
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM CORPORA TO CAUSALITY: UNVEILING CAUSAL
COMPREHENSION IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This study investigates the efficacy of Large Language Models (LLMs) in causal
discovery. Using newly available open-source LLMs, OLMO and BLOOM,
which provide access to their pre-training corpora, we explore three research ques-
tions aimed at understanding how LLMs process causal discovery. These ques-
tions focus on the impact of memorization versus generalization, the influence of
incorrect causal relations in pre-training data, and the role of contexts of causal re-
lations. Our findings indicate that while LLMs are effective in recognizing causal
relations that occur frequently in pre-training data, their ability to generalize to
new or rare causal relations is limited. Moreover, the presence of incorrect causal
relations significantly undermines the confidence of LLMs in corresponding cor-
rect causal relations, and the context of a causal relation markedly affects the
performance of LLMs to identify causal relations. This study shows that LLMs
possess a limited capacity to generalize novel causal relations. It also highlights
the importance of managing incorrect causal relations in pre-training data and inte-
grating contextual information to optimize LLM performance in causal discovery
tasks. 1

1 INTRODUCTION

Identification and understanding of causal relations hold fundamental importance in human cogni-
tion and science, as those relations form the basis of causal models, which are utilized to answer
observational, interventional, and counterfactual questions (Zanga et al., 2022; Wan et al., 2024).
The task of identifying causal relations among a set of random variables is known as causal dis-
covery, where a random variable may refer to an event in daily life, a medical treatment, or a drug
effect, etc. (Pearl, 2009; Peters et al., 2017; Nogueira et al., 2021). For decades, various statistical
methods have been developed to identify causal relations from observational or interventional data
Heckerman et al. (1995); Chickering (2002); Koivisto & Sood (2004); Mooij et al. (2016a). How-
ever, algorithms that can accurately recover true causal structures from observational data remain
elusive. Neal (2020).

With the rise of Large Language Models (LLMs), recent studies exploit the potential of LLMs for
causal discovery by evaluating them on benchmark datasets Willig et al. (2022); Ban et al. (2023).
Closed-source LLMs, such as GPT-3 and GPT-4, surpass the state-of-the-art (SOTA) statistical
methods on several publicly available datasets (Kıcıman et al., 2023). However, Romanou et al.
(2023) notice both GPT-3 and GPT-4 have a performance drop on the causal relations involving
real-world events occurring post-Jan 2022, compared to the ones before Jan 2022. Kıcıman et al.
(2023) find out that given part of a data table in the Tübingen cause-effect pairs dataset (Mooij et al.,
2016b), GPT-4 can recover 61% of the remaining part. Zečević et al. (2023) conjecture that LLMs
may just recall causal knowledge in their large pre-training corpora by acting as ”causal parrots”.
However, there are no solid experiments to verify to what extent memorization and generalization
affect model performance in causal discovery tasks because the pre-training corpora of those LLMs
are not accessible and the high-performing LLMs are closed-source.

The recently released open-source LLMs OLMO and BLOOM make their respective pre-training
corpora Dolma and ROOTS publicly available Groeneveld et al. (2024); Workshop et al. (2023).

1The code and data are available at https://anonymous.4open.science/r/causality_
llm-5FD3
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This provides the opportunity for us to investigate the correlations between model outputs and the
frequency of relations mentioned in their pre-training corpora. In this work, we focus on three
research questions and try to conduct experiments to answer them. RQ 1) What is the difference in
performance on causal discovery tasks for LLMs when recognizing relations through memorization
compared to inferring them through generalization? RQ 2 How does the occurrence of incorrect
causal relations affect LLMs performance in causal discovery? and RQ 3 How does the context of a
causal relation influence LLM performance in causal discovery tasks?

Our experiments reveal the following findings.

• Although LLMs are proficient at recognizing causal relations through memorization, their
ability to generalize novel causal relations is highly limited. This limitation poses signif-
icant challenges for deploying LLM-based causal discovery methods in scenarios where
causal relations are rarely or not included in their pre-training data.

• The presence of incorrect causal relations, such as the reversal of correct causal relations,
adversely impacts LLMs’ confidence in identifying correct causal relations. This find-
ing highlights the necessity of minimizing conflicting causal information in pre-training
datasets to enhance the performance of LLMs.

• The validity and strength of causal relations can vary significantly across different contexts.
This variability suggests that LLM-based causal discovery methods should incorporate the
context of causal relations as input to ensure accuracy, particularly to avoid misleading
contexts that could substantially degrade performance.

2 BACKGROUND

Causal discovery aims to identify causal relations among a given set of random variables. For each
pair of variables X and Y , it identifies whether X ← Y , Y ← X , or there is no causal influence
between them, where← denotes the direction of causality. The traditional algorithms for this task
are statistical methods that perform causal discovery on tabular data, which are capable of unveil-
ing previously unknown or uncertain causal relations that are not explicitly mentioned anywhere
in text (e.g., ”sea level pressure causally influences zonal wind at 10 m” Huang et al. (2021)). In
contrast, prior NLP methods focus on either extracting mentions of known causal relations from
documents Yang et al. (2022) or answering questions related to causality Oh et al. (2013). The gold
standard for causal discovery is experimental approaches such as randomized controlled trials and
A/B testing Fisher (1935). However, such experiments are often not feasible due to ethical or fi-
nancial constraints, which necessitates the use of alternative methods that rely solely on statistics
collected from observational data.

The statistical causal discovery methods are conventionally categorized into constraint-based meth-
ods, such as Peter and Clark (PC) Spirtes et al. (2000) and inductive causation (IC) Pearl (2009),
and score-based methods Heckerman et al. (1995); Chickering (2002); Koivisto & Sood (2004);
Mooij et al. (2016a). Those methods rely on statistics calculated from tabular data to infer causal
graphs, in which random variables are depicted as nodes and their causal relations are represented as
edges. However, a significant drawback of these approaches is their dependency on extensive data
collection to construct reliable tabular data, a process that can be both time-consuming and costly.
Furthermore, a theoretical limitation of these statistical methods is their inability to precisely predict
ground-truth causal graphs, unless strong assumptions are made. Instead, they typically yield an
equivalence class of true causal graphs Spirtes et al. (2000); Pearl (2009).

Recent advances of LLMs provide new opportunities to tackle the task without accessing tabular data
by formulating it as a pairwise causal relation prediction task Kıcıman et al. (2023); Zečević et al.
(2023); Long et al. (2022). Given a pair of variable names, an LLM is instructed to identify which
is the cause and which is the effect using prompts Kıcıman et al. (2023); Zečević et al. (2023),
by distilling such knowledge directly from the LLM. However, the reliability of such methods is
under scrutiny. Zečević et al. (2023) argue that LLMs are ”causal parrots”, which may depend
on memorization to recall the causal relations present in their training data. In other words, LLMs
may not generalize well to detect causal relations that seldom or never occur in pre-training data.
If this argument holds, LLMs may primarily excel at reproducing causal relations known in their
training data rather than uncovering novel ones. However, there is no solid empirical justification

2
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of this argument because prior works employ either commercial LLMs or open-source LLMs that
have no access to their training data. The current techniques for understanding and investigating
memorization in LLMs are still in their infancy Speicher et al. (2024).

3 METHODOLOGY

We aim to investigate the key limitations of LLMs for causal discovery by answering three re-
search questions. The first research question aims to collect stronger empirical evidence to verify
the ”causal parrots” hypothesis. The second research question investigates to what extend the pres-
ence of incorrect causal relations in the training data, which are oriented in the opposite direction
to their true counterparts, influence the performance of LLMs. Instead of only feeding two variable
names to LLMs, the last research question is concerned with the first quantitative study on how the
context of a causal relation impacts the predictive performance of LLMs.

Unlike prior works, we collect evidence of memorization from the pre-training datasets of LLMs
and investigate their statistical properties in relation to LLMs’ predictive performance. As it is al-
most infeasible to collect all mentions of a causal relation from a dataset, we curate a synthetic
causal relation dataset to further investigate to what extent LLMs can generate to unseen causal
relations. Herein, we select OLMo-7b-Instruct and BLOOM-7b1, which are the LLMs that have
their pre-training data publicly available Groeneveld et al. (2024); Workshop et al. (2023).To deter-
mine whether LLMs primarily rely on memorization or generalization, we classify causal relations
into various occurrence intervals, ensuring that each interval contains a comparable number of rela-
tions. We then assess the LLMs’ performance in recognizing causal relations across these defined
intervals. Evaluations are performed by transforming causal relations into yes-no questions, such
as ”does smoking cause lung cancer?”. We employ accuracy and F1 score metrics to assess perfor-
mance. If LLMs mainly utilize memorization to identify causal relations, we anticipate observing
high accuracy and F1 scores for relations that frequently occur in the pre-training data, with a notable
decline in performance for less frequently occurring relations. This experimental method aligns with
the approaches stated in Razeghi et al. (2022).

In addition to examining the frequency of causal relations, we also investigate how the presence
of incorrect causal relations impacts LLMs’ confidence in corresponding correct causal relations.
For example, we want to explore how the occurrence of ”lung cancer causes smoking” might affect
an LLM’s confidence in the correct relation ”smoking causes lung cancer.” To this end, we have
devised a novel experimental setup. We assess the confidence of LLMs in correct causal relations
under varying frequencies of corresponding incorrect causal relations. We hypothesize that a higher
presence of incorrect causal relations diminishes the LLMs’ confidence in the correct causal rela-
tions. The confidence level of the LLMs is measured by the proportion of responses that affirm the
correct causal relation out of multiple generated responses for one query.

Due to the impracticality of exhaustively retrieving all semantically equivalent mentions of target
causal relations in pre-training data, we create new pre-training corpora including synthetic causal
and incorrect causal relations. These relations, such as ”blaonge causes goloneke,” utilize terms that
do not exist in the original pre-training corpora. We then integrate these synthetic relations into the
pre-training data at various frequencies. This approach allows us to re-evaluate our experimental re-
sults on real-world causal relations, thereby validating the reliability of our findings under controlled
conditions.

One distinction between causal discovery and numerical reasoning tasks Razeghi et al. (2022) is
context dependency. Numerical reasoning, such as 3 + 4 = 7, exhibits consistency across various
contexts. However, causal relations might not have this consistency. For example, the causal relation
”rain causes flooding” may be true during a heavy downpour in a city with poor drainage but may not
be true during light rain in areas with good drainage systems. Therefore, we assess the performance
of LLMs on causal discovery across varying contexts. For each selected causal relation from human-
annotated datasets, we employ GPT-4o to generate five positive contexts that affirm the relation and
five negative contexts that challenge it. The LLMs’ ability to recognize these causal relations is then
evaluated in these contexts.

3
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Figure 1: The average F1 score and accuracy of OLMo-7b-Instruct by occurrence interval on full
causal discovery tasks, where F1 and accuracy are computed from 0 to 4 ICL examples. The occur-
rence data of (a) and (b) are derived from the exact matching query, while the occurrence data of (c)
and (d) are derived from the ”event A”⇒ ”causes”⇒ ”event B” query. An asterisk (*) denotes that
the p-value of the correlation coefficients is less than 0.05.
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Figure 2: The average F1 score and accuracy of BLOOM-7b1 by occurrence interval on full causal
discovery tasks, averaged across 0 to 4 ICL examples. The occurrence data are derived from the
exact matching query.

4 EXPERIMENTAL SETUP

In this section, we outline the details of our experimental setup.

4.1 DATASETS

Tasks. Following (Kıcıman et al., 2023), we consider the following two causal discovery tasks.
Causal Direction Identification. Given two causally related variables (X,Y ), the causal direction
identification task involves deciding whether X → Y or X ← Y is true. Full Causal Discovery.
Given a set of random variables X, for each possible pair of variables (Xi, Xj), an LLM is in-
structed to identify whether: Xi → Xj , Xi ← Xj , or no causal relation between Xi and Xj . The
causal direction identification and full causal discovery tasks can be treated as classification tasks.
Therefore, we evaluate the results using F1 and accuracy.

4.1.1 REAL-WORLD DATA

Causal Direction Identification. For this task, we consider two datasets derived from Concept-
Net Speer et al. (2017) and CauseNet Heindorf et al. (2020). From ConceptNet, we select the top
1,900 causal relations based on confidence and generate an equal number of reverse-causal rela-
tions by swapping the cause and effect, resulting in 3,800 causal and reverse-causal relations. From
CauseNet, we select 814 high-confidence causal relations and create an equal number of reverse-
causal relations, totaling 1,628 relations. These procedures are detailed in Appendix A.2.

Full Causal Discovery. We consider six datasets for this task. We utilize four small causal graphs
within the medical literature as our ground-truth causal graphs, which include Alcohol, Cancer,
Diabetes, and Obesity (see Fig. 10) Hernán et al. (2004); Long et al. (2022). We also use a causal
graph from atmospheric science, named Arctic Sea Ice Huang et al. (2021). This causal graph
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Figure 3: The average F1 score and accuracy of OLMo-7b-Instruct by occurrence interval on causal
direction identification task, averaged across 0 to 4 ICL examples. The occurrence data are derived
from the exact matching query in the Dolma pre-training corpus.
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Figure 4: The average F1 score and accuracy of OLMo-7b-Instruct by occurrence interval on causal
direction identification task, averaged across 0 to 4 ICL examples. The occurrence data are derived
from the ”event A”⇒ ”causes”⇒ ”event B” query in the Dolma pre-training corpus.

explores the factors influencing arctic sea ice coverage. The Arctic Sea Ice is based on expert
knowledge and consists of a causal graph with 12 variables and 46 edges, each edge derived from
textbooks and peer-reviewed publications (see Fig. 11). Then, we employ a larger causal graph used
for evaluating car Insurance risks Binder et al. (1997), which comprises 27 variables and 52 edges
(see Fig. 12).

4.1.2 SYNTHETIC DATA

Causal Direction Identification. We create a pre-training dataset including synthetic correct and
incorrect causal relations that are absent in the original corpora. This dataset includes 100,000 docu-
ments randomly sampled from Dolma, with incorrect causal relations that either swap the positions
of cause and effect or use negation templates such as ”X does not cause Y.” We generate 100 ar-
tificial causal relations using fictitious terms like ’blaonge’ and ’goloneke’. Utilizing predefined
templates listed in Table 5 in Appendix A.5, we craft mentions for both correct and incorrect causal
relations. Then we create positive documents containing correct causal relations and negative doc-
uments containing incorrect causal relations by inserting these mentions between sentences within
the documents. We adopt three approaches for the insertion of mentions. Correct Relation Scaling:
we vary the insertion of each correct causal relation from 0 to 1,000 occurrences. Reverse Relation
Scaling: we first insert 1000 occurrences of each correct causal relation followed by inserting the
corresponding reverse causal relations from 0 to 1,000 occurrences. Negated Relation Scaling:
After inserting 1,000 occurrences of each correct causal relation, we insert negations of these causal
relations, from 0 to 1,000 occurrences. We then fine-tune OLMo-7b-Instruct utilizing LoRA Hu
et al. (2022) on synthetic datasets, with details provided in Appendix A.6.

4.2 MODELS

Large Language Models. We conduct experiments using the following language models: OLMo-
7b-Instruct Groeneveld et al. (2024), BLOOM-7b1 Workshop et al. (2023), Llama2-7b-chat Meta
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Figure 5: The average F1 score and accuracy of BLOOM-7b1 by occurrence interval on causal
direction identification task, averaged across 0 to 4 ICL examples. The occurrence data are derived
from the exact matching query in the ROOTS pre-training corpus.
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Figure 6: The average F1 score and accuracy of fine-tuned OLMo-7b-Instruct by various occur-
rences on synthetic causal relations, averaged across 0 to 4 ICL examples.

(2023), Llama3-8b-Instruct Meta (2024), GPT-3.5-turbo OpenAI (2022) and GPT-4o OpenAI
(2024). OLMo-7b-Instruct and BLOOM-7b1 provide access to both their pre-training corpora and
model weights. Llama2-7b-chat and Llama3-8b-Instruct have only released their model weights.
GPT-3.5-turbo and GPT-4o are closed-source models. OLMo-7b-Instruct was pre-trained using the
Dolma dataset Soldaini et al. (2024), while BLOOM-7b1 utilized the ROOTS corpus Laurençon
et al. (2022). The release of corresponding search tools, WIMBD Elazar et al. (2024) for Dolma and
ROOTS Search Piktus et al. (2023) for ROOTS, enables the searching for causal relations.

In-Context Learning and Prompt. For both the causal direction identification and the full causal
discovery tasks, we utilize similar in-context learning demonstrations and prompts, detailed further
in Appendix A.3. When evaluating a pair of variables (X,Y ), we pose two questions to the LLMs:
”Does X cause Y?” and ”Does Y cause X?” The LLMs are expected to generate step-by-step expla-
nations and provide a final response of either ’yes’ or ’no’.

4.3 RETRIEVAL QUERY

The pre-training corpus for OLMo-7b-Instruct is Dolma Soldaini et al. (2024), which has a search
tool named WIMBD Elazar et al. (2024). In our usage of WIMBD, we implement two search
queries: an exact match for ”event A causes event B”; an ordered phrase search for ”event A” ⇒
”causes”⇒ ”event B”. Here, X ⇒ Y indicates that X occurs before Y within a predefined window
of text. The search tool for BLOOM-7b1 pre-training corpus ROOTS Laurençon et al. (2022) is
ROOTS Search Piktus et al. (2023). Due to its limited search capability, we only utilize exact match
in ROOTS Search. In Table 3, 4 in Appendix A.4, we detail the methods used to create queries for
retrieving causal relations.

5 EXPERIMENTAL RESULTS

Research Question 1. What is the difference in performance on causal discovery tasks when LLMs
recognize relations through memorization compared to inferring them through generalization?

6
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Figure 7: The average confidence of correct causal relations on OLMo-7b-Instruct (a) and BLOOM-
7b1 (b) by reverse casual relation occurrence ratio intervals on full causal discovery tasks.

Relations frequently occurring in pre-training data are likely memorized by LLMs. However, rela-
tions that are seldom or never present in pre-training data require LLMs to generalize these relations.

To address RQ 1, we evaluate LLMs on causal relations across different occurrence intervals, which
contain the similar number of causal relations. Causal relations with high occurrences are likely to
be memorized by LLMs, whereas those with low occurrences reveal LLMs’ generalization ability
Carlini et al. (2023). We then analyze the correlation between the occurrence of causal relations and
the performance of LLMs on these causal relations.

Real-World Data We compute the average F1 and accuracy at each occurrence interval over various
numbers of ICL examples (i.e., from 0-shot to 4-shot). The results are plotted with the x-axis
representing occurrence intervals and the y-axis representing F1 or accuracy. Fig. 1, 2, 3, 4 and
5 show that both F1 and accuracy exhibit a strong positive correlation with occurrence in the pre-
training corpora. For instance, in the full causal discovery task, the Spearman correlation between
F1 scores and occurrence rates is 0.9 using OLMo-7b-Instruct and its pre-training data. Compared
to highly frequent causal relations, LLMs exhibit significantly poorer performance when identifying
low-frequency causal relations. For instance, in a full causal discovery task, OLMo-7b-Instruct
achieves an F1 score of 0.88 in the highest occurrence interval, but only 0.2 in the lowest occurrence
interval. In the causal direction identification task, OLMo-7b-Instruct reaches a 0.93 F1 score at the
highest occurrence interval, compared to just 0.35 at the lowest. These results indicate that LLMs
have limited generalization ability in causal discovery tasks.

Synthetic Data We fine-tune OLMo-7b-Instruct with Correct Relation Scaling. Fig. 6 demonstrates
that both F1 and accuracy have a strong positive correlation with occurrence within the pre-training
corpora, which aligns with real-world data.

Discussion These results demonstrate that while LLMs excel at recognizing causal relations through
memorization, their capacity to generalize from less frequent or entirely novel data remains highly
constrained. This limitation highlights the challenges in deploying LLMs in scenarios where causal
relations are novel and absent from their pre-training data. Furthermore, this suggests the necessity
of traditional statistical methods for causal discovery that rely solely on statistics to determine causal
relations, irrespective of the novelty of causal relations. This insight suggests that future research
might explore integrating traditional statistical methods with LLMs to enhance their generalization
ability.

Research Question 2. How does the occurrence of incorrect causal relations affect LLMs in causal
discovery tasks?

incorrect causal relations include reversals of correct causal relations (e.g., lung cancer causes smok-
ing) and negations of correct causal relations (e.g., smoking does not cause lung cancer).

We hypothesize that when both correct and incorrect causal relations are frequent, LLMs may strug-
gle to discern the correct relations, thereby reducing their confidence in correct causal relations. To
investigate this, we examine the correlation between the occurrence ratio of incorrect causal relations
and LLMs’ confidence in correct causal relations. The occurrence ratio is defined as the number of
incorrect causal relations divided by the number of corresponding correct causal relations. Confi-
dence in correct causal relations (i.e., affirmative confidence) is measured by the proportion of affir-
mative responses among multiple generated responses, where a response is considered affirmative
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Figure 8: The average confidence of correct causal relations on OLMo-7b-Instruct (a,b) and
BLOOM-7b1 (c,d) by reverse casual relation occurrence ratio intervals on causal direction iden-
tification task, averaged across 0 to 4 ICL examples.
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Figure 9: The average confidence of correct causal relations on fine-tuned OLMo-7b-Instruct by
reverse casual relation occurrence ratio (a) and negation casual relation occurrence ratio (b) on syn-
thetic causal relations, averaged across 0 to 4 ICL examples.

if it contains ”yes” and negative if it contains ”no”. If neither ”yes” nor ”no” appears in an answer,
we classify it as a ’fail’. The average proportion of ’fail’ across all datasets is 0.03, indicating that
most responses are either ’yes’ or ’no’. For example, if the phrase ”smoking causes lung cancer”
appears 13,652 times and its reverse ”lung cancer causes smoking” appears 99 times, the resulting
occurrence ratio is approximately 0.007. If the query ”Does smoking cause lung cancer?” results
in affirmative responses in 8 out of 10 generation samples, the affirmative confidence for ”smoking
causes lung cancer” is 0.8. In this experiment, we sample 10 responses for each query.

Real-World Data We calculate and plot the correlation between different intervals of occurrence
ratios of incorrect causal relations and affirmative confidence. The experiment results, shown in Fig.
7 and 8, indicate a negative correlation, showing that LLMs’ confidence in correct causal relations
decreases as the occurrence ratio of incorrect causal relations increases.

Synthetic Data We fine-tune OLMo-7b-Instruct employing both Reverse Relation Scaling and
Negated Relation Scaling. Fig. 9 shows a similar negative correlation with real-world data: as
the occurrence of incorrect causal relations increases, there is a decline in the LLMs’ confidence in
the corresponding correct causal relations.

Discussion This negative correlation suggests that while LLMs excel at memorizing frequently oc-
curring information, they struggle to discern the correct relation when confronted with high fre-
quencies of conflicting data. This inability leads to a loss of confidence in correct causal relations.
This finding underscores the necessity of not only enhancing the presence of correct information
but also of eliminating misinformation in pre-training data. Furthermore, these results pave the way
for future research aimed at developing models that can manage conflicting information within their
pre-training data.

Research Question 3. How does the context of a causal relation influence LLM performance in
causal discovery tasks?

We hypothesize the strength and validity of causal relations can vary across different contexts. Thus,
when a causal discovery question is presented with different contexts, LLMs might provide different
and sometimes opposite answers to the causal relation’s validity.

8
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Full Causal Discovery
w/o Ctx P.Ctx N.Ctx

OLMo-7b-Instruct (3 ICL) 0.65 0.875 0.421
BLOOM-7b1 (3 ICL) 0.629 0.76 0.597
Llama2-7b-chat (3 ICL) 0.682 0.852 0.255
Llama3-8b-Instruct (3 ICL) 0.67 0.738 0.207
GPT-3.5-turbo (3 ICL) 0.652 0.86 0.242
GPT-4o (3 ICL) 0.69 0.92 0.272

ConceptNet
w/o Ctx P.Ctx N.Ctx

OLMo-7b-Instruct (3 ICL) 0.9 0.95 0.624
BLOOM-7b1 (3 ICL) 0.79 0.81 0.704
Llama2-7b-chat (3 ICL) 0.79 0.952 0.318
Llama3-8b-Instruct (3 ICL) 0.66 0.85 0.104
GPT-3.5-turbo (3 ICL) 0.77 0.906 0.338
GPT-4o (3 ICL) 0.87 0.962 0.346

CauseNet
w/o Ctx P.Ctx N.Ctx

OLMo-7b-Instruct (3 ICL) 0.89 0.992 0.616
BLOOM-7b1 (3 ICL) 0.72 0.784 0.632
Llama2-7b-chat (3 ICL) 0.92 0.998 0.472
Llama3-8b-Instruct (3 ICL) 0.88 0.946 0.144
GPT-3.5-turbo (3 ICL) 0.93 0.982 0.674
GPT-4o (3 ICL) 0.98 0.998 0.602

Table 1: Affirmative ratio of LLMs on causal relations across different contexts.

From ConceptNet and CauseNet, we select 100 high-confidence correct causal relations from each.
Since both ConceptNet and CauseNet lack context information, for each causal relation, we use
GPT-4o to generate five positive contexts that enhance it and five negative contexts that weaken
it. Then we hire thirteen annotators to evaluate these causal relations under different contexts in
three rounds. The prompt and evaluation details are presented in Appendix A.7. The agreement
between annotators and GPT-4o is 0.76 using Krippendorff’s Alpha Castro (2017). We then assess
the performance of LLMs on these causal relations within positive and negative contexts. The query
format is similar to Table 2, except we provide context information using the phrase ”Given the
scenario: {description}”. We assess LLM performance on correct causal relations within various
contexts using the affirmative ratio. This ratio is calculated by dividing the number of correct causal
relations identified by the LLM by the total number of correct causal relations presented.

Observation From the results in Table 1, we observe that all LLMs are more likely to identify
causal relations in positive contexts compared to no context. In contrast, adding negative contexts
significantly decreases LLMs’ ability to identify causal relations compared to no context. These
results indicate that the validity and strength of causal relations can vary in different contexts.

Discussion The significant variation in causal relation identification across positive and negative
contexts indicates the context sensitivity of LLM-based causal discovery methods. This observa-
tion suggests that LLM-based algorithms should explicitly provide contextual information to enable
LLMs to better understand the scenario and thereby make more accurate predictions. It is par-
ticularly crucial for these algorithms to avoid misleading contexts, as our results demonstrate that
negative contexts can substantially impair LLM performance. Furthermore, investigating the under-
lying mechanisms of how different contexts influence the strength and validity of causal relations
could be a promising direction for future research.

6 RELATED WORK

Causality with LLMs Kıcıman et al. (2023); Zečević et al. (2023); Long et al. (2022); Feng et al.
(2023) explore the inference of causal relations by submitting pairwise queries about variable pairs
to LLMs. These queries are either structured as option selection questions Kıcıman et al. (2023) or
yes-no questions Long et al. (2022); Zečević et al. (2023). Results from these experiments demon-
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strate that the LLM-based approach surpasses traditional statistical algorithms in performance. Re-
markably, the LLM-based method requires only the names of the variables, without needing their
statistical data. However, the approach of pairwise queries may lead to inefficiencies in time and
computation, as identifying all possible relations among a set n of variables necessitates O(n2)
queries. To address this, Jiralerspong et al. (2024) have proposed a breadth-first search strategy
that significantly reduces the number of queries to a linear scale. Additionally, beyond exploring
relationships among observable variables, Liu et al. (2024) has developed a framework capable of
uncovering high-level hidden variables from unstructured data using LLMs, and subsequently infer-
ring causal relationships.

Influence of Pre-training Data on Language Models. Research conducted by Kassner et al.
(2020) and Wei et al. (2021) involving controlled variations in pretraining data sheds light on its
impact on language models’ (LM) capabilities to memorize factual information and understand syn-
tactic rules. Their findings confirm that the frequency of data plays a crucial role in determining a
model’s ability to remember specific facts or grammatical structures about verb forms. Furthermore,
Sinha et al. (2021); Min et al. (2022) show that altering the word order during pretraining barely af-
fects the LMs’ performance in subsequent tasks, and mixing up labels in in-context learning scenar-
ios does not significantly affect the models’ few-shot learning accuracy. These studies collectively
indicate that the efficacy of LMs predominantly hinges on their capacity to process complex word
co-occurrence patterns. Additionally, Carlini et al. (2023; 2019); Song & Shmatikov (2019) have
identified that LMs can retain sensitive information from their training datasets, even when such in-
stances are infrequent. The experiments of Razeghi et al. (2022) demonstrate that models are more
accurate on numerical reasoning questions whose terms are more prevalent in pre-training data.

7 CONCLUSION

In this study, we investigate the factors that impact the performance of LLMs in causal discovery
tasks. Our results show that the frequency of causal relations within a model’s pre-training data has
a positive correlation with LLM performance, while the presence of incorrect causal relations can
negatively affect the models’ confidence in correct causal relations. Furthermore, our experiments
reveal that the context of causal relations significantly affects the validity of causal relations. To fa-
cilitate a deeper understanding of LLMs, we strongly advocate for the release of both model weights
and pre-training data by more LLM providers.

REPRODUCIBILITY STATEMENT

We release our code and scripts at https://anonymous.4open.science/r/
causality_llm-5FD3. Appendix A.1 presents the ground-truth causal graphs used in
our full causal discovery task. Appendix A.3 provides examples of in-context learning and the
prompts used during our experiments. Appendix A.4 outlines the queries utilized for searching
within the pre-training data. Appendix A.7 details the human evaluation process for assessing
causal relations under various contexts. These resources ensure transparency and facilitate the
replication of our research findings.

ETHICS STATEMENT

The ability of LLMs to identify and generalize causal relations could significantly impact various
fields, from healthcare to social sciences, where understanding causality is crucial. However, we
acknowledge that relying on LLMs for causal discovery may perpetuate existing biases present in
training data, potentially leading to misleading or harmful conclusions if deployed without proper
safeguards. The limitations we’ve identified, particularly regarding incorrect causal relations and
context dependency, underscore the need for careful human oversight when applying these models
in real-world scenarios.
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lut. Crab: Assessing the strength of causal relationships between real-world events. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
15198–15216, 2023.

Marco Scutari. Learning bayesian networks with the bnlearn r package. Journal of Statistical
Software, 35(3):1–22, 2010. doi: 10.18637/jss.v035.i03. URL https://www.jstatsoft.
org/index.php/jss/article/view/v035i03.

13

https://ai.meta.com/blog/meta-llama-3/
https://aclanthology.org/2022.emnlp-main.759
https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
/article/id/1efb412f-212e-4043-a129-7729066412c5
/article/id/1efb412f-212e-4043-a129-7729066412c5
https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://aclanthology.org/2023.acl-demo.29
https://aclanthology.org/2023.acl-demo.29
https://aclanthology.org/2022.findings-emnlp.59
https://aclanthology.org/2022.findings-emnlp.59
https://www.jstatsoft.org/index.php/jss/article/view/v035i03
https://www.jstatsoft.org/index.php/jss/article/view/v035i03


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela.
Masked language modeling and the distributional hypothesis: Order word matters pre-training
for little. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
(eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2888–2913, Online and Punta Cana, Dominican Republic, November 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.230. URL https:
//aclanthology.org/2021.emnlp-main.230.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and
Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research,
2024. URL https://arxiv.org/abs/2402.00159.

Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’19, pp. 196–206, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330885. URL https://doi.
org/10.1145/3292500.3330885.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: an open multilingual graph of
general knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI’17, pp. 4444–4451. AAAI Press, 2017.

Till Speicher, Mohammad Aflah Khan, Qinyuan Wu, Vedant Nanda, Soumi Das, Bishwamittra
Ghosh, Krishna P Gummadi, and Evimaria Terzi. Understanding memorisation in llms: Dy-
namics, influencing factors, and implications. arXiv preprint arXiv:2407.19262, 2024.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, Prediction,
and Search. MIT press, 2000.

Guangya Wan, Yuqi Wu, Mengxuan Hu, Zhixuan Chu, and Sheng Li. Bridging causal discovery and
large language models: A comprehensive survey of integrative approaches and future directions.
arXiv preprint arXiv:2402.11068, 2024.

Jason Wei, Dan Garrette, Tal Linzen, and Ellie Pavlick. Frequency effects on syntactic rule
learning in transformers. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 932–948, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.72. URL
https://aclanthology.org/2021.emnlp-main.72.
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Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Al-
ham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,
Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani,
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Figure 10: Four causal graphs illustrating well-known exposure-outcome effects in the medical
literature. This figure is from Long et al. (2022).
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A APPENDIX

A.1 GROUND-TRUTH CAUSAL GRAPHS

Figure 10, 11, 12 demonstrate ground-truth causal graphs for the causal discovery task.

A.2 CAUSAL DIRECTION IDENTIFICATION TASK

ConceptNet is a knowledge graph that connects natural language concepts via labeled edges. It
includes the ”[A, /r/Causes, B]” relation, indicating that event A causes event B. Each relation in
ConceptNet also has a weight attribute, reflecting the confidence level of the relation; a higher
weight suggests broader agreement across sources. From ConceptNet, we selected the top 1,900
causal relations by weight and generated an equal number of reverse-causal relations by swapping
the cause and effect. This process yielded a total of 3,800 causal and reverse-causal relations.

CauseNet is a large-scale knowledge base containing claimed causal relations between concepts.
We extract 814 high-confidence causal relations from CauseNet, each supported by at least 100 web
sources and 10 extraction patterns. By swapping the cause and effect, we generate an equivalent
number of reverse-causal relations. We then create a dataset containing 1,628 causal and reverse-
causal relations.
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Figure 11: The causal graph between key atmospheric variables and sea ice over the Arctic based
on literature review. This figure is from Huang et al. (2021).

Figure 12: The causal graph for evaluating car insurance risks. This figure is sourced from Scutari
(2010).
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A.3 IN-CONTEXT LEARNING AND PROMPT

Demonstrations for in-context learning

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’it is raining’ and ’carrying an umbrella’.
Does ’it is raining’ cause ’carrying an umbrella’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: The presence of rain often results in individuals using umbrellas.
2. Rationale: People use umbrellas to protect themselves from getting wet during rain.
3. Conclusion: Rain acts as a cause for the use of an umbrella. The final answer is Yes.
Final Answer: Yes

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’it is raining’ and ’carrying an umbrella’.
Does ’carrying an umbrella’ causes ’it is raining’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: The act of opening an umbrella does not influence weather patterns or conditions.
2. Rationale: Rain is a meteorological event determined by atmospheric conditions. The use of an umbrella does not have the capability to influence weather conditions.
3. Conclusion: There is no causal relationship where the umbrella causes rain. The answer is No.
Final Answer: No

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’Eating food’ and ’feeling Hunger’.
Does ’Eating food’ causes ’feeling Hunger’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: Eating involves consuming food, which typically reduces the feeling of hunger.
2. Rationale: The act of eating is intended to satiate hunger, not induce it.
3. Conclusion: Eating does not cause hunger. Instead, it alleviates it. The answer is No.
Final Answer: No

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between ’Eating food’ and ’feeling Hunger’.
Does ’Feeling hunger’ causes ’Eating food’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Assistant:

Step-by-Step Explanation:
1. Observation: The sensation of hunger typically motivates individuals to eat.
2. Rationale: Hunger is a biological signal that the body needs nutrients. This sensation prompts the behavior of eating to replenish energy and nutrients.
3. Conclusion: It is reasonable to conclude that hunger causes eating. The answer is Yes.
Final Answer: Yes

Prompt

User:

This task is to determine the cause-and-effect relationship between two events based on commonsense knowledge.
We are interested in the causal relationship between {cause}’ and ’{effect}’.
Does ’{cause}’ cause ’{effect}’?
Let’s provide a step-by-step explanation, then give your final answer using yes or no.

Table 2: Demonstrations for in-context learning and the prompt for new input.

For the causal direction identification task and the causal discovery task, we employ similar in-
context learning demonstrations and prompts, detailed in Table 2. When presented with a pair of
nodes (A,B), we generate two questions: ”Does A cause B?” and ”Does B cause A?”.

In the causal direction identification task, the ground-truth instances are formatted as (A→ B, true)
and (A← B, false). These yes-no questions are directly transformed into such instances, aligning
perfectly with the binary nature of the task. In the causal discovery task, the ground-truth instances
are structured as (A,B, l), where the label l can take one of four possible values: ←, →, ×, ↔.
Here, × denotes no causal relation, and ↔ indicates a bi-directional causal relation. We include
bi-directional causal relation because it exists in some ground-truth causal graphs such as Arctic Sea
Ice. The conversion of yes-no responses to these four-way labels is handled as follows. If only one
of the questions receives a ’yes’ answer, it translates directly to the corresponding causal direction
(i.e.,← or→). If both questions are answered with ’no’, this indicates no causal relation (i.e., ×).
If both questions receive a ’yes’ response, this suggests a bi-directional relation (i.e.,↔).

To determine the most confident answer, each LLM should generate ten distinct responses Chen &
Mueller (2023); Geng et al. (2024). We then extract ’yes’ or ’no’ from each output. If the count of
’yes’ responses is greater than or equal to the count of ’no’ responses, the final answer is ’yes’. If
’no’ responses predominate, the final answer is ’no’. This methodology ensures a robust approach
to determining causal relationships in both tasks.

The decoding hyperparameters are configured as follows: the top-p sampling parameter is set to
0.9, the repetition penalty is 1.25, the temperature is 0.8, and the maximum number of new tokens
generated does not exceed the maximum input length. We employ the Hugging Face library to load
LLMs and generate responses Wolf et al. (2020). All experiments were conducted on NVIDIA A100
GPUs.

A.4 QUERY FOR SEARCH ENGINE

The queries for searching can be found in Table 3, 4.
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Exact match for ”event A causes event B”
templates = [f”{cause} causes {effect}”, f”{effect} is caused by {cause}”, f”{cause} leads to {effect}”,
f”{cause} results in {effect}”, f”{cause} triggers {effect}”, f”{effect} is triggered by {cause}”,
f”{cause} induces {effect}”, f”{cause} influences {effect}”, f”{effect} is influenced by {cause}”,
f”{cause} affects {effect}”, f”{effect} is affected by {cause}”, f”{cause} impacts {effect}”,
f”{cause} is impacted by {effect}”, f”{cause} is responsible for {effect}”,
f”{cause} is the reason for {effect}”, f”The effect of {cause} is {effect}”,
f”The result of {cause} is {effect}”, f”The consequence of {cause} is {effect}”,
f”{effect} is a consequence of {cause}”, f”{effect} is a result of {cause}”, f”{effect} is an effect of {cause}”]

# create match phrase query for each template
should list = []
for phrase in templates:
match phrase = {
”match phrase”: {
”text”: {
”query”: phrase,
”slop”: int(len(phrase.split())*0.25),
}
}
}
should list.append(match phrase)
query = {
”bool”: {
”should”: should list,
”minimum should match”: 1
}

Table 3: Exact match query for WIMBD.

A.5 SYNTHETIC CAUSAL RELATIONS

Table 5 demonstrates templates for creating mentions of synthetic causal relations and anti-causal
relations.

A.6 TRAINING DETAILS

We fine-tuning OLMo-7b-Instruct using LoRA on synthetic datasets, utilizing the official code from
the OLMo repository 2. The model was trained on two NVIDIA A100 GPUs with a batch size of 2
per GPU, and a total batch size of 128. We set the LoRA rank and alpha to 256, with a dropout rate
of 0.1. The learning rate was configured to 1e-4, employing a linear scheduler for rate adjustments.
The training was conducted over one epoch.

A.7 HUMAN EVALUATION FOR CAUSAL RELATION WITH CONTEXTS

The prompt of generation contexts of causal relations is shown in Table 6. In this task, we require an-
notators to evaluate causal relations with different contexts. Below we show detailed task instruction
to annotators.

Task Objective. You are provided with a series of scenarios and corresponding questions. Your
task is to assess the likelihood of a causal relation based on the given scenario and give a reason for
your choice. Use only the information provided in the scenario and apply common sense to make
your judgment. At the begining of each evaluation, there are 10 relations without any scenarios. In
these cases, we can make your judgment based on your common sense. Please review the annotation
examples provided below before beginning the actual annotation task. The actual annotation tasks
are performed on Google sheet. Please note that each annotator is required to complete at least one
evaluation sheet.

2We employed the official OLMo code available at https://github.com/allenai/
open-instruct.
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Ordered phrase search for ”event A”⇒ ”causes”⇒ ”event B”
causal mentions = [”causes”, ”leads to”, ”results in”, ”triggers”, ”induces”, ”influences”, ”affects”, ”impacts”,
”is responsible for”, ”is the reason for”, ”cause”, ”lead to”, ”result in”, ”trigger”, ”induce”,
”influence”, ”affect”, ”impact”, ”are responsible for”, ”are the reason for”]

# create cause clause in span term format
cause clauses = []
for item in cause.split():
cause clauses.append({”span term”: {”text”: item}})

# create effect clause in span term format
effect clauses = []
for item in effect.split():
effect clauses.append({”span term”: {”text”: item}})

# create causal relation clause in span term format
all relation clauses = []
for rel in causal mentions:
relation clauses = []
for term in rel.split():
relation clauses.append({”span term”: {”text”: term}})
all relation clauses.append(relation clauses)

# for each causal relation clause, create a query
for relation clauses in all relation clauses:
query = {
”span near”: {
”clauses”: [
{
”span near”: {
”clauses”: cause clauses,
”slop”: 0,
”in order”: True
}
},
{
”span near”: {
”clauses”: relation clauses,
”slop”: 0,
”in order”: True
}
},
{
”span near”: {
”clauses”: effect clauses,
”slop”: 0,
”in order”: True
}
}
],
”slop”: 32, # window size
”in order”: True
}
}

Table 4: ”event A”⇒ ”causes”⇒ ”event B” query for WIMBD.

Annotation Steps. Below is suggested annotation steps to annotators.

1. 1. Read the Scenario Carefully: Each scenario provides a specific context. Understand the
details and implications of the scenario.

2. 2. Review the Question: Each question asks you to assess the likelihood of a causal relation
occurring, given the provided scenario.
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Correct causal relations Reverse causal relations Negation of causal relations
templates = [f”cause causes effect.”,
f”effect is caused by cause.”,
f”cause leads to effect.”,
f”cause results in effect.”,
f”cause triggers effect.”,
f”effect is triggered by cause.”,
f”cause induces effect.”,
f”cause influences effect.”,
f”effect is influenced by cause.”,
f”cause affects effect.”,
f”effect is affected by cause.”,
f”cause impacts effect.”,
f”cause is impacted by effect.”,
f”cause is responsible for effect.”,
f”cause is the reason for effect.”,
f”The effect of cause is effect.”,
f”The result of cause is effect.”,
f”The consequence of cause is effect.”,
f”effect is a consequence of cause.”,
f”effect is a result of cause.”,
f”effect is an effect of cause.”, ]

templates = [f”effect causes cause.”,
f”cause is caused by effect.”,
f”effect leads to cause.”,
f”effect results in cause.”,
f”effect triggers cause.”,
f”cause is triggered by effect.”,
f”effect induces cause.”,
f”effect influences cause.”,
f”cause is influenced by effect.”,
f”effect affects cause.”,
f”cause is affected by effect.”,
f”effect impacts cause.”,
f”effect is impacted by cause.”,
f”effect is responsible for cause.”,
f”effect is the reason for cause.”,
f”The effect of effect is cause.”,
f”The result of effect is cause.”,
f”The consequence of effect is cause.”,
f”cause is a consequence of effect.”,
f”cause is a result of effect.”,
f”cause is an effect of effect.”, ]

templates = [ f”cause does not cause effect.”,
f”effect is not caused by cause.”,
f”cause does not lead to effect.”,
f”cause does not result in effect.”,
f”cause does not trigger effect.”,
f”effect is not triggered by cause.”,
f”cause does not induce effect.”,
f”cause does not influence effect.”,
f”effect is not influenced by cause.”,
f”cause does not affect effect.”,
f”effect is not affected by cause.”,
f”cause does not impact effect.”,
f”cause is not impacted by effect.”,
f”cause is not responsible for effect.”,
f”cause is not the reason for effect.”,
f”The effect of cause is not effect.”,
f”The result of cause is not effect.”,
f”The consequence of cause is not effect.”,
f”effect is not a consequence of cause.”,
f”effect is not a result of cause.”,
f”effect is not an effect of cause.”,]

Table 5: Templates for creating mentions of imaginary causal relations and anti-causal relations.

Prompt for generating contexts of causal relations
List five scenarios where ’cause’ causes ’effect’. Then, list five scenarios where ’cause’ does not cause ’effect’.
Each scenario should be distinctly and clearly described, categorized under the respective headings.
Response Format:
Scenarios where ’cause’ causes ’effect’:
Heading:
Description:
Reason:
...
Scenarios where ’cause’ does not cause ’effect’:
Heading:
Description:
Reason:
...

Table 6: Prompt for generating contexts of causal relations.

3. 3. Select the Appropriate Answer: Based on your understanding of the scenario, select the
probability range that best represents the likelihood of the stated causal relation occurring.

For each question, we have below options

• 100%: The causal relation definitely occurs.

• 81-99%: The causal relation almost certainly occurs.

• 51-80%: The causal relation is likely to occur.

• 50%: The causal relation has 50

• 20-49%: The causal relation somewhat likely to occur.

• 1-19%: The causal relation rarely occurs.

• 0%: The causal relation never occurs.

• The scenario does not make sense. If the scenario contradicts common sense or could not
occur in the real world or it is not a scenario at all, please select this option.

Annotation Examples. In Table 7, we show some annotation examples to help annotators have a
better understanding of this task.

Acceptance Policy. We will only reject a job if there is clear evidence of malicious behavior, such
as random clicking, which suggests non-compliance with task guidelines.
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Annotation examples
###relation–91###
Question: to what extent do you think ’soaking in a hotspring’ causes ’relaxation’?
81-99%
Reason: The warm water of a hot spring helps to raise the body’s temperature,
which can relax muscle tension and soothe aches and pains in the joints and muscles.
This physical relaxation naturally leads to mental relaxation.
###relation–91###
Scenario — High water temperature:
The water temperature in the hotspring is excessively hot, making the individual feel uncomfortable.

Answer the following question ONLY based on information described in above scenario and your common sense.
Question: under above scenario, to what extent do you think ’soaking in a hotspring’ causes ’relaxation’?
1-19%
Reason: Uncomfortably high temperatures can cause overheating, dizziness, or discomfort, preventing relaxation.
###relation–96###
Scenario — Entertaining Friends:
During a casual get-together with friends, you crack jokes and everyone bursts into laughter.

Answer the following question ONLY based on information described in above scenario and your common sense.
Question: under above scenario, to what extent do you think ’making people laugh’ causes ’you have fun too’?
81-99%
Reason: The shared joy and camaraderie among friends create a fun and enjoyable atmosphere.

Table 7: Examples of causal relation evaluation under different contexts.

Privacy Policy. Our primary objective is to process and publish only anonymized data. We will
not publish your name, email address, or any other personal information. If you have concerns about
how we handle your personal data, please contact the project manager.

B MORE EXPERIMENT RESULTS

B.1 EVALUATING BOTH OPEN- AND CLOSED-SOURCE LLMS ON CAUSAL DISCOVERY TASKS.

Causal questions indicate both causal direction identification task and causal discovery task.
Kıcıman et al. (2023); Zečević et al. (2023); Feng et al. (2024); Jiralerspong et al. (2024) have re-
ported that closed-source LLMs (e.g., GPT-3.5-turbo, GPT-4) achieve state-of-the-art performance
in causal direction identification task and causal discovery tasks. However, their analyses predomi-
nantly focus on specific closed-source models and offer a limited examination of open-source LLMs.
In this section, we employ closed-source and open-source LLMs to conduct causal relation identifi-
cation and causal discovery tasks. We aim to compare and analyze the performance disparities when
utilizing different models. Table 8, 9, 10, 11, 12 and 13 show the results of causal discovery ex-
periments on the Arctic Sea Ice, Insurance, Alcohol, Cancer, Diabetes, and Obesity causal graphs.
Table 14 and 15 show the results of causal direction identification tasks on the ConceptNet and
CauseNet datasets.

We employ the Normalized Hamming Distance (NHD) as one metric for full causal discovery. A
notable issue with NHD is that due to the typically sparse nature of causal graphs, models that predict
no edges can still achieve a low NHD. This setup inadvertently penalizes models that predict a larger
number of edges, even true edges may be predicted. To address this, following the methodologies
outlined by Kıcıman et al. (2023) and Jiralerspong et al. (2024), we calculate the ratio between the
NHD and the baseline NHD of a model that outputs the same number of edges but with all of them
being incorrect. The lower the ratio, the better the model performs compared to the worst baseline
that outputs the same number of edges. Therefore, we report NHD ratio (i.e., NHD / baseline
NHD), along with the number of predicted edges, to provide a more comprehensive evaluation of
model performance in the full causal discovery task.

Due to the transparency of OLMo-7b-Instruct and the robust capabilities of its search tool, OLMo-
7b-Instruct serves as our primary analysis model. Therefore, we explored various numbers of in-
context learning examples to identify the optimal example number. In seven out of eight datasets,
OLMo-7b-Instruct with three demonstration examples achieves the highest F1, compared to other
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numbers of demonstration examples tested. Therefore, to ensure a fair comparison, other LLMs also
utilized three demonstration examples for in-context learning.

Considering all LLMs, GPT-4o outperforms others in six of the eight datasets evaluated, specif-
ically Arctic Sea Ice, Insurance, Alcohol, Obesity, ConceptNet, and CauseNet. In the remaining
two datasets, Cancer and Diabetes, GPT-4o ranks as the second-best model, with only a slight per-
formance differential from the top model. These experiment results show that GPT-4o is the most
effective model for causal discovery and causal direction identification tasks in both closed- and
open-source models. Among open-source models exclusively, Llama3-8b-Instruct excels, achieving
the highest F1 scores in six datasets: Insurance, Alcohol, Cancer, Diabetes, Obesity, and CauseNet.
Meanwhile, Llama2-7b-chat achieves the highest F1 in two datasets, Arctic Sea Ice and Obesity.
In the ConceptNet dataset, OLMo-7b-Instruct, configured with three in-context learning examples,
records the best F1 score.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.4259 0.5 0.46 0.625 54 0.375 0.6944 0.54
OLMo-7b-Instruct (1 ICL) 0.3928 0.4782 0.4314 0.5972 56 0.4027 0.7083 0.5686
OLMo-7b-Instruct (2 ICL) 0.4615 0.1304 0.2034 0.6736 13 0.3263 0.4097 0.7966
OLMo-7b-Instruct (3 ICL) 0.5555 0.1087 0.1818 0.6875 9 0.3125 0.3819 0.8181
OLMo-7b-Instruct (4 ICL) 0.5417 0.2826 0.3714 0.6944 24 0.3055 0.4861 0.6285
BLOOM-7b1 (3 ICL) 0.3934 0.5217 0.4485 0.5902 61 0.4097 0.7430 0.5514
Llama2-7b-chat (3 ICL) 0.4444 0.5217 0.48 0.6388 54 0.3611 0.6944 0.52
Llama3-8b-Instruct (3 ICL) 1.0 0.1956 0.3272 0.7430 9 0.2569 0.3819 0.6727
GPT-3.5-turbo (3 ICL) 0.7647 0.2826 0.4126 0.7431 17 0.2569 0.4375 0.5873
GPT-4o (3 ICL) 0.5178 0.6304 0.5686 0.6944 56 0.3055 0.7083 0.4313

Table 8: Causal discovery results for the Arctic Sea Ice causal graph, with 12 nodes and 46 edges.
GPT-4o surpasses all competing models, achieving an F1 score of 0.5686 and an NHD ratio of
0.4313. The second-best performing model is an open-source LLM, Llama2-7b-chat. (# ICL) indi-
cates the number of demonstration examples for in-context learning.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.0873 0.7692 0.1568 0.4101 458 0.5898 0.6995 0.8431
OLMo-7b-Instruct (1 ICL) 0.0963 0.9038 0.1740 0.3882 488 0.6117 0.7407 0.8259
OLMo-7b-Instruct (2 ICL) 0.0901 0.5961 0.1565 0.5418 344 0.4581 0.5432 0.8434
OLMo-7b-Instruct (3 ICL) 0.1254 0.6731 0.2114 0.6419 279 0.3580 0.4540 0.7885
OLMo-7b-Instruct (4 ICL) 0.1093 0.7884 0.1920 0.5267 375 0.4732 0.5857 0.8079
BLOOM-7b1 (3 ICL) 0.0710 0.7115 0.1291 0.3155 521 0.6844 0.7860 0.8708
Llama2-7b-chat (3 ICL) 0.1245 0.7115 0.2120 0.6227 297 0.3772 0.4787 0.7879
Llama3-8b-Instruct (3 ICL) 0.2656 0.3269 0.2931 0.8875 64 0.1124 0.1591 0.7069
GPT-3.5-turbo (3 ICL) 0.1575 0.5 0.2396 0.7736 165 0.2263 0.2976 0.7603
GPT-4o (3 ICL) 0.2287 0.6730 0.3414 0.8148 153 0.1851 0.2812 0.6585

Table 9: Causal discovery results for the Insurance causal graph, with 27 nodes and 52 edges. GPT-
4o surpasses all competing models, achieving an F1 score of 0.3414 and an NHD ratio of 0.6585.
The second-best performing model is an open-source LLM, Llama3-8b-Instruct.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.5 1.0 0.6667 0.6667 6 0.3333 1.0 0.3333
OLMo-7b-Instruct (1 ICL) 0.6 1.0 0.75 0.7778 5 0.2222 0.8889 0.25
OLMo-7b-Instruct (2 ICL) 0.5 1.0 0.6667 0.6667 6 0.3333 1.0 0.3333
OLMo-7b-Instruct (3 ICL) 0.6 1.0 0.75 0.7778 5 0.2222 0.8889 0.25
OLMo-7b-Instruct (4 ICL) 0.6 1.0 0.75 0.7778 5 0.2222 0.8889 0.25
BLOOM-7b1 (3 ICL) 0.5 1.0 0.6667 0.6667 6 0.3333 1.0 0.3333
Llama2-7b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama3-8b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-4o (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0

Table 10: Causal discovery results for the Alcohol causal graph, with 3 nodes and 3 edges. Llama3-
8b-Instruct, GPT-3.5-turbo, and GPT-4 accurately predict the ground-truth causal graph. The
second-best performing model is Llama2-7b-chat.

B.2 DO PRE-TRAINING CORPORA CONTAIN MORE CORRECT CAUSAL RELATIONS?

Given the effective performance of LLMs on causal discovery tasks, a pertinent research question
arises: Why can LLMs perform so well? We posit that a significant factor is the nature of the pre-
training data, which contains more correct causal relations than incorrect ones, leading LLMs to
primarily memorize correct causal relations.
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Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0 0.4375
OLMo-7b-Instruct (1 ICL) 0.4 0.8 0.5333 0.5625 10 0.4375 0.9375 0.4667
OLMo-7b-Instruct (2 ICL) 0.5 0.8 0.6153 0.6875 8 0.3125 0.8125 0.3846
OLMo-7b-Instruct (3 ICL) 0.5714 0.8 0.6667 0.75 7 0.3125 0.9375 0.3333
OLMo-7b-Instruct (4 ICL) 0.5 1.0 0.6667 0.6875 10 0.3125 0.9375 0.3333
BLOOM-7b1 (3 ICL) 0.4 0.4 0.4 0.625 5 0.375 0.625 0.6
Llama2-7b-chat (3 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0 0.4375
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-3.5-turbo (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-4o (3 ICL) 0.8 0.8 0.8 0.875 5 0.125 0.625 0.2

Table 11: Causal discovery results for the Cancer causal graph, with 4 nodes and 5 edges. Llama3-
8b-Instruct and GPT-3.5-turbo surpass all other models. The second-best performing model is GPT-
4o.

Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0625 0.4117
OLMo-7b-Instruct (1 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0625 0.4117
OLMo-7b-Instruct (2 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0625 0.4117
OLMo-7b-Instruct (3 ICL) 0.5 1.0 0.6666 0.6875 10 0.3125 0.9375 0.3333
OLMo-7b-Instruct (4 ICL) 0.4545 1.0 0.625 0.625 11 0.375 1.0 0.375
BLOOM-7b1 (3 ICL) 0.4285 0.6 0.5 0.625 7 0.375 0.75 0.5
Llama2-7b-chat (3 ICL) 0.5556 1.0 0.7142 0.75 9 0.25 0.875 0.2857
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 5 0 0.625 0
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Table 12: Causal discovery results for the Diabetes causal graph, with 4 nodes and 5 edges. GPT-
3.5-turbo accurately predict the ground-truth causal graph. The second-best performing model is
GPT-4o.

Research Question 4. Do pre-training corpora contain more correct causal relations than incorrect
ones?

Humans fundamentally rely on causal relations to understand and generate text. Therefore, it is
reasonable that pre-training corpora, which are collected from human-generated texts, are likely to
inherently contain a higher proportion of correct causal relations.

Observation We count the total occurrence of correct and incorrect causal relations in Dolma and
ROOTS corpora. The results are shown in Table 16. We use exact matching to count correct and
incorrect causal relations. We observe that the occurrence of causal relations is, on average, 12 times
higher than that of incorrect causal relations in Dolma and ROOTS corpora. From our observation,
most incorrect causal relations do not exist in an affirmation context. They are usually in a question
or negation context. For example, ”Which option is correct? A. smoking causes cancer B. cancer
causes smoking” or ”Which means that either smoking causes cancer or cancer causes smoking. ”

Discussion In conclusion, these experimental results show that correct causal relations are more
frequently represented than incorrect ones in pre-training corpora. This also explain why LLMs can
identify many causal relations in causal discovery tasks.

B.3 INFLUENCE OF MODEL SIZE ON LLMS’ PERFORMANCE IN CAUSAL DISCOVERY TASKS

Research Question 5. Do larger models perform better on causal discovery tasks?

We assume that within the same architectural framework, increasing the model size (i.e., the number
of parameters) leads to improved performance on causal discovery tasks. The rationale is that larger
models can memorize more information from the pre-training data than their smaller models.

Observation We select models from the Llama2 and Llama3 series, each varying in size. These
models are evaluated on causal discovery and causal direction identification tasks, with results doc-
umented in Table 17 and 18. The findings indicate that for both the Llama2 and Llama3 models,
there is a positive correlation between the number of parameters and performance. However, dis-
crepancies arise when comparing across architectures. For example, a small Llama3 model (e.g.,
Llama3-8b-Instruct) can outperform a significantly larger Llama3 model (e.g., Llama2-70b-chat).
Notably, across most datasets, Llama3-70b-Instruct either matches or surpasses the performance of
the currently leading closed-source LLM, GPT-4o.
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Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges (46) NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓
OLMo-7b-Instruct (0 ICL) 0.5714 0.8 0.6666 0.75 7 0.3125 0.9375 0.3333
OLMo-7b-Instruct (1 ICL) 0.5 1.0 0.6666 0.6875 10 0.3125 0.9375 0.3333
OLMo-7b-Instruct (2 ICL) 0.5555 1.0 0.7142 0.75 9 0.25 0.875 0.2857
OLMo-7b-Instruct (3 ICL) 0.8 0.8 0.8 0.875 5 0.125 0.625 0.2
OLMo-7b-Instruct (4 ICL) 0.5555 1.0 0.7142 0.75 9 0.25 0.875 0.2857
BLOOM-7b1 (3 ICL) 0.4444 0.8 0.5714 0.625 9 0.375 0.875 0.4285
Llama2-7b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama3-8b-Instruct (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-3.5-turbo (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Table 13: Causal discovery results for the Obesity causal graph, with 4 nodes and 5 edges. Llama2-
7b-chat, Llama3-8b-Instruct, GPT-3.5-turbo and GPT-4o outperform all other models. The second-
best performing method is OLMo-7b-Instruct (3 ICL).

Precision↑ Recall↑ F1↑ Accuracy↑
OLMo-7b-Instruct (0 ICL) 0.5482 0.8831 0.6765 0.5778
OLMo-7b-Instruct (1 ICL) 0.5491 0.8184 0.6573 0.5734
OLMo-7b-Instruct (2 ICL) 0.5771 0.7825 0.6643 0.6047
OLMo-7b-Instruct (3 ICL) 0.6612 0.8427 0.7410 0.7053
OLMo-7b-Instruct (4 ICL) 0.5294 0.8721 0.6589 0.5486
BLOOM-7b1 (3 ICL) 0.5027 0.7248 0.5937 0.5041
Llama2-7b-chat (3 ICL) 0.6197 0.7774 0.6897 0.6503
Llama3-8b-Instruct (3 ICL) 0.7659 0.6575 0.7076 0.7282
GPT-3.5-turbo (3 ICL) 0.6732 0.7308 0.7008 0.6891
GPT-4o (3 ICL) 0.8141 0.8342 0.8240 0.8224

Table 14: Causal direction identification results on the ConceptNet dataset, with 1900 causal rela-
tions and 1900 reverse causal relations. GPT-4o outperforms all competing methods, achieving an
F1 score of 0.8240. The second-best performing method is OLMo-7b-Instruct (3 ICL), with an F1
score of 0.7410.

Discussion The experiment results lead to a critical consideration of the ’bigger is better’ paradigm
in LLM research. Future research should thus not only focus on scaling up the size but also on
refining the architecture and learning algorithms to better leverage increased model capacity.
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Precision↑ Recall↑ F1↑ Accuracy↑
OLMo-7b-Instruct (0 ICL) 0.5461 0.9657 0.6977 0.5815
OLMo-7b-Instruct (1 ICL) 0.5359 0.9606 0.6881 0.5644
OLMo-7b-Instruct (2 ICL) 0.5610 0.9091 0.6938 0.5988
OLMo-7b-Instruct (3 ICL) 0.6568 0.8771 0.7511 0.7094
OLMo-7b-Instruct (4 ICL) 0.5860 0.9410 0.7223 0.6382
BLOOM-7b1 (3 ICL) 0.5067 0.6928 0.5853 0.5092
Llama2-7b-chat (3 ICL) 0.7030 0.8931 0.7867 0.7582
Llama3-8b-Instruct (3 ICL) 0.8838 0.8296 0.8558 0.8602
GPT-3.5-turbo (3 ICL) 0.8990 0.8857 0.8923 0.8931
GPT-4o (3 ICL) 0.8596 0.9557 0.9051 0.8998

Table 15: Causal direction identification results on the CauseNet dataset, with 814 causal relations
and 814 reverse causal relations. GPT-4o outperforms all competing methods, achieving an F1 score
of 0.9051. The second-best performing method is GPT-3.5-turbo, with an F1 score of 0.8923.

Correct Causal Relations Incorrect Causal Relations

Causal Discovery (all datasets) Dolma 28812 1127
ROOTS 814 118

Causal Direction Identification (ConceptNet) Dolma 41407 3410
ROOTS 1176 131

Causal Direction Identification (CauseNet) Dolma 949427 107070
ROOTS 24591 4236

Table 16: Occurrences of correct and incorrect causal relations in the Dolma and ROOTS corpora.

Arctic Sea Ice
Precision↑ Recall↑ F1↑ Accuracy↑ Predict edges NHD↓ Baseline NHD Ratio (NHD/Baseline NHD)↓

Llama2-7b-chat (3 ICL) 0.4444 0.5217 0.48 0.6388 54 0.3611 0.6944 0.52
Llama2-13b-chat (3 ICL) 0.4478 0.6522 0.5309 0.6319 67 0.3681 0.7847 0.4690
Llama2-70b-chat (3 ICL) 0.3606 0.9565 0.5238 0.4444 122 0.5556 1.0 0.5556
Llama3-8b-Instruct (3 ICL) 1.0 0.1956 0.3272 0.7430 9 0.2569 0.3819 0.6727
Llama3-70b-Instruct (3 ICL) 0.5689 0.7174 0.6346 0.7361 58 0.2639 0.7222 0.3653
GPT-3.5-turbo (3 ICL) 0.7647 0.2826 0.4126 0.7431 17 0.2569 0.4375 0.5873
GPT-4o (3 ICL) 0.5178 0.6304 0.5686 0.6944 56 0.3055 0.7083 0.4313

Insurance
Llama2-7b-chat (3 ICL) 0.1245 0.7115 0.2120 0.6227 297 0.3772 0.4787 0.7879
Llama2-13b-chat (3 ICL) 0.1338 0.7307 0.2262 0.6433 284 0.3566 0.4609 0.7738
Llama2-70b-chat (3 ICL) 0.1619 0.7692 0.2675 0.6995 247 0.3004 0.4102 0.7324
Llama3-8b-Instruct (3 ICL) 0.2656 0.3269 0.2931 0.8875 64 0.1124 0.1591 0.7069
Llama3-70b-Instruct (3 ICL) 0.2183 0.5961 0.3195 0.8189 142 0.1811 0.2661 0.6804
GPT-3.5-turbo (3 ICL) 0.1575 0.5 0.2396 0.7736 165 0.2263 0.2976 0.7603
GPT-4o (3 ICL) 0.2287 0.6730 0.3414 0.8148 153 0.1851 0.2812 0.6585

Alcohol
Llama2-7b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama2-13b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama2-70b-chat (3 ICL) 0.75 1.0 0.8571 0.8889 4 0.1111 0.7778 0.1429
Llama3-8b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
Llama3-70b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0
GPT-4o (3 ICL) 1.0 1.0 1.0 1.0 3 0 0.6667 0

Cancer
Llama2-7b-chat (3 ICL) 0.4166 1.0 0.5882 0.5625 12 0.4375 1.0 0.4375
Llama2-13b-chat (3 ICL) 0.5556 1.0 0.7143 0.75 9 0.25 0.875 0.2857
Llama2-70b-chat (3 ICL) 0.5556 1.0 0.7143 0.75 9 0.25 0.875 0.2857
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
Llama3-70b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-3.5-turbo (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
GPT-4o (3 ICL) 0.8 0.8 0.8 0.875 5 0.125 0.625 0.2

Diabetes
Llama2-7b-chat (3 ICL) 0.5556 1.0 0.7142 0.75 9 0.25 0.875 0.2857
Llama2-13b-chat (3 ICL) 0.625 1.0 0.7692 0.8125 8 0.1875 0.8125 0.2307
Llama2-70b-chat (3 ICL) 0.625 1.0 0.7692 0.8125 8 0.1875 0.8125 0.2307
Llama3-8b-Instruct (3 ICL) 1.0 0.8 0.8889 0.9375 4 0.0625 0.5625 0.1111
Llama3-70b-Instruct (3 ICL) 1.0 1.0 1.0 1.0 5 0 0.625 0
GPT-3.5-turbo (3 ICL) 1.0 1.0 1.0 1.0 5 0 0.625 0
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Obesity
Llama2-7b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama2-13b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama2-70b-chat (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama3-8b-Instruct (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
Llama3-70b-Instruct (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-3.5-turbo (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909
GPT-4o (3 ICL) 0.8333 1.0 0.9091 0.9375 6 0.0625 0.6875 0.0909

Table 17: Performance on causal discovery task using Llama2 and Llama3 models of different sizes.
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ConceptNet
Precision↑ Recall↑ F1↑ Accuracy↑

Llama2-7b-chat (3 ICL) 0.6197 0.7774 0.6897 0.6503
Llama2-13b-chat (3 ICL) 0.6010 0.8605 0.7077 0.6647
Llama2-70b-chat (3 ICL) 0.6384 0.8742 0.7380 0.6897
Llama3-8b-Instruct (3 ICL) 0.7659 0.6575 0.7076 0.7283
Llama3-70b-Instruct (3 ICL) 0.8555 0.8253 0.8401 0.8430
GPT-3.5-turbo (3 ICL) 0.6732 0.7308 0.7008 0.6891
GPT-4o (3 ICL) 0.8141 0.8342 0.8240 0.8224

CauseNet
Precision↑ Recall↑ F1↑ Accuracy↑

Llama2-7b-chat (3 ICL) 0.7030 0.8931 0.7867 0.7582
Llama2-13b-chat (3 ICL) 0.6625 0.9213 0.7708 0.7260
Llama2-70b-chat (3 ICL) 0.7359 0.9521 0.8302 0.8053
Llama3-8b-Instruct (3 ICL) 0.8838 0.8296 0.8558 0.8602
Llama3-70b-Instruct (3 ICL) 0.8939 0.9423 0.9175 0.9152
GPT-3.5-turbo (3 ICL) 0.8990 0.8857 0.8923 0.8931
GPT-4o (3 ICL) 0.8596 0.9557 0.9051 0.8998

Table 18: Performance on causal direction identification task using Llama2 and Llama3 models of
different sizes.
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