling knowl-
edge from uni-modal models can help multi-modal models learn uni-modal features better, which
happens in feature-level. The framework of UMT is shown in Algorithm 1 and Figure 4. Noting
that we use the same backbone in uni-modal and multi-modal model for a specified modality. The
backbones and loss function used can be found in Sec 4. More details can be found in Appendix A.4.

UME. If both modalities have strong uni-modal features, joint training does more harm than good.
Combining predictions of uni-modal models avoids insufficient learning of uni-modal features by
nature. Firstly, we can train uni-modal models independently. Then, we can give final output by
weighting the predictions of uni-modal models. The simple ensemble method is named as Uni-
Modal Ensemble (UME). We demonstrate that UME can show competitive performance on certain
multi-modal datasets.

An empirical trick to decide which method to use. We can train a multi-modal linear classifier on
uni-modal pre-trained encoders and compare that with averaging predictions of uni-modal models.
If the performance of the classifier is better, it means we can benefit from cross-modal interaction in
this task and we can choose UMT, where cross-modal interactions are preserved while guaranteeing
improved learning of uni-modal features; otherwise, the simple cross-modal interaction does more
harm than good because of the strong uni-modal features of each modality, and we can choose UME,
which avoids Modality Laziness completely.

3.4 THEORETICAL CHARACTERIZATION AND JUSTIFICATION

In this subsection, we characterize Modality Laziness of Sec 3.1 from a feature learning perspective
and prove it does hurt the generalization of the model. And then, we give justification for the learning
guidance proposed in Sec 3.3.

Before diving into the technical details, we first provide some intuition behind the proof. Our goal is
to show that how Modality Laziness happens in multi-modal joint training, and we refer to Figure 3
as an illustration. Here we omit the effect of paired features for easier to understand the intuition.
During the naive multi-modal training process, learning those easy-to-learn features suffices to reach
zero training error (point A in Figure 3). However, the model is under-trained at point A, and the
zero-training-error region stops us from further training. As a comparison, uni-modal models can
learn more features and achieve point B, outperforming point A.

We next give Modality Laziness a theoretical explanation under a simple but effective regime. We
mainly consider cases with two modalities xm1 and xm2 , and similar techniques can be directly
generalized to the cases with more modalities.

Data distribution. We formalize the distribution of the multi-modal features. Specifically, we
abstract the features into uni-modal features (Definition 3.1) and paired features (Definition 3.2)
to describe the core differences between uni-modal training and multi-modal joint training. We
consider the binary classification regime where the label y has a uniform distribution over {−1, 1}
without loss of generality. Such simplification is self-contained to describe the differences between
uni-modal features and paired features.

Definition 3.1 (Uni-modal features, which can be learned from uni-modal training). The i-th uni-
modal feature (fi(xm1)) in modality xm1 is generated as3:

w.p. p(fi), yfi(x
m1) > 0;

w.p. 1− p(fi)− ϵ(fi), yfi(x
m1) = 0;

w.p. ϵ(fi), yfi(x
m1) < 0.

The i-th uni-modal feature (gi(xm2)) in modality xm2 is similarly generated with parameters p(gi)
and ϵ(gi).

3We simplify “with probability” as “w.p.”
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Figure 3: An illustration of the feature learning results of uni-modal training and multi-modal train-
ing without considering paired features. In uni-modal training, modality xmi learns feature set Fi.
However, naive joint training learns less features of each modality than uni-modal training when get-
ting zero training error (namely F ′

i ). Uncontroversially, combining predictions of individual trained
uni-modal models (B) outperforms naive joint training (A).

Definition 3.2 (Paired features, which can only be learned from cross-modal interaction). The j-th
paired feature4 hj is generated as:

w.p. p(hj), yhj(x
m1)hj(x

m2) > 0;

w.p. 1− p(hj)− ϵ(hj), yhj(x
m1)hj(x

m2) = 0;

w.p. ϵ(hj), yhj(x
m1)hj(x

m2) < 0.

When the context is clear, we abuse the notation ri to represent either fi (uni-modal feature in
modality xm1 ), gi (uni-modal feature in modality xm2 ), or hi (paired feature). We name p(ri)
as the predicting probability of feature ri. When ri is present (meaning that ri ̸= 0), we use
I(ri > 0)− I(ri < 0) to predict y. Otherwise (ri = 0), we random guess y uniformly over {−1, 1}.
To simplify the discussion, we always assume ϵ(fi) = p(fi)/c, where c > 1 is a fixed constant. For
the ease of notations, we define the empty feature in Definition 3.3.
Definition 3.3 (Empty Feature). Empty feature ei is a kind of uni-modal feature (or paired feature)
with p(ei) = ϵ(ei) = 0.

Evaluation procedure. When the context is clear, we abuse ri to denote the learned features. For
each data point, we random guess ŷ on {−1, 1} uniformly when

∑
i I(ri > 0) =

∑
i I(ri < 0).

Otherwise, we predict the label by ŷ = 2I(
∑

i I(ri > 0) >
∑

i I(ri < 0))− 1. We define the error
as

∑
i I(yri < 0)−

∑
i I(yri > 0).

Training procedure. (a.) multi-modal joint training, which directly train the model using both
modality xm1 and modality xm2 ; (b.) uni-modal ensemble, which firstly train the features via
independent training (xm1 and xm2 separately), and then combine the xm1 -learned features and
xm2 -learned features.

During the training process, we first initialize all the features with empty features ei to imitate ran-
dom initialization. The models then learn the features in descending order of predicting probability,
meaning that the powerful features (with large predicting probability) are learned first5. Our goal is
to minimize the training error to zero6.

We now state our main theorem in Theorem 3.4, demonstrating naive joint training learn fewer
uni-modal features compared to uni-modal training, which hurts the model’s generalization.
Theorem 3.4. In uni-modal ensemble, assume that the training procedure learns bm1 features in
modality xm1 and learns bm2 features in modality xm2 . We order the probability of uni-modal fea-

4We abuse the notation h to simplify the notations where h(xm1) and h(xm2) can have different forms.
5Recent works have demonstrated that neural networks indeed prefer easy-to-learn features (Shah et al.,

2020; Pezeshki et al., 2020).
6We always assume that the training error can be minimized to zero.
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tures (both xm1 and xm2 ) in decreasing order of predicting probability p, namely, p[1], p[2], . . . . In
multi-modal training approaches, assume that the training procedure learns km1 uni-modal features
in modality xm1 , learns km2 uni-modal features in modality xm2 , and learns kpa paired features with
predicting probability p(h1), . . . , p(hkpa). We provide three types of laziness:

(a. ) Quantity Laziness: km1 + km2 + kpa ≤ min{bm1, bm2}.

(b. ) Uni-modal Laziness: Each modality in multi-modal training approaches performs worse
than uni-modal training.

(c. ) Performance Laziness: Consider a new testing point, then for every δ > 0, if the following
inequality holds: ∑

i∈[kpa]

p(hi) ≤
∑

i∈[bm1+1,bm1+bm2]

p[i] +∆(δ),

where ∆(δ) =
√

8(kpa + bm1 − km1 + bm2 − km2) log(1/δ), then with probability7 at least
1 − δ, uni-modal ensemble outperform multi-modal training approaches concerning the
loss on the testing point with probability.

In theorem 3.4, we describe three notations of laziness problem: Quantity Laziness indicates that
the number of features learned in naive multi-modal training is less than uni-modal training. Uni-
modal Laziness shows encoders from multi-modal training perform worse than from uni-modal
training because of Quantity Laziness, which fits the experimental results in sec3.1. Performance
Laziness compares the performance of multi-modal joint training approaches with Uni-Modal En-
semble, demonstrating that when uni-modal features dominate, combining uni-modal predictions is
more effective. We defer the complete proof to Appendix B.1 and generalize that to more modali-
ties (Appendix B.2). We give a concrete example in Appendix B.3 to better illustrate Theorem 3.4.

We next prove that UMT proposed in Sec 3.3 indeed helps uni-modal feature learning and can also
learn some easy-to-learn paired features in Theorem 3.5 and Appendix B.3.
Theorem 3.5. Denote the paired features by h1, . . . hL with corresponding predicting probability
p(h1), . . . , p(hL). Assume that distillation can boost the training priority by p0 > 0. If there exists
paired features whose predicting probability exceeds the boosting probability p0, namely, the set S
is not empty:

S = {hi : p(hi) > p0} ≠ ϕ.

Then UMT helps uni-modal feature learning and can also learn easy-to-learn paired features.

4 EXPERIMENTS

In Sec 3.4, we justify our method theoretically. In this section, we firstly introduce the experimental
setup and then demonstrate that choosing a suitable learning method from UMT and UME can
outperforming other complex late-fusion or intermediate-fusion methods in various multi-modal
tasks.

4.1 EXPERIMENTAL SETUP

Dataset. We run experiments on four datasets. Kinetics-400 (Kay et al., 2017) is a video recognition
dataset with 240k videos for training and 19k for validation. We treat the two modalities, RGB and
audio, as the inputs. VGG-Sound (Chen et al., 2020b) is an audio-visual classification dataset which
contains over 200k video clips for 309 different sound classes. UCF101 (Soomro et al., 2012) is
an action recognition dataset with 101 action categories, including 7k videos for training and 3k for
testing. ModelNet40 is a 3D object classification task with 9,483 training samples and 2,468 test
samples. Following Wu et al. (2022), we treat the front and rear view as two modalities.

Training Settings. In VGG-Sound, UCF101 and ModelNet40, we use ResNet as our backbone, all
with 18 layers. As for Kinetics-400, we use 50 or 101 layers’ ResNet to encode the inputs. Noting
that 3D CNN is used for visual data of VGG-Sound and Kinetics-400. The data preprocessing,
hyper-parameters, optimizer can be found in the Appendix A.1 and A.2.

7The probability is taken over the randomness of the testing point
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Table 3: Comparison between averaging uni-
modal predictions and multi-modal classifier
trained on uni-modal pre-trained encoders.

Dataset MM Clf Avg Preds
VGG-Sound 51.0 46.1
Kinetics-400 76.4 74.8
UCF101 84.4 86.8
ModelNet40 91.7 91.9

Table 4: Evaluation of uni-modal classi-
fiers from the multi-modal linear classifier
trained on uni-modal pre-trained encoders in
UCF101. This evaluation method borrows
from Peng et al. (2022).

Model RGB Opt-flow
Uni-Clf from MM Clf 68.2 52.9

Uni-Modal Model 77.1 75.0

Table 5: Results of different late-fusion methods.
* means the result comes from its original paper

Method VGG-Sound Kinetics-400
Linear-Head 49.5 74.3
MLP-Head 44.8 74.8
Atten-Head 49.8 74.1
Aux-CELoss 49.9 73.2
G-Blending 50.4 75.8*
OGM-GE 50.6* 74.5

UMT (ours) 53.5 76.8

Table 6: Comparison between UMT and
Audio-Visual SlowFast (Xiao et al., 2020)
on Kinetics-400. AVSlowFast is an repre-
sentative intermediate fusion method.

Method RGB Encoder Acc
AVSlowFast SlowFast-50 77.0
UMT (ours) SlowFast-50 78.1
AVSlowFast SlowFast-101 78.8
UMT (ours) SlowFast-101 79.4

4.2 AN EMPIRICAL TRICK TO DECIDE WHICH LEARNING METHOD TO USE.

We train a multi-modal linear classifier on frozen uni-modal pre-trained encoders and compare that
with averaging uni-modal predictions. As Table 3 shows, in VGG-Sound and Kinetics-400, the
classifier is better, meaning cross-modal interaction can benefit the classifier in the two datasets.
However, in UCF101 and ModelNet40, averaging uni-modal predictions performs well. To explore
why the classifier fails in UCF101, we check the uni-modal classifiers of the newly trained multi-
modal linear layer (details in Appendix A.7.1). As Table 4 shows, they are far worse than the uni-
modal models. The result shows the simple linear classifier suffers from serious Modality Laziness
in UCF101, which negatively impact the performance. Both modalities in ModelNet40 also have
strong uni-modal features and can achieve 89% accuracy individually. Averaging uni-modal predic-
tions avoids laziness problem and achieves competitive performance. Based on the above analysis,
we perform UMT on VGG-Sound and Kinetics-400, and UME on UCF101 and ModelNet40.

4.3 UMT IS AN EFFECTIVE REGULARIZER FOR UNI-MODAL FEATURE LEARNING

In this subsection, we demonstrate that Uni-Modal Teacher outperforms other multi-modal training
methods in VGG-Sound and Kinetics-400. We use MSELoss as the distillation loss and set the
weight of that as 50. Cross Entropy is used as classification loss and its weight is set as 1.

4.3.1 UMT IS EFFECTIVE ON VGG-SOUND AND KINETICS-400.

UMT vs Other Late-Fusion Methods. The late-fusion architecture is commonly used for multi-
modal classification tasks (Wang et al., 2020; Peng et al., 2022). In late-fusion architecture, the fea-
tures are extracted from different modalities by the corresponding encoders, and then the head layer
is applied to output predictions. We compare different heads, including linear layer, MLP, and atten-
tion layer. In UMT, we use a simple linear layer as the multi-modal head. We also conduct another
experiment, which adds extra uni-modal linear heads to receive the uni-modal features and gen-
erating additional losses to joint optimize the model, namely Auxiliary-CEloss. Auxiliary-CEloss
gives all losses equal weights, while G-Blending reweights the losses according to the overfitting-to-
generalization-ratio (OGR) (Wang et al., 2020). OGM-GE (Peng et al., 2022) controls the optimiza-
tion of each modality by online gradient modulation. However, both OGM-GE and G-Blending are
complex to implement. As shown in Table 5, UMT outperforms other methods.
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Table 7: Evaluation on the encoders trained by
naive multi-modal training and UMT.

Methods. VGG-Sound Kinetics-400
RGB Audio RGB Audio

Uni-Train 23.2 45.2 74.1 23.5
MM Baseline 15.9 18.3 72.9 18.3

UMT 24.4 45.9 74.6 21.6

Table 8: Self-Distillation vs UMT on VGG-
Sound.

Method Test Acc
Baseline 49.5
Self-Distill (label) 49.7
Self-Distill (feature) 49.9

UMT 53.5

Table 9: Comparison Uni-Modal Ensemble with
other joint training methods on UCF101.

Method Test Acc
Linear-Head 82.3
MLP-Head 80.0
Atten-Head 74.2
Aux-CELoss 81.3
G-Blending 83.0
OGM-GE 84.0

UME (ours) 86.8

Table 10: Comparison between Uni-Modal En-
semble and balanced multi-modal learning algo-
rithm (Wu et al., 2022) on ModelNet40. * means
the result comes from Wu et al. (2022).

Method Test Acc
multi-modal (vanilla) 90.09 ± 0.58*
+RUBi 90.45 ± 0.58*
+random 91.36 ± 0.10*
+guided 91.37 ± 0.28*

UME (ours) 91.92 ± 0.14

UMT vs AVSlowFast. Audio-Visual SlowFast is an representative intermediate fusion method.
We compare UMT with AVSlowFast in Kinetics-400. As Table 6 shows, under different RGB
encoders, UMT consistently exceeds AVSlowFast, although we cannot reproduce their results due
to the dynamics of Kinetics-400 (Appendix A.11).

Ablation Study of UMT. We first evaluate the encoders of UMT by training linear classifiers on
them to verify that UMT does improve the uni-modal feature learning. As Table 7 shows, UMT
makes its encoders stand out. Benefiting from uni-modal distillation, some encoders even out-
perform their uni-modal counterparts. We then compare UMT with classic self-distillation meth-
ods (distillation on soft label (Hinton et al., 2015) and feature (Romero et al., 2014)). As Table 8
shows, naive self-distillation can only bring limited improvement, showing that UMT improves
overall performance by improving the uni-modal feature learning instead of knowledge distillation.

4.3.2 UNI-MODAL ENSEMBLE IN MULTI-MODAL LEARNING

In this subsection, we demonstrate that Uni-Modal Ensemble is effective on multi-modal datasets
where modalities have strong uni-modal features, outperforming other complex methods. Even
though we don’t combine these uni-modal predictions in any special way, but simply average.

In UCF101, we compare Uni-Modal Ensemble with various multi-modal late-fusion methods. As
Table 9 shows, although Gradient Blending (Wang et al., 2020) and OGM-GE (Peng et al., 2022)
outperforms baseline methods, they are far worse than Uni-Modal Ensemble.

In ModelNet40, the main comparing methods come from Wu et al. (2022), which uses a multi-
modal DNN with intermediate fusion. It proposes a balanced multi-modal algorithm which balances
conditional utilization of each modality by re-balancing the optimization step. UME surpass their
balanced multi-modal algorithm, as Table 10 shows.

5 CONCLUSION

This paper analyzes the phenomenon of insufficient uni-modal feature learning in multi-modal train-
ing and proves that it does hurt the overall performance. We propose to choose proper learning
method from Uni-Modal Ensemble and proposed Uni-Modal Teacher according to the distribution
of uni-modal and paired features and demonstrate the effectiveness of the guiding principle.

9
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6 REPRODUCIBILITY STATEMENT

In our paper, we detail the specific implementation steps of the methods in Sec 3.3 and also give
the values of the hyper-parameters we use in detail in Appendix A.2. We also provide the codes in
supplementary material, which can reproduce the results of the experiments.
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A EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

A.1 DATASETS

Here, we describe the preprocessing of Kinetics-400, VGG-Sound, UCF101 and ModelNet40 in
detail.

Kinetics-400 dataset (Kay et al., 2017) contains over 240k videos for training and 19k for valida-
tion, which we download from cvdfoundation 8. Kinetics-400 is a commonly used dataset with 400
classes, and we mainly follow the open source preprocessing methods to process that. For RGB
modality, we follow the procedure of PySlowFast 9, which resizes the video to the short edge size of
256. and for audio modality, we follow mmaction2 10 to extract specgram features. When perform-
ing joint training, we take consecutive 64 frames from a video with fps of 30 and random crop the
video to 224*224, and for audio inputs, we take the specgram that can be aligned in time with the
clip extracted from the video. When testing, we ensemble the predictions from uniformly sampled
clips with RGB and audio from a video and give the final outputs, following PySlowfast.

VGG-Sound dataset (Chen et al., 2020b), which contains over 200k video clips for 309 different
sound classes, is also used for evaluating our method. It is an audio-visual dataset in the wild where
each object that emits sound is also visible in the corresponding video clip, making it suitable for
scene classification tasks. Please note that some clips in the dataset are no longer available on
YouTube, and we actually use about 175k videos for training and 15k for testing, but the number
of classes remains the same. We design a preprocessing paradigm to improve training efficiency
as follows: (1) each video is interpolated to 256×256 and saved as stacked images; (2) each audio
is first converted to 16 kHz and 32-bit precision in the floating-point PCM format, then randomly
cropped or tiled to a fixed duration of 10s. For video input, 32 frames are uniformly sampled from
each clip before feeding to the video encoder. While for the audio input, a 1024-point discrete
Fourier transform is performed using nnAudio (Cheuk et al., 2020), with 64 ms frame length and 32
ms frame-shift. And we only feed the magnitude spectrogram to the audio encoder.

UCF101 dataset (Soomro et al., 2012) is an action recognition dataset with 101 action categories,
including 7k videos for training and 3k for testing. And we use the rgb and flow provided by (Fe-
ichtenhofer et al., 2016). For RGB, we use one image of (3 ∗ 224 ∗ 224) as the input; while for flow,
we use a stack of optical flow images which contained 10 x-channel and 10 y-channel images, So
its input shape is (20 ∗ 224 ∗ 224). During training, we perform random crop and random horizontal
flip as the data augmentation; while testing, we resize the image to 224 and do not perform data
augmentation operations.

ModalNet40 is a 3D object classification dataset with 9,483 training samples and 2,468 test samples.
We base on the front view and the rear view of the 3D object to classify that, following Wu et al.
(2022).

A.2 TRAINING HYPERPARAMETERS

In this subsection, we show the hyperparameters of our experiments in UCF101 and VGG-Sound in
Table 11.

As for Kinetics-400’s RGB modality, we totally follow the hyperparameters and settings of PySlow-
Fast 11. As for audio modality, we modify the hyperparameters 12 to be as consistent as possible with
the RGB training for further joint training. Specifically, we use the same learning rate and batch size
as RGB training used.

As for ModelNet40, we totally follow the experimental settings of Wu et al. (2022) 13.

8https://github.com/cvdfoundation/kinetics-dataset
9https://github.com/facebookresearch/SlowFast/

10https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build audio features.py/
11https://github.com/facebookresearch/SlowFast/configs/Kinetics/SLOWFAST 8x8 R50.yaml
12openmmlab/mmaction2/blob/master/configs/recognition audio/resnet/tsn r18 64x1x1 100e kinetics400 audio feature.py
13https://github.com/nyukat/greedy multimodal learning
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Table 11: The Hyperparameters used in our experiments for VGG-Sound and UCF101.

Hyperparameter Value (VGG-Sound) Value (UCF101)

Encoder ResNet3D (Video), 2D (Audio) ResNet2D(Both Modalities)
Linear Head (1024, 309) (1024, 101)
MLP Head (1024, 1024) (1024, 1024)

ReLU ReLU
(1024, 309) (1024, 101)

Attension Head Attension Layer (without new parameters) + a linear layer
Training Epoches 20 20
LR 1e-3 1e-2
Batch Size 24 64
Optimizer Adam SGD
Scheduler StepLR (step=10, gamma=0.1) ReduceLROnPlateau (patience=1)
Loss Fusion Cross Entropy for task, MSE for distillation

A.3 CAN EXISTING OPTIMIZERS SOLVE MODALITY LAZINESS?

Table 12: Top-1 test accuracy (in %) of linear classifiers trained on frozen encoders from multi-
modal late-fusion training under different optimizers and uni-modal training on VGG-Sound.

Optimizer Multi-modal Performance Audio Encoder RGB Encoder

SGD 47.13 40.02 15.53
RMSprop 47.90 42.77 13.64
Adagrad 42.19 35.68 19.65
Adadelta 23.18 17.70 17.37
Adamw 49.39 42.41 15.11
Adam 49.47 43.44 15.56

Uni-Training / 45.15 23.17

While the results in Table 1 show that different multi-modal methods suffer from learning insuf-
ficient uni-modal features, how about changing the optimizer? To answer this question, we try
different optimizers for multi-modal late-fusion training (with a linear multi-modal head), including
SGD, RMSprop, Adagrad, Adadelta, Adamw and Adam. As Table 12 shows, Modality Laziness
exists no matter which optimizer is used.

A.4 DETAILS ON UNI-MODAL TEACHER (UMT)

In this subsection, we describe how Uni-Molda Teacher (UMT) applies on multi-modal late-fusion
tasks. The overall architecture can be found in Figure 4.

UMT in late-fusion classification. In multi-modal late-fusion architecture, modalities are first en-
coded by the corresponding encoders and then mapped to the output space by a multi-modal fusion
head (Figure 4 left). Uni-Modal Teacher distills the pre-trained uni-modal features to the correspond-
ing parts in multi-modal networks in multi-modal training (Figure 4 right). Uni-modal distillation
happens before fusion, so it’s suitable for late-fusion multi-modal architecture. The pre-trained uni-
modal features are generated by inputting the data to the pre-trained uni-modal models.

UMT’s weights. For VGG-Sound and Kinetics, we use 50 (both audio feature distillation and RGB
feature distillation) as the distillation loss’s weight. We test different distillation weights on VGG-
Sound and Kinetics-400. As shown in Table 13, on both datasets, UMT performs well with an
distillation weight of 50.
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Figure 4: Model architecture of naive late fusion (left) and Uni-Modal Teacher (UMT) (right). φ
′

mi

is the encoder which is supervised pre-trained on uni-modal data. φmi
is a random initialed encoder

without pre-training. Lmulti is the loss between multi-modal predictions and labels. Ldistill is the
uni-modal distillation loss.

Table 13: Different distillation weights of UMT on VGG-Sound and Kinetics-400

Dataset 0 1 10 20 50 100
VGG-Sound 49.46 49.51 51.31 51.51 53.46 53.11
Kinetics-400 74.25 74.99 75.57 76.11 76.77 76.55

A.5 DROPOUT IN MULTI-MODAL TRAINING.

Here we consider the common regularizer, dropout (Srivastava et al., 2014), and a variant of it,
namely modality-wise dropout, which randomly drops (with probability 1/3) the feature from one
modality in each iteration. Modality dropout is akin to the ModDrop in Neverova et al. (2015).
As Table 14 shows, modality-wise dropout is significantly better than dropout, which implies that
modality-wise laziness is serious and modality-wise dropout is also effective.

A.6 FINETUNING THE UNI-MODAL PRE-TRAINED ENCODERS

In this subsection, we use the uni-modal pre-trained encoders’ parameters as the initialized weights
in multi-modal training and randomly initialize a multi-modal linear classifier on the encoders. We
set the classifier’s learning rate as 1e− 3 and try different learning rates on the encoders.

As Table 15 shows, using the uni-modal supervised pre-trained encoder’s weights in multi-modal
training and then fine-tuning the whole multi-modal model can bring some improvement compared
to naive fusion (49.46) but is worse than UMT, which gets 53.46 accuracy. When the learning rate
of encoders is large, the encoders forget some abilities to extract uni-modal features.

Ngiam et al. (2011) proposes to use Bimodal Deep Autoencoder to pre-train the encoders with
multiple modalities. It is a direction worth exploring to address Modality Laziness of deep multi-
modal models.

A.7 THE ROLE OF CROSS-MODAL INTERACTION ON DIFFERENT DATASETS

In this subsection, we conduct various experiments to further investigate the effect of cross-modal
interaction and explore the benefits and harms that cross-modal interaction brings in different multi-

Table 14: Dropout in multi-modal training on VGG-Sound.

Method Performance

Baseline 49.46
Dropout 49.83

Modal-Drop 51.37

UMT 53.46
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Table 15: The top-1 test accuracy of finetuning the uni-modal pre-trained encoders and linear eval-
uation on finetuned encoders on VGG-Sound.

Encoder LR Top-1 Acc Encoder Eval
Audio RGB

1e-3 50.98 43.98 21.86
1e-4 49.37 44.71 21.97
1e-5 50.45 45.28 23.13
1e-6 50.86 45.29 23.27

0 50.95 45.15 23.17

modal tasks/datasets. We find that in different datasets, cross-modal interaction has a different effect
on the performance.

A.7.1 AVERAGING THE UNI-MODAL PREDICTIONS vs THE LINEAR CLASSIFIER TRAINED ON
UNI-MODAL PRE-TRAINED ENCODERS.

In Sec 4.2, we train a multi-modal linear classifier on frozen uni-modal pre-trained encoders and
compare this classifier with directly averaging uni-modal models’ predictions. As Table 3 shows,
this classifier does not consistently outperform simply averaging the uni-modal predictions on all
datasets. It shows better performance on VGG-Sound and Kinetics-400, but worse performance on
UCF101 and ModelNet40.

To further explain this phenomenon, we check and disassemble this new trained multi-modal clas-
sifier on UCF101. In the late-fusion multi-modal training, the features of different modalities are
concatenated first and then the multi-modal classifier receives them and output predictions. Differ-
ent modalities in the classifier do not share the parameters. So we split the new trained multi-modal
linear classifier into uni-modal classifiers. We use the uni-modal pre-trained encoders to extract
features and then the uni-modal classifiers receive the corresponding features and output predic-
tions. Noting that OGM-GE (Peng et al., 2022) uses similar technique to check how well different
modalities are trained. As Table 4 shows, the uni-modal classifiers from new trained multi-modal
classifiers are significantly worse than uni-modal models, implying that the multi-modal classifier
trained on uni-modal pre-trained encoders suffers from serious Modality Laziness on UCF101, al-
though it is just a simple linear layer, resulting in worse performance than directly averaging the
uni-modal predictions.

A.7.2 CLASS-LEVEL EVALUATION ON DIFFERENT MULTI-MODAL DATASETS

In this subsection, we compare naive late-fusion learning with averaging predictions of uni-modal
models in class level. It’s obvious that there are more cross-modal interactions in naive fusion.

Although naive fusion suffers from learning insufficient uni-modal features, we find in some classes
in Kinetics and VGG-Sound, the accuracy of naive fusion model outperforms averaging the uni-
modal models’ predictions, and even outperforms the sum of the accuracy of the two uni-modal
models in VGG-Sound and Kinetics-400, as shown in Table 2 and 16.

However, We cannot find any class that naive fusion can exceed the sum of the accuracy of the uni-
RGB model and uni-flow model in UCF101. We select classes in UCF101 by sorting the differences
of accuracy between naive fusion and the best uni-modal model in class level and the top ten with
the largest difference are selected. In these classes where naive fusion has advantages, averaging the
predictions can outperform naive fusion in some classes (ID:29, 67, 71), and this phenomenon is not
found in VGG-Sound and Kinetics. And as Tabla 4 and Table 17 show, both RGB and optical flow
in UCF101 can get strong performance individually. All the evidence shows that in UCF101, the
uni-modal features are totally dominate and any joint training can lead to serious Modality Laziness.

The mapping betwenn class ID and class name in different datasets The correspondence be-
tween id and name of the selected class in VGG-Sound is: 164: People Sniggering, 303: Wood
Thrush Calling, 33: Cat Meowing, 255: Sea Waves, 91: Footsteps On Snow, 4: Alligators
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Table 16: Top-1 test accuracy of different models on some classes of Kinetics. The accuracy of naive
fusion model outperforms averaging the uni-modal models’ predictions, and even outperforms the
sum of the accuracy of the uni-audio model and uni-video model.

Class ID 53 90 184 2 368 158 113 263 287 4 mean accuracy

Uni-Audio 0 0 0 4 0 0 0 0 4 2 1
Uni-RGB 42 50 22 28 39 43 29 82 76 50 46.1

Avg Pred 42 50 22 28 39 43 29 82 78 50 46.3
Naive Fusion 56 62 32 40 45 49 35 84 86 58 54.7

Table 17: Top-1 test accuracy of different models on selected classes of UCF101. We select the
top-10 classes according to the gap of accuracy between the multi-modal and uni-modal models. As
we can see, uni-modal model’s performance is high, meaning paired features in UCF101 are rare.

Class ID 6 10 12 22 29 31 48 57 67 71 mean accuracy

Uni-RGB 74 84 76 61 67 32 78 21 75 57 62.5
Uni-Flow 60 82 58 47 61 41 64 24 78 63 57.8

Avg Pred 70 95 79 64 86 46 89 36 98 83 74.6
Naive Fusion 86 95 87 72 83 59 92 42 88 73 77.7

Crocodiles Hissing, 152: People Gargling, 127: Mynah Bird Singing, 68: Door Slamming, 155:
People Humming.

For Kinetics-400, we sort the classes alphabetically from smallest to largest according to the class
name, and then we can get the mapping between class name and id.

In UCF101, the mapping can be found in classInd.txt, a given file of UCF101.

A.8 CROSS-MODAL INTERACTION IN UNI-MODAL TEACHER (UMT)

Table 18: Comparison of UMT with com-
bining uni-modal models trained by distil-
lation on VGG-Sound.

Method RGB Audio R+A

Linear Clf 25.99 46.00 52.98
UMT 24.43 45.89 53.46

In order to verify whether the multimodal loss in UMT
makes sense, we train uni-modal models by knowledge
distillation to get better performance than encoders
trained by UMT and then combine them by introduc-
ing a new multi-modal classifier on these encoders.
As Table 18 shows, UMT works better in multi-modal
performance, although the encoders of UMT in uni-
modal evaluation are worse, showing that UMT indeed
benefits from cross-modal interaction.

A.9 EXPLORING
UMT FOR MULTI-MODAL SEGMENTATION

NYU Depth V2 dataset (Silberman et al., 2012) contains 1449 indoor RGB-Depth data totally and
we use 40-class label setting. The number of training set and testing set is 795 and 654 respectively.
All perprocessing operations are following (Seichter et al., 2020).

In contrast to the late fusion classification task, the RGB-Depth semantic segmentation belongs to
middle fusion. The main encoder receives RGB inputs, and the depth inputs are fed into the depth
encoder. At each intermediate layer, the main encoder fuses its own intermediate outputs and the
depth features obtained from the depth encoder, which makes it a mid-fusion task (Seichter et al.,
2020). Since features generated by each layer matter, we distill multi-scale depth feature maps using
the MSE loss. For feature maps from the RGB encoder, however, since they are generated by fusing
RGB and depth modalities, we cannot distill RGB feature maps directly like depth feature maps.
To mitigate this effect, we curate predictors, namely 2 layers CNNs, aiming to facilitate the fused
feature maps to predict the RGB feature maps trained by the RGB modality before distillation. The
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Figure 5: Distillation details of UMT for RGB (left) and depth (right) modalities in multi-modal
semantic segmentation (based on ESANet).

Table 19: Model performance comparison under UMT and ESANet on NYU-DepthV2 RGB-Depth
semantic segmentation task.

Initialization Training Setting
ESANet UMT

From Scratch 38.59 40.45 (+1.86)
ImageNet Pre-train 48.48 49.39 (+0.91)

full schematic diagram is presented in Figure 5. As shown in Table 19, UMT can also improve
multi-modal segmentation whether the encoder is pre-trained on ImageNet or not.

A.10 EXPLANATIONS ON PAIRED FEATURES

We revisit the definitions of uni-modal features and paired features: uni-modal features, which
can be learned by uni-modal training; paired features, which can only be learned by cross-modal
interaction in joint training. Different datasets contain different proportions of these features.

In this subsection, we use synthetic datasets to explain the uni-modal features and paired features in
multi-modal tasks.

Understanding different types of features in multi-modal tasks by synthetic datasets. Three
different multi-modal datasets are generated to help us understand the uni-modal features and paired
features in multi-modal tasks. The process of data generation mainly refers to Hessel & Lee (2020).

Firstly, we generate a dataset where each modality can extract the features to give correct
predictions. We name this dataset as Dataset α. The data generation process is as follows:

1. Sample random projection P1 ∈ Rd1×d and P2 ∈ Rd2×d from U(−0.5, 0.5).

2. Sample z ∈ Rd ∼ N (0, 1). Normalize z to unit length

3. Sample x ∈ Rd ∼ N (0, 1). Normalize x to unit length

4. if |x · z| ≤ 0.1, return to the Step 3.

5. If x · z > 0.1, then y = 1; else y = 0.

6. Get the data point (P1x, P2x, y).

7. If the amount of data generated is less than N , return to the Step 3; else break

The P1x, P2x represents two modalities of the multi-modal dataset and we set d1, d2, d,N as
200, 100, 50, 5000, respectively. And we randomly split 80% of the generated data as train set,
and the rest serves as a test set. In this dataset, uni-modal models can extract useful features to give
correct predictions and multi-modal joint training is not necessary, as Table 20 shows (Dataset α).
We name the features, that uni-modal models can learns to give correct predictions in the given task,
as uni-modal features.

Secondly, we generate another dataset where the model must rely on both the two modalities
to make correct predictions. We name this dataset as Dataset β. The data generation process is as
follows:

1. Sample random projection P1 ∈ Rd1×d and P2 ∈ Rd2×d from U(−0.5, 0.5).
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Table 20: Test Accuracy of uni-modal models and multi-modal model on different synthetic datasets.
Synthetic Dataset α mainly contains uni-modal features which can be learned in uni-modal training;
Synthetic Dataset β mainly contains paired features which need joint training to learn; Synthetic
Dataset γ contains uni-modal features and paired features.

Dataset Synthetic Dataset α Synthetic Datset β Synthetic Dataset γ
Uni-modal (Modality 1) 100 51.4 70.9
Uni-modal (Modality 2) 100 51.8 70.1

Multi-modal 100 92 94.4

Table 21: The confusion matrix of uni-modal model in Dataset γ. In the data labeled 0, each
modality contains features that can give a correct prediction, while in the data labeled 1 or 2, we
need both modalities together to make the right predictions.

Predicted
0 1 2

A
ct

ua
l 0 100% 0 0

1 0 57% 43%
2 0 45.4% 54.6%

2. Sample x1, x2 ∈ Rd ∼ N (0, 1). Normalize x1, x2 to unit length

3. if |x1 · x2| ≤ 0.25, return to the Step 2.

4. If x1 · x2 > 0.25, then y = 1; else y = 0.

5. Get the data point (P1x1, P2x2, y).

6. If the amount of data generated is less than N , return to the Step 2; else break

This multi-modal dataset is different from the first dataset, because the labels in this dataset
are highly dependent on the relationship between the two modalities. As we can see in Ta-
ble 20 (Dataset β), the uni-modal models can only gives about 50 percent accuracy, while the
multi-modal models can give about 90 percent accuracy. In binary classification tasks, 50 percent
accuracy is no different from guessing. In this dataset, because labels are heavily relied on the
relationships of the two modalities, we must train both modalities simultaneously to extract the joint
representations to learn the relationship of the two modalities, which are beyond uni-modal fea-
tures. In order to better carry out theoretical analysis, we abstract these representations into paired
features, which can only be learned from multi-modal joint training in multi-modal tasks.

Finally, we generate a dataset that contains both uni-modal features and paired features. We
name this dataset as Dataset γ. The data generation process is as follows:

1. Sample random projection P1 ∈ Rd1×d and P2 ∈ Rd2×d from U(−0.5, 0.5).

2. Sample z ∈ Rd ∼ N (0, 1). Normalize z to unit length

3. Sample x ∈ Rd ∼ N (0, 1). Normalize x to unit length

4. if x ·z ≥ 0.1, get the data point (P1x, P2x, y = 0). else, return to the step 3 until collecting
2500 data points.

5. Sample x1, x2 ∈ Rd ∼ N (0, 1). Normalize x1, x2 to unit length. If x1 · z > −0.1 or
x2 · z > −0.1, resample.

6. if |x1 · x2| ≤ 0.25, return to the Step 5.

7. If x1 · x2 > 0.25, then y = 2; else y = 1.

8. Get the data point (P1x1, P2x2, y).

9. If the total amount of data generated is less than 7500, return to the Step 5; else break

In the data labeled 0, each modality contains features that can give a correct prediction, while in
the data labeled 1 or 2, we need both modalities together to make the right predictions. To further
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understand how uni-modal models give predictions in dataset that containing both uni-modal and
paired features, we give the confusion matrix of the uni-modal model. As Table 21 shows, the uni-
modal model can give correct predictions for data labeled 0, while for data labeled 1 or 2, it fails and
gives a random predictions. Because for data labeled 1 or 2, we need to learn the relationship of the
two modalities to give the correct predictions.

In this subsection, we mainly discuss the synthetic multi-modal datasets and in Appendix A.7, we
conduct various experiments on real-world multi-modal datasets to help us understand the uni-modal
features, paired features and cross-modal interaction in multi-modal training better.

Training settings on synthetics datasets. We use a two layer MLP with ReLU as activation func-
tion. As for hidden layer, we use 200 dimensions for multi-modal training and 100 dimensions for
uni-modal training. We use SGD as the optimizer and the learning rate is 0.2. In each iteration,
we use the whole training set to compute the gradients. And we provide the code in supplement
materials.

A.11 UNI-MODAL PERFORMANCE IN KINETICS-400

Kinetics-400 is a dynamic dataset, because videos may be removed from YouTube. In this subsec-
tion, we report the uni-modal performance of ours and Xiao et al. (2020)’s on Kinetics-400. As
Table 22 shows, we cannot reproduce their uni-modal performance and ours are lower than theirs.
But we demonstrate that UMT outperforms AVSlowFast in Sec 4.3.1, which shows UMT’s effec-
tiveness.

Table 22: Uni-Modal Performance of ours and Xiao et al. (2020)’s on Kinetics-400

ours Xiao et al. (2020)

Uni-Audio 23.5 24.8
Uni-RGB (SlowFast-50) 74.9 75.6

Uni-RGB (SlowFast-101) 77.2 77.9
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B PROOF

B.1 PROOF OF THEOREM 3.4

Theorem 3.4. In uni-modal ensemble, assume that the training procedure learns bm1 features in
modality xm1 and learns bm2 features in modality xm2 . We order the probability of uni-modal fea-
tures (both xm1 and xm2 ) in decreasing order of predicting probability p, namely, p[1], p[2], . . . . In
multi-modal training approaches, assume that the training procedure learns km1 uni-modal features
in modality xm1 , learns km2 uni-modal features in modality xm2 , and learns kpa paired features with
predicting probability p(h1), . . . , p(hkpa). We provide three types of laziness:

(a. ) Quantity Laziness: km1 + km2 + kpa ≤ min{bm1, bm2}.

(b. ) Uni-modal Laziness: Each modality in multi-modal training approaches performs worse
than uni-modal training.

(c. ) Performance Laziness: Consider a new testing point, then for every δ > 0, if the following
inequality holds: ∑

i∈[kpa]

p(hi) ≤
∑

i∈[bm1+1,bm1+bm2]

p[i] +∆(δ),

where ∆(δ) =
√

8(kpa + bm1 − km1 + bm2 − km2) log(1/δ), then with probability14 at
least 1 − δ, uni-modal ensemble outperform multi-modal training approaches concerning
the loss on the testing point with probability.

We prove the theorem, which shows that naive joint training indeed suffers from overfitting issues,
meaning that it learns less features compared to uni-modal ensemble.

Proof. We first introduce some additional notations used in the proof. We define the features
trained in xm1 -uni-modal training as f1(x

m1), . . . , fbm1(x
m1), define the features trained in xm1 -

uni-modal training as g1(x
m2), . . . , gbm2(x

m2). Therefore, there are in total bm1 + bm2 features
learned in uni-modal ensemble, namely, f1(x

m1), . . . , fbm1(x
m1), g1(x

m2), . . . , gbm2(x
m2). Be-

sides, We define the features trained in multi-modal training approaches as f1(xm1), . . . , fkm1(x
m1),

g1(x
m2), . . . , gkm2(x

m2), h1(x
m1 , xm2), . . . , hkpa(x

m1 , xm2). When the context is clear, we omit
the dependency of xm1 , xm2 and denote them as fi, gi, hi for simplicity. When the context is clear,
we abuse the notation r to represent arbitrary f , g or h. The corresponding predicting probability
of feature ri is denoted as p(ri). To summary, there are bm1 + bm2 features in uni-modal ensemble,
km1 + km2 + kpa features in multi-modal training approaches.

We first prove statement (a.), which claims that the number of features learned in multi-modal train-
ing approaches are provably less than any of the number of features learned in uni-modal training.
The proof depends on the following Lemma B.1.

Lemma B.1. Assume there exists T features ri, i = 1, . . . , T . If we replace one of the T features
(without loss of generality, rT ) with a more powerful feature r′, where p(r′) > p(rT ), then the pre-
dicting probability for each data point increases (where the probability is taken over the randomness
of the training data).

We next provide the proof of statements (a.): based on Lemma B.1. We shall prove km1 + km2 +
kpa < bm1 without loss of generality. Start from the features f1(x

m1), . . . , fkm1(x
m1) which are

common features in both multi-modal training approaches and Uni-modal training. Next step, we
add feature fkm1+1 in uni-modal approachesand g1 in multi-modal training approaches. Obviously,
p(g1) > p(fkm1+1) due to the training priority (or multi-modal training approaches should learn
fkm1+1 instead of g1). Therefore, the predicting probability of multi-modal training approaches is
larger than uni-modal approaches.

Repeating the procedure by comparing gi with fkm1+i and comparing hj with fkm1+km2+j , the pre-
dicting probability of multi-modal training approaches is always larger than uni-modal approaches.
Note that bm1 should be always larger than km1 + km2, or the predicting probability of uni-modal

14The probability is taken over the randomness of the testing point
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approaches would be smaller than multi-modal training approaches. At the end of the compar-
ison, the predicting probability of multi-modal training approaches is still larger than uni-modal
approaches. This requires that uni-modal approaches should learn more features, which can be re-
garded as uni-modal approacheslearns a features while multi-modal training approaches learns an
empty feature. In conclusion, uni-modal approaches learns more features compared to multi-modal
training approaches, leading to bm1 > km1 + km2 + kpa.

We next prove the statement (b.). The proof of (b.) is based on (a.). We next only consider modal-
ity xm1 , the proof for modality xm2 is similar. Note that the since the number of features learned
in multi-modal training approaches is less than bm1, the number of features learned in xm1 must
be less than bm1 (Note that those features can be either paired feature or uni-modal feature, namely,
f1, . . . , fkm1 and h1, . . . , hkpa ). Therefore, multi-modal training approaches learns less features com-
pared to uni-modal approaches in modality xm1 . On the other hand, the predicting probability of
features learned in multi-modal training approaches (f1, . . . , fkm1 and h1, . . . , hkpa , considering only
modality xm1 for the paired feature) is less than that learned in uni-modal approaches (f1, . . . , fbm1 ),
because otherwise, uni-modal approaches will learn the features in h instead of f . In conclusion,
when considering only modality xm1 , the number of features learned in multi-modal training ap-
proaches is less and its corresponding predicting probability is small. Therefore, each modality in
multi-modal training approaches performs worse than uni-modal approaches.

We finally prove the statement (c.). Recall that the loss is −
∑

i u(ri) where u(ri) = I(yri >
0)− I(yri < 0). Note that E(u(ri)) = 1

2p(ri) and |u(ri)| ≤ 1. We derive that:

P

−
∑

i∈[km1]

u(fi)−
∑

i∈[km2]

u(gi)−
∑

i∈[kpa]

u(hi) ≤ −
∑

i∈[bm1]

u(fi)−
∑

i∈[bm2]

u(gi)


=P

 ∑
km1<i≤bm1

u(fi) +
∑

km2<i≤bm2

u(gi)−
∑

i∈[kpa]

u(hi) ≤ 0


=P

 ∑
km1<i≤bm1

u(fi) +
∑

km2<i≤bm2

u(gi)−
∑

i∈[kpa]

u(hi) +
1

2
E ≤ 1

2
E

 ,

where E = −E(
∑

km1<i≤bm1
u(fi) +

∑
km2<i≤bm2

u(gi) −
∑

i∈[kpa]
u(hi)) =

∑
i∈[kpa]

p(hi) −∑
km1<i≤bm1

p(fi)−
∑

km2<i≤bm2
p(gi). Due to the training priority and the conclusion in (a.),

∑
i∈[bm1+1,bm1+bm2]

p[i] ≤
∑

km1<i≤bm1

p(fi) +
∑

km2<i≤bm2

p(gi).

Therefore, E ≤
∑

i∈[kpa]
p(hi) −

∑
i∈[bm1+1,bm1+bm2]

p[i] ≤√
8(kpa + bm1 − km1 + bm2 − km2) log(1/δ). We next apply Hoeffding inequality on Equa-

tion B.1 and derive that

P

−
∑

i∈[km1]

u(fi)−
∑

i∈[km2]

u(gi)−
∑

i∈[kpa]

u(hi) < −
∑

i∈[bm1]

u(fi)−
∑

i∈[bm2]

u(gi)


≤ exp(−E2/8(kpa + bm1 − km1 + bm2 − km2))

≤δ

To conclude, multi-modal training approaches outperform uni-modal ensemble concerning the test-
ing loss with probability at least 1− δ.
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Compared to uni-modal ensemble, denote the additional paired feature are indexed by c, and the
additional uni-modal feature in uni-modal ensemble are indexed by v. We have that:

P(
∑
i∈[c]

(I(fi(x) > 0)− I(fi(x) < 0))−
∑
j∈[v]

(I(fj(x) > 0)− I(fj(x) < 0)) > 0)

=P(
∑
i∈[c]

I(fi(x) > 0)−
∑
j∈[v]

I(fj(x) > 0)− 1

2
[
∑
i∈[c]

pi −
∑
j∈[v]

pj ] >
1

2
[
∑
j∈[v]

pj −
∑
i∈[c]

pi])

≤ exp(−(
∑
j∈[v]

pj −
∑
i∈[c]

pi)
2/8|c+ v|)

(1)

Therefore, if
∑

j∈[v] pj −
∑

i∈[c] pi ≥
√

8(c+ v) log(1/δ), the probability is done. Therefore, for
a new data point, uni-modal ensemble can outperforms multi-modal training approaches with high
probability.

Proof of Lemma B.1. We define r[−T ] as the features r1, . . . , rT−1. The proof is divided into
two parts, depending on whether

∑
i∈[T−1] I(ri ̸= 0) is even or odd. We regard the term∑

i∈[T−1] I(ri ̸= 0) as the number of effective features in r[−T ]. To simplify the discussion, we
rescale r such that |yr| = 1 (when r ̸= 0) or |yr| = 0 (when r = 0).

Case 1: When the number of effective features in r[−T ] is even. (a. ) If |
∑

i∈[T−1] yri| ≥ 2, adding
rT or r′ does not alter the predicting probability, namely

P

y

rT +
∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y

rT +
∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2


=P

y

r′ + ∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y

r′ + ∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

 .

(b. ) When the number of effective features in r[−T ] is even, |
∑

i∈[T−1] yri| ≠ 1.

(c. ) When |
∑

i∈[T−1] yri| = 0, due to the assumption that p(r′) > p(rT ) and ϵ(r) = p(r)/c,
adding r′ helps increase the predicting probability compared to rT , namely

P

y

rT +
∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

y

rT +
∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0


>P

y

r′ + ∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

y

r′ + ∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0

 .

The above inequality is derived based on the following equation:

P

y

rT +
∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

y

rT +
∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0


=P

yrT > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0

+
1

2
P

yrT = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ = 0


=p(rT ) +

1

2
[1− p(rT )− ϵ(rT )]

=
1

2
[1 + (1− 1/c)p(rT )] .

Since we assume c > 1, the probability increases with probability p(rT ).

Therefore, under the three conditions, adding r′ increase the predicting probability more compared
to rT . In summary, under case 1 (a-c), adding r′ increase the predicting probability compared to rT .
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Case 2: When the number of features in r[−T ] is odd. The discussion in (b.) can be a little bit more
complex compared to case 1.

(a. ) If |
∑

i∈[T−1] yri| ≥ 2, similar to case 1, adding rT or r′ does not alter the predicting probabil-
ity, namely

P

y

rT +
∑

i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y

rT +
∑

i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2


=P

y

r′ + ∑
i∈[T−1]

yri

 > 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

+
1

2
P

y

r′ + ∑
i∈[T−1]

yri

 = 0

∣∣∣∣
∣∣∣∣∣∣

∑
i∈[T−1]

yri

∣∣∣∣∣∣ ≥ 2

 .

(b. ) If |
∑

i∈[T−1] yri| = 1: (b.1 ) If
∑

i∈[T−1] yri = −1:

P

y

rT +
∑

i∈[T−1]

yri

 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1

+
1

2
P

y

rT +
∑

i∈[T−1]

yri

 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1


=P

yrT − 1 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1

+
1

2
P

yrT − 1 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1


=
1

2
P

yrT − 1 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = −1


=
1

2
p(rT ).

(b.2 ) If
∑

i∈[T−1] yri = +1:

P

y

rT +
∑

i∈[T−1]

yri

 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1

+
1

2
P

y

rT +
∑

i∈[T−1]

yri

 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1


=P

yrT + 1 > 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1

+
1

2
P

yrT + 1 = 0

∣∣∣∣ ∑
i∈[T−1]

yri = 1


=(1− ϵ(rT )) +

1

2
ϵ(rT )

=1− 1

2c
p(rT ).

Note that the probability of event (b.1) and the probability of event (b.2) satisfy the following equa-
tion by Lemma B.2:

P

 ∑
i∈[T−1]

yri = 1

 = cP

 ∑
i∈[T−1]

yri = −1

 . (2)

Therefore, the total probability under case (b) is

1

2
p(rT )P

 ∑
i∈[T−1]

yri = −1

+ (1− 1

2c
p(rT ))P

 ∑
i∈[T−1]

yri = 1


=P

 ∑
i∈[T−1]

yri = 1


which is independent of p(rT ). Therefore, adding rT or r′ share the same predicting probability.

(c. ) When the number of effective features in r[−T ] is odd, |
∑

i∈[T−1] yri| ≠ 0.
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In summary, under case 2 (a-c), adding r′ do not decrease the predicting probability compared to
rT .

The following lemmas are used during the proof.

Lemma B.2. Consider T − 1 features r1, . . . , rT−1, the following equation holds:

P

 ∑
i∈[T−1]

yri = 1

 = cP

 ∑
i∈[T−1]

yri = −1

 . (3)

Proof. It can be proved to compare the events A = {
∑

i∈[T−1] yri = 1} and B = {
∑

i∈[T−1] yri =

−1}. Every event in A has a complementary event in B, namely,

yri = 1 in B if yri = −1 in A

yri = −1 in B if yri = 1 in A

yri = 0 in B if yri = 0 in A

Comparing each event in A with its complementary event in B leads to the conclusion.

Combining case 1 and case 2 together leads to the final conclusion.

B.2 GENERALIZE THEOREM 3.4 TO MORE MODALITIES

We next show that the results in Theorem 3.4 can be generalized to the regime of more modals.

Specifically, we assume a T -modal regimes, and denote the modals as xmi , i ∈ [T ]. In uni-modal
pre-training approaches, let bmi

denote the number of returned features in modal i. In multi-modal
joint training, let kmi

denote the number of uni-modal features for modal i, and kpa denote the
number of returned paired features. We derive the following Theorem B.3 for the multi-modal
regimes.
Theorem B.3. Based on the above notations, we provide three types of laziness from three perspec-
tives:

(a. ) Quantity Laziness:
∑

i kmi + kpa ≤ mini{bmi}.

(b. ) Uni-modal Laziness: Each modality in multi-modal training approaches performs worse
than uni-modal training.

(c. ) Performance Laziness: Consider a new testing point, then for every δ > 0, if the following
inequality holds: ∑

i∈[kpa]

p(hi) ≤
∑

i∈[mini{bmi
}+1,

∑
i bmi

]

p[i] +∆(δ),

where ∆(δ) =
√
8(kpa +

∑
j [bmj

− kmj
]) log(1/δ), then with probability15 at least 1−δ,

uni-modal ensemble outperform multi-modal training approaches concerning the loss on
the testing point with probability.

B.3 PROOF OF THEOREM 3.5

Theorem 3.5. Denote the paired features by h1, . . . hL with corresponding predicting probability
p(h1), . . . , p(hL). Assume that distillation can boost the training priority by p0 > 0. If there exists
paired features whose predicting probability exceeds the boosting probability p0, namely, the set S
is not empty:

S = {hi : p(hi) > p0} ≠ ϕ.

Then UMT helps uni-modal feature learning and can also learn easy-to-learn paired features.
15The probability is taken over the randomness of the testing point
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Table 23: Dataset used in Example B.4. + means the feature is larger than zero and − means the
feature is less than zero. We denote the predicting probability by p and the rectified probability (due
to pushing force) by p′.

f1 f2 f3 g1 g2 g3 h y
p 0.20 0.10 0.05 0.15 0.08 0.02 0.28 /
p′ 0.35(↑) 0.25(↑) 0.20(↑) 0.32(↑) 0.23(↑) 0.17(↑) 0.28 /

data a + + + + - + + +1
data b 0 + 0 + + - + +1
data c + + 0 - + + 0 -1
data d + - + + + 0 + -1

Proof. The core of Theorem 3.5 is to clarify the training priority. We revisit the notations of Theo-
rem 3.4 as follows without further clarification. At the end of the training, uni-modal ensemble learn
bm1 + bm2 useful features, namely, f1, . . . , fbm1 , g1, . . . , gbm2 . And multi-modal training approaches
learn km1 + km2 + kpa features: f1, . . . , fkm1 , g1, . . . , gkm2 , h1, . . . , hkpa . We note that there are still
many empty features ei in the model due to the initialization.

By distillation, the model learns the features according to the new priority. Since the set S is not
empty, there exists paired features that is learned before the empty features. By distillation, the
model would learn all the useful features that appear in uni-modal approaches, as well as those
features in set S . Therefore, UMT outperforms uni-modal ensemblewhen there exists useful paired
features.

B.4 A CONCRETE EXAMPLE TO ILLUSTRATE THEOREM 3.4

We next provide a concrete example to better illustrate the Modality Laziness issues. For Exam-
ple B.4, we aim to show the Modality Laziness issues. For Example B.5, we aim to show the role of
the pushing force.
Example B.4. Consider modality xm1 with features f1, f2, f3 (corresponding prediction probability
p = 0.2, 0.1, 0.05), and modality xm2 with features g1, g2, g3 (corresponding prediction probability
p = 0.15, 0.08, 0.02). We show the dataset in Table 23 and aim to minimize the training loss to zero.

In uni-modal approaches, we learn features f1, f2 and f3 on modality xm1 (similarly, g1, g2, and
g3 on modality xm2 ). Therefore, we learn features f1, f2, f3, g1, g2, g3 in uni-modal ensemble. In
multi-modal training approaches without paired feature, we can only learn three features f1, f2, g2
due to the training priority f1 > g1 > f2 > g2 > f3 > g3 (decreasing order in p). This phenomenon
is caused by modality laziness.

We next consider another paired feature h with probability p = 0.28. Under the case, multi-modal
training approaches only learn two features h and f1. Therefore, when h is not powerful enough,
uni-modal ensemble outperforms multi-modal training approaches.
Example B.5. We follow the notations and dataset in Example B.4. By applying the pushing force,
assume that each probability of uni-modal feature boosts 0.15, which changes the training priority
to f1 > g1 > h > f2 > g2 > f3 > g3 (decreasing order in p′). Therefore, multi-modal training
approaches (with pushing force) learns f1, f2, h. As a comparison, multi-modal training approaches
(without pushing force) can only learn f1, h. Therefore, pushing force helps learn more features.
We additionally remark that we only consider the training error in this example, and there might be
other penalties in practice (e.g., distillation loss).
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