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Abstract
Data valuation quantifies the contribution of each
data point to the performance of a machine learn-
ing model. Existing works typically define the
value of data by its improvement of the validation
performance of the trained model. However, this
approach can be impractical to apply in collab-
orative machine learning and data marketplace
since it is difficult for the parties/buyers to agree
on a common validation dataset or determine the
exact validation distribution a priori. To address
this, we propose a distributionally robust data val-
uation approach to perform data valuation with-
out known/fixed validation distributions. Our ap-
proach defines the value of data by its improve-
ment of the distributionally robust generalization
error (DRGE), thus providing a worst-case per-
formance guarantee without a known/fixed val-
idation distribution. However, since computing
DRGE directly is infeasible, we propose using
model deviation as a proxy for the marginal im-
provement of DRGE (for kernel regression and
neural networks) to compute data values. Further-
more, we identify a notion of uniqueness where
low uniqueness characterizes low-value data. We
empirically demonstrate that our approach outper-
forms existing data valuation approaches in data
selection and data removal tasks on real-world
datasets (e.g., housing price prediction, diabetes
hospitalization prediction).

1. Introduction
In machine learning (ML), data is essential to obtaining
good learning performance. Data valuation (Jia et al., 2019;
Ghorbani & Zou, 2019; Ghorbani et al., 2020; Sim et al.,
2020) is introduced to quantify the contribution (i.e., value)
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of each data point to the model performance. The resul-
tant data values are useful in many ways. For example,
in data marketplaces (Yu & Zhang, 2017; Agarwal et al.,
2019), data values can be used to price data. In collabora-
tive machine learning (CML), data values can be used to
determine the participating parties’ contributions to the col-
laboration/training and fairly reward them (e.g., monetary
rewards) (Sim et al., 2020; Wang et al., 2020; Lin et al.,
2024). Data valuation also finds applications in explainable
machine learning (e.g., dataset debugging) (Koh & Liang,
2017) and active learning (Ghorbani et al., 2021). Of note,
existing works (Ghorbani & Zou, 2019; Jia et al., 2019;
Kwon & Zou, 2021; Wang & Jia, 2023) typically define
the value of data based on its improvement of validation
performance.

However, using the performance on a specific validation
dataset for data valuation can be impractical in some cases.
Specifically, in CML and data marketplace, ensuring all
parties/buyers agree on the same validation dataset is diffi-
cult since they usually have heterogeneous local data and
validation distributions (Li et al., 2021; Xu et al., 2021).
For instance, hospitals collaboratively collect data to train
a model for hospitalization prediction. The value of each
dataset (from different hospitals) depends on the unknown
distribution of future model users (Walker, 2015; Tu et al.,
2022), as new hospitals with varying local validation dis-
tributions may join later. Therefore, valuing data based
on a specific validation dataset can misrepresent the data’s
value on the validation distribution of such a hospital that
joins later. Separately, in data marketplaces (e.g., AWS Data
Exchange (Amazon, 2023)), sellers need to price the data be-
fore knowing exactly who the buyers are (Just et al., 2023),
meaning the sellers do not know the local validation distri-
butions of these buyers a priori (i.e., no known validation
distribution). In this scenario, existing approaches that re-
quire a known validation distribution (Jia et al., 2019; Wang
et al., 2021; Wu et al., 2022) cannot be applied. The core
question is: What perspective should we take to value data
without a fixed and known validation dataset/distribution?

Although without a known/fixed validation distribution, it
is still desirable if the data values can indicate some perfor-
mance guarantee. Specifically, the buyers in the data market-
place (or parties in CML) are still interested in how the data
can benefit them in improving the model performance on
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their respective local data (i.e., higher data value indicates
the data point can lead to higher performance improvement).
Fortunately, we can draw a parallel to distributionally ro-
bust optimization (Hu et al., 2018; Staib & Jegelka, 2019;
Rahimian & Mehrotra, 2019) where an ML model is trained
to minimize the worst-case performance over an uncertainty
set of validation distributions defined as an ε-ball around a
reference distribution. In our scenario where sellers must
price data without knowing the validation distribution, we
define a data value using the distributionally robust general-
ization error (DRGE), namely the worst-case performance
under a set of distributions. Consequently, if the valida-
tion distribution of one buyer is within the uncertainty set,
the validation performance is guaranteed to be better than
DRGE. This definition means that we evaluate the value of
data points based on how much they improve over DRGE,
which can thus indicate the (lower bound of) performance
improvement for a potential buyer if the buyer’s validation
distribution is within the uncertainty set.

Despite the appeal, unfortunately, it is difficult to use di-
rectly DRGE as the so-called utility function for data valua-
tion due to the lack of an analytical form for DRGE (Sec. 2).
Fortunately, in data valuation, the analytic form of the util-
ity function (i.e., DRGE) is often not needed; instead the
marginal improvement of the utility function (i.e., DRGE) is
sufficient. Specifically, existing data valuation approaches
(Jia et al., 2019; Ghorbani & Zou, 2019; Kwon & Zou, 2021)
using leave-one-out (LOO), Shapley value, or semivalue,
all compute data values via a weighted average of marginal
improvements of the utility function. For example, LOO
uses the marginal improvement of utility gained by adding
a data point to the rest of the dataset. Therefore, knowing
the marginal improvement of a data point w.r.t. the speci-
fied utility function is sufficient to compute the data values.
Based on this observation, we adopt the model deviation as
the proxy for the marginal improvement of a data point on
DRGE. Model deviation quantifies the discrepancy between
a model trained on a dataset without a specific data point
and one trained on the complete dataset, including that point.
We leverage the reproducing kernel Hilbert space (RKHS)
to formalize model deviation for kernel-based algorithms.

As a result, our approach’s definition of model deviation
requires RKHS models, making it difficult to apply to non-
RKHS ones, in particular neural networks (NNs), which are
widely used in CML and data marketplaces (McMahan et al.,
2017; Wu et al., 2022). To resolve this difficulty, we utilize
the neural tangent kernel (NTK) theory to define and effi-
ciently compute model deviation for NN. Specifically, we
leverage a theoretical connection between the predictions of
a wide NN and a kernel regression with NTK (Arora et al.,
2019) to show that the model deviation computed with NTK
is a suitable proxy for the marginal improvement of DRGE
of NN. By incorporating DRGE and model deviation, we in-

troduce the distributionally robust data valuation framework
to answer the core question earlier. That is, when a fixed
and known validation dataset is not available, we adopt the
DRGE to define the value of data. Due to the computational
intractability of DRGE, we use model deviation to compute
data values. We demonstrate that model deviation is an ap-
propriate proxy for the marginal improvement of DRGE in
the context of a kernel-based algorithm, which is sufficient
for data valuation. Moreover, we leverage the NTK theory
to extend the result to NN and propose a computationally
efficient approach to compute model deviation, thus mak-
ing our approach more widely applicable (than only RKHS
models). Interestingly, a notion of uniqueness arises from
our framework that characterizes what data points lead to
low model deviation and thus low data value.

To summarize, we have the following contributions:

• Defining a distributionally robust generalization error
to provide a novel perspective of data valuation without
known or fixed validation distributions.

• Proposing model deviation as a proxy for the marginal im-
provement of DRGE to resolve the intractability of DRGE
in computing data value for kernel-based algorithms.

• Leveraging the NTK theory to show that model deviation
with NTK can be a proxy for marginal improvement of
DRGE of NN and proposing an approach to compute
model deviation efficiently.

• Identifying a notion of uniqueness that consists of scarcity
and dissimilarity. Lower scarcity or dissimilarity leads to
lower uniqueness, model deviation, and data value.

• Empirically demonstrating that our approach outperforms
other data valuation approaches in applications of data
values, specifically in data removal and subset selection.

2. Setting and Preliminaries
Data valuation. We consider the supervised learning set-
ting and denote data by x ∈ X ⊆ Rd. Each data has a label
y ∈ Y , obtained from a labeling function f∗ : X → Y
(i.e., the true label for x is f∗(x)). Denote N := {1, . . . , n}
and a training dataset DN := {zj = (xj , yj)}nj=1 where
{xj}nj=1 are i.i.d. sampled from the sampling distribution P
defined on X . Denote S ⊆ N and its corresponding dataset
DS := {(xj , yj); j ∈ S}.

Existing works (Ghorbani & Zou, 2019; Jia et al., 2019;
Kwon & Zou, 2021; Wang & Jia, 2023) define the data value
for data point zi as the weighted average of the marginal
improvements of the data point when added to different data
subsets, such as LOO, Shapley value, and Banzhaf value.
Formally, the marginal improvement of the data point zi to
the data subset DS ⊆ DN \ {zi} is defined as:

∆i,S := U(S ∪ {i})− U(S) (1)
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where U : 2N → R is the utility function that quantify the
utility of DS . Most data valuation works define U(S) as
the validation performance (Jia et al., 2019; Kwon & Zou,
2021; Wu et al., 2022) (w.r.t. a validation distribution) of
the model trained on DS . The data value of zi is defined as
follows:

φi :=
∑

S⊆N\{i} w(S)∆i,S (2)

where w : 2N → R is the function that gives a weight to
each set S. LOO specifies the w(S) = 1(S = N \ {i}),
Shapley value specifies w(S) = |S|!(n− |S| − 1)!/n! , and
Banzhaf value specifies w(S) = 1/2n−1 .

Kernel-based algorithms. Denote H as an RKHS
with inner product defined as ⟨·, ·⟩H and norm as
∥ · ∥H =

√
⟨·, ·⟩H. Denote a mapping function

Φ : X 7→ H and a kernel function K : X × X → R
such that K(x1, x2) = ⟨Φ(x1),Φ(x2)⟩H. We use
HK to denote the RKHS associated with kernel
K when a kernel is specified. A kernel-based al-
gorithm can be cast as the minimization problem
argminf∈HK

∑
(xi,yi)∈DS

ℓ
(
f(xi), yi

)
+G(∥f∥HK

)
where ℓ is the loss function and G is the regu-
larization function. As an example, for kernel
ridge regression: ℓ

(
f(xi), yi

)
= (1/2)

(
f(x)i − yi

)2
and G(∥f∥HK

) = (1/2)λ∥f∥2HK
where λ is the

regularization parameter. The minimization prob-
lem for kernel ridge regression has a closed-form
solution fS =

(
(KS + λI)−1YS

)⊤
K(XS , ·),

where KS is the kernel matrix with [KS ]j,k =
K(xj , xk),∀xj , xk ∈ DS and YD = [y1, . . . , y|DS |]

⊤

and K(XS , ·) = [K(x1, ·)⊤, . . . ,K(x|DS |, ·)⊤]⊤. We
further denote KS,S∪{i} as the kernel matrix with
[KS,S∪{i}]j,k = K(xj , xk),∀xj ∈ DS , xk ∈ DS∪{i}.

Neural tangent kernel (NTK). Define a fully-connected
NN f parameterized by θ as follows,

f (m)(x) := W (m)g(m−1)(x) ∈ Rdm ,

g(m)(x) :=
√
cσ/dmσ

(
f (m)(x)

)
∈ Rdm ,m = 1, . . . , LNN

where g0(x) = x and d0 is the input dimension.
The Wm ∈ Rdm×dm−1 is the weight matrix in the
m-th layer and σ(·) is the activation function, cσ =
(Ez∼N (0,1)[σ(z)

2])−1. The output of the NN is f(x) :=

W (LNN+1)g(LNN)(x). Each NN parameter is initialized
with an i.i.d. sample from N (0, 1). Denote the initial-
ized θ as θ0. The NTK at initialization is defined as
Θ0(xi, xj) := ∇θ=θ0f(xi)

⊤∇θ=θ0f(xj) for xi, xj ∈ X
(Arora et al., 2019). As each of d1, . . . , dLNN

→ ∞, Θ0

will converge to a deterministic form Θ (namely the theoret-
ical NTK) (Lee et al., 2019). A fully trained infinite-width
NN with gradient descent is equivalent to kernel regression

predictor with Θ (Arora et al., 2019). Moreover, the differ-
ence between the outputs of a sufficiently wide finite-width
converged NN and kernel regression with Θ is small (Arora
et al., 2019). The NTK is also widely used in other settings,
e.g., active learning for NNs (Hemachandra et al., 2023; Lau
et al., 2024). Define NTK matrix ΘS similarly as kernel
matrix KS and denote HΘ as the RKHS of Θ.

3. Distributionally Robust Data Valuation
We present our data valuation approach for the setting of
no known/fixed validation distribution. We propose using
DRGE as the utility function and show that access to its
marginal improvement is sufficient for data valuation in
Sec. 3.1. In Sec. 3.2, we introduce model deviation as
a proxy for DRGE’s marginal improvement. In Sec. 3.3,
we extend the model deviation to NN using NTK theory
and provide an efficient closed-form computation of model
deviation.

3.1. Distributionally Robust Generalization Error

The empirical risk of a model f under one specific distri-
bution P is defined as Ex∼P

(
ℓ(f(x), f∗(x))

)
where ℓ is

the loss function. When the validation distribution is un-
known, the empirical risk of a specific distribution P is less
insightful since it does not reflect model performance when
validation distributions differ from P (Zhang et al., 2022),
motivating the following definition:
Definition 3.1. For a sampling distribution P , the distribu-
tionally robust generalization error (DRGE) is

R(f,Q) := supQ∈Q Ex∼Q

(
ℓ
(
f(x), f∗(x)

))
(3)

where Q := {Q : χ2(Q,P ) ≤ ε} is a set of distributions
defined on X in the ε-ball around P w.r.t. the χ2-divergence.
Specifically, χ2(Q,P ) :=

∫
x∈X

( q(x)
p(x) − 1

)2
p(x)dx where

p(x) and q(x) are probability density functions of distri-
butions P and Q respectively and we assume that Q is
absolutely continuous w.r.t. P .

Existing works (Wu et al., 2022; Just et al., 2023) assume
different buyers/parties have a common and fixed validation
distribution. We relax this assumption to that they have
possibly different validation distributions, but close to P .
Specifically, each of their validation distributions is within
ε χ2-divergence to P (i.e., in Q). Consequently, DRGE
is a worst-case performance of a model f w.r.t. all (valida-
tion) distributions in Q. We choose the χ2-divergence to
define Q here because it is applicable to real-world appli-
cations. Specifically, it measures the discrepancy between
the densities of different subregions in the two compared
distributions which is the discrepancy commonly seen in
data marketplace applications where buyers’ local data dis-
tribution is confined to some subregions due to the limited
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observations (e.g., having data only for a certain group of
users due to limited number of users in a company). Ad-
ditionally, the simple form of χ2-divergence is amenable
to our theoretical results later. More discussion on our
choice of χ2-divergence and definition of Q can be found in
Appendix A where we compare with other existing defini-
tions. Note that we can relax the Definition 3.1 to consider
non-deterministic labels (instead of the deterministic one
we have one) by replacing f∗(x) to E(y | x) and all our
theoretical results in the following sections will still hold.

Unfortunately, DRGE cannot be directly computed due to
the lack of access to distribution P and ε in Definition 3.1.
Fortunately, one key observation is that the exact DRGE is
not needed for data valuation. Specifically, by replacing the
utility function in Equ. (1) with UDR(DS) := −R(fS ,Q),
we define the following:

Definition 3.2. The distributionally robust data value is:

φDR
i := w(S)∆DR

i,S , ∆DR
i,S := R(fS ,Q)−R(fS∪{i},Q) .

From Definition 3.2, the data value φDR
i is only dependent

on the marginal improvement of DRGE ∆DR
i,S . Hence, being

able to compute the marginal improvement of DRGE is
sufficient for data valuation. We mainly consider the LOO
valuation scheme and hence φDR

i =
∑

S⊆N\{i} 1(S = N \
{i})∆DR

i,S . Note that our approach can be easily adapted to
other valuation schemes (i.e., Shapley value, Banzhaf value)
since they are all based on marginal improvements (see
Equ. (2)). More discussion on how our approach is related
to current data valuation approaches is in Appendix A.

3.2. Model Deviation as Proxy for Marginal
Improvement of DRGE

We define the model deviation of a data point zi w.r.t. a
dataset DS for models in RKHS H as ∥fS − fS∪{i}∥H
where fS = A(DS) for a kernel-based algorithm A. Then,
the difference of the prediction results of ∀x ∈ X is
bounded by the model deviation as |fS(x)− fS∪{i}(x)| ≤
∥Φ(x)∥H∥fS − fS∪{i}∥H. Hence, the model deviation es-
sentially measures the difference in the prediction results
of different functions, which is directly related to the per-
formance of the model. The following theorem shows that
model deviation can be a proxy for the marginal improve-
ment of DRGE. We denote n as the size of DS∪{i}.

Theorem 3.3 (Bounded increase of DRGE for kernel-based
algorithms). Assume that ∥Φ(x)∥H ≤ M0,

q(x)
p(x) ≤

M1,∀x ∈ X ,∀Q ∈ Q; the loss function ℓ(·, ·) ≤ M2

and is L-Lipschitz continuous in its first argument for any
fixed second argument. With probability at least 1− δ,

∆DR
i,S = R(fS ,Q)−R(fS∪{i},Q)

≤ κn∥fS − fS∪{i}∥H + 2M1M2

√
ln(2/δ)/2n

(4)
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Figure 1. ∥fS − fS∪{i}∥H and R̂(fS ,Q) − R̂(fS∪{i},Q) for
HOUSING. Slope is via linear regression of R̂(fS ,Q) −
R̂(fS∪{i},Q) on log-scaled ∥fS − fS∪{i}∥H.

where

κn = LM0(1+
√

ε+max
(
(M1 − 1)2, 1

)√
ln(2/δ)/2n).

The proof is in Appendix C. Intuitively, the generalization
error of a model fS∪{i} trained on the larger S ∪ {i} is
expected to be lower than that of the model fS trained on
S. R(fS ,Q) − R(fS∪{i},Q) indicates how much DRGE
increases due to removing data point i from dataset S ∪ {i}.
Theorem 3.3 bounds this increase of DRGE, via the model
deviation ∥fS −fS∪{i}∥H multiplied by a constant κn. The
intuition is that the less the model fS deviates from the
model fS∪{i} (i.e., a better model), the prediction results by
fS are less different from those by fS∪{i}. Specifically, if ε
in Q is small, κn will be small, so the effect of model devia-
tion on the change in DRGE will be small. Intuitively, when
Q is not allowed to shift further away from P , it cannot
strategically put more density on the data point x where the
prediction fS(x) is very different from the true label f∗(x).
Therefore, the DRGE cannot increase significantly in this
case. As n → ∞, the upper bound in Equ. (4) becomes
tighter and eventually reduces to κn∥fS − fS∪{i}∥H where
κn is the same for all data points. Consequently, Theo-
rem 3.3 indicates that model deviation (i.e., ∥fS−fS∪{i}∥H)
can be a proxy for the marginal improvement of DRGE and
the proxy is potentially better when the dataset is larger.
Further discussion on using model deviation as a proxy is
in Appendix C.

We validate Theorem 3.3 on a real-world dataset (i.e.,
HOUSING in Sec. 5). For only the purpose of this empir-
ical validation, we assume a very large dataset (the sam-
pling distribution P ) to implement DRGE R̂(f,Q) (de-
tails in Appendix A). Model deviation computation is in
Sec. 3.3. Fig. 1 shows that, under varying ε, the change
in DRGE (y-axis) decreases when model deviation (x-
axis) decreases. The slope of the linear regression of
R̂(fS ,Q) − R̂(fS∪{i},Q) on log-scaled ∥fS − fS∪{i}∥H
decreases when ε decreases. This aligns with our analysis as
κn in Equ. (4) will decrease as ε decreases. Consequently,
R̂(fS ,Q)− R̂(fS∪{i},Q) can increase less with the same
amount of increase in ∥fS − fS∪{i}∥H for a specific data
point zi.
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3.3. Extending Model Deviation to NN

To resolve the difficulty of applying our approach to NN
(i.e., the result in Theorem 3.3 does directly apply to DRGE
of NN), we utilize the NTK theory to define model devia-
tion for NN and show that it can be a proxy for marginal
improvement of DRGE of NN. Recall that Θ is the NTK as-
sociated with the NN f (defined in Sec. 2). Denote fS as an
NN f trained on dataset DS to convergence using gradient
descent. Denote gS as the minimizer of the kernel regression
with NTK Θ trained on DS . When the NN is wide enough,
the output of fS resembles that of gS (Arora et al., 2019).
We define the model deviation for NN as ∥gS − gS∪{i}∥HΘ

.
Denote λ0 (λ1) as the minimum eigenvalue of ΘS (ΘS∪{i}).
We extend Theorem 3.3 to NN as follows,

Theorem 3.4 (Bounded increase of DRGE for NN).
Given the assumption in Theorem 3.3, further as-
sume that ∥x∥ = 1,∀x ∈ X , d1 = d2 · · · =
dLNN = m and |f0(xi)| ≤ εinit,∀{xi, yi} ∈
DS . Fix an εk ≤ min

(
poly(1/LNN, 1/(n −

1), 1/ log(3/δ), λ0), poly(1/LNN, 1/n, 1/ log(3/δ), λ1)
)
.

Set m ≥ max(poly(1/εk, n −
1, 1/λ0), poly(1/εk, n, 1/λ1)). With probability at
least 1− δ,

∆DR
i,S = R(fS ,Q)−R(fS∪{i},Q)

≤ κn∥gS − gS∪{i}∥HΘ
+ 2M1M2

√
ln(6/δ)/2n+ εc

where εc = 2L(εk + εinit) and

κn = LM0(1+
√
ε+max

(
(M1 − 1)2, 1

)√
ln(6/δ)/2n).

The randomness is over the random initialization of θ and
the random sampling of S∪{i} from the distribution P . The
proof is in Appendix C. The value of εinit is the magnitude of
the model prediction of the dataset at initialization which is
usually assumed to be small (Arora et al., 2019). The value
of εk is smaller with a larger width m of the NN. When
n is large, 2M1M2

√
ln(6/δ)/2n will be small. Therefore,

Theorem 3.4 shows that the NTK-based model deviation
is a good proxy of the marginal improvement of DRGE of
corresponding NN when the NN is wide, its model output
in initialization (i.e., εinit) is small and the number n of
data points is large. Importantly Theorem 3.4 extends Theo-
rem 3.3 to NN, enabling model deviation to be applicable
to settings adopting NN as the model. Note that our result
is based on the previous result (Arora et al., 2019, Theorem
3.2), which can be extended to other NN architectures (e.g.,
convolutional neural network and ResNet), thus not limited
to the fully connected NN.

Computing model deviation. For kernel ridge regression
with kernel K, we utilize the closed-form solutions fS and
fS∪{i} (see Sec. 2) to provide closed-form model deviations

defined as Mi(K,DS) := ∥fS − fS∪{i}∥HK
, computed as

Mi(K,DS)
2 = α⊤KS∪{i}α+ β⊤KSβ − 2β⊤KS,S∪{i}α

(5)
where α := (KS∪{i} + λI)−1YS∪{i} and β := (KS +
λI)−1YS . As gS is the kernel regression with NTK, a closed
form is similarly available. The defined model deviation
Mi(Θ, DS) := ∥gS − gS∪{i}∥HΘ is computed as

Mi(Θ, DS)
2 = α⊤ΘS∪{i}α+ β⊤ΘSβ − 2β⊤ΘS,S∪{i}α

(6)
where α = Θ−1

S∪{i}YS∪{i} and β = Θ−1
S YS and ΘS,S∪{i}

is defined similarly as KS,S∪{i}. Importantly, Equ. (5) and
Equ. (6) (explicitly derived in Appendix C) transform the
computation of model deviation for both kernel ridge regres-
sion and NN into simple kernel evaluations.

However, a caveat of Equ. (6) is that it uses the theoretical
NTK Θ that is difficult to compute due to the involved expec-
tation and recursion (Lee et al., 2019), and lacks analytical
form for most NN architecture. Fortunately, the theoretical
NTK Θ is the limit of NTK at initialization Θ0 (defined in
Sec. 2) when the widths of the NN approach infinity and
that the difference between Θ and Θ0 is bounded for suffi-
ciently wide NNs (Arora et al., 2019). Therefore, we can
use the NTK at initialization (i.e., Θ0) of a finite width NN
to compute the model deviation, requiring only the gradient
of model output w.r.t. the initial model parameter and with
a bounded approximation error. Denote Θ̂S as the kernel
matrix for NTK at initialization Θ0 on the dataset DS , we
have the following:

Theorem 3.5 (Approximation error of using NTK at initial-
ization). For fixed εk > 0, assume that for each layer ∀j ∈
{1, . . . , LNN}, its width dj = Ω(

L14
NN

ε4k
log(LNN/δ)), each

label ∀y ∈ Y, y ≤ B, and each input ∀x ∈ X , ∥x∥ ≤ 1.
Then, ∀δ ∈ (0, 1), with probability at least 1− δ,

|Mi(Θ, DS)−Mi(Θ0, DS)| ≤ C(LNN + 1)εk

where C = 2n3B2

M

(
1

λmin(ΘS)λmin(ΘS∪{i})
+

1
λmin(ΘS)λmin(Θ̂S)

)( 1+λmin(ΘS)

λmin(Θ̂S∪{i})

)
and λmin(ΘS) is

the minimum eigenvalue of the matrix ΘS and
M = min(Mi(Θ, DS),Mi(Θ0, DS)).

The proof is in Appendix C. Theorem 3.5 bounds the approx-
imation error from using Θ0 (instead of Θ) for computing
model deviation, via the product of a constant C, number
of layers, and εk. Note that εk decreases as dm increases,
so for a sufficiently high dm, the approximation error from
using Θ0 is (boundedly) small. Importantly, utilizing Θ0 for
computing model deviation implies a training-free approach
since only the gradients of the model parameters at initializa-
tion are needed. This is desirable since most data valuation
approaches need a large number of full training of NN (e.g.,
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Figure 2. Images with highest (top) and lowest (bottom) model deviation for MNIST (left) and CIFAR-10 (right). Numbers below are
I(xi), with higher values indicating greater dissimilarity within the class. Color bar shows relative I(xi) magnitude: lighter for higher,
darker for lower.

n + 1 for LOO) on different data subsets, which is com-
putationally costly. In contrast, our training-free approach
avoids such computational costs. We provide additional
experiments to show that our approximation in Theorem 3.5
is both accurate and efficient in terms of running time in
Appendix B. We also provide an extension of Theorem 3.5
that uses NTK at any training step t to approximate the
model deviation in Appendix C.

4. Characteristics of Data Points That Lead to
Low Model Deviations

We analyze the characteristics of data points in classification
tasks with low model deviation under kernel ridge regres-
sion. A notion of uniqueness naturally arises and it consists
of 1) scarcity (i.e., a small amount of data points with the
same label) and 2) dissimilarity (i.e., different from other
data points with the same label). Data points with low
scarcity and/or dissimilarity lead to low model deviation.

Theorem 4.1 (Model deviation of kernel ridge re-
gression). Assume that ∥Φ(x)∥H ≤ M, ∀x ∈ X ,
max{∥fS∥H, ∥fS∪{i}∥H} = G and loss function ℓ is L-
Lipschitz continuous. Assume that ∃k s.t. 2n − 1 ≥ k ≥
∥fS∪{i}∥2

H−∥fS∥2
H

∥fS∪{i}−fS∥2
H

. Denote Zi := {(xj , yj) : (xj , yj) ∈
DS , yj = yi} and m = |Zi|. Then, ∀α ∈ [0, 1],

∥fS − fS∪{i}∥H ≤ U+
√

U2+2λ(2n−α−k)LGI(xi)

λ(2n−α−k)

where U = 2LM(n − m − 1) and I(xi) =∑
(xj ,yj)∈Zi

∥Φ(xi)− Φ(xj)∥H.

The proof is in Appendix C. We identify U +√
U2 + 2λ(2n− α− k)LGI(xi) (i.e., numerator in r.h.s.)

as the uniqueness of a data point zi where a lower unique-
ness implies a lower model deviation (Theorem 4.1). The
uniqueness consists of two characteristics: 1) the scarcity
and 2) the dissimilarity of the data point zi. For scarcity,
note that m is the number of data points with the same label

as zi. Hence, a low m can indicate that zi is scarce. A
lower scarcity (i.e., higher m) leads to a lower uniqueness
and implies a lower model deviation of zi. For dissimilarity,
note that I(xi) is the sum of the distances of the data point
zi to every other data point zj with the same label. A high
I(xi) means that in the feature space (i.e., RKHS) the data
point zi is very far away from other data points with the
same label. A lower dissimilarity (i.e., lower I(xi)) leads to
lower uniqueness and implies a lower model deviation of zi.

Visualizing data points with different model deviations.
Using Equ. (6) for model deviation on MNIST and CIFAR-
10 (detailed in Appendix A), we perform a visual compari-
son: We construct a CIFAR-10 binary classification dataset
with only bird and airplane classes (results on other classes
of CIFAR-10 in Appendix B). We compute I(xi) for im-
ages. In Fig. 2, the images with high ∥fS − fS∪{i}∥H tend
to be more different from other images within the same class
whilst images with low ∥fS − fS∪{i}∥H usually are similar
to other images in the same class (both visually and quantita-
tively with I(xi)), confirming Theorem 4.1 that data points
(i.e., images) with lower I(xi) have lower ∥fS − fS∪{i}∥H.

5. Experiments
We examine the effectiveness of using model deviation to
value data points in data removal (Kwon & Zou, 2021; Xu
et al., 2021; Just et al., 2023) and subset selection tasks (Liu
et al., 2021; Song et al., 2021) since both are relevant to
CML and data marketplace applications. For instance, in
fixed-budget data purchases (Liu et al., 2021), subset selec-
tion aids buyers in buying a minimum DRGE data subset,
which in turn ensures a maximized worst-case model per-
formance and is thus crucial for potential buyers. Our code
is available at https://github.com/xqlin98/
Distributionally-Robust-Data-Valuation.
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Table 1. DRGE (standard error) of the kernel regression model (KR) and NN trained on data subset (45% of the original dataset size)
selected by different baselines. The lower the better.

Method HOUSING UBER DIABETES MNIST CIFAR-10

KR

Random 2.530(5.6e-02) 392.563(1.0e+01) 0.926(7.6e-03) 1.976(2.2e-02) 2.726(3.7e-02)
LOO 2.482(3.5e-02) 372.124(8.5e+00) 0.908(5.7e-03) 2.075(3.6e-02) 2.479(1.7e-02)

TracIn 2.578(4.5e-02) 377.788(2.3e+01) 0.912(4.6e-03) 1.974(3.5e-02) 2.773(1.6e-02)
Influence 3.147(2.6e-01) 421.415(1.8e+01) 0.953(3.3e-02) 2.072(3.1e-02) 2.725(8.9e-03)
DAVINZ 2.623(8.4e-02) 402.609(2.0e+01) 0.919(1.0e-02) 2.400(1.5e-01) 2.988(1.7e-02)

CG - - - 2.144(3.4e-02) 2.750(2.3e-02)
LAVA - - - 2.031(2.7e-02) 3.006(3.1e-02)

Deviation 2.555(1.1e-01) 361.810(6.5e+00) 1.057(4.3e-02) 1.893(6.5e-02) 2.470(2.3e-02)
NN

Random 4.252(3.6e-02) 272.139(3.3e+00) 0.852(1.1e-02) 0.267(1.2e-02) 0.122(3.3e-04)
LOO 3.661(6.4e-02) 269.047(7.3e+00) 0.835(7.5e-03) 0.222(1.6e-02) 0.122(6.8e-04)

TracIn 4.193(6.8e-02) 311.670(9.9e+00) 0.853(4.2e-03) 0.264(1.3e-02) 0.123(3.7e-04)
Influence 4.674(1.2e-01) 279.930(7.1e+00) 0.839(2.4e-02) 0.320(9.7e-03) 0.126(5.8e-04)
DAVINZ 4.112(1.6e-01) 537.033(3.3e+01) 0.923(1.7e-02) 0.329(2.8e-02) 0.141(4.3e-03)

CG - - - 0.200(1.5e-02) 0.123(3.7e-04)
LAVA - - - 0.283(1.2e-02) 0.163(1.5e-03)

Deviation 3.416(5.0e-02) 265.654(9.3e+00) 0.794(6.1e-03) 0.224(1.4e-02) 0.122(6.4e-04)

Baselines. (a) Random, data values are sampled from the
uniform distribution over [0, 1]. (b) LOO, leave-one-out
score based on the validation performance. Since there is no
known/fixed validation dataset available, we use the training
dataset as the validation dataset. The same applies to other
approaches that need validation datasets. (c) Influence func-
tion (Koh & Liang, 2017), an approach that approximates
LOO with first-order extrapolation. (d) TracIn (Pruthi et al.,
2020), an approach that computes the influence of a data
point to the validation loss during training accumulatively.
(e) LAVA (Just et al., 2023), a model-agnostic approach
using a non-conventional class-wise Wasserstein distance
to compute data values.1 (f) CG (Nohyun et al., 2022),
complexity-gap score which a training-free data valuation
approach to quantify the influence of each data point to the
generalization of a two-layer NN.2 (g) DAVINZ (Wu et al.,
2022), a training-free approach that uses an NTK-based
utility function to approximate the generalization error. (h)
Deviation, our approach.

Datasets. (a) HOUSING (Kaggle, 2017), California hous-
ing price prediction. (b) UBER (Kaggle, 2018), carpool ride
price prediction. (c) DIABETES (Strack et al., 2014), dia-
betes patients’ readmission prediction. (d) MNIST (LeCun
et al., 1990). (e) CIFAR-10 (Krizhevsky, 2009).

Setting and evaluation metrics. There is a dataset of size
n (e.g., from a seller) to be evaluated. The computed data
values are used to perform data removal and subset selection.
We consider two metrics: (a) DRGE, as the metric that the

1LAVA is designed for classification tasks.
2CG does not have implementation for regression.

buyers are interested in (Sec. 2). To implement (i.e., empiri-
cally approximate this), we assume a very large sampling
dataset with a size of nt ≫ n as the empirical representation
of the sampling distribution P and we obtain DRGE by solv-
ing an optimization problem (detailed in Appendix A). (b)
Worst-case loss on multiple validation datasets, we perform
a k-means clustering on the features of data points, using
k = 50 to split the large sampling dataset into 50 validation
datasets. We evaluate the worst validation loss among the 50
validation datasets, which simulates the case when there are
a known number of buyers (e.g., 50) and we have access to
their heterogeneous validation datasets. The use of k-means
is to simulate the case that different buyers have different
validation distributions. DRGE will serve as our primary
evaluation metric. For all results, the average and standard
error over 5 independent trials are reported.

Hyperparameters. We describe the hyperparameters for
HOUSING and defer details for other datasets to Ap-
pendix A. The data sizes n = 3000 and nt = 15000. For
kernel regression, we use a radial basis function (RBF) ker-
nel with a length scale of 2. For NN, we use a 3-layer
multi-layer perceptron (MLP) for regression and a 2-layer
convolutional neural network (CNN) followed by a fully
connected layer for classification. The epoch number is 10
with a learning rate of 0.05 and batch size of 128.

5.1. Data Selection

For the task of data selection, we select 45% (results for
20% and 80% are provided in Appendix B) of data points
with the highest data values and train models using these
selected data points and evaluate the DRGE of the result-
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Figure 3. DRGE for kernel regression model (first row) and NN (second row) as data points are removed from the dataset. The first three
columns are removing data points by the data values from high to low, the last three columns are removing data points by the data values
from low to high.
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Figure 4. DRGE with different ε for kernel regression as data
points are removed from MNIST by their data values from high to
low.

ing model. Table 1 shows the results for kernel regression
and NN. Remarkably, our approach achieves the lowest
DRGE on UBER, MNIST, and CIFAR-10 in the kernel re-
gression model and the lowest DRGE on all except MNIST
in NN. LOO outperforms ours slightly on a few datasets, but
markedly worse on the others. As NN-based approaches,
Influence, TracIn, CG, and DAVINZ might not effectively
reduce the DRGE of the kernel regression model. Con-
sequently, these approaches are even worse compared to
Random in the kernel regression model case. Surprisingly,
these approaches also do not perform well in the NN case,
including the algorithm-agnostic approach LAVA. One ex-
planation is that these approaches basically approximate
how much data points improve over some metric for one
specific distribution. For example, DAVINZ is a proxy for
the generalization error of NN on a specific validation dis-
tribution and LAVA is a proxy for the performance on one
specific validation distribution. However, in our setting,
since we are considering the worst-case (over a set of valida-
tion datasets) model performance, a data point that induces
good performance on one specific validation dataset does
not necessarily induce good worst-case model performance.
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Figure 5. Worst-case performance for kernel regression as data
points are removed by their data values from high to low.

5.2. Data Removal

For data removal, each time we sample m < n data points
from the dataset (e.g., m = 1000 for HOUSING) and se-
quentially remove all m data points in a highest-value first
(or lowest first) order. After each removal, we evaluate
the DRGE of the model trained on the remaining dataset.
Fig. 3 shows the results for the kernel regression (first row)
and NN (second row). Additional results are in Appendix B.
When removing data points from high to low data value (i.e.,
good data points are removed first), the faster the DRGE
increases the better (i.e., the performance degrades faster).
While removing from low to high, the slower the DRGE in-
creases the better. Remarkably, our approach has the fastest
increase of DRGE when removing from high to low while
the slowest when removing from low to high in almost all
scenarios, indicating that our approach outperforms other
baselines. In Fig. 4, we vary ε in DRGE to see how differ-
ent baselines perform (more choices of ε in Appendix B).
Interestingly, when ε → 0 (Q becomes a singleton and
the DRGE reduces to generalization error), our approach
is not significantly better. However, as ε increases to 100,
our approach clearly outperforms others. Therefore, our
approach performs better when the local validation datasets
of buyers/parties are more heterogeneous (since a larger ε is
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needed to make Q include all validation distributions). We
also provide results using worst-case loss as the metric in
Fig. 5, to simulate real-world applications as described in
the evaluation metrics above. Our approach continues to
outperform all baselines, since the worst-case model loss
increases fastest when removing data points from high to
low data value.

6. Related Work
Existing data valuation works assume the existence and
availability of a known and fixed validation distribu-
tion (Ghorbani & Zou, 2019; Ghorbani et al., 2020; Kwon &
Zou, 2021; Wang & Jia, 2023; Wu et al., 2024) and perform
data valuation directly based on the validation performance.
While (Ghorbani et al., 2020) considers data valuation when
the dataset to be evaluated is not fixed, it does not address
the challenge of unknown or unfixed validation distribution.
For a more comprehensive survey, we refer the readers to
(Sim et al., 2022). Other works (Wang et al., 2021; Xu et al.,
2021; Wu et al., 2022; Just et al., 2023; Lin et al., 2023) find
proxies to the validation performance. For example, (Xu
et al., 2021) proposes a proxy that relaxes the availability of
the validation distribution by removing access to the valida-
tion dataset. (Wu et al., 2022; Nohyun et al., 2022; Just et al.,
2023) explore the training-free and model-agnostic proxy of
generalization error respectively on specific validation dis-
tribution. However, these approaches still rely on a specific
validation distribution and hence are not applicable without
a known and fixed validation distribution. To address this,
we propose a DRGE-based data valuation via the worst-case
performance. Additional discussion on related work is in
Appendix D.

7. Conclusion and Future Work
We exploit a distributionally robust generalization error
to propose a novel data valuation framework that does not
need a known/fixed validation distribution, yet provides a
worst-case performance guarantee. We show that model de-
viation, a training-free proxy for the DRGE, can be used to
perform data valuation to solve the intractability of DRGE.
Interestingly, we identify a notion of uniqueness and show
that data points with higher uniqueness will have higher
model deviation, and thus be more valuable. We empirically
demonstrate that our approach outperforms others in the
task of data removal and data selection. Some future explo-
rations present themselves: 1) Further relax the assumption
on the buyers’/parties’ local validation distributions so that
our results can be applicable to a wider range of real-world
scenarios; 2) Extend our approach to consider learning algo-
rithms other than KR and NN. Investigating one or both is
very useful in practice where different buyers can have very
different local validation distributions and/or preferences

for the learning algorithm.
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A. Additional Details on Experiment Settings
A.1. Dataset License and Computational Resource

Licence. HOUSING (Kaggle, 2017): CC0 1.0 Universal (CC0 1.0) Public Domain Dedication; UBER (Kaggle, 2018):
CC0 1.0 Universal (CC0 1.0) Public Domain Dedication; DIABETES (Strack et al., 2014): Open Data Commons Open
Database License (ODbL) v1.0; MNIST (LeCun et al., 1990): Attribution-Share Alike 3.0 License; CIFAR-10 (Krizhevsky,
2009): MIT License.

Computational resource. All the experiments have been run on a server with Intel(R) Xeon(R) Gold 6226R CPU @
2.90GHz processor, 256GB RAM, and 4 NVIDIA GeForce RTX 3080s.

A.2. Discussion on the Definition of Q

Advantages of choosing χ2-divergence in defining Q. We choose χ2-divergence to define Q due to its simple form
which is amenable to our theoretical result and its applicability to the data marketplace. χ2-divergence is commonly adopted
in the distributionally robust optimization literature (Namkoong & Duchi, 2017; Gotoh et al., 2018) due to its simplicity
and rich theoretical results. Specifically, the definition of χ2-divergence is amenable to the derivation of our Theorem 3.3
and 3.4. Additionally, the simplicity of its form makes it easier to compute than other distance measures (e.g., optimal
transport). On the other hand, the intuition behind χ2-divergence is applicable to the data marketplace applications since it
effectively measures the discrepancy between the densities of different subregions in the two compared distributions. To
elaborate, in practice, the buyers’ distribution is usually confined to some subregions of the overall distribution. For example,
the patient’s data varies across hospitals due to different demographics (e.g., different densities in race due to different
geographic locations or different densities in gender due to different specialties of the hospitals). The χ2-divergence is
particularly useful here because it measures this discrepancy and therefore results in a meaningful set of distributions Q.

Reasons of choosing χ2(Q,P ) instead of χ2(P,Q) to define Q. Recall that we define Q using χ2(Q,P ), which requires
the support of P to be a superset of the support of Q. In the application of data marketplace, it implies that the buyer’s
validation distribution may be restricted to a region of the support while the seller’s distribution is more extensive (in terms
of support), which is the main reason that the buyer wants to buy data from the seller. In contrast, the opposite direction
implies that the buyer’s data is actually more extensive (in terms of support) than that of the seller, and then the buyer may
not be interested in buying the data from the seller.

Comparison to other distributional distance measures. There are quite a few distributional distance measures in the
current literature (Staib & Jegelka, 2019; Blanchet et al., 2022), among which maximum mean discrepancy (MMD) and
Wasserstein distance (i.e., optimal transport) are commonly considered. Specifically, MMD measures the distance of two
distributions by the square of the distance of their embedding in the RKHS associated with a specific kernel. Therefore,
it is dependent on the choice of kernel and thus a poor choice of kernel might result in a poor measure of distributional
distance. Additionally, the approximation of worst-case performance (provided in (Staib & Jegelka, 2019)) based on the
MMD uncertainty set is only applicable to kernel-based algorithms. In contrast, our model deviation can be applied to both
kernel-based algorithms and neural networks. As for the Wasserstein distance (i.e., optimal transport), it can hardly model
the complex real-world dataset due to the use of simple metrics (e.g., the Euclidean or Mahalanobis distance). Specifically,
since the Wasserstein distance does not impose constraints on the structure and properties of the data, it might result in
a meaningless measure of the distributional distance. For example, simple metrics (e.g., Euclidean distance) will not be
able to measure the distance between two images in an image classification dataset (in the sense that two images with
the same semantics will have very large Euclidean distance), and hence the uncertainty set using this metric might not
be as meaningful. Additionally, Wasserstein distance is computationally difficult since it requires solving a non-trivial
optimization (i.e., optimal transport problem). In contrast, the simple formation of χ2-divergence makes it much easier to
compute without solving the optimization problem.

Difference of our definition of Q from the other literature that use φ-divergence. χ2-divergence is one specific
kind of φ-divergence. There is some literature in distributionally robust optimization that defines the uncertainty set Q
with φ-divergence (Namkoong & Duchi, 2017; Gotoh et al., 2018). However, (Staib & Jegelka, 2019) points out that
φ-divergence is usually defined using the empirical distribution P̂ with limited support, which cannot handle out-of-sample
cases. To elaborate, if we define Q using φ-divergence based on the empirical distribution P̂ , all the distributions in Q will
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have the same support as P̂ . Consequently, if there is one buyer whose validation distribution has a support that is not a
subset of the support of P̂ , the worst-case model performance on Q cannot say anything about the model performance on the
validation distribution of that buyer. In contrast, we define Q by using the distribution P (instead of empirical distribution
P̂ ) where the training data are sampled from and thus mitigate this problem.

Applicability of our definition of Q to real-world applications. For distributionally robust generalization error discussed
in Sec.3 using our definition of Q to guarantee the worst model performance in buyers’/parties’ local validation distribution,
we need to assume that the parties/buyers’ validation distributions are within the defined uncertainty set which might not be
able to handle the case where some parties/buyers’ validation distributions are not within the set. This can be addressed by
carefully choosing the reference distribution P and ε in the definition of Q. Nonetheless, Fig.5 shows that our approach still
performs significantly well when this assumption is not fulfilled.

A.3. Discussion on the Difference Between Our Approach and Current Data Valuation Approaches (e.g., LOO and
Data Shapley which Uses Shapley Value)

In summary, our model deviation approximates the data values with DRGE as the utility function and leave-one-out (LOO)
as the way to attribute the utility to each individual data point.

To elaborate, current data valuation approaches are heavily dependent on two ingredients: 1) The utility function U to
measure the contribution of a set of data points and 2) The valuation function defined in Equ. (2) that attributes the utility to
each data point (e.g., Shapley value (Shapley, 1953), LOO (Cook, 1977), semivalue (Dubey et al., 1981)). Current work
usually assumes access to a validation dataset and thus the utility function is the validation performance. Existing work
adopts Shapley value as a valuation function (e.g., data Shapley (Ghorbani & Zou, 2019) and beta Shapley (Kwon & Zou,
2021)) with validation performance as the utility function. Differently, we propose DRGE as a new utility function, and it
can be combined with different valuation functions (e.g., LOO or Shapley value, we use LOO in our paper). In particular,
our proposed model deviation, as the proxy for marginal contributions, can be applied well to any valuation functions
mentioned above, since all require marginal contributions. As a special case, LOO requires one single marginal contribution
and thus can be approximated easily by our model deviation. Therefore, our approach can be combined with other valuation
functions (e.g., Shapley value or semivalue) to get additional properties according to the needs of the application scenarios.

A.4. Approximation of DRGE for the Evaluation Metric

Approximation of DRGE To approximate the distributionally robust generalization error, we assume that there exists
a very large dataset with a size denoted as nt, which is much larger (e.g., more than 10, 000) than the size of the dataset
to be evaluated, denoted as n (e.g., around 1, 000− 3, 000). It is i.i.d. sampled from the sampling distribution P (i.e., the
distribution where the dataset to be evaluated is sampled from). We define the empirical data distribution as P̂ which puts
equal density on each data point in the large dataset. We assume that we know the ε to define Q such that all possible
validation distributions of the buyers/parties are within the Q. Therefore, we are able to estimate DRGE (in Equ. (3)) for the
trained model f by solving the following quadratically constrained linear programming (QCLP):

R̂(f,Q) := maximize
p

1

nt

nt∑
i=1

piℓ(f(xi), yi) (Objective)

subject to pi ≥ 0, ∀i ∈ {1, ..., nt} (C1)
nt∑
i=1

pi = 1 (C2)

1

nt
∥ntp− 1∥22 ≤ ε (C3)

The constraints C1 and C2 are to ensure that p is a valid distribution. The constraint C3 is to ensure that p is within the Q
defined with P̂ . The objective is the loss of the model f on the distribution p. Therefore, we use the maximized objective
R̂(f,Q) of the QCLP to approximate the DRGE R(f,Q). Of note, the assumptions we make here, namely the availability
of the large dataset and the knowledge of ε, are not the assumptions for our approach, but the assumptions for obtaining a
viable evaluation metric.
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Difficulties of directly using the DRGE approximation to perform data valuation There are two difficulties in using
the above-mentioned approximation approach to perform data valuation, namely: 1) the availability of a large dataset that
contains sufficient support and information on ε, and 2) computational efficiency. Specifically, in real-life applications, the
large dataset is usually not available since it needs to be large enough to have large support and thus is able to approximate
DRGE accurately. Otherwise, the out-of-sample problem (discussed in Appendix A.2) is more likely to arise due to the small
support. However, for example, it is impractical to assume the availability of a large dataset that includes the support of all
validation distributions of the buyers/parties due to the potentially high heterogeneity among these distributions in real-life
applications. It is also unclear how to find the value of ε such that all possible validation distributions are within Q to provide
the worst-case performance guarantee. As for the computational complexity, data valuation approaches typically require a
large number of complete model trainings on different data subsets (e.g., n+1 number of trainings for the LOO approach as
we discussed in Sec. 3). Consequently, the computational costs can be substantial for these approaches, especially when NN
is used. Due to these difficulties, the approximated DRGE is only used as an evaluation metric under desirable conditions to
evaluate the performance of different baselines.

A.5. Experiment Settings for Visualization of Data Points with Different Model Deviations in Sec. 4.

We use NTK at initialization Θ0 to compute the model deviation ∥fS − fS∪{i}∥H (i.e., H = HΘ0
). To compute the NTK at

initialization, we use the CNN model with two convolutional layers followed by a fully connected layer for both MNIST
and CIFAR-10. We randomly select 2000 data points from the training dataset to evaluate their model deviation and plot the
images with the highest and lowest model deviations. The computation of I(xi) can be converted to kernel evaluation as
follows:

I(xi) =
∑

(xj ,yj)∈Zi

∥Φ(xi)− Φ(xj)∥HΘ0

=
∑

(xj ,yj)∈Zi

√
⟨Φ(xi)− Φ(xj),Φ(xi)− Φ(xj)⟩HΘ0

=
∑

(xj ,yj)∈Zi

√
Θ0(xi, xi) + Θ0(xj , xj)− 2Θ0(xi, xj) .

A.6. Hyperparameters for the Experiments in Sec. 5

Table 2. Hyperparameters for kernel regression model

Dataset n nt m Length scale λ

HOUSING 3000 15000 1000 2 1e-2
UBER 1500 30000 1000 3 1e-2
DIABETES 4000 20000 2000 10 1e-2
MNIST 1000 10000 900 50 0
CIFAR-10 1000 10000 900 600 5e-4

Tab. 2 shows the hyper-parameters for the kernel regression model (specifically, kernel ridge regression with the regularization
parameter λ) for each dataset. Note that the numbers of data points (i.e., n, nt, and m) are chosen based on the size of the
original dataset. The length scale and λ are set based on the performance of the kernel regression model. Specifically, the
length scale is set by referring to the median value of the pairwise Euclidean distance of the data points in the dataset.

Tab. 3 shows the hyperparameters for the NN for each dataset. The learning rate and the number of epochs are set based on
the performance of NN for each dataset.

B. Additional Experiment Results
B.1. Additional Experiment Results for Validating the Efficiency of Approximation with NTK at Initialization

To provide a more detailed empirical verification on the approximation accuracy and approximation efficiency of Theorem 3.5,
we perform additional experiments. Specifically, we compute the model deviation using NTK at initialization (i.e.,
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Table 3. Hyperparameters for NN

Dataset n nt m Learning rate Epoch NN architecture

HOUSING 3000 15000 1000 5e-3 10
Linear(input dimensions, 128)-ReLU
Linear(128, 128)-ReLU
Linear(128, 1)

UBER 1000 30000 900 1e-3 50
Linear(input dimensions, 128)-ReLU
Linear(128, 128)-ReLU
Linear(128, 1)

DIABETES 4000 20000 2000 5e-3 10
Linear(input dimensions, 128)-ReLU
Linear(128, 128)-ReLU
Linear(128, 1)

MNIST 2000 10000 1000 1e-2 50
Conv2d(1, 16, 5, 1, 2)-ReLU-MP(2)
Conv2d(16, 32, 5, 1, 2)-ReLU-MP(2)
Linear(32 * 7 * 7, 10)

CIFAR-10 2000 10000 1000 5e-3 20
Conv2d(3, 16, 5, 1, 2)-ReLU-MP(2)
Conv2d(16, 32, 5, 1, 2)-ReLU-MP(2)
Linear(32 * 7 * 7, 10)

Figure 6. Pearson correlation between Mi(Θ, DS) and Mi(Θ0, DS) on different datasets.

Mi(Θ0, DS)) and model deviation with theoretical NTK (i.e., Mi(Θ, DS)) for different datasets with different models.
Fig. 6 shows that the points lie in the diagonal of the figure which means that the approximated model deviations are almost
perfectly correlated with the ground true model deviations. This result shows that our approximation is accurate across
different datasets and models. Moreover, to further validate that approximation accuracy improves when the width of the
NN increases, Fig. 7 shows the Pearson correlation between the approximated model deviation and the ground true model
deviation. As the width of the NN increases, the correlation increases, and hence the accuracy of approximation increases,
which coincides with our theoretical analysis in Theorem 3.5. Table 4 shows the running time of computing model deviation
data values for different datasets, the time used for model deviation computation is low since no model training is required.

In summary, our model deviation approximation in Theorem 3.5 is accurate and efficient in terms of running time.

B.2. Additional Experiment Results for Visualization of Data Points with Different Model Deviations/LOO Scores

In Sec. 4, we visualize the images with different model deviations for MNIST and CIFAR-10 in Fig. 2. For comparison, we
provide images with different LOO scores in Fig. 8. We can observe that images with high LOO scores are not dissimilar to
other data points from the same class, both visually and quantitatively, as indicated by I(xi). This is in contrast to Fig. 2,

Figure 7. Pearson correlation between Mi(Θ, DS) and Mi(Θ0, DS) with different widths of the hidden layer.
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Table 4. Running time for computing model deviation data values for different datasets

Dataset Running time

HOUSING 17.18 mins
UBER 0.65 mins
DIABETES 39.56 mins
MNIST 13.18 mins
CIFAR-10 12.76 mins

Figure 8. Images with highest (top) and lowest (bottom) LOO scores for MNIST (left) and CIFAR-10 (right). Numbers below represent
I(xi), with higher values indicating greater dissimilarity within the class. Color bar shows relative I(xi) magnitude: lighter for higher,
darker for lower.

where images with high (low) model deviations are clearly dissimilar (similar) to other data points from the same class.

In the experiments for Fig. 2 and Fig. 8, we construct the CIFAR-10 binary classification dataset using only two classes (i.e.,
bird and airplane). Here, we additionally conduct experiments on the CIFAR-10 binary classification dataset with different
classes. Fig. 9 shows the images with high/low model deviations/LOO scores for the CIFAR-10 binary classification dataset
with only cat and dog classes. Fig. 10 shows the result for deer and horses classes. Fig. 11 shows the result for car and
truck classes. We can draw the same conclusion as we get from Sec. 4 that images with high (low) model deviations tend
to be dissimilar (similar) to other images from the same class both visually and quantitatively with I(xi), which is more
significant when compared with the result of LOO scores.

Figure 9. Images with highest (top) and lowest (bottom) model deviations (left) and LOO scores (right) for binary CIFAR-10 dataset with
only cat and dog classes. Numbers below represent I(xi), with higher values indicating greater dissimilarity within the class. Color bar
shows relative I(xi) magnitude: lighter for higher, darker for lower.
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Figure 10. Images with highest (top) and lowest (bottom) model deviations (left) and LOO scores (right) for binary CIFAR-10 dataset
with only deer and horse classes. Numbers below represent I(xi), with higher values indicating greater dissimilarity within the class.
Color bar shows relative I(xi) magnitude: lighter for higher, darker for lower.

Figure 11. Images with highest (top) and lowest (bottom) model deviations (left) and LOO scores (right) for binary CIFAR-10 dataset
with only car and truck classes. Numbers below represent I(xi), with higher values indicating greater dissimilarity within the class.
Color bar shows relative I(xi) magnitude: lighter for higher, darker for lower.

B.3. Additional Experiment Results for Subset Selection

In Sec. 5, we perform the data selection task which selects 45% of data points from the original dataset using different
baselines. We additionally provide the data selection results of selecting 80% (Tab. 5) and 20% (Tab. 6) of data points from
the original dataset. Our approach still performs better than other baselines on most datasets.

B.4. Additional Experiment Results for Data Removal

In Sec. 5, we only provide data removal results for selected datasets (i.e., HOUSING, MNIST, and CIFAR-10) in Fig. 3 due
to the limited space. Here, we provide full results for all the datasets introduced in Sec. 5 for both kernel regression model
(Fig. 12) and NN (Fig. 13). In Fig. 12 and Fig. 13, our approach performs the best on almost all datasets for both kernel
regression model and NN.

In Sec. 5, we provide results on how the performance of different baselines change when ε changes among {1, 10, 100}
in Fig. 4. Here, we provide the results of more choices of ε (i.e., ε ∈ {0.01, 0.1, 1, 10, 100}) in Fig. 14. We can draw the
same conclusion as we get in Sec. 5 that our approach performs significantly better than other baselines when the degree of
heterogeneity among the local validation distributions of the buyers/parties is large (e.g., ε = 10 or ε = 100).

We provide further analysis of the data removal result by examining the pointwise loss of the large dataset (used to
approximate DRGE) of the model trained on the dataset after different numbers of data points are removed using model
deviation and LOO score. We use the kernel regression model on the MNIST dataset for the experiment. Fig. 16 shows the
histogram of the pointwise loss after removing data points with different approaches. When removing data points from
high to low data values (first row), the density of data points with high loss increases more significantly when using model
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Table 5. DRGE (standard error) of the kernel regression model (KR) and NN trained on data subset (80% of the original dataset size)
selected by different baselines. The lower the better.

Method HOUSING UBER DIABETES MNIST CIFAR-10

KR

Random 2.443(4.9e-02) 383.537(1.9e+01) 0.899(6.9e-03) 1.703(2.5e-02) 2.554(2.0e-02)
LOO 2.444(3.3e-02) 366.667(7.7e+00) 0.885(4.8e-03) 1.670(2.7e-02) 2.395(1.5e-02)

TracIn 2.374(2.2e-02) 354.212(1.3e+01) 0.892(3.4e-03) 1.696(2.7e-02) 2.577(1.5e-02)
Influence 2.630(9.4e-02) 388.952(1.7e+01) 0.914(1.9e-03) 1.791(3.9e-02) 2.597(1.4e-02)
DAVINZ 2.444(3.0e-02) 358.615(9.6e+00) 0.895(5.6e-03) 1.820(2.2e-02) 2.624(2.9e-02)

LAVA - - - 1.743(2.3e-02) 2.615(1.1e-02)
CG - - - 2.787(9.8e-02) 3.191(8.5e-02)

Deviation 2.349(1.3e-02) 352.917(6.3e+00) 0.876(4.6e-03) 1.719(4.1e-02) 2.460(1.7e-02)

NN

Random 3.646(3.4e-02) 268.812(4.8e+00) 0.850(6.3e-03) 0.235(1.4e-02) 0.119(1.7e-04)
LOO 3.501(3.8e-02) 261.059(5.6e+00) 0.845(4.9e-03) 0.228(1.6e-02) 0.120(1.5e-04)

TracIn 3.625(3.9e-02) 272.611(4.3e+00) 0.847(4.7e-03) 0.230(1.3e-02) 0.119(2.0e-04)
Influence 4.095(5.5e-02) 273.224(7.4e+00) 0.860(1.8e-02) 0.284(1.4e-02) 0.121(3.6e-04)
DAVINZ 3.655(4.2e-02) 288.686(1.2e+01) 0.898(3.5e-03) 0.250(1.5e-02) 0.122(7.8e-04)

LAVA - - - 0.248(2.0e-02) 0.136(5.7e-04)
CG - - - 0.295(3.8e-02) 0.133(8.8e-04)

Deviation 3.483(4.1e-02) 270.760(1.0e+01) 0.835(2.6e-03) 0.228(1.2e-02) 0.119(3.9e-04)

deviation than that of the LOO score. It means that the data points with high model deviations are more effective in reducing
the loss of high-loss data points than the data points with high LOO scores. The opposite happens when removing data
points from low to high data values (second row). This result matches the result in Fig. 14. Specifically, when ε → 0, the
approximated DRGE is equal to the average loss of the large dataset. In that case, since the density of the high-loss data
points is low, data removal using model deviation does not outperform the LOO score significantly. In contrast, when the ε
increases, the distributions in Q are allowed to shift further away from P̂ and thus can strategically put more density on the
high-loss data points. Consequently, our approach outperforms the LOO score significantly.
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Table 6. DRGE (standard error) of the kernel regression model (KR) and NN trained on data subset (20% of the original dataset size)
selected by different baselines. The lower the better.

Method HOUSING UBER DIABETES MNIST CIFAR-10

KR

Random 2.868(3.0e-02) 407.955(1.1e+01) 0.953(1.1e-02) 2.120(3.4e-02) 2.849(5.7e-02)
LOO 3.153(6.1e-02) 446.132(3.8e+01) 1.742(2.8e-02) 2.659(6.3e-02) 2.665(2.3e-02)

TracIn 2.922(1.2e-01) 508.732(6.7e+01) 0.937(9.2e-03) 2.241(7.8e-02) 2.872(3.4e-02)
Influence 3.756(1.9e-01) 468.449(1.8e+01) 1.162(9.4e-02) 2.192(9.7e-02) 2.716(4.4e-02)
DAVINZ 3.300(1.7e-01) 474.912(2.9e+01) 0.993(2.2e-02) 2.762(2.4e-01) 3.506(8.3e-02)

LAVA - - - 2.026(4.0e-02) 3.330(1.2e-01)
CG - - - 1.906(4.2e-02) 2.569(2.1e-02)

Deviation 4.892(7.7e-01) 557.347(9.4e+01) 1.478(8.3e-02) 1.845(4.4e-02) 2.454(1.7e-02)

NN

Random 4.948(7.3e-02) 394.949(5.2e+01) 0.863(8.2e-03) 0.301(1.5e-02) 0.125(3.6e-04)
LOO 4.165(7.3e-02) 290.461(9.1e+00) 0.844(6.8e-03) 0.209(8.6e-03) 0.124(2.5e-04)

TracIn 5.043(4.8e-02) 360.501(4.8e+01) 0.856(7.8e-03) 0.291(1.7e-02) 0.125(5.1e-04)
Influence 5.036(1.3e-01) 300.453(1.1e+01) 0.788(3.2e-02) 0.306(2.3e-02) 0.132(1.3e-03)
DAVINZ 4.428(1.6e-01) 662.362(2.4e+01) 0.962(6.0e-03) 0.359(2.9e-02) 0.171(7.6e-03)

LAVA - - - 0.280(1.3e-02) 0.216(6.8e-03)
CG - - - 0.204(1.7e-02) 0.119(8.5e-05)

Deviation 3.838(7.1e-02) 289.361(1.7e+01) 0.736(1.5e-02) 0.221(1.2e-02) 0.126(5.3e-04)
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Figure 12. DRGE for kernel regression model as data points are removed from the dataset. The first row is removing data points by the
data values from high to low, the second row is removing data points by the data values from low to high. We provide the results for all
datasets here, as opposed to the selected results shown in Fig. 3.
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Figure 13. DRGE for NN as data points are removed from the dataset. The first row is removing data points by the data values from high
to low, the second row is removing data points by the data values from low to high. We provide the results for all datasets here, as opposed
to the selected results shown in Fig. 3.

0 500
4

5

6

7

DR
GE

1e−1 ²=0.01

0 500

6

8

1e−1 ²=0.1

0 500

1.0

1.2

1.4

²=1

0 500
1.6

1.8

2.0

2.2

²=10

0 500
2.5

3.0

3.5
²=100

# data points removed from high to low

0 500
4

6

8

DR
GE

1e−1 ²=0.01

0 500

0.6

0.8

1.0

²=0.1

0 500

1.0

1.2

1.4

²=1

0 500

1.75

2.00

2.25

2.50
²=10

0 500
2.5

3.0

3.5
²=100

# data points removed from low to high
Deviation LOO Influence TracIn LAVA CG DAVINZ Random

Figure 14. DRGE with different ε for kernel regression model as data points are removed from MNIST. The first row is removing data
points by the data values from high to low, the second row is removing data points by the data values from low to high. The results here
have more choices of ε compared to Fig. 4.
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Figure 15. Worst-case performance for kernel regression (first 3 plots) and NN (last 3 plots) as data points are removed by their data
values from high to low. We additionally add results for NN here compared to Fig. 5.

0 2 4

10-2

100

De
ns

ity
 (l

og
-s

ca
led

) Before removal

0 2 4

10-2

100

Remove 200

0 2 4

10-2

100

Remove 400

0 2 4

10-2

100

Remove 600
Deviation
LOO

Loss (remove from high to low value)

0 2 4

10-2

100

De
ns

ity
 (l

og
-s

ca
led

) Before removal

0 2 4

10-2

100

Remove 200

0 2 4

10-2

100

Remove 400

0 2 4

10-2

100

Remove 600
Deviation
LOO

Loss (remove from low to high value)

Figure 16. Histogram of pointwise loss (of the large dataset) for the models trained on the datasets with different numbers of data points
removed using model deviation and LOO score. The first row is removing data points by the data values from high to low, the second row
is removing data points by the data values from low to high.
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C. Theoretical Results
C.1. Proof for Theorem 3.3

Proof. We assume that the sampling distribution possesses a non-zero density at all data points within its support, i.e.,
p(x) > 0,∀x ∈ X . For any other distribution Q that has the same support as P and for any function f we have

Ex∼Q

(
f(x)

)
= Ex∼P

(q(x)
p(x)

f(x)
)
.

By applying Hoeffding’s inequality, we have that with probability at least 1− δ,

Ex∼Q

(
f(x)

)
≤ ISn + b

√
ln(1/δ)

2n
(7)

where b = maxx∈X
q(x)
p(x)f(x) and ISn = 1

n

∑n
i=1

q(xi)
p(xi)

f(xi) is the importance sampling estimator of Ex∼Q

(
f(x)

)
where

x1, . . . , xn are i.i.d. samples from the sampling distribution P . The reason why b = maxx∈X
q(x)
p(x)f(x) is that q(x)

p(x)f(x) ≥ 0

due to the fact that p(x) and q(x) are probability distribution functions and f(x) is the loss function. Therefore, we have
that with probability at least 1− δ/2:

R(fS ,Q)−R(fS∪{i},Q) (8)

= sup
Q∈Q

Ex∼Q

(
ℓ
(
fS(x), f

∗(x)
))

− sup
Q∈Q

Ex∼Q

(
ℓ
(
fS∪{i}(x), f

∗(x)
))

(9)

≤ sup
Q∈Q

Ex∼Q

(
ℓ
(
fS(x), f

∗(x)
)
−ℓ

(
fS∪{i}(x), f

∗(x)
))

(10)

≤ sup
Q∈Q

1

n

n∑
j=1

q(xj)

p(xj)

(
ℓ
(
fS(xj), f

∗(xj)
)
−ℓ

(
fS∪{i}(xj), f

∗(xj)
))

+2M1M2

√
ln(2/δ)

2n
(11)

≤ sup
Q∈Q

1

n

n∑
j=1

q(xj)

p(xj)
L(fS(xj)− fS∪{i}(xj)) + 2M1M2

√
ln(2/δ)

2n
(12)

≤ sup
Q∈Q

1

n

n∑
j=1

q(xj)

p(xj)
L∥fS − fS∪{i}∥H∥Φ(xj)∥H + 2M1M2

√
ln(2/δ)

2n
(13)

≤ L∥fS − fS∪{i}∥HM0 sup
Q∈Q

1

n

n∑
i=1

q(xi)

p(xi)
+ 2M1M2

√
ln(2/δ)

2n
. (14)

Inequality (10) is obtained by the additive of suprema. Inequality (11) is obtained by applying probability 1 − δ/2 and
b = 2M1M2 (since we have q(x)

p(x) ≤ M1 and ℓ(f(x), f∗(x)) ≤ M2) to Inequality (7). Inequality (12) is obtained from the
assumption that the loss function ℓ is L-Lipschitz continuous with respect to its first argument. Inequality (13) is obtained
from the Cauchy–Schwarz inequality. Inequality (14) is obtained from the assumption that ∥Φ(x)∥H ≤ M0,∀x ∈ X . We

22



Distributionally Robust Data Valuation

have that with probability at least 1− δ/2:

sup
Q∈Q

1

n

n∑
i=1

q(xi)

p(xi)
= 1 + sup

Q∈Q

1

n

n∑
i=1

(
q(xi)

p(xi)
− 1) (15)

≤ 1 + sup
Q∈Q

√√√√ 1

n

n∑
i=1

(
q(xi)

p(xi)
− 1)2 (16)

≤ 1 + sup
Q∈Q

√
Ex∼P (

q(x)

p(x)
− 1)2 +max((M1 − 1)2, 1)

√
ln(2/δ)

2n
(17)

= 1 + sup
Q∈Q

√
χ2(Q,P ) + max((M1 − 1)2, 1)

√
ln(2/δ)

2n
(18)

= 1 +

√
sup
Q∈Q

χ2(Q,P ) + max((M1 − 1)2, 1)

√
ln(2/δ)

2n
(19)

= 1 +

√
ε+max((M1 − 1)2, 1)

√
ln(2/δ)

2n
. (20)

Inequality (16) is obtained from Cauchy–Schwarz inequality. Inequality (17) is obtained from Hoeffding’s inequality by
applying the probability 1 − δ/2 and b = max((M1 − 1)2, 1) due to the fact that q(x)

p(x) − 1 ranges from −1 to M1 − 1.
Equ. (18) is obtained from the definition of χ2 divergence. Equ. (19) is obtained from the monotonically increasing property
of the square root function. Equ. (20) is obtained from the definition of Q. By applying union bound on Inequality (14) and
Inequality (20), we have that with probability at least 1− δ:

R(fS ,Q)−R(fS∪{i},Q)

≤ (1 +

√
ε+max((M1 − 1)2, 1)

√
ln(2/δ)

2n
)LM0∥fS − fS∪{i}∥H + 2M1M2

√
ln(2/δ)

2n
.

The rationale for using the upper bound derived from Theorem 3.3 as a proxy for the marginal improvement of
DRGE. Theorem 3.3 shows that the marginal improvement of DRGE is upper bounded by the model deviation. Therefore
we are able to use model deviation as a proxy for the marginal improvement of DRGE. Existing data valuation works (Wu
et al., 2022; Nohyun et al., 2022; Just et al., 2023) also commonly adopt the upper bound of the generalization error as
(the proxy to) their utility function and demonstrate its effectiveness. For example, DAVINZ(Wu et al., 2022) uses the
upper bound of the generalization error of neural networks and LAVA (Just et al., 2023) uses the upper bound for the
validation performance. We empirically show that our upper bound can be an effective proxy to the marginal improvement
of DRGE from Fig. 1, which shows that a high model deviation indeed induces high marginal improvement of DRGE, and
our experimental results in Sec. 5 which show superior performance to other baselines.

C.2. Proof for Theorem 3.4

Our result is based on (Arora et al., 2019, Theorem 3.2). By assuming |f0(xi)| ≤ εinit∀{xi, yi} ∈ DS and setting κ = 1, we
have the modified version of Theorem 3.2 (Arora et al., 2019). Denote fS as the NN (i.e., a fully connected NN as defined
in Sec. 2) trained on dataset DS to convergence using gradient descent, and denote f0 as the NN at initialization. Denote gS
as the minimizer of the kernel regression with NTK Θ trained on DS . The number of layers in the NN is LNN. The λ0 (λ1)
is the minimum eigenvalue of the NTK Gram matrix of dataset DS (DS∪{i}). The size of DS∪{i} is n and thus DS has size
n− 1. We state the modified version of Theorem (Arora et al., 2019) as follows:
Theorem C.1. (Arora et al., 2019, Theorem 3.2) Assume that σ(z) = max(0, z) and d1 = d2 · · · = dLNN = m and
|f0(xi)| ≤ εinit,∀{xi, yi} ∈ DS . Fix a εk ≤ poly(1/LNN, 1/(n−1), 1/ log(1/δ), λ0) and set m ≥ poly(1/εk, n−1, 1/λ0).
Then for any xtest ∈ Rd with ∥xtest∥ = 1, with probability at least 1− δ over the random initialization, we have,

|fS(xtest)− gS(xtest)| ≤ εk + εinit . (21)
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Proof. We apply Theorem C.1 to both fS and fS∪{i} using union bound. Fix a εk ≤ min
(

poly(1/LNN, 1/(n −

1), 1/ log(1/δ), λ0), poly(1/LNN, 1/n, 1/ log(1/δ), λ1)
)

. Set m ≥ max
(
poly(1/εk, n − 1, 1/λ0), poly(1/εk, n, 1/λ1)

)
.

According to Theorem C.1, we have that with probability at least 1− 2δ over the random initialization,

|fS(xtest)− gS(xtest)| ≤ εk + εinit, |fS∪{i}(xtest)− gS∪{i}(xtest)| ≤ εk + εinit . (22)

For the difference between the DRGE of fS and the DRGE of gS , we have the following,

R(fS , Q)−R(gS , Q) = sup
Q∈Q

Ex∼Qℓ
(
fS(x), f

∗(x)
)
− sup

Q∈Q
Ex∼Qℓ

(
gS(x), f

∗(x)
)

= Ex∼Q1ℓ
(
fS(x), f

∗(x)
)
−Ex∼Q2ℓ

(
gS(x), f

∗(x)
)

≤ Ex∼Q1ℓ
(
fS(x), f

∗(x)
)
−Ex∼Q1ℓ

(
gS(x), f

∗(x)
)

≤ Ex∼Q1L|fS(x)− gS(x)|
≤ L(εk + εinit)

(23)

where Q1 = argmaxQ∈Q Ex∼Qℓ
(
fS(x), f

∗(x)
)

and Q2 = argmaxQ∈Q Ex∼Qℓ
(
gS(x), f

∗(x)
)
. The first inequality

follows from the definition of Q2. The last inequality follows from the assumption that ℓ is L-Lipschitz continuous with
respect to its first argument and Theorem C.1. Similarly, we have:

R(fS∪{i}, Q)−R(g(S ∪ {i}), Q) ≤ L(εk + εinit) . (24)

By applying union bound on Equ. (23), Equ. (24), and Theorem 3.3, we have that with probability at least 1− 3δ,

R(fS ,Q)−R(fS∪{i},Q) = R(gS ,Q)−R(gS∪{i},Q)

+
(
R(fS ,Q)−R(gS ,Q) +R(gS∪{i},Q)−R(fS∪{i},Q)

)
≤ R(gS ,Q)−R(gS∪{i},Q) + 2L(εk + εinit)

≤ κn∥gS − gS∪{i}∥H + 2M1M2

√
ln(2/δ)

2n
+ 2L(εk + εinit)

where the first inequality follows from Equ. (23) and Equ. (24). The second inequality follows from Theorem 3.3. Replace
the 3δ to δ in all equations, we get the final result.

C.3. Derivations for Equ. (5) and Equ. (6)

For kernel ridge regression, the closed forms for fS and fS∪{i} can be written as fS =
(
(KS + λI)−1YS

)⊤
K(XS , ·) and

fS∪{i} =
(
(KS∪{i} + λI)−1YS∪{i}

)⊤
K(XS∪{i}, ·). Consequently, we have,

Mi(K,DS)
2 = ∥fS − fS∪{i}∥2HK

= ⟨fS − fS∪{i}, fS − fS∪{i}⟩HK

= ⟨fS , fS⟩HK
+ ⟨fS∪{i}, fS∪{i}⟩HK

− 2⟨fS , fS∪{i}⟩HK

= α⊤KS∪{i}α+ β⊤KSβ − 2β⊤KS,S∪{i}α

where α := (KS∪{i} + λI)−1YS∪{i} and β := (KS + λI)−1YS . Similarly, the model deviation for NN is Mi(Θ, DS) =

∥gS − gS∪{i}∥HΘ where gS = (Θ−1
S YS)

⊤Θ(XS , ·) and gS∪{i} = (Θ−1
S∪{i}YS∪{i})

⊤Θ(XS∪{i}, ·). Therefore,

Mi(Θ, DS)
2 = ⟨gS , gS⟩HΘ

+ ⟨gS∪{i}, gS∪{i}⟩HΘ
− 2⟨gS , gS∪{i}⟩HΘ

= α⊤ΘS∪{i}α+ β⊤ΘSβ − 2β⊤ΘS,S∪{i}α

where α = Θ−1
S∪{i}YS∪{i} and β = Θ−1

S YS .
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C.4. Proof for Theorem 3.5

Our result is based on the following result:

Theorem C.2. (Arora et al., 2019, Theorem 3.1) Assume that σ(z) = max(0, z) and the widths of the neural network
satisfy dl = Ω(

L14
NN

ε4k
log(LNN/δ)),∀l ∈ {1, . . . , LNN} for a fixed εk > 0 and δ ∈ [0, 1]. Then for ∀x1, x2 ∈ X that satisfy

∥x1∥ ≤ 1, ∥x2∥ ≤ 1, we have that with probability at least 1− δ,

|Θ0(x1, x2)−Θ(x1, x2)| ≤ (LNN + 1)εk

where Θ0(x1, x2) = ∇θ=θ0f(x1)
⊤∇θ=θ0f(x2).

Proof. With Theorem C.2, we are able to give an upper bound of the difference between the model deviation using NTK at
initialization Θ0 and the model deviation using theoretical NTK Θ. For simplicity, denote [n] := {1, . . . , n}. Without loss
of generality, we assume the data point to be evaluated zi is the n-th (i.e., the last) data points in the ordered dataset DS∪{i}.
We denote Θ̂S as the NTK at initialization matrix of DS where [Θ̂S ]j,k = Θ0(xj , xk),∀xj , xk ∈ DS and denote ΘS as the
NTK matrix of DS where [ΘS ]j,k = Θ(xj , xk),∀xj , xk ∈ DS . Similarly, we denote Θ̂S∪{i} as the NTK at initialization
matrix of DS∪{i} and ΘS∪{i} as the NTK matrix of DS∪{i}. Define Θ̂S∪{i},S where [Θ̂S∪{i},S ]j,k = Θ0(xj , xk),∀xj ∈
DS∪{i},∀xk ∈ DS and ΘS∪{i},S where [ΘS∪{i},S ]j,k = Θ(xj , xk),∀xj ∈ DS∪{i},∀xk ∈ DS .

We can rewrite Mi(Θ, DS)
2 by substituting α and β with closed-form expression:

Mn(Θ, DS)
2

= YSΘ
−1
S ΘSΘ

−1
S YS + YS∪{i}Θ

−1
S∪{i}ΘS∪{i}Θ

−1
S∪{i}YS∪{i} − 2YT

S∪{i}(Θ
−1
S∪{i}ΘS∪{i},SΘ

−1
S )YS

= YSΘ
−1
S YS + YS∪{i}Θ

−1
S∪{i}YS∪{i} − 2YT

S∪{i}(Θ
−1
S∪{i}ΘS∪{i},SΘ

−1
S )YS .

Therefore, we have:

|Mi(Θ, DS)
2 −Mi(Θ0, DS)

2|
≤|YSΘ

−1
S YS − YSΘ̂

−1
S YS |+ |YS∪{i}Θ

−1
S∪{i}YS∪{i} − YS∪{i}Θ̂

−1
S∪{i}YS∪{i}|+

2|YT
S∪{i}(Θ

−1
S∪{i}ΘS∪{i},SΘ

−1
S )YS − YT

S∪{i}(Θ̂
−1
S∪{i}Θ̂S∪{i},SΘ̂

−1
S )YS |

=|YS(Θ
−1
S − Θ̂−1

S )YS |+ |YS∪{i}(Θ
−1
S∪{i} − Θ̂−1

S∪{i})YS∪{i}|+

2|YT
S∪{i}(Θ

−1
S∪{i}ΘS∪{i},SΘ

−1
S − Θ̂−1

S∪{i}Θ̂S∪{i},SΘ̂
−1
S )YS | .

(25)

According to Theorem C.2, we have:

∥ΘS∪{i} − Θ̂S∪{i}∥2 ≤ ∥ΘS∪{i} − Θ̂S∪{i}∥F ≤ n(L+ 1)ε .

Also, we have:

∥Θ−1
S∪{i}∥2 =

√
max[eig(Θ−1

S∪{i})
2] =

1√
min[eig(ΘS∪{i})2]

=
1

λmin(ΘS∪{i})
.

Therefore, we have:

∥Θ−1
S∪{i} − Θ̂−1

S∪{i}∥2 = ∥Θ−1
S∪{i}(ΘS∪{i} − Θ̂S∪{i})Θ̂

−1
S∪{i}∥2

≤ ∥Θ−1
S∪{i}∥2∥ΘS∪{i} − Θ̂S∪{i}∥2∥Θ̂−1

S∪{i}∥2

≤ n(L+ 1)ε

λmin(ΘS∪{i})λmin(Θ̂S∪{i})
.

Similarly, we have ∥Θ−1
S − Θ̂−1

S ∥2 ≤ (n−1)(L+1)ε

λmin(ΘS)λmin(Θ̂S)
.
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Assuming that y ≤ B, ∀y ∈ Y , we are able to give an upper bound of the first two terms in the last line of Equ. (25).

|YS(Θ
−1
S − Θ̂−1

S )YS |+ |YS∪{i}(Θ
−1
S∪{i} − Θ̂−1

S∪{i})YS∪{i}|

≤ ∥YS∥2∥Θ−1
S − Θ̂−1

S ∥2∥YS∥2 + ∥YS∪{i}∥2∥Θ−1
S∪{i} − Θ̂−1

S∪{i}∥2∥YS∪{i}∥2

≤ (n− 1)2B2(L+ 1)ε

λmin(ΘS)λmin(Θ̂S)
+

n2B2(L+ 1)ε

λmin(ΘS∪{i})λmin(Θ̂S∪{i})
.

(26)

Denote [ΘS∪{i},S ]n, as the n-th row of the matrix ΘS∪{i},S . Denote IS ∈ R(n−1)×(n−1) as the identity matrix. Observe
that

ΘS∪{i},SΘ
−1
S =

[
IS

[ΘS∪{i},S ]n,Θ
−1
S

]
; Θ̂S∪{i},SΘ̂

−1
S =

[
IS

[Θ̂S∪{i},S ]n,Θ̂
−1
S

]
.

From Theorem C.2, we are able to rewrite [Θ̂S∪{i},S ]n, as [Θ̂S∪{i},S ]n, = [ΘS∪{i},S ]n, + (L + 1)ενS , where νS is an
(n− 1)-dimensional row vector with each element satisfies |[νS ]j | ≤ 1,∀j ∈ [n− 1]. Therefore, we have:

∥[ΘS∪{i},S ]n,Θ
−1
S − [Θ̂S∪{i},S ]n,Θ̂

−1
S ∥2

=
∥∥[ΘS∪{i},S ]n,Θ

−1
S −

(
[ΘS∪{i},S ]n, + (L+ 1)ενS

)
Θ̂−1

S

∥∥
2

≤
∥∥[ΘS∪{i},S ]n,(Θ

−1
S − Θ̂−1

S )
∥∥
2
+ (L+ 1)ε∥νS∥2∥Θ̂−1

S ∥2

≤ (n− 1)3/2(L+ 1)ε

λmin(ΘS)λmin(Θ̂S)
+

√
n− 1(L+ 1)ε

λmin(Θ̂S)
.

Denote C ′ := (n−1)3/2(L+1)ε

λmin(ΘS)λmin(Θ̂S)
+

√
n−1(L+1)ε

λmin(Θ̂S)
, then we can rewrite [Θ̂S∪{i},S ]n,Θ̂

−1
S as [Θ̂S∪{i},S ]n,Θ̂

−1
S =

[ΘS∪{i},S ]n,Θ
−1
S + C ′ν′

S where ν′
S is defined similarly to νS . Denote K := ΘS∪{i},SΘ

−1
S . Denote 0S ∈ R(n−1)×(n−1)

as the matrix with all 0 elements, we have that

Θ̂S∪{i},SΘ̂
−1
S = K +

[
0S

C ′ν′
S

]
.

Note that:

∥K∥2 = ∥ΘS∪{i},SΘ
−1
S ∥2 =

∥∥∥∥[ IS
[ΘS∪{i},S ]n,Θ

−1
S

]∥∥∥∥
2

≤ ∥IS∥2 + ∥[ΘS∪{i},S ]n,Θ
−1
S ∥2

≤ ∥IS∥2 + ∥[ΘS∪{i},S ]n,∥2∥Θ−1
S ∥2

= 1 +

√
n− 1

λmin(ΘS)
.

Therefore, we can now give an upper bound of the third term in the last line of Equ. (25) as:

2|YT
S∪{i}(Θ

−1
S∪{i}ΘS∪{i},SΘ

−1
S − Θ̂−1

S∪{i}Θ̂S∪{i},SΘ̂
−1
S )YS |

≤ 2∥YS∪{i}∥2∥YS∥2∥Θ−1
S∪{i}ΘS∪{i},SΘ

−1
S − Θ̂−1

S∪{i}Θ̂S∪{i},SΘ̂
−1
S ∥2

= 2∥YS∪{i}∥2∥YS∥2
∥∥∥∥Θ−1

S∪{i}K − Θ̂−1
S∪{i}

(
K +

[
0S

C ′ν′
S

])∥∥∥∥
2

≤ 2∥YS∪{i}∥2∥YS∥2
(
∥K∥2∥Θ−1

S∪{i} − Θ̂−1
S∪{i}∥2 + ∥Θ̂−1

S∪{i}∥2
∥∥∥∥[ 0S

C ′ν′
S

]∥∥∥∥
2

)
≤ 2

√
n(n− 1)B2

(
(1 +

√
n−1

λmin(ΘS) )
n(L+1)ε

λmin(ΘS∪{i})λmin(Θ̂S∪{i})
+ C′√n−1

λmin(Θ̂S∪{i})

)
≤ 2nB2

(
n3/2

λmin(ΘS)λmin(ΘS∪{i})λmin(Θ̂S∪{i})
+ (n−1)2

λmin(ΘS)λmin(Θ̂S)λmin(Θ̂S∪{i})

)(
1 + λmin(ΘS)

)
(L+ 1)ε

≤ 2n3B2
(

1
λmin(ΘS)λmin(ΘS∪{i})

+ 1
λmin(ΘS)λmin(Θ̂S)

)(
1+λmin(ΘS)

λmin(Θ̂S∪{i})

)
(L+ 1)ε .

(27)
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Therefore, plugging in the results from Equ. (26) and Equ. (27) into Equ. (25), we have,

|Mi(Θ, DS)
2 −Mi(Θ0, DS)

2|
≤|YS(Θ

−1
S − Θ̂−1

S )YS |+ |YS∪{i}(Θ
−1
S∪{i} − Θ̂−1

S∪{i})YS∪{i}|+

2|YT
S∪{i}(Θ

−1
S∪{i}ΘS∪{i},SΘ

−1
S − Θ̂−1

S∪{i}Θ̂S∪{i},SΘ̂
−1
S )YS |

≤2n3B2
(

1
λmin(ΘS)λmin(ΘS∪{i})

+ 1
λmin(ΘS)λmin(Θ̂S)

)(
1+λmin(ΘS)

λmin(Θ̂S∪{i})

)
(L+ 1)ε

+
(n− 1)2B2(L+ 1)ε

λmin(ΘS)λmin(Θ̂S)
+

n2B2(L+ 1)ε

λmin(ΘS∪{i})λmin(Θ̂S∪{i})

≤4n3B2
(

1
λmin(ΘS)λmin(ΘS∪{i})

+ 1
λmin(ΘS)λmin(Θ̂S)

)(
1+λmin(ΘS)

λmin(Θ̂S∪{i})

)
(L+ 1)ε .

Since we assume that min
(
Mi(Θ, DS),Mi(Θ0, DS)

)
≥ M , we have

|Mi(Θ, DS)−Mi(Θ0, DS)|

=
∣∣Mi(Θ, DS)

2 −Mi(Θ0, DS)
2

Mi(Θ, DS) +Mi(Θ0, DS)

∣∣
≤ 2n3B2

M

(
1

λmin(ΘS)λmin(ΘS∪{i})
+ 1

λmin(ΘS)λmin(Θ̂S)

)(
1+λmin(ΘS)

λmin(Θ̂S∪{i})

)
(L+ 1)ε .

C.5. Proof for Theorem 4.1

Proof. Rewrite ∥ · ∥H as ∥ · ∥ to simplify the proof in the following. Denote the empirical risk of f on the dataset DS as
erS(f) = 1/|DS |

∑
(xm,ym)∈DS

ℓ(f(xm), ym). We write the minimization problems for kernel ridge regression on both
DS and DS∪{i} as follows:

fS = argmin
g∈H

∑
(xm,ym)∈DS

ℓ(g(xi), yi) +
λ

2
∥g∥2 ,

fS∪{i} = argmin
g∈H

∑
(xm,ym)∈DS∪{i}

ℓ(g(xi), yi) +
λ

2
∥g∥2.

By dividing the objective by the number of data points in each dataset, we get the following:

fS = argmin
g∈H

erS(g) +
λ

2(n− 1)
∥g∥2 ,

fS∪{i} = argmin
g∈H

erS∪{i}(g) +
λ

2n
∥g∥2.

For an α ∈ [0, 1], we define:
fα := αfS∪{i} + (1− α)fS ,

f ′
α := (1− α)fS∪{i} + αfS .

Since ℓ is convex, for all (x, y), we have:

ℓ(fα(x), y) ≤ αℓ(fS∪{i}(x), y) + (1− α)ℓ(fS(x), y)) ,

erS(fα) ≤ αerS(fS∪{i}) + (1− α)erS(fS) .
(28)

Since fS∪{i} and fS are the minimizers of their corresponding minimization problems, we have:

erS∪{i}(fS∪{i}) +
λ

2n
≤ erS∪{i}(fα) +

λ

2n
∥fα∥2 ,

erS(fS) +
λ

2(n− 1)
≤ erS(f ′

α) +
λ

2(n− 1)
∥f ′

α∥2 .
(29)
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Consequently, by rearranging the Inequality (29), we have:

λ

2
(
1

n
∥fS∪{i}∥2 +

1

n− 1
∥fS∥2 −

1

n
∥fα∥2 −

1

n− 1
∥f ′

α∥2)︸ ︷︷ ︸
A

≤ erS∪{i}(fα)− erS∪{i}(fS∪{i}) + erS(f ′
α)− erS(fS)︸ ︷︷ ︸

B

.

(30)

For the LHS, we have:

A =
λ

2
(
1

n
∥fS∪{i}∥2 + (

1

n
+

1

n(n− 1)
)∥fS∥2 −

1

n
∥fα∥2 − (

1

n
+

1

n(n− 1)
)∥f ′

α∥2)

=
λ

2n
(∥fS∪{i}∥2 + ∥fS∥2 − ∥fα∥2 − ∥f ′

α∥2) +
λ

2n(n− 1)
(∥fS∥2 − ∥f ′

α∥2))

=
λ

2n

(
2α(1− α)∥fS∪{i} − fS∥2

)
+

λ

2n(n− 1)

(
(1− α)α∥fS∪{i} − fS∥2 + (1− α)(∥fS∥2 − ∥fS∪{i}∥2)

)
=

λ(1− α)

2n(n− 1)

((
2n− α

)
∥fS∪{i} − fS∥2 + (∥fS∥2 − ∥fS∪{i}∥2)

)
=

λ(1− α)

2n(n− 1)

((
2n− α− k

)
∥fS∪{i} − fS∥2 + k∥fS∪{i} − fS∥2 + (∥fS∥2 − ∥fS∪{i}∥2)

)
.

(31)

We assume that ∥Φ(x)∥H ≤ M,∀x ∈ X and denote G := max{∥fS∥, ∥fS∪{i}∥}. For the RHS, by applying the
Inequality (28), we have:

B ≤(1− α)(erS∪{i}(fS)− erS∪{i}(fS∪{i}) + erS(fS∪{i})− erS(fS))

=(1− α)
(
(erS∪{i}(fS)−−erS(fS))− (erS∪{i}(fS∪{i})− erS(fS∪{i}))

)
=(1− α)

[(
1
n

(n−1∑
m=1

ℓ(fS(xm), ym) + ℓ(fS(xi), yi)
)
− 1

n−1

n−1∑
m=1

ℓ(fS(xm), ym)
)

−
(

1
n

(n−1∑
m=1

ℓ(fS∪{i}(xm), ym) + ℓ(fS∪{i}(xi), yi)
)
− 1

n−1

n−1∑
m=1

ℓ(fS∪{i}(xm), ym)
)]

=(1− α)
[(

1
nℓ(fS(xi), yi)− 1

n(n−1)

n−1∑
m=1

ℓ(fS(xm), ym)
)

−
(

1
nℓ(fS∪{i}(xi), yi)− 1

n(n−1)

n−1∑
m=1

ℓ(fS∪{i}(xm), ym)
)]

= (1−α)
n(n−1)

n−1∑
m=1

(
ℓ(fS(xi), yi)− ℓ(fS(xm), ym)− ℓ(fS∪{i}(xi), yi) + ℓ(fS∪{i}(xm), ym)

)
= (1−α)

n(n−1)

∑
(xm,ym)∈Zi

(
ℓ(fS(xi), yi)− ℓ(fS(xm), yi)− ℓ(fS∪{i}(xi), yi) + ℓ(fS∪{i}(xm), yi)

)
+ (1−α)

n(n−1)

∑
(xm,ym)/∈Zi

(
ℓ(fS(xi), yi)− ℓ(fS∪{i}(xi), yi) + ℓ(fS∪{i}(xm), ym)− ℓ(fS(xm), ym)

)
≤ (1−α)

n(n−1)LG
∑

(xm,ym)∈Zi

∥Φ(xm)− Φ(xi)∥+ (1−α)
n(n−1)2LM(n−m− 1)∥fS − fS∪{i}∥

(32)
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Denote I(xi) :=
∑

(xm,ym)∈Zi
∥Φ(xm)− Φ(xi)∥. By plugging in results from Equ.(31) and Equ.(32) into Equ.(30), we

have:
λ

2

((
2n− α− k

)
∥fS∪{i} − fS∥2 + k∥fS∪{i} − fS∥2 + (∥fS∥2 − ∥fS∪{i}∥2)

)
≤ LGI(xi) + 2LM(n−m− 1)∥fS − fS∪{i}∥ .

We assume that there exists a k that satisfies 2n− 1 ≥ k ≥ ∥fS∪{i}∥2−∥fS∥2

∥fS∪{i}−fS∥2 . Then we have,

λ

2

(
2n− α− k

)
∥fS∪{i} − fS∥2 ≤ LGI(xi) + 2LM(n−m− 1)∥fS − fS∪{i}∥ .

Consequently,

λ

2

(
2n− α− k

)
∥fS∪{i} − fS∥2 − 2LM(n−m− 1)∥fS − fS∪{i}∥ − LGI(xi) ≤ 0 .

Solving the above quadratic inequality, we obtain,

∥fS∪{i} − fS∥ ≤ 2LM(n−m−1)+
√

4L2M2(n−m−1)2+2λ(2n−α−k)LGI(xi)

λ(2n−α−k) .

Remark on the notion of uniqueness that arises from Theorem 4.1. The notion of uniqueness contains dissimilarity
and scarcity as we described in Sec. 4. Specifically, data points that are further away from other data points with the same
label in the feature space will have higher dissimilarity and thus higher uniqueness which might indicate not very low model
deviation. In this sense, our approach does not explicitly consider the setting of anomaly data points since anomaly data
points might have high dissimilarity and thus not very low data values (though not necessarily true). This suggests that
differentiating between unique, valuable data points and anomalous data points is a potential future direction.

C.6. Extension of Theorem 3.5 and Its Proof

Theorem C.3 (Approximation error of model deviation using NTK at any time step t). For fixed εk > 0, assume
that for each layer ∀j ∈ {1, . . . , LNN}, its width dj = Ω(

L14
NN

ε4k
log(LNN/δ)) and dj > dlarge such that there exists ε′

that supt≥0 ∥Θ̂t − Θ̂0∥F ≤ ε′/dj
1/2. Assume that λmin(ΘS∪{i}) > 0, each label ∀y ∈ Y, y ≤ B, and each input

∀x ∈ X , ∥x∥ ≤ 1. Apply gradient descent with learning rate η ≤ 2(λmin(ΘS∪{i}) + λmax(ΘS∪{i}))
−1. Then, ∀δ ∈ (0, 1),

with probability at least 1− δ,

|Mi(Θ, DS)−Mi(Θt, DS)| ≤ C
(
(LNN + 1)εk + ε′/d

1/2
j

)
where C = 2n3B2

M

(
1

λmin(ΘS)λmin(ΘS∪{i})
+ 1

λmin(ΘS)λmin(Θ̂S)

)( 1+λmin(ΘS)

λmin(Θ̂S∪{i})

)
and M = min(Mi(Θ, DS),Mi(Θt, DS)).

Theorem C.3 provides the approximation error of model deviation using NTK at any time step t instead of NTK at
initialization, bringing another flexibility to our approach. The proof for Theorem C.3 is based on the following result:

Theorem C.4. (Lee et al., 2019, Theorem 2.1) Let d1 = · · · = dLNN
= d and assume λmin(Θ) > 0. Applying gradient

decent with learning rate η < 2(λmin(ΘS∪{i}) + λmax(ΘS∪{i}))
−1, for every x ∈ X with ∥x∥2 ≤ 1, with probability

arbitrarily close to 1 over random initialization,

sup
t≥0

∥Θ̂t − Θ̂0∥F = O(d−1/2), as d → ∞ .

Proof. According to Theorem C.4, there exists a dlarge and ε′ such that supt≥0 ∥Θ̂t − Θ̂0∥F ≤ ε′/dj
1/2 holds dj ≥ dlarge.

Applying this result to the proof for Theorem 3.5, we obtain the result in Theorem C.3.
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D. Additional Discussion on Related Work
In Sec. 6, we discuss some related works on data valuation. There are some related works on defining the uncertainty
set (Namkoong & Duchi, 2017; Gotoh et al., 2018; Staib & Jegelka, 2019; Blanchet et al., 2022). Specifically, (Namkoong
& Duchi, 2017; Gotoh et al., 2018) define the uncertainty set using χ2-divergence on the empirical distribution. However, as
we discussed in Appendix A, it can not handle the out-of-sample problem. (Blanchet et al., 2022) defines the uncertainty set
using Wasserstein distance which might not be able to model the real-world complex dataset due to the use of easy ground
metrics (Staib & Jegelka, 2019) (e.g., Euclidean distance). More discussions can be found in Appendix A. (Staib & Jegelka,
2019) propose to use the maximum mean discrepancy (MMD) as the distance measure to define the uncertainty set to tackle
the problems of χ2-divergence and Wasserstein distance. However, it is dependent on the choice of kernel and thus a poor
choice of kernel might result in a poor measure of distributional distance. Additionally, the approximation of worst-case
performance (provided in (Staib & Jegelka, 2019)) based on the MMD uncertainty set is only applicable to kernel-based
algorithms. Unlike the approaches discussed above, our definition of the uncertainty set applies the χ2-divergence based on
the sampling distribution P , rather than the empirical distribution P̂ . This approach effectively tackles the out-of-sample
problem. Furthermore, our definition of the uncertainty set is not dependent on kernel selection, thereby eliminating the
risks associated with poor kernel choices. Our approach utilizes model deviation as a proxy for the marginal improvement
of DRGE and can be applied to both kernel-based algorithms and neural networks, not just to kernel-based algorithms.
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