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ABSTRACT

Spontaneous speech emotion data usually contain perceptual grades where graders
assign emotion score after listening to the speech files. Such perceptual grades in-
troduce uncertainty in labels due to grader opinion variation. Grader variation is
addressed by using consensus grades as groundtruth, where the emotion with the
highest vote is selected. Consensus grades fail to consider ambiguous instances
where a speech sample may contain multiple emotions, as captured through grader
opinion uncertainty. We demonstrate that using the probability density function
of the emotion grades as targets instead of the commonly used consensus grades,
provide better performance on benchmark evaluation sets compared to results re-
ported in the literature. We show that a saliency driven foundation model (FM)
representation selection helps to train a state-of-the-art speech emotion model for
both dimensional and categorical emotion recognition. Comparing representa-
tions obtained from different FMs, we observed that focusing on overall test-set
performance can be deceiving, as it fails to reveal the models generalization ca-
pacity across speakers and gender. We demonstrate that performance evaluation
across multiple test-sets and performance analysis across gender and speakers are
useful in assessing usefulness of emotion models. Finally, we demonstrate that la-
bel uncertainty and data-skew pose a challenge to model evaluation, where instead
of using the best hypothesis, it is useful to consider the 2- or 3-best hypotheses.

1 INTRODUCTION

Speech-based emotion models aim to estimate the emotional state of a speaker from their speech
utterances. Real-time speech-emotion models can help to improve human-computer interaction Mi-
tra et al. (2019); Kowtha et al. (2020) and facilitate health applications Stasak et al. (2016); Niu
et al. (2023); Provost et al. (2024). Speech emotion research has pursued two distinct definitions of
emotion: (1) categorical emotions: for example, fear, anger, joy, sadness, disgust, and surprise Ek-
man (1992), and (2) dimensional emotions: that represent emotion using a 3-dimensional model of
Valence, Activation and Dominance Posner et al. (2005). Early studies on speech emotion detection
focused on acted or elicited emotions Busso et al. (2008), however, models trained with acted emo-
tions often fail to generalize for spontaneous emotions Douglas-Cowie et al. (2005). Recently, atten-
tion has been given to datasets with spontaneous emotions Mariooryad et al. (2014) where graders
listen to each audio file and assign emotion labels. Such perceptual grading is difficult due to utter-
ances containing mixed, shifting, subtle, or ambiguous emotions. To account for this, Mariooryad
et al. have multiple graders review and grade each audio file. Traditionally, researchers addressed
label variance by taking the grader consensus Chou et al. (2024). However, modeling such variance
Prabhu et al. (2022); Chou et al. (2024); Tavernor et al. (2024) can be useful to account for audio
samples that were perceptually difficult to annotate. In this work, we investigate training models
with distributions of grader decisions for categorical emotions, instead of consensus grades, as the
target. We hypothesize that modeling label uncertainty can help to improve the model’s robustness
because consensus grades fail to account for mixed, shifting, subtle, or ambiguous emotions.

Recent studies have shown that pre-trained foundation model (FM) representations are useful for
emotion recognition from speech Srinivasan et al. (2022); Mitra et al. (2022; 2023). Given that
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the FMs may not have been trained with emotion labels, the final layer representations may not be
optimal for emotion recognition. Earlier studies have investigated intermediate FM representations
for various speech tasks Alain & Bengio (2016); Mitra & Franco (2020); Mitra et al. (2024a); Yang
et al. (2024). In this work, we investigate saliency based FM layer selection for the downstream
emotion modeling task. To summarize, in this work, we:

1. Account label uncertainty through the use of categorical emotion pdf as targets.
2. Explore saliency-driven intermediate FM layer representations for emotion recognition.
3. Evaluate performance across speakers, gender and unseen acoustic conditions.

We observed that models that provide state-of-the-art (SOTA) results, may not generalize well across
speakers and varying acoustic conditions. We found that having a diverse evaluation set along
with a diverse evaluation metric is useful for model selection. We found that the traditional 1-
best hypothesis used in emotion literature may get biased by the training data-skew, in which case
2- or 3-best hypotheses may be useful to account for speech samples containing multiple emotions.

2 DATA

We have used the MSP-Podcast dataset (ver. 1.11) Mariooryad et al. (2014); Lotfian & Busso (2017)
that contains ≈ 238 hours of speech data spoken by English speakers (N > 1800), consisting of
≈ 152K speaking turns. The speech segments contain single-speaker utterances with a duration of
3 to 11 seconds. The data contain manually assigned valence, activation and dominance scores and
categorical emotions (9 categories) from multiple graders. Grader decisions for categorical emotions
were converted to a pdf (reflecting the probability of each of the 9 emotions), which was used as
the target for our model training. The data split is shown in Table 4 in Appendix A.2. To make our
results comparable to Ghriss et al. (2022); Srinivasan et al. (2022), we report results on Eval1.6 and
Eval1.11 (see Table 4). For evaluating model robustness, we have added noise to the MSP test-set
at SNR levels 15 dB and 5dB (see Eval15dB and Eval5dB in Table 4, Appendix A.2). We report
categorical emotion recognition performance on six emotions: neutral, happy, angry, sad, contempt
and surprise. We have used CMU-Mosei, Zadeh et al. (2018) and a 5 hour in-house conversational
speech data from 85 speakers for cross-corpus speech emotion recognition analysis.

3 REPRESENTATIONS

We explore speech embeddings as features to a TC-GRU model (see Figure 1). We use the fol-
lowing pre-trained models to generate those embeddings: (i) HuBERT large Hsu et al. (2021), a
transformer based acoustic model, pre-trained on 60K hours of Libri-light speech data, generating
1024-dimensional embedding. (ii) WavLM large Chen et al. (2022), a transformer based acoustic
model, generating 1024 dimensional embedding. WavLM has been pre-trained on 60K hours of
Libri-light, 19K hours of GigaSpeech and 25K hours of VoxPopuli. (iii) Whisper medium Rad-
ford et al. (2023) acoustic model that generates 1024 dimensional embeddings from 24 transformer
encoder layers. Whisper is trained with 680K hours of noisy and diverse speech data from the web.

Motivated by Mitra et al. (2024b;a) we explore obtaining layer-saliency to obtain the optimal FM
layer representation for emotion modeling. Let the N dimensional representation from the kth

layer of a FM for an utterance y be represented by a vector Hy
k (t) = [X1,k, . . . , Xt,k, . . . , XM,k],

where M denotes the sequence length. For a regression task, let the sequence targets be Ly , where
Ly ∈ RD, where the D dimensional vector L denotes the output targets, for each utterance. H
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γi is the sum of the weighted cross-correlation between the ith dimension and all other dimensions,
as shown in eq. 2. In our experiments we have used µCCS,k given in eq. 3 to select salient layers of
a pre-trained FM, which is obtained from a randomly sampled 30K utterances in the Train1.11.

3.1 MODEL TRAINING

We have trained a multi-task (dimensional and categorical) emotion recognition model. It consists
of temporal convolution (kernel size of 3), followed by a 2-layered gated recurrent unit (TC-GRU)
network, consisting of 256 neurons in each layer and an embedding layer of 256 neurons. The model
architecture is illustrated in Fig. 1 and the model parameters are described in Appendix A.8. The
model was trained with Train1.11 data (see Table 4), where the performance on Valid1.11 set was
used for model selection and early stopping. Concordance correlation coefficient (CCC) Lawrence
& Lin (1989) is used as the loss function, see Appendix A.1. Models were trained with a mini-batch
of 32 and a learning rate of 0.0005.

Figure 1: Multi-task emotion recognition model

4 RESULTS

We trained multi-task emotion recognition models with embeddings from HuBERT, WavLM, and
Whisper FMs. In addition, we trained a baseline model with mel-filterbank and pitch (MFBF0)
feature. In Table 1, we report dimensional emotion estimation performance obtained from the trained
systems and compared them with the state-of-the-art results reported in the literature (see Table 1).
Note that in Srinivasan et al. (2022) ASR generated transcripts were used, which was not used for
the other systems in Table 1. Finally, we compared categorical emotion recognition performance
obtained from the TC-GRU models with respect to results reported in the literature (see Table 2).

Table 1: Dimensional emotion estimation performance (CCC ↑) and comparison with SOTA
.

Systems Eval1.6 Eval1.11 Eval15dB Eval5dB
Act. Val. Dom. Act. Val. Dom. Act. Val. Dom. Act. Val. Dom.

MFBF0 TC-GRU 0.73 0.34 0.66 0.62 0.39 0.56 0.69 0.26 0.61 0.53 0.14 0.48
HuBERT TC-GRU 0.77 0.65 0.70 0.66 0.59 0.59 0.74 0.62 0.64 0.61 0.54 0.49
WavLM TC-GRU 0.77 0.70 0.70 0.66 0.63 0.58 0.73 0.71 0.66 0.62 0.64 0.53
Whisper TC-GRU 0.75 0.71 0.69 0.65 0.64 0.58 0.73 0.71 0.66 0.66 0.69 0.60
Mitra et al. (2024b) 0.75 0.66 0.67 - - - - - - - - -
Srinivasan et al. (2022) 0.77 0.69 0.68 - - - - - - - - -

Table 2: Categorical emotion recognition performance and comparison with SOTA models
.

Systems Eval1.6 Eval1.11 Eval15dB Eval5dB Mosei Inhouse
F1m UAR F1m UAR F1m UAR F1m UAR F1m UAR F1m UAR

MFBF0 TC-GRU 0.34 0.45 0.44 0.58 0.46 0.53 0.46 0.50 0.40 0.56 0.19 0.34
HuBERT TC-GRU 0.49 0.67 0.48 0.67 0.49 0.65 0.50 0.64 0.48 0.66 0.58 0.64
WavLM TC-GRU 0.50 0.70 0.48 0.69 0.50 0.69 0.50 0.68 0.47 0.69 0.61 0.67
Whisper TC-GRU 0.52 0.69 0.50 0.68 0.52 0.68 0.52 0.67 0.48 0.68 0.59 0.65
Das et al. (2024) - 0.67 - - - - - - - - - -
Feng & Narayanan (2023) - 0.67 - - - - - - - - - -
Wu et al. (2024) 0.35 - - - - - - - - - - -

Next we investigated how these models perform across speakers, where we accumulated model
decisions by speaker, and computed the UAR for the categorical emotion predictions. We have used
Eval1.11 and Inhouse sets to compare the performance of the models. For performance evaluation
across speakers, we introduced a metric: paUAR-X, which measures the percentage of speakers
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who are above a UAR of X%, where we have used two thresholds: X: 75% and 50%, respectively.
Table 3 shows paUAR-75 and paUAR-50 for categorical emotion, obtained across speakers. Note
that Tables 1 and 2 show that overall WavLM TC-GRU model performed better than the HuBERT
TC-GRU, however table 3 shows that a better system may not necessarily generalize across speakers.

Table 3: Emotion recognition performance across speakers
where paUAR-X is the percentage of speakers who are above a UAR of X%.

Eval Sets MFBF0 TC−GRU HuBERT TC−GRU WavLM TC−GRU Whisper TC−GRU
hyps. paUAR-75 paUAR-50 paUAR-75 paUAR-50 paUAR-75 paUAR-50 paUAR-75 paUAR-50

Eval1.11 1-best 2.3 21.1 3.1 34.4 3.1 40.6 4.7 39.1
Inhouse 2.3 14.0 10.0 30.5 9.3 35.0 11.6 39.5
Eval1.11 2-best 11.7 46.9 21.1 61.7 28.1 68.8 22.7 68.0
Inhouse 23.0 100.0 93.0 100.0 100.0 100.0 100.0 100.0
Eval1.11 3-best 20.3 68.0 36.0 86.7 46.1 85.9 36.7 89.8
Inhouse 53.1 100.0 95.4 100.0 100.0 100.0 100.0 100.0

In terms of the 1-best hypothesis paUAR-75 and paUAR-50, Whisper TC-GRU model performed
better than the others, likely due the fact it was pre-trained with a noisy, more diverse, and larger
set of speech. However, even with this best performing model, only 5% and 12% of speakers
had UAR above 0.75 for Eval1.11 and Inhouse sets, respectively. In Appendices A.5 and A.6,
we explore potential explanations for the speaker-level performance differences including whether
gender or emotion label distributions play a role. We find that gender has a significant impact on
results, where 7% of female speakers had UAR above 0.75 compared to ≈ 14% of male speakers
for the Inhouse evaluation set. This gap illustrates the importance of evaluating model performance
at speaker and group levels. Interestingly, even if Tables 1 and 2 show that WavLM TC-GRU
model overall performed much better than MFBF0 TC-GRU, their paUAR-75 were comparable for
Eval1.11, indicating that the usage of overall metrics while assessing the usefulness of a model can
be deceiving. Also note that the speaker level performance obtained from Eval1.11 and the inhouse
set was quite different for each of the models investigated, where the performance for Eval1.11 was
found to be lower, as it is a harder and larger containing more speakers than the inhouse set (see table
4 in A.2). Note that for Eval1.11, the best model demonstrated an UAR above 0.75 for only ≈ 5% of
the speakers. The poor performance across speakers can be attributed to the uncertainty in the labels
and the overall skew toward “neutral” emotion. For example, in many instances different graders
assigned different emotions to the same speech file, which reveals that a speech file can contain a
mix-of-emotions due to mixed, shifting, subtle, or ambiguous emotions. Additionally, data skew due
to one emotion category being present overwhelmingly in the training set (e.g., “neutral”) can lead
the model to over-estimate that emotion, in which case a 1-best hypothesis may lead to pessimistic
results. Appendix A.7 illustrates the relationship between 1-best and 2-best hypothesis, and how by
studying both we can obtain better clarity regarding the models generalization capacity. Table 3, we
explored paUAR-X if the target emotion exists within the 2-best or 3-best hypotheses. We find a
paUAR-75 of more than 28% can be obtained by considering the 2-best hypothesis and as high as
46% can be obtained with a 3-best hypothesis. These findings indicate that (1) in case of data with
uncertain labels and distribution skew, it is helpful to consider multiple model hypothesis and (2)
label distribution skew impacts model’s generalization capacity across speakers.

5 CONCLUSIONS

In this work, we demonstrated SOTA results for both dimensional and categorical emotion recogni-
tion. The models were found to perform well for unseen datasets (Mosei and Inhouse) and demon-
strated reasonable noise robustness. Interestingly, the models failed to generalize across speakers,
where we observed that the model performed with an overall UAR of above 0.75 for less than 10%
of the speakers. The model offered UAR above 0.5 for ≈ 60% of the speakers. This indicated that
using metrics that reflect the overall performance on an eval set may not be prudent, speaker-level
and gender-level performance are crucial to assess how well the model will perform across users.
We also observed that instead of using the 1-best hypothesis from the model, it is useful to consider
2-best or 3-best hypothesis, as certain utterances may contain multiple emotions, in which case the
model may provide more than one likely emotion categories. With 2-best and 3-best hypothesis, we
observed that UAR above 0.75 was obtained for > 60% and > 85% of the speakers, respectively.
The findings from this study opens the question regarding performance metrics, which can account
for co-occurrences of semantically closer emotions, such as “angry”, “contempt”, “disgust”, which
may have a higher chance of confusion with each other.
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A APPENDIX

A.1 CONCORDANCE CORRELATION COEFFICIENT

Concordance correlation coefficient based loss (Lccc) is defined by:

Lccc = − 1

N

N∑
i=1

CCCi (4)
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where Lccc is the mean of CCC’s obtained from each of the N output targets. CCC is defined by:

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
. (5)

where µx and µy are the means, σ2
x and σ2

y are the corresponding variances for the estimated and
groundtruth variables, and ρ is the correlation coefficient between them.

A.2 DATA SPLIT

Table 4: MSP-podcast data split, noise-degraded test sets and out-of-domain MOSEI and Inhouse
evaluation set

Split Hours Speakers Description
MSP Train1.11 135.4 1411 Training set
MSP Valid1.11 31.7 456 Validation set
MSP Eval1.6 16.6 51 Podcast1.6 evaluation set
MSP Eval1.11 48.9 244 Podcast1.11 Eval set 1
MSP Eval15dB 28.4 51 Eval + noise within 10-20 dB
MSP Eval5dB 28.4 51 Eval + noise within 0-10 dB
CMU-Mosei 70.6 - Mosei segments
Inhouse data 5.0 85 Conversational speech segments

A.3 LAYER SALIENCY MEASURE

Neural saliency was used in Mitra et al. (2024b) to reduce the number of representations for the
downstream task with a goal of model size reduction. “Saliency” in this work focuses on layer-
saliency as outlined in section 3, where the saliency measure was modified to provide a layer-wise
collective measure, that informs which transformer layer in the foundation model is more relevant.
This measure is particularly important, as given the large number of transformer layers in an FM, it
may not be possible to perform layer-wise experimentation of which layer offers the best represen-
tation. Layer-wise saliency measure offers a data-driven solution to figure out which layers in the
transformer network are better suited for the downstream task, without the need to train downstream
models for representations from each individual layer.

We observed that valence is more sensitive to transformer layer representation, compared to activa-
tion and dominance (see Figure 2). Earlier studies Chen et al. (2022) have found that for WavLM
intermediate layers (specifically layers 19 and 20) are better for intent classification. Valence plays
an important role in emotion discrimination, such as Happy versus Angry or Sad versus Calm.
In Figure 3 we show how saliency based on individual valence, happy and angry scores vary by
WavLM transformer layer representation. Figures 2 and 3 show that intermediate transformer lay-
ers of WavLM offer better representations (paralinguistic cues) for downstream emotion detection
compared to the final layer. We observed that the intermediate layers correlated strongly with ar-
ticulatory features (extracted using the model in Mitra et al. (2018)), speech rate, pitch and voicing
information, compared to the final layer.
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Figure 2: Dimensional emotion estimation for different transformer layers in WavLM

Figure 3: WavLM layer saliency by valence, happy and angry emotion

A.4 EMOTION MODEL DETAILS

Table 5 shows that representations from emotion-salient layer as compared to the final FM layer,
resulted in improvement in emotion recognition performance. It is also interesting to note that
relative improvement in valence was higher (> 8% relative) compared to the other dimensional
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emotions. For unseen-noise sets (Eval15dB and Eval5dB), the relative improvement was higher
(16.5% for dimensional and 10% for categorical emotion) than other evaluation sets. 1

Table 5: Dimensional and categorical emotion estimation using (1) MFBF0 feature, (2) FM repre-
sentations from final layer and (3) FM representations from the salient layer

.
Test set Reps. Layer Dim. Emo. Cat. Emo.

CCC ↑ UAR ↑
Act. Val. Dom.

Eval1.3

MFBF0 − 0.73 0.33 0.67 0.55
HuBERT Final 0.75 0.60 0.69 0.65

Salient 0.78 0.65 0.71 0.66
WavLM Final 0.77 0.61 0.70 0.66

Salient 0.77 0.70 0.71 0.71
Whisper - 0.76 0.71 0.69 0.71

Eval1.6

MFBF0 − 0.73 0.34 0.66 0.54
HuBERT Final 0.75 0.60 0.68 0.64

Salient 0.77 0.65 0.70 0.66
WavLM Final 0.76 0.61 0.69 0.65

Salient 0.77 0.70 0.70 0.70
Whisper - 0.75 0.71 0.69 0.61

Eval1.11

MFBF0 − 0.62 0.39 0.56 0.58
HuBERT Final 0.64 0.55 0.57 0.65

Salient 0.66 0.59 0.59 0.67
WavLM Final 0.65 0.57 0.58 0.65

Salient 0.66 0.63 0.58 0.69
Whisper - 0.65 0.64 0.58 0.68

Eval15dB

MFBF0 − 0.69 0.26 0.61 0.50
HuBERT Final 0.70 0.57 0.60 0.62

Salient 0.74 0.62 0.64 0.64
WavLM Final 0.72 0.58 0.62 0.63

Salient 0.73 0.71 0.66 0.68
Whisper - 0.73 0.71 0.66 0.67

Eval5dB

MFBF0 − 0.53 0.14 0.48 0.44
HuBERT Final 0.56 0.49 0.43 0.56

Salient 0.61 0.54 0.49 0.60
WavLM Final 0.61 0.50 0.48 0.60

Salient 0.62 0.64 0.53 0.66
Whisper - 0.66 0.69 0.60 0.65

Mosei

MFBF0 − - - - 0.56
HuBERT Final - - - 0.64

Salient - - - 0.66
WavLM Final - - - 0.66

Salient - - - 0.69
Whisper - - - - 0.68

A.5 PERFORMANCE BY GENDER

Table 6 shows performance variance across male and female speakers for Eval1.11 and Inhouse test
sets. We find performance is considerably lower for female speakers across both datasets, and the
gap between performance for male and female speakers increases with the paUAR threshold. The
training set is skewed toward male speakers, which likely contributes to the observation in Table 6.

1performance gains from the salient FM-layer representations were statistically significant (p < 0.05)
compared to the results reported in the literature

9



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

Table 6: Emotion recognition performance (paUAR-75 and paUAR-50) by gender for Whisper TC-
GRU model

.

Eval Sets paUAR-75 paUAR-50
Female Male Female Male

Eval1.11 2.7 7.1 45.8 50.4
Inhouse 7.1 13.8 28.6 44.8

A.6 PERFORMANCE BY SPEAKER’S EMOTION DISTRIBUTIONS

Figure 4 shows performance plotted against emotion distributions for each speaker in Eval1.6. Be-
cause UAR is the unweighted average across recall on all emotions, we do not find a strong rela-
tionship between UAR and emotion distribution. This suggests UAR is robust to these speaker-level
changes and can capture other important factors in speaker-level performance.

Figure 4: Speaker-level performance (UAR from Whisper TC-GRU) plotted against emotion distri-
butions, for speakers in Eval1.6.

A.7 RELATIONSHIP BETWEEN 1ST AND 2ND BEST MODEL HYPOTHESES

We find that the model’s first and second hypotheses show a clear relationship, and that the first
hypothesis alone may not fully reflect the model’s understanding. Figure 5 illustrates these details,
with the samples accurately labeled by the first hypothesis outlined by the horizontal gray bars, and
the samples accurately labeled by the second hypothesis outlined by the vertical gray bars. The first
hypotheses are highly accurate for happiness and anger, indicated by the white squares within the
horizontal gray outlines. However, for most sadness samples, the model identifies neutral as the most
likely emotion and sadness as the second most likely emotion, indicated by the white square within
the vertical gray outline. Similarly, for surprise samples, the model identifies happiness as the most
likely emotion and surprise as the second most likely emotion, where this hierarchy likely results
from the closer relationship between happiness and surprise with the former class having more
representation in the training data. We also see considerable confusion between contempt, anger, and
neutral. When we explore the models second best hypotheses, we find the model correctly detects
the overall sentiment but does not distinguish correctly between them. This finding supports our
analysis into considering the model’s second best hypotheses when determining model predictions.
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Figure 5: Confusion matrices showing the relationship between 1st and 2nd best model hypotheses
from Whisper TC-GRU and the Eval1.6 test set.

A.8 MODEL PARAMETERS

The TC-GRU models had 1.6M parameters (2.1MB), whereas the MFBF0 was 700KB in size, for
saliency based layer selection, we were able to reduce the computation needed by WavLM (16%)
and by HuBERT (8%) by reducing the number of transformer layers needed to generate the repre-
sentations, see Table 7. Note that layers were all frozen for feature extraction, i.e., none of the FM
transformer layers were fine-tuned for the given task as shown in Figure 1. Earlier work Mitra et al.
(2024b) has shown that saliency-based representation selection can help to reduce the downstream
model size, however that was not the focus of this work. The goal of this work is to investigate layers
that are relevant for downstream emotion task, where joint modeling of categorical and dimensional
emotion would result in better performance, as compared to using the final layers. Note that most
studies have used FM final layer representations to train teacher models to distill information into
simpler downstream models, in this work we show that better teacher models can be obtained by
proper selection of representation layers.

Table 7: Model Parameters

Model Full FM Params
(Not loaded)

Salient Layer
FM Params

(Loaded, frozen)

Saliency Size
Reduction

Trainable
Params

(TC-GRU)

Total Loaded
Model Size

MFBF0 TC-GRU - - - 0.5M 0.7MB
WavLM TC-GRU 315.5M 265.1M 16% 1.6M 2.2MB
HuBERT TC-GRU 315.4M 290.2M 8% 1.6M 2.2MB
Whisper TC-GRU 315.7M 315.7M 0% 1.6M 2.2MB
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