

000 NEURAL FEATURE GEOMETRY EVOLVES AS DISCRETE 001 RICCI FLOW 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Deep neural networks learn feature representations via complex geometric trans-
007 formations of the input data manifold. Despite the models’ empirical success
008 across domains, our understanding of neural feature representations is still incom-
009 plete. In this work we investigate neural feature geometry through the lens of
010 discrete geometry. Since the input data manifold is typically unobserved, we ap-
011 proximate it using geometric graphs that encode local similarity structure. We
012 provide theoretical results on the evolution of these graphs during training, show-
013 ing that nonlinear activations play a crucial role in shaping feature geometry in
014 feedforward neural networks. Moreover, we discover that the geometric trans-
015 formations resemble a discrete Ricci flow on these graphs, suggesting that neural
016 feature geometry evolves analogous to Ricci flow. This connection is supported by
017 experiments on over 20,000 feedforward neural networks trained on binary clas-
018 sification tasks across both synthetic and real-world datasets. We observe that the
019 emergence of class separability corresponds to the emergence of community struc-
020 ture in the associated graph representations, which is known to relate to discrete
021 Ricci flow dynamics. Building on these insights, we introduce a novel frame-
022 work for locally evaluating geometric transformations through comparison with
023 discrete Ricci flow dynamics. **Our experimental results further suggest connec-**
024 **tions between the evolution of feature geometry, and training time and network**
025 **depth.**¹

026 1 INTRODUCTION

027 Deep neural networks have achieved remarkable success across diverse domains. Yet, a com-
028 prehensive theoretical understanding of why these models generalize and perform so well in practice
029 remains elusive. To address this challenge, recent works have investigated how the geometry (Bap-
030 tista et al., 2024; Ansuini et al., 2019; Cohen et al., 2020) and topology (Magai & Ayzenberg, 2022;
031 Naitzat et al., 2020) of neural feature representations evolve as data propagates through network
032 layers. Beyond advancing interpretability and explainability, such analyses also provide practical
033 benefits, offering principled guidance for model and hyperparameter selection.

034 In this work we adopt a geometric perspective to analyze how deep neural networks evolve feature
035 representations. Since the underlying manifold is not directly observable, we approximate its geo-
036 metry by constructing geometric graphs from local similarity structure in the data. To the best of
037 our knowledge, no prior work has provided theoretical results on how the geometry of such graphs
038 evolves as data manifolds propagate through network layers. We provide initial theoretical insights
039 by proving that, in the wide regime, deep linear networks preserve feature geometry, whereas non-
040 linear activations, such as ReLU, enable genuine geometric transformations.

041 Among the geometric concepts available for studying these transformations, Ricci curvature and
042 its associated Ricci flow stand out as fundamental tools from Riemannian geometry. Originally
043 introduced by Hamilton (1982), the Ricci flow intuitively describes the smoothing of a manifold’s
044 geometry through the evolution of its metric tensor. Famously, Perelman (2002; 2003b;a) employed
045 it to prove the Poincaré conjecture and Thurston’s geometrization conjecture. By carefully handling
046 singularities, Perelman’s work revealed topological insights through the progressive smoothing of
047

048 ¹Code available at https://anonymous.4open.science/r/RF_FG-33A2/

054 the manifold’s geometry. This mathematical framework bears a compelling analogy to deep neu-
 055 ral networks, which progressively simplify and smooth the geometry of data manifolds, thereby
 056 uncovering richer information about the underlying classes in classification tasks.

057 Building on this intuition, we propose a novel framework for locally evaluating geometric transfor-
 058 mations through comparison with discrete Ricci flow dynamics. We conduct experiments on more
 059 than 20,000 feedforward neural networks trained on binary classification tasks across both synthetic
 060 and real-world datasets. We find that across datasets and architectures, neural networks consistently
 061 impose curvature-driven transformations closely aligned with the Ricci flow dynamics. Moreover,
 062 the emergence of class separability is reflected in the development of community structure in the as-
 063 sociated graph representations, an evolution known to be closely tied to discrete Ricci flow dynamics
 064 (Tian et al., 2025; Ni et al., 2019; Lai et al., 2022).

065 Our experimental results indicate connections between the evolution of feature geometry, and train-
 066 ing time and network depth. We find evidence that the emergence of geometrically informed feature
 067 transformations during training can inform early stopping. Additionally, by analyzing curvature-
 068 driven transformations layer-wise, we identify a critical point beyond which additional layers cease
 069 to yield meaningful curvature-driven changes. This suggests a relation between feature geometry
 070 and network depth selection.

071 Our proposed framework opens new avenues for understanding the geometric principles underly-
 072 ing deep learning that could inform practical tools for improving training efficiency and parameter
 073 selection across diverse applications.

075 **Summary of contributions** The main contributions of this work are as follows:

- 077 1. We prove that, in the wide regime, deep linear networks preserve feature geometry, whereas
 078 non-linear activations such as ReLU enable meaningful geometric transformations (Sec. 3.1).
- 079 2. Our experiments show that the progressive emergence of class separability is reflected in the
 080 emergence of community structure within the corresponding graph representations (Sec. 4.2).
- 081 3. **We provide experimental evidence that links the evolution of feature geometry to optimal training
 082 time selection (Sec. 4.3).**
- 083 4. By analyzing layer-wise curvature-driven transformations, **we show that the evolution of feature
 084 geometry relates to optimal network depth (Sec. 4.4).**

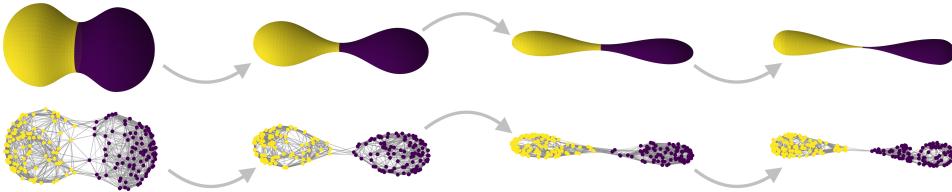
085 **Related work** A variety of approaches have been proposed to better understand the feature trans-
 086 formations of deep neural networks. The connection between deep learning and Ricci flow was first
 087 explored by Baptista et al. (2024), who analyzed geometric transformations via Ricci flow at a global
 088 scale. Our approach differs by capturing the inherently local behavior of Hamilton’s Ricci flow and
 089 by leveraging more refined discretizations of Ricci curvature. Other efforts include topology-based
 090 analyses (Naitzat et al., 2020), and geometric measures of simplification (Brahma et al., 2015; An-
 091 suini et al., 2019; Cohen et al., 2020). We defer a more detailed discussion of related literature to
 092 Appendix A.1.

094 2 BACKGROUND AND NOTATION

096 Following standard notation, we use a, \mathbf{a} , and \mathbf{A} to denote scalars, vectors, and matrices. For
 097 $\mathbf{x} \in \mathbb{R}^n$, $\|\mathbf{x}\|$ denotes the L^2 norm. $\mathcal{N}(\mu, \sigma^2)$ represents a normal distribution with mean μ and
 098 variance σ^2 . We denote a graph as $\mathcal{G} = (V, E)$, where V is the vertex set and $E \subseteq V \times V$ the
 099 edge set. We write $u \sim v$ if $(u, v) \in E$ and $d(u, v)$ denotes the shortest path distance between u
 100 and v . The 1-hop neighborhood of v is denoted by $N(v) = \{u \in V : u \sim v\}$ and the degree by
 101 $\deg(v) = |N(v)|$. The maximum degree is given by $\deg_{\max} = \max_{v \in V} \deg(v)$.

103 2.1 SETTING

105 To study the feature geometry of deep neural networks, we focus on binary classification, a funda-
 106 mental task in supervised learning. Following the notation of Naitzat et al. (2020), we consider a
 107 compact manifold $M = M_a \cup M_b \subseteq \mathbb{R}^n$, given by the disjoint union of two submanifolds. The task
 108 is to determine, given a sample $\mathbf{x} \in M$, whether it belongs to M_a or M_b .



115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Schematic illustration of evolving feature manifolds (top row) along with the corresponding geometric graphs (bottom row) approximating their evolving geometry.

To this end, we train a feed-forward neural network $\Phi : \mathbb{R}^n \rightarrow [0, 1]$ with L hidden layers, given by

$$\Phi = \phi_{L+1} \circ \phi_L \circ \dots \circ \phi_1.$$

Each layer of the network is defined as the composition of an affine transformation and a non-linear activation function σ , i.e., $\phi_\ell : \mathbb{R}^{n_{\ell-1}} \rightarrow \mathbb{R}^{n_\ell}$ is given by, $\phi_\ell(\mathbf{x}) = \sigma(\mathbf{W}_\ell \mathbf{x} + \mathbf{b}_\ell)$, where $\mathbf{W}_\ell \in \mathbb{R}^{n_\ell \times n_{\ell-1}}$ is the weight matrix and $\mathbf{b}_\ell \in \mathbb{R}^{n_\ell}$ is the bias vector. Here, n_ℓ denotes the width of layer ℓ , with $n_0 = n$ corresponding to the input dimension. In this work, we use the ReLU activation function, defined as $\sigma(z) = \max(0, z)$, applied elementwise in all hidden layers. To produce probabilistic outputs, we apply a sigmoid activation in the final layer, i.e., $\phi_{L+1}(\mathbf{x}) = \rho(\mathbf{W}_{L+1} \mathbf{x} + \mathbf{b}_{L+1})$, where $\mathbf{W}_{L+1} \in \mathbb{R}^{1 \times n_\ell}$, $\mathbf{b}_{L+1} \in \mathbb{R}$ and $\rho(z) = \frac{1}{1+e^{-z}}$.

We study how the geometry of data evolves as it propagates through neural networks. Given an input manifold M , we denote by $\Phi_\ell = \phi_\ell \circ \dots \circ \phi_1$ the composition of the first ℓ layers, and refer to $\Phi_\ell(M)$ as the feature manifold at layer ℓ . In practice, M is unobserved, and we only have access to a finite set of samples $X = \{\mathbf{x}^{(i)}\}_{i=1}^N \subset M$. To approximate the geometry of the feature manifolds, we construct geometric graphs on the transformed samples $\{\Phi_\ell(\mathbf{x}^{(i)})\}_{i=1}^N$, as schematically illustrated in Figure 1. Graphs based on local connectivity patterns, such as k -nearest neighbor graphs or r -neighborhood graphs, are known to preserve geometric and topological properties of the manifold when samples are sufficiently dense, including Ricci curvature (Van Der Hoorn et al., 2021; Trillos & Weber, 2023). This approach is well-established in manifold learning and geometric data analysis, where such graph-based representations are commonly used to study the geometry of data.

Specifically, we consider the k -nearest neighbor graph, denoted by $\mathcal{G}_k(X)$, where the vertices of $\mathcal{G}_k(X)$ correspond exactly to the samples in X , and two vertices are connected if either is among the k -nearest neighbors of the other, i.e., a [symmetric \$k\$ -NN graph](#). Additionally, we construct r -neighborhood graphs $\mathcal{G}_r(X)$, where an edge is drawn between two vertices if their distance is less than a fixed radius $r > 0$. These graphs provide discrete approximations of the evolving feature manifolds.

2.2 RICCI CURVATURE OF GRAPHS

Ricci curvature plays a fundamental role in Riemannian geometry and provides the foundation for our analysis of feature geometry. To extend curvature concepts to graphs, we adopt two of the most widely used discretizations, proposed by Ollivier (2009) and Forman (2003). We briefly introduce them below.

Intuitively, Ricci curvature measures how the local geometry of a manifold deviates from being flat. This can be captured by comparing the distance between two nearby points with the distance between small geodesic balls centered at them: in regions of positive (negative) curvature, the geodesic balls are closer together (farther apart) than the points themselves.

Building on this intuition, Ollivier (2009) extends the classical notion of Ricci curvature to graphs by replacing geodesic balls with the transition probability of a random walk. For a vertex u , let μ_u denote the uniform distribution over its neighbors, i.e., $\mu_u(v) = \frac{1}{\deg(u)}$ if $u \sim v$ and $\mu_u(v) = 0$ otherwise. Ollivier-Ricci curvature then compares the distance between these distributions to the distance between their centers, mirroring the comparison between geodesic balls and their centers in the Riemannian case:

$$\mathcal{O}(u, v) = 1 - \frac{W_1(\mu_u, \mu_v)}{d(u, v)},$$

162 where $W_1(\mu_u, \mu_v)$ is the 1-Wasserstein distance, defined by
 163

$$164 \quad W_1(\mu_u, \mu_v) = \inf_{\pi \in \Pi(\mu_u, \mu_v)} \sum_{a \in V} \sum_{b \in V} d(a, b) \pi(a, b), \\ 165$$

166 and $\Pi(\mu_u, \mu_v)$ denotes the set of all couplings of μ_u and μ_v .
 167

168 Computing Ollivier-Ricci curvature is computationally demanding, as it requires solving an optimal
 169 transport problem for each edge with complexity $O(\deg_{\max}^3)$ via the Hungarian algorithm. This can
 170 be mitigated by approximating the Wasserstein distance using Sinkhorn distances (Cuturi, 2013) or
 171 through direct combinatorial approximations of the Ollivier-Ricci curvature (Tian et al., 2025). We
 172 adopt the latter, detailed in Appendix A.2.1, in our experiments.

173 On the other hand, Forman (2003) introduced a discretization of Ricci curvature on CW complexes
 174 via a discrete analogue of the Bochner–Weitzenböck formula. For a simple, unweighted graph, the
 175 Forman-Ricci curvature of an edge $u \sim v$ is defined as

$$176 \quad \mathcal{F}(u, v) = 4 - \deg(u) - \deg(v). \\ 177$$

178 While this definition is well-founded in Forman’s framework and computationally efficient, it is
 179 often too simplistic to capture the geometric complexity required in many applications. To ad-
 180 dress this limitation, augmented versions of Forman’s curvature have been considered (Bloch, 2014;
 181 Samal et al., 2018; Weber et al., 2018). A widely used refinement incorporates contributions from
 182 three-cycles, yielding the following combinatorial expression:

$$183 \quad \mathcal{AF}(u, v) = 4 - \deg(u) - \deg(v) + 3|N(u) \cap N(v)|.$$

184 This augmentation can be computed in $O(E \deg_{\max})$ time, providing a scalable alternative to the
 185 computationally demanding Ollivier–Ricci curvature. A more detailed introduction to the Forman–
 186 Ricci curvature is provided in Appendix A.2.2.
 187

188 2.2.1 CURVATURE GAP 189

190 When two adjacent vertices belong to the same community, their neighborhoods tend to be more
 191 tightly connected. This lowers the transport cost between neighborhood distributions, yielding
 192 higher Ollivier-Ricci curvature, and likewise increases augmented Forman-Ricci curvature due to
 193 a higher incidence of triangles. Both measures are therefore effective for community detection (Sia
 194 et al., 2019; Gosztolai & Arnaudon, 2021; Fesser et al., 2024). By contrast, the original For-
 195 man–Ricci curvature depends only on endpoint degrees and cannot reliably distinguish intra- from
 196 inter-community edges. As a result, Ollivier- and augmented Forman–Ricci curvature show a bi-
 197 modal distribution in graphs with strong community structure. To quantify this bimodality, we use
 198 the curvature gap (Gosztolai & Arnaudon, 2021):

$$199 \quad \Delta \mathcal{O} = \frac{1}{\sigma} (\mathcal{O}_{\text{intra}} - \mathcal{O}_{\text{inter}}) \\ 200$$

201 where $\mathcal{O}_{\text{intra}}$ and $\mathcal{O}_{\text{inter}}$ denote the mean curvature of intra- and inter-community edges, and σ is
 202 the pooled standard deviation. This measure captures how strongly the local graph geometry, as
 203 encoded by Ricci curvature, reflects community structure. The curvature gap can be analogously
 204 defined for augmented Forman–Ricci curvature. Visualizations and further community structure
 205 metrics (modularity, normalized cut, spectral gap) are presented in Appendix A.2.3.
 206

207 2.3 RICCI FLOW 208

209 To analyze the evolving geometry of the feature manifolds, it is natural to draw inspiration from
 210 the Ricci flow, a central concept in Riemannian geometry introduced by Hamilton (1982). The
 211 Ricci flow evolves a Riemannian metric g according to $\frac{\partial}{\partial t} g(t) = -2\text{Ric}(g(t))$ with initial condition
 212 $g(0) = g$, where $\text{Ric}(g(t))$ denotes the Ricci curvature tensor; further details are provided in Ap-
 213 pendix A.2.4. This evolution is often compared to heat diffusion, as the underlying equation shares
 214 a similar averaging effect, smoothing out curvature irregularities by shrinking positively curved re-
 215 gions and expanding negatively curved ones. While there is no unique notion of discrete Ricci flow
 by Ollivier (2010), and we show below that well-trained networks follow the same mechanism.

216

3 APPROXIMATING FEATURE GEOMETRY

217

218 This section establishes theoretical results on feature manifold evolution in wide neural networks,
219 emphasizing the key role of non-linear activations in geometric transformations. We then introduce
220 a novel measure that compares local network-induced geometric changes with those predicted by
221 discrete Ricci flow.

222

3.1 THEORETICAL RESULTS

223

225 As a first result, we show that for randomly initialized, sufficiently wide neural networks without
226 nonlinearity, the graph structures encoding the feature geometry are preserved with high probability.
227 Two graphs G and H are said to be *isomorphic*, denoted by $G \cong H$, if there exists a bijection
228 between their vertex sets that preserves adjacency relations, i.e., the graphs are identical up to vertex
229 relabeling. The following theorem establishes explicit lower bounds on the network width that
230 guarantee the existence of an isomorphism between the k -nearest neighbor graphs.

231 **Theorem 3.1.** *Let $X \subset \mathbb{R}^n$ be a finite set, and assume there exists $0 < \epsilon < 1$ such that*

232
$$\min_{\substack{Y \subset X \\ |Y|=k}} \max_{y \in Y} \|\mathbf{x} - \mathbf{y}\|^2 \leq \frac{1-\epsilon}{1+\epsilon} \min_{\substack{Y \subset X \\ |Y|=k+1}} \max_{y \in Y} \|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x} \in X.$$
233

234 Furthermore, let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries $A_{ij} \sim \mathcal{N}(0, 1/m)$. Then, the
235 map $\psi : X \mapsto \mathbf{A}X := \{\mathbf{A}\mathbf{x} : \mathbf{x} \in X\}$, defined by $\psi(\mathbf{x}) = \mathbf{A}\mathbf{x}$, is a graph isomorphism between
236 $\mathcal{G}_k(X)$ and $\mathcal{G}_k(\mathbf{A}X)$ with probability bounded from below

237
$$\mathbb{P}(\mathcal{G}_k(X) \cong \mathcal{G}_k(\mathbf{A}X) \text{ under } \psi) \geq 1 - |X|(|X| - 1)e^{\frac{m}{4}(\epsilon^3 - \epsilon^2)}.$$
238

239 **Remark.** Since the addition of a bias term does not affect pairwise distances, the same result holds
240 for one-layer linear networks with bias.

241 The proof builds on the Johnson–Lindenstrauss Lemma, which implies that randomly initialized
242 weight matrices act as approximate isometries with high probability. The complete proof of Theorem
243 3.1 is deferred to Appendix A.3.1. Analogous results for r -neighborhood graphs (Theorem A.6),
244 generalizations to deep networks (Theorem A.7), and empirical validation (Appendix A.4.1) are also
245 provided.

246 Random initialization combined with over-parameterization keeps network weights near their initial
247 values during gradient descent. We show that, without nonlinearities, network dynamics cannot
248 alter the feature geometry encoded by graph structures, regardless of the number of gradient descent
249 steps. Consider a two-layer network $\Phi = \phi_2 \circ \phi_1$ with $\phi_1(\mathbf{x}) = \sigma\left(\frac{1}{\sqrt{m}}\mathbf{W}\mathbf{x}\right)$, where σ denotes the
250 ReLU activation and m the width of the hidden layer. We minimize the empirical loss by keeping the
251 second-layer weights fixed, while gradient descent updates the first-layer weight matrix \mathbf{W} , denoted
252 by $\mathbf{W}(l)$ after l gradient descent steps. Then, the k -nearest neighbor graphs remain invariant prior
253 to the nonlinearity, as stated in the following theorem.

254 **Theorem 3.2 (Informal).** *Let $X \subset \mathbb{R}^n$ be a finite set. Under suitable technical assumptions, for
255 networks of sufficient width m and any number of gradient descent steps $l \geq 0$, the map*

256
$$\psi : X \rightarrow X(l) := \left\{ \frac{1}{\sqrt{m}}\mathbf{W}(l)\mathbf{x} : \mathbf{x} \in X \right\}; \quad \psi(\mathbf{x}) = \frac{1}{\sqrt{m}}\mathbf{W}(l)\mathbf{x}$$
257

258 *is a graph isomorphism between $\mathcal{G}_k(X)$ and $\mathcal{G}_k(X(l))$ with high probability.*

261 A formal version of this result, including exact lower bounds on the required network width and
262 the full proof, is provided in Appendix A.3.2. There, we also present an analogous theorem for
263 r -neighborhood graphs.

264 The results above establish that wide linear neural networks cannot alter the underlying feature
265 geometry, as their weight matrices act as approximate isometries. In contrast, once a nonlinearity is
266 introduced, our experiments show clear changes in the geometry, as captured by the graph structures
267 (see Section 4). This highlights the essential role of the ReLU activation in enabling such
268 transformations. Building on this observation, we further demonstrate that even when the weight
269 matrices are exact isometries, adding the ReLU nonlinearity is sufficient to change the geometry of
the feature manifolds.

270 **Theorem 3.3** (Informal). *For any three vertices, there exists a linear isometry such that composing it
 271 with a ReLU activation changes the ordering of their pairwise distances. In particular, this operation
 272 can rewire the k -nearest neighbor graph.*

273 This provides not only empirical but also theoretical evidence for the fundamental role of the activation
 274 function in changing the feature geometry. A formal treatment of this result is provided in
 275 Appendix A.3.3.

277 **3.2 LOCAL RICCI EVOLUTION COEFFICIENTS**

279 In this section, we introduce a novel framework to evaluate the geometric changes induced by deep
 280 neural networks by drawing an analogy with the Ricci flow. Recall that the Ricci flow regularizes the
 281 geometry of a manifold by shrinking regions of positive curvature and expanding regions of negative
 282 curvature. We aim to assess whether neural networks induce feature transformations that exhibit a
 283 similar curvature-driven regularization. Since the feature manifolds cannot be directly observed,
 284 we instead approximate their geometry using the k -nearest neighbor graph $\mathcal{G}_k(\Phi_\ell(X))$, constructed
 285 from the transformed samples $\Phi_\ell(X) = \{\Phi_\ell(\mathbf{x}^{(i)})\}_{i=1}^N$ after layer ℓ . A discussion on the choice of
 286 the parameter k is provided in Appendix A.5.1.

287 To reflect the local nature of the Ricci flow in our graph-based framework, we focus on the smallest
 288 neighborhoods, i.e., the one-hop neighborhoods. The curvature of a one-hop neighborhood centered
 289 at a vertex \mathbf{x} at layer ℓ is approximated by the discrete scalar curvature of Ollivier (2010),

$$291 \mathcal{O}_\ell(\mathbf{x}) = \frac{1}{\deg_\ell(\mathbf{x})} \sum_{\mathbf{y} \in N_\ell(\mathbf{x})} \mathcal{O}(\mathbf{x}, \mathbf{y}),$$

294 where $\deg_\ell(\mathbf{x})$ and $N_\ell(\mathbf{x})$ denote the degree and one-hop neighborhood of \mathbf{x} in $\mathcal{G}_k(\Phi_\ell(X))$. To
 295 capture how a local region evolves across layers, we define the average change in distances

$$297 \eta_\ell(\mathbf{x}) = \frac{1}{\deg_\ell(\mathbf{x})} \sum_{\mathbf{y} \in N_\ell(\mathbf{x})} (d_{\ell+1}(\mathbf{x}, \mathbf{y}) - d_\ell(\mathbf{x}, \mathbf{y})),$$

299 where $d_\ell(\mathbf{x}, \mathbf{y})$ is the distance between \mathbf{x} and \mathbf{y} at layer ℓ . Ideally, we would use geodesic distances
 300 on the underlying manifold; since the manifold is unobservable, we instead use the shortest path
 301 distances in the k -NN graph as a discrete analog. Intuitively, $\eta_\ell(\mathbf{x})$ measures whether the neighbor-
 302 hood of \mathbf{x} expands during the transition from layer ℓ to $\ell+1$. Under the Ricci flow, positively curved
 303 regions contract while negatively curved regions expand, implying a negative correlation between
 304 $\mathcal{O}_\ell(\mathbf{x})$ and $\eta_\ell(\mathbf{x})$. To quantify this, we compute the Pearson correlation coefficient across layers,

$$306 \rho(\mathbf{x}) = \frac{\sum_{\ell=1}^{L-1} (\eta_\ell(\mathbf{x}) - \bar{\eta}(\mathbf{x}))(\mathcal{O}_\ell(\mathbf{x}) - \bar{\mathcal{O}}(\mathbf{x}))}{\sqrt{\sum_{\ell=1}^{L-1} (\eta_\ell(\mathbf{x}) - \bar{\eta}(\mathbf{x}))^2} \sqrt{\sum_{\ell=1}^{L-1} (\mathcal{O}_\ell(\mathbf{x}) - \bar{\mathcal{O}}(\mathbf{x}))^2}},$$

309 where $\bar{\eta}(\mathbf{x}) = \frac{1}{L-1} \sum_{\ell=1}^{L-1} \eta_\ell(\mathbf{x})$ and $\bar{\mathcal{O}}(\mathbf{x}) = \frac{1}{L-1} \sum_{\ell=1}^{L-1} \mathcal{O}_\ell(\mathbf{x})$ denote the averages across lay-
 310 ers. We refer to $\rho(\mathbf{x})$ as the *local Ricci evolution coefficient* of the network at point \mathbf{x} . Although
 311 introduced here in the context of Ollivier curvature, the framework is general and can likewise be
 312 instantiated with alternative notions of discrete curvature, such as the augmented Forman curvature
 313 or efficient approximations of Ollivier curvature.

314 **Remark.** Appendix A.1.1 provides a detailed comparison between our local framework and the
 315 global approach of Baptista et al. (2024).

317 In addition to evaluating Ricci flow-like behavior at the level of individual neighborhoods, we can
 318 also assess it layer by layer. Specifically, we ask whether the geometric transformations induced by
 319 a given layer ℓ align with those expected under the Ricci flow. To this end, we define the *layer Ricci
 320 coefficient*

$$321 \rho(\ell) = \frac{\sum_{\mathbf{x} \in \Phi_\ell(X)} (\eta_\ell(\mathbf{x}) - \bar{\eta}_\ell)(\mathcal{O}_\ell(\mathbf{x}) - \bar{\mathcal{O}}_\ell)}{\sqrt{\sum_{\mathbf{x} \in \Phi_\ell(X)} (\eta_\ell(\mathbf{x}) - \bar{\eta}_\ell)^2} \sqrt{\sum_{\mathbf{x} \in \Phi_\ell(X)} (\mathcal{O}_\ell(\mathbf{x}) - \bar{\mathcal{O}}_\ell)^2}},$$

323 where $\bar{\eta}_\ell = \frac{1}{|X|} \sum_{\mathbf{x} \in \Phi_\ell(X)} \eta_\ell(\mathbf{x})$ and $\bar{\mathcal{O}}_\ell = \frac{1}{|X|} \sum_{\mathbf{x} \in \Phi_\ell(X)} \mathcal{O}_\ell(\mathbf{x})$.

324 4 EXPERIMENTAL ANALYSIS

326 4.1 LOCAL RICCI EVOLUTION COEFFICIENTS

328 Using our framework of local Ricci evolution coefficients, we empirically examine whether deep
 329 neural networks exhibit curvature-driven dynamics in the evolution of their feature geometry. To this
 330 end, we study both synthetic and real-world datasets. The synthetic datasets are constructed to span
 331 varying degrees of geometric and topological entanglement. For real-world benchmarks, we con-
 332 sider visually similar digit pairs from MNIST (1 vs. 7, 6 vs. 9), fine-grained visual distinctions from
 333 Fashion-MNIST—sneakers vs. sandals (FMNIST-SvS) and shirts vs. dresses (FMNIST-SvD)—and
 334 from CIFAR-10 (cars vs. planes). Further details on datasets and task setup are provided in Ap-
 335 pendix A.5. We train feed-forward networks with varying widths and depths, all of which achieve
 336 over 99% training accuracy, ensuring that our analysis reflects meaningful learned feature repres-
 337 entations. To account for randomness in training, results are averaged over 50 independently initialized
 338 and trained networks per dataset–architecture pair. In total, we analyze the feature geometry of more
 339 than 20,000 networks.

340 Table 1 reports results on real-world datasets, consistently showing negative local Ricci evolution
 341 coefficients, providing strong evidence of Ricci flow–like dynamics in feature geometry. The large
 342 majority of vertices exhibit negative coefficients, indicating that curvature-driven dynamics are a
 343 global phenomenon on the data manifold. To reduce computational overhead, we further compute
 344 local Ricci evolution coefficients using augmented Forman curvature and the approximate Ollivier
 345 curvature of Tian et al. (2025). Both yield results consistent with the exact Ollivier curvature while
 346 being substantially more efficient (see Tables 4 and 5). For completeness, we present the entire
 347 distribution of local Ricci evolution coefficients in Appendix A.4.2, along with results on synthetic
 348 datasets. Strikingly, we observe qualitatively identical behavior across all architectures and datasets,
 349 both synthetic and real, underscoring the robustness and universality of this phenomenon. **Ad-**
 350 **ditionally, we calculated the local Ricci evolution coefficients using the Spearman correlation instead**
 351 **of the Pearson correlation. Since the Spearman correlation captures monotonic relationships, it is**
 352 **less sensitive to outliers or non-normal distributions. The results are presented in Table 10, and are**
 353 **closely aligned with the results using the Pearson correlation.** Together, these findings provide com-
 354 **pellng evidence that the evolution of feature geometry in deep neural networks is fundamentally**
 355 **curvature-driven, closely aligned with Ricci flow.**

356 Table 1: Average local Ricci evolution coefficients on real-world data. Values are means \pm stan-
 357 dard deviations over 50 independently trained networks per architecture; proportion of vertices with
 358 negative coefficients is reported in parentheses. Networks were randomly initialized.

(Width, Depth)	MNIST-1v7	MNIST-6v9	FMNIST-SvS	FMNIST-SvD	CIFAR
(15, 7)	-0.58 ± 0.08 (88.7%)	-0.51 ± 0.09 (85.3%)	-0.43 ± 0.05 (84.0%)	-0.27 ± 0.08 (73.4%)	-0.44 ± 0.12 (87.8%)
(15, 10)	-0.60 ± 0.06 (91.8%)	-0.59 ± 0.06 (92.6%)	-0.40 ± 0.05 (84.4%)	-0.29 ± 0.12 (77.6%)	-0.43 ± 0.15 (87.8%)
(15, 15)	-0.61 ± 0.07 (93.3%)	-0.58 ± 0.11 (92.9%)	-0.52 ± 0.11 (93.8%)	-0.40 ± 0.12 (88.2%)	-0.55 ± 0.18 (93.3%)
(25, 7)	-0.58 ± 0.05 (89.3%)	-0.48 ± 0.10 (83.3%)	-0.41 ± 0.03 (81.9%)	-0.28 ± 0.08 (74.3%)	-0.48 ± 0.13 (89.9%)
(25, 10)	-0.62 ± 0.05 (92.8%)	-0.59 ± 0.05 (92.8%)	-0.40 ± 0.05 (84.8%)	-0.32 ± 0.09 (80.4%)	-0.54 ± 0.13 (94.8%)
(25, 15)	-0.60 ± 0.06 (94.2%)	-0.61 ± 0.07 (94.9%)	-0.47 ± 0.08 (93.5%)	-0.46 ± 0.08 (92.2%)	-0.71 ± 0.06 (98.1%)
(50, 7)	-0.59 ± 0.05 (90.6%)	-0.46 ± 0.14 (82.0%)	-0.42 ± 0.03 (83.0%)	-0.35 ± 0.09 (80.8%)	-0.57 ± 0.12 (95.4%)
(50, 10)	-0.65 ± 0.04 (94.6%)	-0.61 ± 0.07 (93.3%)	-0.43 ± 0.07 (86.5%)	-0.44 ± 0.10 (88.8%)	-0.70 ± 0.05 (98.5%)
(50, 15)	-0.63 ± 0.06 (95.2%)	-0.61 ± 0.08 (95.0%)	-0.54 ± 0.05 (96.0%)	-0.53 ± 0.07 (95.0%)	-0.76 ± 0.04 (98.3%)

368 4.2 COMMUNITY STRUCTURE

370 We study graphs whose nodes can be naturally partitioned into two communities according to the
 371 true labels of the underlying binary classification task. This setup is well suited for a community-
 372 detection perspective. In this section, we examine whether the class separability learned by deep
 373 neural networks induces a rewiring that strengthens the community structure of the k -nearest neighbor
 374 graphs.

375 To this end, we evaluate how well the geometry of the graphs aligns with the prescribed commu-
 376 nity structure by measuring the curvature gap, modularity, and normalized cut. Our experiments
 377 on both synthetic and real-world datasets show that the community structure becomes increasingly
 378 pronounced as the networks evolve the feature geometry. Figure 2 reports the evolution of modu-

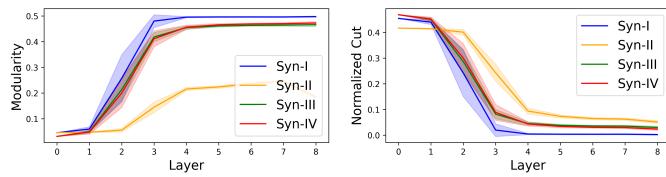
378
379
380
381
382
383

Figure 2: Modularity and normalized cut across network layers on synthetic datasets. Reported values are averaged over 50 independently trained networks with random initialization and one standard deviation is shown as envelopes around the mean.

larity and normalized cut across network layers, averaged over 50 independently trained models to mitigate stochastic variability. In all datasets, we observe a consistent increase in modularity and a corresponding decrease in normalized cut, indicating that the learned feature geometry progressively aligns with the prescribed community structure. For real-world datasets, this effect is still present but less pronounced, as the k -nearest neighbor graphs constructed from raw inputs already exhibit relatively high modularity, particularly in the case of MNIST (see Figure 9).

In our setting, the curvature gap does not reliably capture how well the graph geometry aligns with the prescribed community structure. Most inter-community edges arise from misclassified nodes connected to correctly classified ones with the same label, which the network effectively treats as intra-community edges, making them indistinguishable through the curvature lens. To clarify this effect, Figure 3 compares the curvature gaps on the MNIST 1-vs-7 dataset computed on the full test set with those computed after removing the five misclassified points (out of 1000). While removing such a small fraction of samples should not noticeably alter the graph geometry, it leads to a qualitatively different behavior: the curvature gap increases consistently across layers instead of collapsing. This is expected, as inter-community edges now differ structurally from intra-community ones. We discuss this phenomenon in more detail in Appendix A.4.3.

Overall, these results demonstrate that deep neural networks progressively evolve the geometry of feature manifolds in a manner that amplifies the underlying community structure.

4.3 OVERTFITTING AND LOCAL RICCI EVOLUTION COEFFICIENTS

To better understand how neural networks learn the geometry of the data manifold, we track the local Ricci evolution coefficients during training. Across all datasets, we observe a strikingly consistent pattern: at the beginning of training, the mean coefficients exhibit a sharp decline, suggesting that the network is effectively learning the underlying geometric structure. Once test accuracy stabilizes, however, this trend reverses: the mean coefficients plateau or rise again. We hypothesize that this marks a shift in training dynamics, where the network ceases to capture new geometric structure and instead begins to overfit individual samples. This pattern suggests that monitoring local Ricci evolution coefficients during training could serve as a principled stopping heuristic. In practice, this can be made more efficient by approximating Ollivier–Ricci curvature or by using augmented Forman curvature, both of which lower computational cost while retaining the essential geometric signal. Figure 4 illustrates this phenomenon on the Fashion-MNIST dataset, showing the local Ricci evolution coefficients alongside train and test accuracy throughout training.

4.4 ANALYSIS ACROSS LAYERS

We now turn to the evaluation of the layer-Ricci coefficients, introduced in Section 3.2. We compute these coefficients across both synthetic and real-world datasets, considering networks of varying depth, while keeping the width fixed. As before, all models are trained to exceed 99% training accuracy to ensure that we analyze meaningful learned representations. For each dataset-architecture

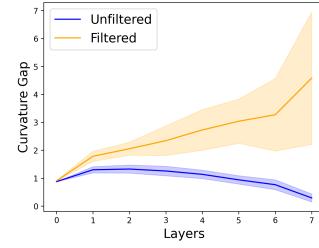


Figure 3: Curvature gaps before and after removing misclassified samples.

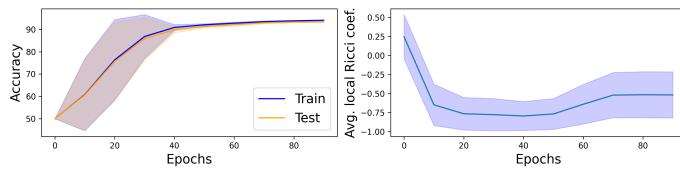


Figure 4: Average local Ricci evolution coefficients, computed from the approximated Ollivier–Ricci curvature, shown with the corresponding accuracies throughout training on the Fashion-MNIST dataset. Reported values are averaged over 50 independently trained networks with random initialization.

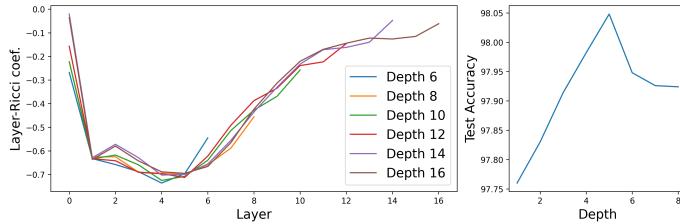


Figure 5: Layer-Ricci coefficients, computed from the augmented Forman-Ricci curvature, on the MNIST 1-vs-7 dataset for networks of varying depth (width fixed to 25). Reported values are averaged over 50 independently trained networks with random initialization.

pair, results are averaged over 50 independently trained networks to account for stochasticity in initialization and optimization.

Across all experiments, we observe a strikingly consistent behavior: the curves of the layer-Ricci coefficients follow the same trend across network depths. Specifically, there appears to be a critical depth up to which the coefficients decrease, and after which they begin to increase again. This turning point suggests a balance between the network’s ability to capture geometric structure and its tendency to overfit. Up to the critical depth, additional layers appear to enrich the evolution of the feature geometry, as reflected by decreasing Ricci coefficients. Beyond this point, however, further depth no longer contributes meaningful geometric transformations, which manifests as increasing Ricci coefficients. This phenomenon highlights the critical depth as a potential heuristic for selecting network architectures: it indicates the point at which adding more layers ceases to provide geometric benefits. An example of this behavior on the MNIST dataset is shown in Figure 5. Notably, the depth identified by this procedure coincides with the depth that maximizes test accuracy when averaged over 50 independently trained networks.

5 DISCUSSION

Summary In this paper we have introduced the *local Ricci evolution coefficients*, a tool to evaluate locally the geometric transformations of feature manifolds by comparing them to Ricci flow dynamics. We theoretically show that nonlinear activations are essential for reshaping feature geometry. Empirically, we demonstrate that the progressive emergence of class separability is mirrored in the development of community structure within the corresponding graph representations. Moreover, our experiments indicate that well-trained networks exhibit curvature-driven transformations closely aligned with Ricci flow, and that this behavior emerges during training. [We further provide experimental evidence for connections to optimal training time and depth selection.](#)

Limitations and future work While we have established the importance of non-linear activations in reshaping feature geometry, deriving exact evolution equations for graphs constructed from local connectivity patterns in non-linear networks remains an open problem. Moreover, our study was conducted on relatively small datasets and focused exclusively on feed-forward architectures; extending the analysis to larger-scale datasets and more diverse architectures (e.g., convolutional neural networks) [as well as kernel-based methods](#) represents a valuable direction for future work.

486 Another interesting avenue for future study is to analyze the double descent phenomenon (Belkin
487 et al., 2019) through the framework of local Ricci evolution coefficients. In the overparameterized
488 regime, our results show that increasing network size—either by expanding depth at fixed width
489 or width at fixed depth—systematically raises the proportion of vertices with negative Ricci coef-
490 ficients. This suggests that larger networks operate in a more geometry-aware manner, providing a
491 novel geometric perspective on the mechanisms underlying double descent. Further discussion and
492 initial experimental results can be found in Appendix A.4.4. **The connections between the evolution**
493 **of feature geometry, and training time and network depth suggest heuristics for optimal stopping and**
494 **optimal choice of the number of layers. A systematic investigation of these heuristics is an impor-**
495 **tant direction for future work.** Furthermore, local Ricci evolution coefficients could serve as a novel
496 tool to detect geometric anomalies and support uncertainty quantification in deep neural networks,
497 since regions of the data manifold with non-negative coefficients may signal unexpected geometric
498 behavior by the network. Additionally, investigating our curvature-driven geometric measures in
499 conjunction with node-level graph curvatures, such as Bakry-Émery or resistance curvature, offers a
500 particularly interesting avenue for future study. Finally, while the relationship between intrinsic di-
501 mensionality and the geometric measures introduced in this work remains unclear to us, we consider
502 this an especially intriguing question to investigate in future research.

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
543 data representations in deep neural networks. *Advances in Neural Information Processing Sys-
544 tems*, 32, 2019.

545 Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-
546 layer neural networks: An asymptotic viewpoint. In *International Conference on Learning Rep-
547 resentations*, 2020.

548 Shuliang Bai, Yong Lin, Linyuan Lu, Zhiyu Wang, and Shing-Tung Yau. Ollivier ricci-flow on
549 weighted graphs. *arXiv preprint arXiv:2010.01802*, 2020.

551 Anthony Baptista, Alessandro Barp, Tapabrata Chakraborti, Chris Harbron, Ben D MacArthur, and
552 Christopher RS Banerji. Deep learning as ricci flow. *Scientific Reports*, 14(1):23383, 2024.

553 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
554 learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy
555 of Sciences*, 116(32):15849–15854, 2019.

557 Ethan Bloch. Combinatorial ricci curvature for polyhedral surfaces and posets. *arXiv preprint
558 arXiv:1406.4598*, 2014.

559 Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A manifold
560 disentanglement perspective. *IEEE transactions on neural networks and learning systems*, 27
561 (10):1997–2008, 2015.

563 Jialong Chen, Bowen Deng, Chuan Chen, Zibin Zheng, et al. Graph neural ricci flow: Evolving
564 feature from a curvature perspective. In *The Thirteenth International Conference on Learning
565 Representations*, 2025.

566 Fan RK Chung. *Spectral graph theory*, volume 92. American Mathematical Soc., 1997.

568 Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of
569 object manifolds in deep neural networks. *Nature communications*, 11(1):746, 2020.

571 David Cushing, Supanat Kamtue, Shiping Liu, Florentin Münch, Norbert Peyerimhoff, and Ben
572 Snodgrass. Bakry-émery curvature sharpness and curvature flow in finite weighted graphs: theory.
573 *manuscripta mathematica*, 176(1):11, 2025.

574 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
575 information processing systems*, 26, 2013.

577 Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for high-
578 dimensional binary linear classification. *Information and Inference: A Journal of the IMA*, 11(2):
579 435–495, 2022.

580 Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
581 over-parameterized neural networks. *arXiv preprint arXiv:1810.02054*, 2018.

583 Matthias Erbar and Eva Kopfer. Super ricci flows for weighted graphs. *Journal of Functional
584 Analysis*, 279(6):108607, 2020.

585 Lukas Fesser, Sergio Serrano de Haro Iváñez, Karel Devriendt, Melanie Weber, and Renaud Lam-
586 biotte. Augmentations of forman’s ricci curvature and their applications in community detection.
587 *Journal of Physics: Complexity*, 5(3):035010, 2024.

589 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-
590 las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
591 Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
592 Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
593 Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):
1–8, 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

594 Robin Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. *Discrete &*
 595 *Computational Geometry*, 29:323–374, 2003.
 596

597 Daniel Friedan. Nonlinear models in $2+\varepsilon$ dimensions. *Physical Review Letters*, 45(13):1057, 1980.
 598

599 Krzysztof Gawedzki. Lectures on conformal field theory. quantum fields and strings: A course for
 600 mathematicians. *Princeton*, pp. 727–805, 1996-1997.

601 Adam Gosztolai and Alexis Arnaudon. Unfolding the multiscale structure of networks with dynam-
 602 ical ollivier-ricci curvature. *Nature Communications*, 12(1):4561, 2021.
 603

604 Xianfeng Gu, Ying He, Miao Jin, Feng Luo, Hong Qin, and Shing-Tung Yau. Manifold splines with
 605 single extraordinary point. In *Proceedings of the 2007 ACM symposium on Solid and physical*
 606 *modeling*, pp. 61–72, 2007a.

607 Xianfeng Gu, Sen Wang, Junho Kim, Yun Zeng, Yang Wang, Hong Qin, and Dimitris Samaras. Ricci
 608 flow for 3d shape analysis. In *2007 IEEE 11th International Conference on Computer Vision*, pp.
 609 1–8, 2007b. doi: 10.1109/ICCV.2007.4409028.

610 Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. *Inverse problems*,
 611 34(1):014004, 2017.
 612

613 Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
 614 function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los
 615 Alamos, NM (United States), 2008.

616 Richard S Hamilton. Three-manifolds with positive ricci curvature. *Journal of Differential geometry*,
 617 17(2):255–306, 1982.
 618

619 Michael Hauser and Asok Ray. Principles of riemannian geometry in neural networks. *Advances in*
 620 *neural information processing systems*, 30, 2017.
 621

622 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 623 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

624 Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. Discrete surface ricci flow. *IEEE Transactions*
 625 *on Visualization and Computer Graphics*, 14(5):1030–1043, 2008.
 626

627 William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert
 628 space. *Contemporary mathematics*, 26(189-206):1, 1984.
 629

630 Jürgen Jost and Shiping Liu. Ollivier’s ricci curvature, local clustering and curvature-dimension
 631 inequalities on graphs. *Discrete & Computational Geometry*, 51(2):300–322, 2014.

632 Jürgen Jost and Florentin Münch. Characterizations of forman curvature. *arXiv preprint*
 633 *arXiv:2110.04554*, 2021.
 634

635 Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In *International*
 636 *conference on learning representations (ICLR)*, volume 5. California;, 2015.

637 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 638 of Toronto, 2009.
 639

640 Xin Lai, Shuliang Bai, and Yong Lin. Normalized discrete ricci flow used in community detection.
 641 *Physica A: Statistical Mechanics and its Applications*, 597:127251, 2022.

642 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.
 643

644 Ruowei Li and Florentin Münch. The convergence and uniqueness of a discrete-time nonlinear
 645 markov chain. *arXiv preprint arXiv:2407.00314*, 2024.
 646

647 German Magai and Anton Ayzenberg. Topology and geometry of data manifold in deep learning.
 648 *arXiv preprint arXiv:2204.08624*, 2022.

648 Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
 649 regions of deep neural networks. *Advances in neural information processing systems*, 27, 2014.
 650

651 Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. *Journal
 652 of Machine Learning Research*, 21(184):1–40, 2020.

653 Mark EJ Newman. Analysis of weighted networks. *Physical Review E—Statistical, Nonlinear, and
 654 Soft Matter Physics*, 70(5):056131, 2004.
 655

656 Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with ricci
 657 flow. *Scientific reports*, 9(1):9984, 2019.

658 Yann Ollivier. Ricci curvature of markov chains on metric spaces. *Journal of Functional Analysis*,
 659 256(3):810–864, 2009.
 660

661 Yann Ollivier. A survey of ricci curvature for metric spaces and markov chains. In *Probabilistic
 662 approach to geometry*, volume 57, pp. 343–382. Mathematical Society of Japan, 2010.

663 Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep
 664 feed forward networks with piece-wise linear activations. *arXiv preprint arXiv:1312.6098*, 2013.
 665

666 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 667 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 668 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

669 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 670 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
 671 Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
 672 esnay. Scikit-learn: Machine learning in python. *Journal of Machine Learning Research*, 12(85):
 673 2825–2830, 2011. URL <http://jmlr.org/papers/v12/pedregosa11a.html>.
 674

675 Grisha Perelman. The entropy formula for the ricci flow and its geometric applications. *arXiv
 676 preprint math/0211159*, 2002.

677 Grisha Perelman. Finite extinction time for the solutions to the ricci flow on certain three-manifolds.
 678 *arXiv preprint math/0307245*, 2003a.

679 Grisha Perelman. Ricci flow with surgery on three-manifolds. *arXiv preprint math/0303109*, 2003b.
 680

681 Areejit Samal, RP Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative
 682 analysis of two discretizations of ricci curvature for complex networks. *Scientific reports*, 8(1):
 683 8650, 2018.

684 Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. *IEEE Transactions on
 685 pattern analysis and machine intelligence*, 22(8):888–905, 2000.
 686

687 Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-ricci curvature-based method to com-
 688 munity detection in complex networks. *Scientific reports*, 9(1):9800, 2019.

689 Yu Tian, Zachary Lubberts, and Melanie Weber. Curvature-based clustering on graphs. *Journal of
 690 Machine Learning Research*, 26(52):1–67, 2025.
 691

692 Nicolas Garcia Trillos and Melanie Weber. Continuum limits of ollivier’s ricci curvature on data
 693 clouds: pointwise consistency and global lower bounds. *arXiv preprint arXiv:2307.02378*, 2023.
 694

695 Pim Van Der Hoorn, William J Cunningham, Gabor Lippner, Carlo Trugenberger, and Dmitri Kri-
 696 oukov. Ollivier-ricci curvature convergence in random geometric graphs. *Physical Review Re-
 697 search*, 3(1):013211, 2021.

698 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 699 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
 700 Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
 701 son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
 Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

702 Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
703 bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
704 in Python. *Nature Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

705

706 Melanie Weber, Emil Saucan, and Jürgen Jost. Characterizing complex networks with forman-ricci
707 curvature and associated geometric flows. *Journal of Complex Networks*, 5(4):527–550, 2017.

708 Melanie Weber, Emil Saucan, and Jürgen Jost. Coarse geometry of evolving networks. *Journal of*
709 *complex networks*, 6(5):706–732, 2018.

710 E Woolgar. Some applications of ricci flow in physics. *Canadian Journal of Physics*, 86(4):645–651,
711 2008.

712

713 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
714 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

715

716 Wei Zeng and Xianfeng David Gu. *Ricci flow for shape analysis and surface registration: theories,*
717 *algorithms and applications*. Springer Science & Business Media, 2013.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **CONTENTS**
759

760	A.1	Extended related work	16
761	A.1.1	Comparison of local and global Ricci coefficients	16
762	A.2	Extended background	18
763	A.2.1	Approximation of Ollivier-Ricci curvature	18
764	A.2.2	Forman-Ricci curvature and its augmentations	18
765	A.2.3	Measures of community strength	19
766	A.2.4	Ricci flow	20
767	A.3	Deferred proof details	21
768	A.3.1	Random initialization	21
769	A.3.2	Trained networks	25
770	A.3.3	Impact of nonlinearity on feature geometry	28
771	A.4	Additional experimental results	30
772	A.4.1	Experimental confirmation of theoretical insights	30
773	A.4.2	Local Ricci evolution coefficients	30
774	A.4.3	Community structure	32
775	A.4.4	Double descent phenomenon	32
776	A.5	Details on experimental setup	34
777	A.5.1	Hyperparameters	35
778	A.5.2	Licenses	37
779	A.6	LLM usage disclosure	37
780			
781			
782			
783			
784			
785			
786			
787			
788			
789			
790			
791			
792			
793			
794			
795			
796			
797			
798			
799			
800			
801			
802			
803			
804			
805			
806			
807			
808			
809			

810 A.1 EXTENDED RELATED WORK
811

812 Numerous works have addressed the challenge of explaining the remarkable success of deep neu-
813 ral networks from diverse theoretical perspectives. One line of research characterizes network ex-
814 pressivity in terms of the complexity of decision boundaries. Pascanu et al. (2013) and Montufar
815 et al. (2014) established bounds on the number of linear regions generated by deep ReLU networks,
816 **demonstrating that deep models can generate substantially more linear regions than their shallow**
817 **counterparts.** Furthermore, the Neural Tangent Kernel framework by Jacot et al. (2018) offers an
818 analytical tool to understand the training dynamics of wide networks by relating them to kernel
819 methods.

820 Other lines of research explore how the geometry and topology of neural feature representations
821 evolve as data propagate through network layers. Using tools from topological data analysis, such
822 as persistent homology, Naitzat et al. (2020) experimentally showed that neural networks progres-
823 sively simplify the topology of feature representations. Geometric approaches have uncovered sim-
824 ilar phenomena of simplification and regularization. Brahma et al. (2015) observed flattening and
825 disentanglement in manifold-shaped data, Ansuini et al. (2019) reported decreasing intrinsic dimen-
826 sion in deeper layers, and Cohen et al. (2020) demonstrated improved classification capacity via
827 geometric simplification.

828 Beyond empirical observations, several works propose theoretical frameworks building on classical
829 mathematical tools. Hauser & Ray (2017) argued that deep networks can be naturally interpreted
830 using the language of Riemannian geometry, with network layers acting on the coordinate represen-
831 tation of the underlying data manifold. Meanwhile, Haber & Ruthotto (2017) propose to interpret
832 deep learning as a parameter estimation problem for nonlinear dynamical systems, a framework
833 well-suited for analyzing stability and well-posedness of deep learning.

834 Closest to our work is the framework introduced by Baptista et al. (2024), which evaluates geometric
835 transformations via Ricci flow at a global scale. A comparison between their global analysis and our
836 local analysis is provided in the following section.

837 A.1.1 COMPARISON OF LOCAL AND GLOBAL RICCI COEFFICIENTS
838

839 Baptista et al. (2024) introduced a metric that quantifies the geometric transformations induced by
840 deep neural networks relative to those predicted by the Ricci flow at a global scale. In this section,
841 we compare their global metric to our local Ricci evolution coefficients.

842 Their framework is based on comparing the Forman-Ricci curvature at a global scale to a global
843 approximation of the expansion or contraction of the manifold. Specifically, they define
844

$$845 \mathcal{F}_\ell = \sum_{e \in E_\ell} \mathcal{F}(e), \\ 846$$

847 where E_ℓ denotes the edge set of the k -nearest-neighbor graph constructed from the set $\Phi_\ell(X) =$
848 $\{\Phi_\ell(\mathbf{x}^{(i)}) : i = 1, \dots, N\}$. To quantify the global expansion or contraction of the manifold across
849 layers, they consider all pairwise distances:
850

$$851 \eta_\ell = \sum_{\mathbf{x}, \mathbf{y} \in \Phi_{\ell+1}(X)} d_{\ell+1}(\mathbf{x}, \mathbf{y}) - \sum_{\mathbf{x}, \mathbf{y} \in \Phi_\ell(X)} d_\ell(\mathbf{x}, \mathbf{y}). \\ 852$$

853 The relation between these two quantities is then summarized via the Pearson correlation coefficient
854

$$855 \rho = \frac{\sum_{\ell=1}^{L-1} (\eta_\ell - \bar{\eta})(\mathcal{F}_\ell - \bar{\mathcal{F}})}{\sqrt{\sum_{\ell=1}^{L-1} (\eta_\ell - \bar{\eta})^2} \sqrt{\sum_{\ell=1}^{L-1} (\mathcal{F}_\ell - \bar{\mathcal{F}})^2}}, \\ 856$$

857 where $\bar{\eta}$ and $\bar{\mathcal{F}}$ denote the respective layer-wise averages. We will refer to the quantity ρ as the
858 *global Ricci coefficient*. A negative global Ricci coefficient indicates that the geometric changes
859 induced by the network follow the dynamics predicted by Ricci flow at global scale—large “global
860 curvature” corresponds to contraction, while small “global curvature” corresponds to expansion.

861 Our approach differs in two key aspects. First, it explicitly leverages the inherently local nature of
862 the Ricci flow, which evolves the Riemannian metric tensor at each point of the manifold according
863

864
 865 Table 2: Global Ricci coefficients of untrained neural networks, averaged over 100 independently
 866 and randomly initialized models.

	Syn-I	Syn-II	Syn-III	Syn-IV
Mean \pm std.	-0.389 ± 0.258	-0.349 ± 0.151	-0.231 ± 0.193	-0.204 ± 0.186
Minimum	-0.772	-0.644	-0.744	-0.577
Negative share	91%	99%	89%	89%

872
 873
 874 Table 3: Mean local Ricci evolution coefficients of untrained neural networks, averaged over 100
 875 independently and randomly initialized models.

	Syn-I	Syn-II	Syn-III	Syn-IV
Mean \pm std.	-0.037 ± 0.077	0.039 ± 0.052	-0.019 ± 0.081	-0.035 ± 0.054
Minimum	-0.234	-0.117	-0.173	-0.133
Negative share	66%	21%	63%	76%

883 to the local curvature, rather than relying on global approximations. Second, we adopt the more
 884 refined notion of Ollivier-Ricci curvature, which comes with consistency guarantees relative to the
 885 curvature of the underlying manifold given sufficiently dense samples (Van Der Hoorn et al., 2021;
 886 Trillos & Weber, 2023). In contrast, Baptista et al. (2024) employ the Forman-Ricci curvature, which
 887 cannot capture higher-order structures and is therefore too simplistic to provide a rich geometric
 888 characterization.

889 To propose an early-stopping heuristic, we evaluate the local Ricci evolution coefficients throughout
 890 training. The global Ricci coefficient turns out to be too coarse to provide meaningful insights into
 891 the learning dynamics. Indeed, even for randomly initialized, untrained networks, the global Ricci
 892 coefficient typically takes negative values, suggesting Ricci flow-like behavior. Table 2 reports the
 893 global Ricci coefficients of randomly initialized, untrained networks with 10 layers across different
 894 datasets, averaged over 100 runs per dataset. For completeness, we also provide the percentage of
 895 networks with negative global Ricci coefficient and the minimum observed value.

896 This phenomenon is consistent with a simple heuristic indicating an inherent negative correlation
 897 between η_ℓ and \mathcal{F}_ℓ . Specifically, the estimate of the global curvature of the underlying manifold at
 898 layer ℓ is given by

$$\mathcal{F}_\ell = \sum_{e \in E_\ell} \mathcal{F}(e) = 4|E_\ell| - \sum_{x \in \Phi_\ell(X)} \deg(x)^2.$$

902 From this expression, \mathcal{F}_ℓ takes large negative values in densely connected graphs with many high-
 903 degree vertices. Such graphs, however, tend to exhibit smaller pairwise distances, thereby yielding
 904 larger values of η_ℓ . As a result, a negative correlation between η_ℓ and \mathcal{F}_ℓ is expected regardless of
 905 the specific neural network under consideration.

906 In contrast, when examined using the framework of local Ricci evolution coefficients, no systematic
 907 correlation is observed. For randomly initialized networks, the local Ricci evolution coefficients
 908 remain close to zero (Table 3), reflecting the lack of correlation between the expansion of local
 909 neighborhoods and the Ollivier-Ricci curvature within those neighborhoods. This underscores the
 910 value of local Ricci evolution coefficients for studying learning dynamics: since no Ricci flow-
 911 like behavior is present at random initialization, they allow us to track the genuine emergence of
 912 curvature-driven dynamics during training.

913 Finally, note that computing the global Ricci coefficient requires the k -nearest-neighbor graphs of
 914 each layer to be connected. In practice, however, this condition may not be met, especially for
 915 smaller values of k . In contrast, an advantage of the local Ricci evolution coefficients is that they can
 916 still be computed even when the k -nearest-neighbor graphs are disconnected. The only requirement
 917 is that each point x is connected to its neighbors in the subsequent layer — a significantly weaker
 condition.

918
919

A.2 EXTENDED BACKGROUND

920
921

A.2.1 APPROXIMATION OF OLLIVIER-RICCI CURVATURE

922
923

Computing the Ollivier-Ricci curvature is computationally demanding, since it involves solving an optimal transport problem for every edge in the graph. Using the Hungarian algorithm, each such computation has complexity $O(\deg_{\max}^3)$. However, the computational burden can be alleviated by approximating the Ollivier-Ricci curvature. Tian et al. (2025) proposed an approximation by taking the arithmetic mean of an upper and a lower bound, each of which can be efficiently computed in linear time. These bounds were first established by Jost & Liu (2014).

924
925
926
927

Theorem A.1 (Jost & Liu (2014)). *Let $\mathcal{G} = (V, E)$ be a locally finite graph and let $u, v \in V$ with $u \sim v$. Then, the Ollivier-Ricci curvature is bounded from below by*

930
931
932
933
934

$$\mathcal{O}(u, v) \geq - \left(1 - \frac{1}{\deg(u)} - \frac{1}{\deg(v)} - \frac{|N(u) \cap N(v)|}{\deg(u) \wedge \deg(v)} \right)_+ - \left(1 - \frac{1}{\deg(u)} - \frac{1}{\deg(v)} - \frac{|N(u) \cap N(v)|}{\deg(u) \vee \deg(v)} \right)_+ + \frac{|N(u) \cap N(v)|}{\deg(u) \vee \deg(v)}.$$

935
936

Furthermore, the Ollivier-Ricci curvature is bounded from above by

937
938
939

$$\mathcal{O}(u, v) \leq \frac{|N(u) \cap N(v)|}{\deg(u) \vee \deg(v)}.$$

940
941

Using these bounds, Tian et al. (2025) propose to approximate the Ollivier-Ricci curvature by taking the arithmetic mean, i.e.,

942
943
944

$$\tilde{\mathcal{O}}(u, v) = \frac{1}{2} (\mathcal{O}^{up}(u, v) + \mathcal{O}^{low}(u, v)),$$

945
946
947

where $\mathcal{O}^{up}(u, v)$ and $\mathcal{O}^{low}(u, v)$ denote the upper and lower bound established in Theorem A.1. Note that this approximation can be computed with complexity $O(\deg_{\max})$, which strongly reduces the cost compared to computing the exact Ollivier-Ricci curvature.

948
949

A.2.2 FORMAN-RICCI CURVATURE AND ITS AUGMENTATIONS

950
951
952
953
954

Forman (2003) introduced a discretization of the classical Ricci curvature on CW complexes, derived from a discrete analogue of the Bochner-Weitzenböck formula. Viewing a simple graph as a one-dimensional CW complex, with edges corresponding to one-cells, allows this notion to be applied naturally to graphs. In particular, for a simple, unweighted graph, the Forman-Ricci curvature of an edge $u \sim v$ is defined as

955

$$\mathcal{F}(u, v) = 4 - \deg(u) - \deg(v).$$

956
957
958
959
960

Although this definition is well-founded in Forman’s framework and computationally efficient, it is often too simplistic to provide the rich geometric characterization required in many practical and theoretical applications. For example, a key limitation of the Forman-Ricci curvature is that it disregards the number of triangles adjacent to an edge, one of the most elementary and important geometric properties of a graph Jost & Liu (2014).

961
962
963
964
965
966
967
968

To address this limitation, augmentations of the Forman-Ricci curvature have been considered (Bloch, 2014; Samal et al., 2018; Weber et al., 2018). The core idea is to incorporate additional information about the local geometry by constructing a two-dimensional CW-complex from the graph, inserting two-cells into cycles up to a given length. This approach provides a natural way to capture higher-order correlations among vertices in the network. We augment the Forman-Ricci curvature with all cycles of length three, balancing improved empirical performance in community detection (Fesser et al., 2024) with computational tractability. The resulting augmented Forman-Ricci curvature for an edge $u \sim v$ is given by the following combinatorial formula:

969
970

$$\mathcal{AF}(u, v) = 4 - \deg(u) - \deg(v) + 3|N(u) \cap N(v)| = \mathcal{F}(u, v) + 3|N(u) \cap N(v)|.$$

971

This approximation can be computed in $O(E \deg_{\max})$ time on the whole graph, significantly reducing the cost relative to the computation of Ollivier-Ricci curvature.

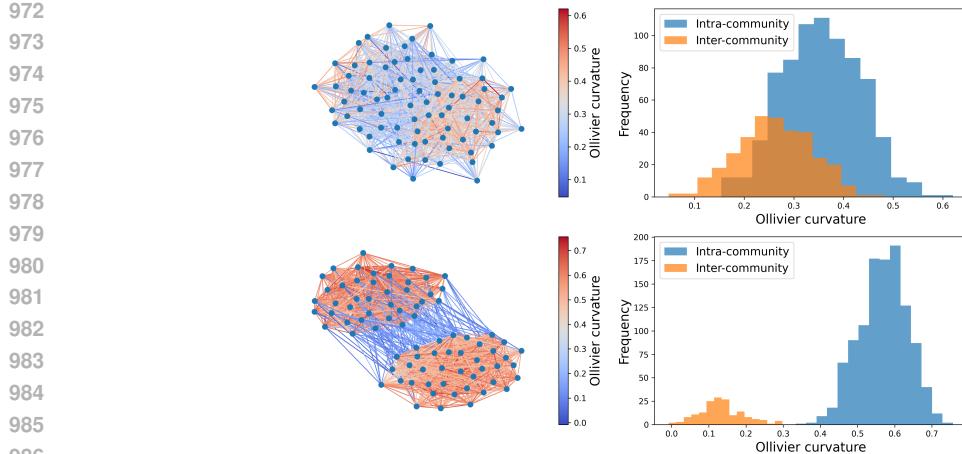


Figure 6: Distribution of Ollivier–Ricci curvature for two stochastic block models. The first row shows weak community structure with two communities of 40 nodes each, intra-community edge probability 0.5, and inter-community edge probability 0.2. The second row shows strong community structure with intra-community edge probability 0.7, and inter-community edge probability 0.1.

A.2.3 MEASURES OF COMMUNITY STRENGTH

Beyond curvature-based measures, the strength of community structure is often assessed using a set of well-established classical metrics. For completeness, we summarize the most widely used ones below. We consider a graph $\mathcal{G} = (V, E)$, where the vertex set is partitioned into disjoint communities C_1, \dots, C_n , i.e.,

$$V = \bigsqcup_{i=1}^n C_i.$$

Modularity. One of the most prevalent measures for assessing community strength is modularity, first introduced by Newman (2004). It quantifies the density of edges within communities relative to the expected density in a random graph with the same degree distribution. Formally, it is defined by

$$Q = \frac{1}{2|E|} \sum_{u, v \in V} \left(A_{uv} - \frac{\deg(u) \deg(v)}{2|E|} \right) \delta(C_u, C_v),$$

where $\delta(C_u, C_v)$ denotes the Kronecker delta, which equals 1 if u and v belong to the same community and 0 otherwise. Modularity equal to zero indicates that the density of intra-community edges is no greater than what would be expected in a random graph with the same degree distribution. Positive modularity, on the other hand, indicates a higher density of intra-community edges, with values above 0.3 typically reflecting strong community structure.

Normalized Cut. Another classical approach for assessing the strength of community structure is based on the cut size, i.e., the number of edges crossing between different communities. Since raw cut size tends to favor unbalanced partitions, Shi & Malik (2000) introduced a normalized variant, defined as

$$\text{Ncut}(C_1, \dots, C_n) = \frac{1}{2} \sum_{i=1}^n \frac{\text{cut}(C_i)}{\text{vol}(C_i)},$$

where $\text{cut}(C_i) = |\{u \sim v : u \in C_i, v \notin C_i\}|$, and $\text{vol}(C_i) = \sum_{v \in C_i} \deg(v)$.

Algebraic connectivity. There exists a whole field dedicated to the study of graph Laplacians and their spectra, known as spectral graph theory. The eigenvalues and eigenvectors of the graph Laplacian are closely related to community structure, forming the basis of spectral clustering methods. In particular, the second-smallest eigenvalue of the Laplacian, called the algebraic connectivity, reflects how well connected the graph is: it is greater than zero if and only if the graph is connected, and

1026 larger values indicate stronger connectivity. For more details, we refer the reader to the comprehensive
 1027 book by Chung (1997).

1028 **Curvature Gap.** The neighborhoods of two adjacent vertices tend to be more tightly connected
 1029 when they belong to the same community. This results in a lower transport cost between their neighbor-
 1030 hood distributions and thus higher Ollivier-Ricci curvature. Building on this observation, graphs
 1031 with community structure exhibit a bimodal distribution of curvature values, reflecting the system-
 1032 atic difference between intra-community and inter-community edges. To quantify this separation,
 1033 Gosztolai & Arnaudon (2021) introduced the curvature gap:

$$1035 \quad \Delta\mathcal{O} = \frac{1}{\sigma} (\mathcal{O}_{\text{intra}} - \mathcal{O}_{\text{inter}}),$$

1036 where $\mathcal{O}_{\text{intra}}$ denotes the average curvature of intra-community edges, $\mathcal{O}_{\text{inter}}$ denotes the average
 1037 curvature of inter-community edges, and $\sigma = \sqrt{\frac{1}{2} (\sigma_{\text{intra}}^2 + \sigma_{\text{inter}}^2)}$ is the pooled standard deviation.
 1038 A large curvature gap indicates a significant distinction in local geometry between edges within
 1039 communities and those connecting different communities. Figure 6 illustrates this effect for two
 1040 graphs with different degrees of community strength.

1042 A.2.4 RICCI FLOW

1043 The Ricci flow, introduced by Hamilton (1982), is a second-order nonlinear partial differential equation
 1044 for the Riemannian metric. Given a smooth Riemannian manifold M with metric g , the Ricci
 1045 flow evolves the metric according to

$$1046 \quad \begin{cases} \frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)), \\ g(0) = g, \end{cases} \quad (1)$$

1047 where $\text{Ric}(g(t))$ denotes the Ricci curvature associated with the time-dependent metric $g(t)$. The
 1048 constant factor -2 is conventional; any negative scalar would yield a qualitatively equivalent evolution
 1049 under an appropriate time reparametrization.

1050 Hamilton proved the short-time existence of solutions to the Ricci flow for arbitrary smooth initial
 1051 metrics on compact manifolds.

1052 **Theorem A.2** ((Hamilton, 1982), Theorem 4.2). *The Ricci flow introduced in 1 has a solution for a
 1053 short time on any compact Riemannian manifold with any initial metric at $t = 0$.*

1054 The proof is based on the Nash-Moser implicit function theorem and also ensures the uniqueness
 1055 of a short-time solution. Furthermore, Hamilton established the long-time existence theorem, which
 1056 guarantees the existence and uniqueness of a solution as long as the curvature remains bounded.

1057 **Theorem A.3** ((Hamilton, 1982), Theorem 14.1). *The Ricci flow introduced in 1 has a unique
 1058 solution on a maximal time interval $[0, T)$ with $T \leq \infty$ for any compact Riemannian manifold M
 1059 with any initial metric at $t = 0$. If $T < \infty$, then*

$$1060 \quad \sup_{x \in M} |\text{Rm}(g(t))|(x) \rightarrow \infty$$

1061 as $t \rightarrow T$, where $|\text{Rm}(g(t))|$ denotes the norm of the Riemannian curvature tensor associated with
 1062 the metric $g(t)$.

1063 In mathematics, the Ricci flow has obtained significant attention as a tool for proving Thurston's
 1064 Geometrization Conjecture. This conjecture asserts that every closed 3-manifold can be decom-
 1065 posed in a canonical way into pieces, each admitting one of eight distinct geometric structures,
 1066 now often called Thurston's model geometries. The Geometrization Conjecture can be viewed as
 1067 a three-dimensional analogue of the classical Uniformization Theorem for 2-dimensional surfaces,
 1068 which states that every simply connected Riemannian surface is conformally equivalent to either the
 1069 Riemann sphere, the complex plane, or the open unit disk.

1070 Hamilton developed a program to prove the Geometrization Conjecture using Ricci flow. While the
 1071 Ricci flow produces singularities, Hamilton proposed that one might be able to continue the flow
 1072 past such singularities by using a procedure called "surgery", which cuts the manifold at singu-
 1073 lar regions and then continues the flow on the resulting pieces. Perelman's breakthrough in 2003

1080 completed this program, introducing a rigorous framework for Ricci flow with surgery and proving
 1081 the Geometrization Conjecture (Perelman, 2002; 2003b;a). Furthermore, Perelman showed that for
 1082 simply connected 3-manifolds, the Ricci flow with surgery becomes extinct in finite time. When ex-
 1083 tinction occurs, Perelman showed that all connected components before extinction must have been
 1084 round three-dimensional spheres. Using this, he was able to prove the Poincaré conjecture, one of
 1085 the well-known Millennium Prize Problems.

1086 The topological interpretation of Ricci flow, that it reveals fundamental structure by smoothing ge-
 1087 ometry, directly parallels what we observe in neural networks. Just as the Ricci flow uncovers the
 1088 topological type of a manifold by evolving its metric, neural networks reveal the class structure by
 1089 evolving the geometry of feature representations. The emergence of community structure in our
 1090 graph representations corresponds to the emergence of distinct geometric pieces in the manifold
 1091 decomposition.

1092 Interestingly, Ricci flow emerged independently in theoretical physics around the same time, ap-
 1093 pearing in the work of Friedan (1980). In quantum field theory, Ricci flow arises as a leading-order
 1094 approximation to the renormalization group flow of the two-dimensional nonlinear σ -model; see,
 1095 e.g., Gawedzki (1996-1997). For a comprehensive overview of applications of Ricci flow in physics,
 1096 we refer the reader to Woolgar (2008).

1097 Since the input manifold in our framework is not directly observed, and the layers of a deep neural
 1098 network can be viewed as discrete time steps, our focus naturally shifts to discrete formulations
 1099 of Ricci flow. A variety of discrete Ricci flows on graphs have been developed, based on the idea
 1100 that negatively curved regions expand while positively curved ones contract. Although no canonical
 1101 version exists, many build on this intuition. Ollivier (2010) introduced discrete Ricci flow using
 1102 Ollivier-Ricci curvature. Later work established convergence and uniqueness results, such as Li &
 1103 Münch (2024) for discrete-time flows, and Bai et al. (2020) for continuous-time flows on weighted
 1104 graphs. Other flows based on different curvature notions include the Bakry-Émery flow (Cushing
 1105 et al., 2025) and Forman-Ricci flow (Weber et al., 2017). Additionally, Erbar & Kopfer (2020) in-
 1106 troduce a concept of super Ricci flow for weighted graphs. These discrete versions of Ricci flow on
 1107 graphs have been explored in several machine learning contexts, including applications to commu-
 1108 nity detection (Ni et al., 2019; Sia et al., 2019; Fesser et al., 2024; Gosztolai & Arnaudon, 2021) and
 1109 to graph neural networks Chen et al. (2025).

1110 Another discretization of Ricci flow, the discrete surface Ricci flow, has found many applications in
 1111 engineering fields. Here, the discrete surface Ricci flow can be used to design a Riemannian metric,
 1112 which is conformal to the original metric and induces a user-defined Gaussian-curvature function on
 1113 the surface (Jin et al., 2008).

1114 Beyond graphs, the discrete surface Ricci flow has become widely adopted in engineering applica-
 1115 tions. Here, it can be used for designing Riemannian metrics, which are conformal to the original
 1116 metric and induce a user-specified Gaussian curvature function (Jin et al., 2008). In engineering
 1117 and computer graphics, surface Ricci flow has been applied to a variety of tasks, including surface
 1118 parameterization (Jin et al., 2008), 3D shape analysis (Gu et al., 2007b), and the construction of
 1119 manifold splines (Gu et al., 2007a). For a broader overview of applications across medical imaging,
 1120 computer graphics, computer vision, and wireless sensor networks, we refer the reader to Zeng &
 1121 Gu (2013). Notably, the underlying principle parallels our neural network analysis: just as surface
 1122 Ricci flow deforms metrics to satisfy geometric constraints, we observe that neural feature spaces
 1123 evolve analogous to Ricci flow to satisfy task-relevant geometric objectives such as class separation
 in classification.

1124

1125

1126 A.3 DEFERRED PROOF DETAILS

1127

1128 In this section, we provide the deferred proofs for the theoretical results stated in Section 3.1.

1129

1130

1131 A.3.1 RANDOM INITIALIZATION

1132

1133

To derive lower bounds on the network width that ensure the preservation of graph structures under
 random initialization, we build upon the Johnson–Lindenstrauss Lemma.

1134 **Theorem A.4** (Johnson-Lindenstrauss Lemma, (Johnson et al., 1984)). *Let $\mathbf{x} \in \mathbb{R}^n$ and let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries $A_{ij} \sim \mathcal{N}(0, 1)$. Then, for $0 < \epsilon < 1$, we have*

$$1137 \quad \mathbb{P} \left((1 - \epsilon) \|\mathbf{x}\|^2 \leq \left\| \frac{1}{\sqrt{m}} \mathbf{A} \mathbf{x} \right\|^2 \leq (1 + \epsilon) \|\mathbf{x}\|^2 \right) \geq 1 - 2 \exp \left(\frac{m}{4} (\epsilon^3 - \epsilon^2) \right).$$

1140 *Proof.* Let $\mathbf{x} \in \mathbb{R}^n$ be arbitrary. First, observe that the entries of $\mathbf{A} \mathbf{x}$ are normally distributed, as
1141 the sum of independent, normally distributed random variables. Furthermore, we have
1142

$$1143 \quad \mathbb{E} [(\mathbf{A} \mathbf{x})_i] = \mathbb{E} \left[\sum_{j=1}^n A_{ij} x_j \right] = \sum_{j=1}^n \mathbb{E} [A_{ij}] x_j = 0,$$

1146 and

$$1148 \quad \mathbb{V}[(\mathbf{A} \mathbf{x})_i] = \mathbb{E} [((\mathbf{A} \mathbf{x})_i)^2] - \mathbb{E} [((\mathbf{A} \mathbf{x})_i)]^2 = \mathbb{E} \left[\left(\sum_{j=1}^n A_{ij} x_j \right)^2 \right] \\ 1149 \quad = \mathbb{E} \left[\sum_{k,j=1}^n A_{ij} A_{ik} x_j x_k \right] = \sum_{k,j=1}^n \mathbb{E} [A_{ij} A_{ik}] x_j x_k = \sum_{j=1}^n x_j^2 = \|\mathbf{x}\|^2.$$

1155 Hence, the random variables

$$1156 \quad X_i = \frac{(\mathbf{A} \mathbf{x})_i}{\|\mathbf{x}\|}$$

1158 are i.i.d. with $X_i \sim \mathcal{N}(0, 1)$. Therefore, we obtain

$$1160 \quad \mathbb{P} \left(\left\| \frac{1}{\sqrt{m}} \mathbf{A} \mathbf{x} \right\|^2 > (1 + \epsilon) \|\mathbf{x}\|^2 \right) = \mathbb{P} \left(\left\| \frac{\mathbf{A} \mathbf{x}}{\|\mathbf{x}\|} \right\|^2 > (1 + \epsilon) m \right) = \mathbb{P} \left(\sum_{i=1}^m X_i^2 > (1 + \epsilon) m \right),$$

1163 where $\sum_{i=1}^m X_i^2$ is distributed according to the chi-squared distribution with m degrees of freedom.
1164 Using standard concentration inequalities for the chi-squared distribution, we obtain

$$1166 \quad \mathbb{P} \left(\left\| \frac{1}{\sqrt{m}} \mathbf{A} \mathbf{x} \right\|^2 > (1 + \epsilon) \|\mathbf{x}\|^2 \right) \leq e^{\frac{m}{4} (\epsilon^3 - \epsilon^2)}.$$

1168 Analogously, one can prove that

$$1170 \quad \mathbb{P} \left(\left\| \frac{1}{\sqrt{m}} \mathbf{A} \mathbf{x} \right\|^2 < (1 - \epsilon) \|\mathbf{x}\|^2 \right) \leq e^{\frac{m}{4} (\epsilon^3 - \epsilon^2)}.$$

1173 This concludes the proof. \square

1175 Using Boole's inequality, we immediately obtain the following corollary.

1176 **Corollary A.5.** *Let $X \subset \mathbb{R}^n$ be a finite set, and let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d.
1177 entries $A_{ij} \sim \mathcal{N}(0, 1/m)$. Then, for $0 < \epsilon < 1$, we have*

$$1179 \quad \mathbb{P} ((1 - \epsilon) \|\mathbf{x} - \mathbf{y}\|^2 \leq \|\mathbf{A} \mathbf{x} - \mathbf{A} \mathbf{y}\|^2 \leq (1 + \epsilon) \|\mathbf{x} - \mathbf{y}\|^2 : \forall \mathbf{x}, \mathbf{y} \in X) \geq 1 - \delta,$$

1180 where

$$1181 \quad \delta = |X|(|X| - 1) \exp \left(\frac{m}{4} (\epsilon^3 - \epsilon^2) \right).$$

1183 We are now prepared to prove Theorem 3.1.

1185 **Theorem 3.1.** *Let $X \subset \mathbb{R}^n$ be a finite set, and assume there exists $0 < \epsilon < 1$ such that*

$$1186 \quad \min_{\substack{Y \subset X \setminus \{\mathbf{x}\} \\ |Y|=k}} \max_{\mathbf{y} \in Y} \|\mathbf{x} - \mathbf{y}\|^2 \leq \frac{1 - \epsilon}{1 + \epsilon} \min_{\substack{Y \subset X \setminus \{\mathbf{x}\} \\ |Y|=k+1}} \max_{\mathbf{y} \in Y} \|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x} \in X.$$

1188 Furthermore, let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries $A_{ij} \sim \mathcal{N}(0, 1/m)$. Then, the
 1189 map

$$1190 \psi : X \rightarrow \mathbf{A}X := \{\mathbf{A}\mathbf{x} : \mathbf{x} \in X\}; \quad \psi(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

1191 is a graph isomorphism between $\mathcal{G}_k(X)$ and $\mathcal{G}_k(\mathbf{A}X)$ with probability bounded from below
 1192

$$1193 \mathbb{P}(\mathcal{G}_k(X) \cong \mathcal{G}_k(\mathbf{A}X) \text{ under } \psi) \geq 1 - |X|(|X| - 1)e^{\frac{m}{4}(\epsilon^3 - \epsilon^2)}.$$

1194 **Remark.** To bound the probability of error by δ , i.e.,

$$1195 \mathbb{P}(\mathcal{G}_k(X) \not\cong \mathcal{G}_k(\mathbf{A}X) \text{ under } \psi) \leq \delta,$$

1196 we have to choose the width of the network

$$1197 m \geq \frac{4(\log(|X|(|X| - 1)) - \log(\delta))}{\epsilon^2 - \epsilon^3}.$$

1201 *Proof.* We first prove that ψ is a graph isomorphism, if

$$1202 (1 - \epsilon)\|\mathbf{x} - \mathbf{y}\|^2 \leq \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{y}\|^2 \leq (1 + \epsilon)\|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x}, \mathbf{y} \in X. \quad (2)$$

1203 Let $\mathbf{x}, \mathbf{y} \in X$ such that $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$. Without loss of generality, we may assume that \mathbf{y} is
 1204 among the k -nearest neighbors of \mathbf{x} . We claim that $\mathbf{A}\mathbf{y}$ is among the k -nearest neighbors of $\mathbf{A}\mathbf{x}$.
 1205 Assume for contradiction that this is not the case. Hence, there exists a $\mathbf{z} \in X$, which is not among
 1206 the k -nearest neighbors of \mathbf{x} , such that
 1207

$$\|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{z}\| < \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{y}\|.$$

1209 This contradicts our assumption, since

$$1210 \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{y}\|^2 \leq (1 + \epsilon)\|\mathbf{x} - \mathbf{y}\|^2 \leq (1 - \epsilon)\|\mathbf{x} - \mathbf{z}\|^2 \leq \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{z}\|^2,$$

1212 where we applied our assumption on ϵ to obtain the second inequality. Therefore, our assumption
 1213 is false, implying that $\mathbf{A}\mathbf{y}$ belongs to the k -nearest neighbors of $\mathbf{A}\mathbf{x}$ and therefore $\mathbf{A}\mathbf{x} \sim \mathbf{A}\mathbf{y}$ in
 1214 $\mathcal{G}_k(\mathbf{A}X)$.

1215 Conversely, let $\mathbf{A}\mathbf{x} \sim \mathbf{A}\mathbf{y}$ be an arbitrary edge in $\mathcal{G}_k(\mathbf{A}X)$, and assume without loss of generality
 1216 that $\mathbf{A}\mathbf{y}$ is among the k -nearest neighbors of $\mathbf{A}\mathbf{x}$. It remains to show that $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$. Assume
 1217 for contradiction that this is not the case. Hence, there exists $\mathbf{z} \in X$ among the k -nearest neighbors
 1218 of \mathbf{x} such that

$$1219 \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{z}\| > \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{y}\|.$$

1220 This contradicts our assumption, since

$$1221 \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{z}\|^2 \leq (1 + \epsilon)\|\mathbf{x} - \mathbf{z}\|^2 \leq (1 - \epsilon)\|\mathbf{x} - \mathbf{y}\|^2 \leq \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{y}\|^2,$$

1223 where we again applied our assumption on ϵ to obtain the second inequality. Thus, the assumption
 1224 is contradicted, and $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$ must hold.

1225 This concludes the proof that the map ψ is a graph isomorphism, assuming that condition 2 holds.
 1226 By Corollary A.5, the probability for this is bounded from below by

$$1227 1 - |X|(|X| - 1) \exp\left(\frac{m}{4}(\epsilon^3 - \epsilon^2)\right).$$

1229 This concludes the proof. □

1231 We can prove a similar result for r -neighborhood graphs.

1232 **Theorem A.6.** Let $X \subset \mathbb{R}^n$ be a finite set, and denote by $N(\mathbf{x})$ the one-hop neighborhood of \mathbf{x} in
 1233 $G_r(X)$. Choose $0 < \epsilon < 1$ such that

$$1234 \epsilon < \min \left\{ \frac{r^2 - \max_{\mathbf{y} \in N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|^2}{\max_{\mathbf{y} \in N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|^2}, \frac{\min_{\mathbf{y} \notin N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|^2 - r^2}{\min_{\mathbf{y} \notin N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|^2} \right\} \quad \forall \mathbf{x} \in X.$$

1237 Furthermore, let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries $A_{ij} \sim \mathcal{N}(0, 1/m)$. Then, the
 1238 map

$$1239 \psi : X \rightarrow \mathbf{A}X := \{\mathbf{A}\mathbf{x} : \mathbf{x} \in X\}; \quad \psi(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

1240 is a graph isomorphism between $G_r(X)$ and $G_r(\mathbf{A}X)$ with probability bounded from below by
 1241

$$\mathbb{P}(G_r(X) \cong G_r(\mathbf{A}X) \text{ under } \psi) \geq 1 - |X|(|X| - 1)e^{\frac{m}{4}(\epsilon^3 - \epsilon^2)}.$$

1242 *Proof.* We first prove that ψ is a graph isomorphism, if
 1243

$$(1 - \epsilon) \|\mathbf{x} - \mathbf{y}\|^2 \leq \|\mathbf{Ax} - \mathbf{Ay}\|^2 \leq (1 + \epsilon) \|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x}, \mathbf{y} \in X. \quad (3)$$

1244 Let $\mathbf{x} \sim \mathbf{y}$ be an arbitrary edge in $G_r(X)$. Using our assumption and the upper bound on ϵ , we
 1245 obtain
 1246

$$\|\mathbf{Ax} - \mathbf{Ay}\|^2 \leq (1 + \epsilon) \|\mathbf{x} - \mathbf{y}\|^2 < r^2.$$

1247 Therefore, we obtain $\mathbf{Ax} \sim \mathbf{Ay}$ in $G_r(\mathbf{Ax})$. Analogously, consider an arbitrary edge $\mathbf{Ax} \sim \mathbf{Ay}$
 1248 in $G_r(\mathbf{Ax})$. It remains to show that $\mathbf{x} \sim \mathbf{y}$ in $G_r(X)$. Assume this is not the case. Hence,
 1249 $\|\mathbf{x} - \mathbf{y}\| > r$ and therefore
 1250

$$\|\mathbf{Ax} - \mathbf{Ay}\|^2 \geq (1 - \epsilon) \|\mathbf{x} - \mathbf{y}\|^2 > r^2,$$

1251 contradicting $\mathbf{Ax} \sim \mathbf{Ay}$. Hence, the assumption leads to a contradiction, and we conclude that ψ is
 1252 a graph isomorphism, provided that (3) holds. By Corollary A.5, the probability for this is bounded
 1253 from below by
 1254

$$1 - |X|(|X| - 1) \exp\left(\frac{m}{4}(\epsilon^3 - \epsilon^2)\right).$$

1255 This concludes the proof. □
 1256

1257 Thus, for sufficiently wide, randomly initialized one-layer networks without non-linear activation
 1258 functions, the graph structures are preserved. This result can be naturally extended to multi-layer
 1259 networks in the following way.
 1260

1261 **Theorem A.7.** *Let $X \subset \mathbb{R}^n$ be a finite set, and assume there exists $0 < \epsilon < 1$ such that*

$$\min_{\substack{Y \subset X \setminus \{\mathbf{x}\} \\ |Y|=k}} \max_{\mathbf{y} \in Y} \|\mathbf{x} - \mathbf{y}\|^2 \leq \left(\frac{1 - \epsilon}{1 + \epsilon}\right)^L \min_{\substack{Y \subset X \setminus \{\mathbf{x}\} \\ |Y|=k+1}} \max_{\mathbf{y} \in Y} \|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x} \in X.$$

1262 Furthermore, let $\mathbf{A}_1 \in \mathbb{R}^{m \times n}$ and $\mathbf{A}_2, \dots, \mathbf{A}_L \in \mathbb{R}^{m \times m}$ be random matrices with i.i.d. entries
 1263 $(\mathbf{A}_\ell)_{ij} \sim \mathcal{N}(0, 1/m)$ for $\ell = 1, \dots, L$. Then, the map
 1264

$$\psi_L : X \rightarrow X_L := \{\mathbf{A}_L \mathbf{A}_{L-1} \dots \mathbf{A}_1 \mathbf{x} : \mathbf{x} \in X\}; \quad \psi_L(\mathbf{x}) = \mathbf{A}_L \mathbf{A}_{L-1} \dots \mathbf{A}_1 \mathbf{x}$$

1265 is a graph isomorphism between $\mathcal{G}_k(X)$ and $\mathcal{G}_k(X_L)$ with probability bounded from below
 1266

$$\mathbb{P}(\mathcal{G}_k(X) \cong \mathcal{G}_k(X_L) \text{ under } \psi_L) \geq \left(1 - |X|(|X| - 1) e^{\frac{m}{4}(\epsilon^3 - \epsilon^2)}\right)^L.$$

1267 *Proof.* We first prove that ψ_L is an isomorphism, if the following inequality holds for all $x, y \in X$
 1268 and $\ell = 1, \dots, L$:

$$(1 - \epsilon) \|\psi_{\ell-1}(\mathbf{x}) - \psi_{\ell-1}(\mathbf{y})\|^2 \leq \|\psi_\ell(\mathbf{x}) - \psi_\ell(\mathbf{y})\|^2 \leq (1 + \epsilon) \|\psi_{\ell-1}(\mathbf{x}) - \psi_{\ell-1}(\mathbf{y})\|^2, \quad (4)$$

1269 where we use the convention $\psi_0(\mathbf{x}) = \mathbf{x}$.
 1270

1271 To this end, consider an arbitrary edge $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$, and assume without loss of generality that
 1272 \mathbf{y} is among the k -nearest neighbors of \mathbf{x} . We aim to show that $\psi_L(\mathbf{x}) \sim \psi_L(\mathbf{y})$ in $\mathcal{G}_k(X_L)$. Assume
 1273 this is not the case. Hence, there exists a vertex $\mathbf{z} \in X$, which is not among the k -nearest neighbors
 1274 of \mathbf{x} , such that
 1275

$$\|\psi_L(\mathbf{x}) - \psi_L(\mathbf{z})\| < \|\psi_L(\mathbf{x}) - \psi_L(\mathbf{y})\|.$$

1276 This contradicts our assumption, since
 1277

$$\|\psi_L(\mathbf{x}) - \psi_L(\mathbf{y})\|^2 \leq (1 + \epsilon)^L \|\mathbf{x} - \mathbf{y}\|^2 \leq (1 - \epsilon)^L \|\mathbf{x} - \mathbf{z}\|^2 \leq \|\psi_L(\mathbf{x}) - \psi_L(\mathbf{z})\|^2,$$

1278 where we applied our assumption on ϵ to obtain the second inequality. Therefore, our assumption is
 1279 false, implying that $\psi_L(\mathbf{x}) \sim \psi_L(\mathbf{y})$ in $\mathcal{G}_k(X_L)$ must hold. Using a similar argument, one can show
 1280 that $\psi_L(\mathbf{x}) \sim \psi_L(\mathbf{y})$ in $\mathcal{G}_k(X_L)$ implies $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$.
 1281

1282 Thus, ψ_L is a graph isomorphism, provided that condition (4) holds. For fixed ℓ , the probability
 1283 that this condition is satisfied can be bounded from below by Corollary A.5. Since all entries of
 1284 all weight matrices are independent, the corresponding events are independent across the different
 1285 layers $\ell = 1, \dots, L$. Consequently, we obtain a lower bound by taking the product of the individual
 1286 probabilities:
 1287

$$\mathbb{P}(\mathcal{G}_k(X) \cong \mathcal{G}_k(X_L) \text{ under } \psi_L) \geq \left(1 - |X|(|X| - 1) e^{\frac{m}{4}(\epsilon^3 - \epsilon^2)}\right)^L.$$

1288 □

1296 A.3.2 TRAINED NETWORKS
12971298 Random initialization together with over-parameterization ensures that the network's weights remain
1299 close to their initial values throughout gradient descent. To illustrate, consider a two-layer neural
1300 network $\Phi = \phi_2 \circ \phi_1$, where the first layer is

1301
$$\phi_1(\mathbf{x}) = \sigma\left(\frac{1}{\sqrt{m}}\mathbf{W}\mathbf{x}\right)$$

1302
1303

1304 with σ denoting the ReLU activation and $\mathbf{W} \in \mathbb{R}^{m \times n}$ the weight matrix. The second layer computes
1305 a weighted linear combination, $\phi_2(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ with $\mathbf{a} \in \mathbb{R}^m$.1306 Given a training data set $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, we aim to minimize the empirical loss
1307

1308
$$L(\mathbf{W}, \mathbf{a}) = \frac{1}{2} \sum_{i=1}^N (\Phi(\mathbf{x}_i) - y_i)^2.$$

1309
1310

1311 To this end, we fix the second-layer weights $\mathbf{a} \in \mathbb{R}^m$ and apply gradient descent to optimize the
1312 first-layer weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$ via the update rule

1313
$$\mathbf{W}(k+1) = \mathbf{W}(k) - \eta \frac{\partial L(\mathbf{W}(k), \mathbf{a})}{\partial \mathbf{W}(k)},$$

1314
1315

1316 where $\eta > 0$ denotes the learning rate. We denote by

1317
$$\mathbf{u}(k) = (\Phi(\mathbf{x}_1), \dots, \Phi(\mathbf{x}_N)) \in \mathbb{R}^N$$

1318

1319 the prediction vector after k steps of gradient descent. Our main result in this section relies on an
1320 assumption regarding the smallest eigenvalue of the Gram matrix, so we briefly recall this concept
1321 here.1322 **Definition 1** (Gram matrix). *The Gram matrix $\mathbf{H}^\infty \in \mathbb{R}^{N \times N}$ is defined by*
1323

1324
$$H_{ij}^\infty = \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(0,1)^n} [\mathbf{x}_i^\top \mathbf{x}_j \mathbf{1}_{\{\mathbf{w}^\top \mathbf{x}_i \geq 0, \mathbf{w}^\top \mathbf{x}_j \geq 0\}}].$$

1325 We denote by $\lambda_0 = \lambda_{\min}(\mathbf{H}^\infty)$ the smallest eigenvalue of the Gram matrix.1326 **Remark.** If $\mathbf{x}_i \nparallel \mathbf{x}_j$ for all $i \neq j$, then $\lambda_0 > 0$. Since this condition is typically satisfied in
1327 real-world datasets, the assumption $\lambda_0 > 0$ is not restrictive in practice.1328 Assuming that the smallest eigenvalue of the Gram matrix is strictly positive, Du et al. (2018) proved
1329 that gradient descent converges to a global minimum at a linear rate.1330 **Theorem A.8** (Du et al., 2018). *Suppose that $\lambda_0 > 0$ and $\|\mathbf{x}_i\| = 1$ and $|y_i| \leq C$ for all
1331 $i = 1, \dots, N$. Assume that the width $m = \Omega\left(\frac{N^6}{\lambda_0^4 \delta^3}\right)$, and $W_{ij} \sim \mathcal{N}(0, 1)$, $a_i \sim \text{Unif}(\{-1, 1\})$,
1332 and set the step size $\eta = \mathcal{O}\left(\frac{\lambda_0}{N^2}\right)$. Then, with probability at least $1 - \delta$ we obtain*
1333

1334
$$\|\mathbf{u}(k) - \mathbf{y}\|^2 \leq \left(1 - \frac{\eta \lambda_0}{2}\right)^k \|\mathbf{u}(0) - \mathbf{y}\|^2.$$

1335

1336 **Remark.** The assumption $\|\mathbf{x}_i\| = 1$ can be easily relaxed. If the inputs satisfy $0 < c \leq \|\mathbf{x}_i\| \leq C$
1337 for all $i = 1, \dots, N$, then the result still holds, but the required network width will now also depend
1338 on the ratio $\frac{C}{c}$.1339 Using this, Du et al. (2018) prove that the weight matrix remains close to its initialization throughout
1340 training.1341 **Corollary A.9.** *Assume that the assumptions of Theorem A.8 are satisfied. Then, with probability
1342 at least $1 - \delta$, we have for all $k \geq 0$ and every row index $r \in \{1, \dots, m\}$ that*

1343
$$\|\mathbf{W}_{r,:}(k) - \mathbf{W}_{r,:}(0)\| \leq \frac{4\sqrt{N}}{\sqrt{m}\lambda_0} \|\mathbf{u}(0) - \mathbf{y}\|,$$

1344

1345 where $\mathbf{W}_{r,:}(k)$ denotes the r -th row of the weight matrix $\mathbf{W}(k)$.

We are now almost ready to prove that, even after an arbitrary number of gradient descent steps, the network remains unable to alter the feature geometry encoded in the graph structures before the application of the nonlinearity. To this end, we introduce one final technical lemma.

Lemma A.10. *Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ satisfying $\|\mathbf{A}_{r,:}\| \leq \epsilon$ for every $r \in \{1, \dots, m\}$. For $\mathbf{x} \in \mathbb{R}^n$, we obtain the following upper bound*

$$\|\mathbf{A}\mathbf{x}\| \leq \sqrt{m}\epsilon\|\mathbf{x}\|.$$

Proof. This follows immediately from the Cauchy-Schwarz inequality:

$$\|\mathbf{A}\mathbf{x}\|^2 = \sum_{r=1}^m \langle \mathbf{A}_{r,:}, \mathbf{x} \rangle^2 \leq \sum_{r=1}^m \|\mathbf{A}_{r,:}\|^2 \|\mathbf{x}\|^2 \leq m\epsilon^2 \|\mathbf{x}\|^2.$$

Taking the square root on both sides completes the proof. \square

We now show that with large probability, sufficiently wide networks cannot alter the geometry of the k -nearest neighbor graph before the activation function is applied, regardless of the number of gradient descent steps performed. This highlights the crucial role of the non-linearity.

Theorem 3.2. *Let $X \subset \mathbb{R}^n$ be a finite set, and assume there exists $0 < \epsilon < 1$ such that*

$$\min_{\substack{Y \subset X \setminus \{\mathbf{x}\} \\ |Y|=k}} \max_{\mathbf{y} \in Y} \|\mathbf{x} - \mathbf{y}\| \leq \frac{1 - \epsilon}{1 + \epsilon} \min_{\substack{Y \subset X \setminus \{\mathbf{x}\} \\ |Y|=k+1}} \max_{\mathbf{y} \in Y} \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x} \in X.$$

Assume that the assumptions of Theorem A.8 are satisfied. Furthermore, assume that

$$m \geq \frac{64N\|\mathbf{u}(0) - \mathbf{y}\|^2}{\epsilon^2 \lambda_0^2}.$$

Then, for any number of gradient descent steps $l \geq 0$, the map

$$\psi : X \rightarrow X(l) := \left\{ \frac{1}{\sqrt{m}} \mathbf{W}(l) \mathbf{x} : \mathbf{x} \in X \right\}; \quad \psi(\mathbf{x}) = \frac{1}{\sqrt{m}} \mathbf{W}(l) \mathbf{x}$$

is a graph isomorphism between $\mathcal{G}_k(X)$ and $\mathcal{G}_k(X(l))$ with probability bounded from below by

$$\mathbb{P}(\mathcal{G}_k(X) \cong \mathcal{G}_k(X(l)) \text{ under } \psi) \geq 1 - \delta - |X|(|X| - 1) e^{\frac{m}{4} \left(\frac{\epsilon^3}{8} - \frac{\epsilon^2}{4} \right)}.$$

Proof. For ease of notation, we define $\mathbf{A}(l) = \frac{1}{\sqrt{m}} \mathbf{W}(l)$. Note that the matrix $\mathbf{A}(0)$ has i.i.d. entries with $\mathbf{A}(0)_{ij} \sim \mathcal{N}(0, 1/m)$. We first show that ψ is a graph isomorphism, if

$$(1 - \frac{\epsilon}{2})\|\mathbf{x} - \mathbf{y}\|^2 \leq \|\mathbf{A}(0)(\mathbf{x} - \mathbf{y})\|^2 \leq (1 + \frac{\epsilon}{2})\|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x}, \mathbf{y} \in X, \quad (5)$$

and for every $l \geq 0$

$$\|\mathbf{W}_{r,:}(l) - \mathbf{W}_{r,:}(0)\| \leq \frac{4\sqrt{N}}{\sqrt{m}\lambda_0} \|\mathbf{u}(0) - \mathbf{y}\|. \quad (6)$$

To this end, observe that, for any $\mathbf{x} \in \mathbb{R}^n$, we have

$$\|(\mathbf{A}(l) - \mathbf{A}(0))\mathbf{x}\| = \frac{1}{\sqrt{m}} \|(\mathbf{W}(l) - \mathbf{W}(0))\mathbf{x}\| \leq \frac{4\sqrt{N}}{\sqrt{m}\lambda_0} \|\mathbf{u}(0) - \mathbf{y}\| \|\mathbf{x}\| \leq \frac{\epsilon}{2} \|\mathbf{x}\|,$$

where the first inequality is a consequence of Lemma A.10, and the second follows from our assumption on m . Using this inequalities, we obtain

$$\begin{aligned} \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\| &\leq \|(\mathbf{A}(l) - \mathbf{A}(0))(\mathbf{x} - \mathbf{y})\| + \|\mathbf{A}(0)(\mathbf{x} - \mathbf{y})\| \\ &\leq \frac{\epsilon}{2} \|\mathbf{x} - \mathbf{y}\| + \sqrt{1 + \frac{\epsilon}{2}} \|\mathbf{x} - \mathbf{y}\| \\ &\leq (1 + \epsilon) \|\mathbf{x} - \mathbf{y}\| \end{aligned}$$

1404 for all $\mathbf{x}, \mathbf{y} \in X$. On the other hand, using the reverse triangle inequality, we obtain
 1405

$$\begin{aligned} 1406 \quad \|(\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l))\mathbf{y}\| &\geq \left| \|\mathbf{A}(0)(\mathbf{x} - \mathbf{y})\| - \|(\mathbf{A}(l) - \mathbf{A}(0))(\mathbf{x} - \mathbf{y})\| \right| \\ 1407 \quad &\geq \sqrt{1 - \frac{\epsilon}{2}} \|\mathbf{x} - \mathbf{y}\| - \frac{\epsilon}{2} \|\mathbf{x} - \mathbf{y}\| \\ 1408 \quad &\geq (1 - \epsilon) \|\mathbf{x} - \mathbf{y}\|. \\ 1409 \end{aligned}$$

1410 for all $\mathbf{x}, \mathbf{y} \in X$.
 1411

1412 We are now prepared to prove that ψ is a graph isomorphism. To this end, let $\mathbf{x} \sim \mathbf{y}$ be an arbitrary
 1413 edge in $\mathcal{G}_k(X)$. Without loss of generality, we may assume that \mathbf{y} is among the k -nearest neighbors
 1414 of \mathbf{x} . We claim that $\psi(\mathbf{y})$ is among the k -nearest neighbors of $\psi(\mathbf{x})$. Assume this is not the case.
 1415 Hence, there exists a $\mathbf{z} \in X$, which is not among the k -nearest neighbors of \mathbf{x} , such that
 1416

$$1417 \quad \|\psi(\mathbf{x}) - \psi(\mathbf{z})\| = \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{z}\| < \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\| = \|\psi(\mathbf{x}) - \psi(\mathbf{y})\|. \\ 1418$$

This contradicts

$$1419 \quad \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\| \leq (1 + \epsilon) \|\mathbf{x} - \mathbf{y}\| \leq (1 - \epsilon) \|\mathbf{x} - \mathbf{z}\| \leq \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{z}\|, \\ 1420$$

1421 where we applied our assumption on ϵ to obtain the second inequality. Therefore, our assumption is
 1422 false, implying that $\psi(\mathbf{y})$ belongs to the k -nearest neighbors of $\psi(\mathbf{x})$ and therefore $\psi(\mathbf{x}) \sim \psi(\mathbf{y})$ in
 1423 $\mathcal{G}_k(X(l))$.

1424 Conversely, let $\psi(\mathbf{x}) \sim \psi(\mathbf{y})$ be an arbitrary edge in $\mathcal{G}_k(X(l))$, and assume without loss of gener-
 1425 ality that $\psi(\mathbf{y})$ is among the k -nearest neighbors of $\psi(\mathbf{x})$. It remains to show that $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$.
 1426 Assume for contradiction that this is not the case. Hence, there exists $\mathbf{z} \in X$ among the k -nearest
 1427 neighbors of \mathbf{x} such that

$$1428 \quad \|\psi(\mathbf{x}) - \psi(\mathbf{z})\| = \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{z}\| > \|\psi(\mathbf{x}) - \psi(\mathbf{y})\| = \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\|. \\ 1429$$

This contradicts our assumption, since

$$1431 \quad \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{z}\| \leq (1 + \epsilon) \|\mathbf{x} - \mathbf{z}\| \leq (1 - \epsilon) \|\mathbf{x} - \mathbf{y}\| \leq \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\|, \\ 1432$$

1433 where we again applied our assumption on ϵ to obtain the second inequality. Thus, the assumption
 1434 is contradicted, and $\mathbf{x} \sim \mathbf{y}$ in $\mathcal{G}_k(X)$ must hold.

1435 Hence, ψ is a graph isomorphism between $\mathcal{G}_k(X)$ and $\mathcal{G}_k(X(l))$, provided that (5) and (6) hold.
 1436 According to Corollary A.5, the probability that (5) holds is bounded from below by

$$1437 \quad 1 - |X|(|X| - 1) \exp \left(\frac{m}{4} \left(\frac{\epsilon^3}{8} - \frac{\epsilon^2}{4} \right) \right).$$

1438 On the other hand, by Corollary A.9, we know that the probability that (6) holds is bounded from
 1439 below by $1 - \delta$. The claim now follows from the Bonferroni inequality. \square
 1440

1441 An analogous result can also be established for r -neighborhood graphs.

1442 **Theorem A.11.** *Let $X \subset \mathbb{R}^n$ be a finite set, and denote by $N(\mathbf{x})$ the one-hop neighborhood of \mathbf{x} in
 1443 $G_r(X)$. Choose $0 < \epsilon < 1$ such that*

$$1444 \quad \epsilon < \min \left\{ \frac{r - \max_{\mathbf{y} \in N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|}{\max_{\mathbf{y} \in N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|}, \frac{\min_{\mathbf{y} \notin N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\| - r}{\min_{\mathbf{y} \notin N(\mathbf{x})} \|\mathbf{x} - \mathbf{y}\|} \right\} \quad \forall \mathbf{x} \in X.$$

1445 Assume that the assumptions of Theorem A.8 are satisfied. Furthermore, assume that

$$1446 \quad m \geq \frac{64N\|\mathbf{u}(0) - \mathbf{y}\|^2}{\epsilon^2 \lambda_0^2}.$$

1447 Then, for any number of gradient descent steps $l \geq 0$, the map

$$1448 \quad \psi : X \rightarrow X(l) := \left\{ \frac{1}{\sqrt{m}} \mathbf{W}(l)\mathbf{x} : \mathbf{x} \in X \right\}; \quad \psi(\mathbf{x}) = \frac{1}{\sqrt{m}} \mathbf{W}(l)\mathbf{x}$$

1449 is a graph isomorphism between $G_r(X)$ and $G_r(X(l))$ with probability bounded from below by

$$1450 \quad \mathbb{P}(G_r(X) \cong G_r(X(l)) \text{ under } \psi) \geq 1 - \delta - |X|(|X| - 1) e^{\frac{m}{4} \left(\frac{\epsilon^3}{8} - \frac{\epsilon^2}{4} \right)}.$$

1458 *Proof.* For ease of notation, we define $\mathbf{A}(l) = \frac{1}{\sqrt{m}}\mathbf{W}(l)$. Note that the matrix $\mathbf{A}(0)$ has i.i.d.
 1459 entries with $\mathbf{A}(0)_{ij} \sim \mathcal{N}(0, 1/m)$. We first show that ψ is a graph isomorphism, if
 1460

$$1461 \quad (1 - \frac{\epsilon}{2})\|\mathbf{x} - \mathbf{y}\|^2 \leq \|\mathbf{A}(0)(\mathbf{x} - \mathbf{y})\|^2 \leq (1 + \frac{\epsilon}{2})\|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x}, \mathbf{y} \in X, \quad (7)$$

1462 and for every $l \geq 0$

$$1464 \quad \|\mathbf{W}_{r,:}(l) - \mathbf{W}_{r,:}(0)\| \leq \frac{4\sqrt{N}}{\sqrt{m}\lambda_0} \|\mathbf{u}(0) - \mathbf{y}\|. \quad (8)$$

1465 By employing the same reasoning as in Theorem 3.2, it follows that

$$1467 \quad (1 - \epsilon)\|\mathbf{x} - \mathbf{y}\| \leq \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\| \leq (1 + \epsilon)\|\mathbf{x} - \mathbf{y}\|$$

1468 holds for every $\mathbf{x}, \mathbf{y} \in X$ and $l \geq 0$.

1469 We now proceed to show that ψ is a graph isomorphism. To this end, let $\mathbf{x} \sim \mathbf{y}$ be an arbitrary edge
 1470 in $G_r(X)$. Using our upper bound, we obtain

$$1472 \quad \|\psi(\mathbf{x}) - \psi(\mathbf{y})\| = \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\| \leq (1 + \epsilon)\|\mathbf{x} - \mathbf{y}\| < r,$$

1473 by our assumption on ϵ . Therefore, we conclude $\psi(\mathbf{x}) \sim \psi(\mathbf{y})$ in $G_r(X(l))$. Conversely, consider
 1474 an arbitrary edge $\psi(\mathbf{x}) \sim \psi(\mathbf{y})$ in $G_r(X(l))$. It remains to show that $\mathbf{x} \sim \mathbf{y}$ in $G_r(X)$. Assume
 1475 this is not the case. Hence, $\|\mathbf{x} - \mathbf{y}\| > r$ and therefore

$$1476 \quad \|\psi(\mathbf{x}) - \psi(\mathbf{y})\| = \|\mathbf{A}(l)\mathbf{x} - \mathbf{A}(l)\mathbf{y}\| \geq (1 - \epsilon)\|\mathbf{x} - \mathbf{y}\| > r,$$

1477 contradicting $\psi(\mathbf{x}) \sim \psi(\mathbf{y})$.

1478 Hence, ψ is a graph isomorphism between $G_r(X)$ and $G_r(X(l))$, provided that (7) and (8) hold.
 1479 Again, according to Corollary A.5, the probability that (7) holds is bounded from below by

$$1480 \quad 1 - |X|(|X| - 1) \exp\left(\frac{m}{4}\left(\frac{\epsilon^3}{8} - \frac{\epsilon^2}{4}\right)\right).$$

1481 On the other hand, by Corollary A.9, we know that the probability that (8) holds is bounded from
 1482 below by $1 - \delta$. The claim now follows from the Bonferroni inequality. \square

1483 A.3.3 IMPACT OF NONLINEARITY ON FEATURE GEOMETRY

1484 We have seen that, in wide linear networks, the feature geometry captured by the graph structures
 1485 remains unchanged, as the learned weight matrices act approximately as isometries. In this section,
 1486 we show that this behavior changes once a ReLU activation is introduced. Specifically, we prove
 1487 that, even when the weight matrices are exact isometries, adding the ReLU nonlinearity is sufficient
 1488 to change the geometry of the feature manifolds.

1489 It is a standard result from linear algebra that the linear isometries of \mathbb{R}^n correspond precisely to the
 1490 set of orthogonal matrices, denoted by $O(n)$, defined as

$$1491 \quad O(n) = \{\mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A}^\top \mathbf{A} = \mathbf{I}_n\}.$$

1492 The proof of the main theorem of this section relies on the following lemma.

1493 **Lemma A.12.** *Let $\mathbf{x} \in \mathbb{R}^n$ be arbitrary. Then, there exists a linear isometry $\mathbf{A} \in O(n)$ such that*

$$1494 \quad \mathbf{A}\mathbf{x} = (\|\mathbf{x}\|, 0, \dots, 0)^\top.$$

1495 *Proof.* If $\|\mathbf{x}\| = 0$, the claim holds for every linear isometry $\mathbf{A} \in O(n)$. Hence, assume $\|\mathbf{x}\| > 0$,
 1496 and define the normalized vector

$$1497 \quad \mathbf{u}_1 = \frac{\mathbf{x}}{\|\mathbf{x}\|}.$$

1498 Using the Basis Extension Theorem and the Gram-Schmidt Process, we can extend the set $\{\mathbf{u}_1\}$ to
 1499 an orthogonal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ of \mathbb{R}^n . Then, the matrix

$$1500 \quad \mathbf{A} = \begin{pmatrix} \mathbf{u}_1^\top \\ \vdots \\ \mathbf{u}_n^\top \end{pmatrix} \in O(n)$$

1501 satisfies $\mathbf{A}\mathbf{x} = (\|\mathbf{x}\|, 0, \dots, 0)^\top$ by construction. \square

1512 We are now prepared to prove the main theorem of this section.
 1513
 1514

Theorem 3.3. *Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$, such that $\mathbf{z} \notin \text{span}\{\mathbf{x}, \mathbf{y}\}$ and*

$$1515 \quad \|\mathbf{x} - \mathbf{y}\| \geq \|\mathbf{x} - \mathbf{z}\|. \\ 1516$$

1517 *Then, for $m \geq n$, there exists a linear isometry $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a bias vector $\mathbf{b} \in \mathbb{R}^m$, such that*

$$1518 \quad \|\sigma(\mathbf{A}\mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}\mathbf{y} + \mathbf{b})\| < \|\sigma(\mathbf{A}\mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}\mathbf{z} + \mathbf{b})\|. \\ 1519$$

1520 **Remark.** *As shown above, a wide linear neural network cannot change the geometry of the features,
 1521 since its weight matrices are almost isometries. However, as Theorem 3.3 demonstrates, this is no
 1522 longer the case once the ReLU activation function is introduced: for any three vertices, the ordering
 1523 of their pairwise distances can be altered by applying an orthogonal matrix followed by the ReLU
 1524 activation, thereby rewiring the k -nearest neighbor graph.*

1525 *Proof.* Without loss of generality, we may assume $m = n$. In the case $m > n$, any n -dimensional
 1526 vector can be embedded into \mathbb{R}^m by appending $m - n$ zero coordinates. If $\|\mathbf{x}\| = 0$, then by
 1527 assumption $\|\mathbf{y}\| > 0$ must hold. According to Lemma A.12, there exists $\mathbf{A}_1 \in \text{O}(n)$, such that

$$1529 \quad \mathbf{A}_1 \mathbf{y} = (-\|\mathbf{y}\|, 0, \dots, 0)^\top. \\ 1530$$

1531 By assumption, we have $\mathbf{z} \notin \text{span}\{\mathbf{x}, \mathbf{y}\} = \text{span}\{\mathbf{y}\}$. Therefore, there exists $i \in \{2, \dots, n\}$ such
 1532 that $(\mathbf{A}_1 \mathbf{z})_i \neq 0$. Without loss of generality, we may assume that $(\mathbf{A}_1 \mathbf{z})_i > 0$. Choose \mathbf{b} to be the
 1533 zero vector in \mathbb{R}^n . Then,

$$1534 \quad \|\sigma(\mathbf{A}_1 \mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}_1 \mathbf{y} + \mathbf{b})\| = 0 < ((\mathbf{A}_1 \mathbf{z})_i)^2 \leq \|\sigma(\mathbf{A}_1 \mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}_1 \mathbf{z} + \mathbf{b})\|. \\ 1535$$

1536 Thus, we may assume $\|\mathbf{x}\| > 0$.

1537 According to Lemma A.12, there exists $\mathbf{A}_1 \in \text{O}(n)$, such that

$$1539 \quad \mathbf{A}_1 \mathbf{x} = (-\|\mathbf{x}\|, 0, \dots, 0)^\top. \\ 1540$$

1541 The proof proceeds by cases.

1542 *Case 1: $\mathbf{y} \in \text{span}\{\mathbf{x}\}$.* Hence, there exists $\alpha \in \mathbb{R}$ such that $\mathbf{y} = \alpha \mathbf{x}$. Thus, we obtain

$$1543 \quad \mathbf{A}_1 \mathbf{y} = (-\alpha \|\mathbf{x}\|, 0, \dots, 0).$$

1545 By assumption, we have $\mathbf{z} \notin \text{span}\{\mathbf{x}\}$. Therefore, there exists $i \in \{2, \dots, n\}$ such that $(\mathbf{A}_1 \mathbf{z})_i \neq 0$.
 1546 Without loss of generality, we may assume that $(\mathbf{A}_1 \mathbf{z})_i > 0$. Define the bias vector

$$1548 \quad \mathbf{b} = \begin{cases} (\alpha \|\mathbf{x}\|, 0, \dots, 0), & \text{if } \alpha < 0, \\ \mathbf{0}, & \text{otherwise,} \end{cases}$$

1551 where $\mathbf{0} \in \mathbb{R}^n$ denotes the zero vector. Thus, by construction, we obtain

$$1552 \quad \|\sigma(\mathbf{A}_1 \mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}_1 \mathbf{y} + \mathbf{b})\| = 0 < ((\mathbf{A}_1 \mathbf{z})_i)^2 \leq \|\sigma(\mathbf{A}_1 \mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}_1 \mathbf{z} + \mathbf{b})\|. \\ 1553$$

1554 *Case 2: $\mathbf{y} \notin \text{span}\{\mathbf{x}\}$.* Denote by

$$1556 \quad (\mathbf{A}_1 \mathbf{y})_{-1} = ((\mathbf{A}_1 \mathbf{y})_2, \dots, (\mathbf{A}_1 \mathbf{y})_n) \in \mathbb{R}^{n-1}$$

1558 the vector obtained from $\mathbf{A}_1 \mathbf{y}$ by removing its first coordinate. Note that $\|(\mathbf{A}_1 \mathbf{y})_{-1}\| > 0$, since
 1559 $\mathbf{y} \notin \text{span}\{\mathbf{x}\}$. Define

$$1560 \quad \tilde{\mathbf{u}}_1 = \frac{(\mathbf{A}_1 \mathbf{y})_{-1}}{\|(\mathbf{A}_1 \mathbf{y})_{-1}\|}.$$

1562 and $\mathbf{u}_1 = (0, -\tilde{\mathbf{u}}_1) \in \mathbb{R}^n$, so that the first coordinate of \mathbf{u}_1 is zero and the remaining coordinates
 1563 are given by $\tilde{\mathbf{u}}_1$.

1564 Denote by $\mathbf{e}^{(i)}$ the i -th standard basis vector. The set $\{\mathbf{e}^{(1)}, \mathbf{u}_1\}$ forms an orthonormal system
 1565 and can therefore be extended to an orthonormal basis $\{\mathbf{e}^{(1)}, \mathbf{u}_1, \dots, \mathbf{u}_{n-1}\}$ of \mathbb{R}^n using the Basis

1566 Extension Theorem together with the Gram–Schmidt Process. Note that for every $i \in \{1, \dots, n-1\}$,
 1567 we have $\langle \mathbf{u}_i, \mathbf{e}^{(1)} \rangle = 0$, and therefore $\langle \mathbf{u}_i, \mathbf{A}_1 \mathbf{x} \rangle = 0$. Define the matrix
 1568

$$1569 \quad \mathbf{A}_2 = \begin{pmatrix} \mathbf{e}^{(1)\top} \\ \mathbf{u}_1^\top \\ \vdots \\ \mathbf{u}_{n-1}^\top \end{pmatrix} \in O(n) \quad \text{and} \quad \mathbf{A} = \mathbf{A}_2 \mathbf{A}_1 \in O(n).$$

1574 By construction, we obtain

$$1575 \quad \mathbf{A}\mathbf{x} = (-\|\mathbf{x}\|, 0, \dots, 0)^\top \quad \text{and} \quad \mathbf{A}\mathbf{y} = ((\mathbf{A}_1\mathbf{y})_1, -\|(\mathbf{A}_1\mathbf{y})_{-1}\|, 0, \dots, 0).$$

1577 By assumption, we have $\mathbf{z} \notin \text{span}\{\mathbf{x}, \mathbf{y}\}$. Hence, there exists $i \in \{3, \dots, n\}$ such that $(\mathbf{A}\mathbf{z})_i \neq 0$.
 1578 Without loss of generality, we may assume that $(\mathbf{A}\mathbf{z})_i > 0$.

1579 Finally, define the bias vector

$$1581 \quad \mathbf{b} = \begin{cases} (-(\mathbf{A}_1\mathbf{y})_1, 0, \dots, 0), & \text{if } (\mathbf{A}_1\mathbf{y})_1 > 0, \\ 1582 \quad \mathbf{0}, & \text{otherwise.} \end{cases}$$

1584 Therefore, by construction, we obtain

$$1585 \quad \|\sigma(\mathbf{A}\mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}\mathbf{y} + \mathbf{b})\| = 0 < ((\mathbf{A}\mathbf{z})_i)^2 \leq \|\sigma(\mathbf{A}\mathbf{x} + \mathbf{b}) - \sigma(\mathbf{A}\mathbf{z} + \mathbf{b})\|.$$

1587 \square

1588 A.4 ADDITIONAL EXPERIMENTAL RESULTS

1589 A.4.1 EXPERIMENTAL CONFIRMATION OF THEORETICAL INSIGHTS

1592 We supplement the theoretical results of Section 3.1 with experimental validation. Specifically, we
 1593 sample points uniformly from the d -dimensional unit ball and construct k -nearest neighbor graphs
 1594 on these point clouds. Note that any point cloud can be rescaled to the unit ball without altering
 1595 its k -nearest neighbor graph, ensuring generality of this setup. For varying network widths, we
 1596 apply randomly initialized neural networks and test whether the induced graphs remain isomorphic
 1597 to the original ones. Figure 7 reports the proportion of linear neural networks that preserve the k -
 1598 nearest neighbor and r -neighborhood graphs across different widths. For each width, 1,000 linear
 1599 neural networks were independently initialized. Consistent with our theoretical predictions, the
 1600 preservation probability converges to one as the width increases. The faster convergence observed
 1601 for r -neighborhood graphs is explained by the fact that the maximal ϵ satisfying the condition of
 1602 Theorem A.6 was larger than the corresponding bound from Theorem 3.1.

1603 Across all experiments, we find that the network widths required for the estimated probabilities to
 1604 exceed a given threshold $1 - \delta$ are in practice smaller than the widths for which Theorems 3.1 and A.6
 1605 guarantee this. This is expected, since the proofs rely on Boole’s inequality, which generally does
 1606 not provide a tight bound for the probability of a union.

1607 A.4.2 LOCAL RICCI EVOLUTION COEFFICIENTS

1609 In this subsection, we present additional experimental results for the computation of local Ricci
 1610 evolution coefficients. In addition to the Ollivier-Ricci curvature, we also compute the coefficients
 1611 using the augmented Forman curvature and the approximation of Ollivier-Ricci curvature proposed
 1612 by Tian et al. (2025). For all curvature notions, we evaluate both our synthetic and real-world
 1613 datasets by training deep neural networks of varying width and depth and subsequently computing
 1614 the local Ricci evolution coefficients. We average our results over 50 independently trained networks
 1615 for each dataset-architecture pair, to account for the inherent randomness in neural network training,
 1616 making sure our observed patterns are robust rather than accidental.

1617 Results on real-world datasets using augmented Forman curvature and approximated Ollivier cur-
 1618 vature are reported in Table 4 and Table 5, respectively. In all cases, we observe strongly negative
 1619 local Ricci evolution coefficients, highlighting pronounced curvature-driven dynamics in the evo-
 lution of feature geometry. To further support this finding, we evaluate the proportion of vertices

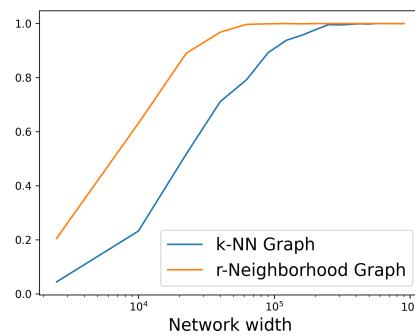


Figure 7: Proportion of linear neural networks that preserve the k -nearest neighbor and r -neighborhood graphs, constructed from the feature manifolds, across different network widths. The graphs are built from a point cloud of 50 samples in the 3-dimensional unit ball. We consider the 5-nearest neighbor graph, and for the r -neighborhood graph we set the radius equal to 0.3.

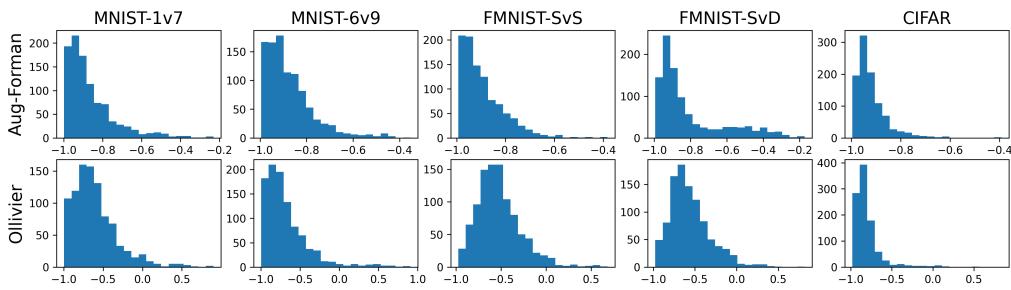


Figure 8: Distribution of local Ricci evolution coefficients for networks of depth 15 and width 50 on real-world datasets, shown for augmented Forman–Ricci curvature (top row) and Ollivier–Ricci curvature (bottom row).

with negative local coefficients, consistently showing that the vast majority of vertices exhibit such behavior. Hence, curvature-driven dynamics appear almost universally across the data manifold. Figure 8 shows the entire distribution of local Ricci evolution coefficients on the real-world datasets for both Ollivier–Ricci curvature and augmented Forman–Ricci curvature. Complementary results on synthetic datasets are provided in Table 6 for Ollivier–Ricci curvature, in Table 8 for augmented Forman–Ricci curvature, and in Table 9 for approximated Ollivier–Ricci curvature. The results are consistent with those observed on the real-world datasets.

Furthermore, we observe consistent results for all three discretizations of Ricci curvature. The numerical values obtained using the augmented Forman–Ricci curvature and the approximation of the Ollivier–Ricci curvature are nearly identical, which is expected since both curvature notions are primarily influenced by three-cycles. Moreover, Jost & Münch (2021) show that Ollivier–Ricci curvature coincides with the maximal Forman curvature over cell complexes having the given graph as their 1-skeleton, providing a theoretical explanation for the close agreement observed across the different notions. In contrast, we also calculated the local Ricci evolution coefficients using the classical Forman–Ricci curvature, as shown in Table 8. As anticipated, the correlation observed in previous experiments is substantially reduced or absent when using the unaugmented curvature, validating the necessity of a more expressive measure for our purposes.

Above, we computed the Pearson correlation between the Ricci curvature and the local expansion or contraction. As a further analysis, we evaluated the Spearman rank correlation coefficients for the same quantities. This non-parametric measure captures monotonic relationships and is less sensitive to outliers or non-normal distributions. The results presented in Table 10 confirm that the observed correlations are consistent across both Pearson and Spearman metrics.

1674

1675
1676
1677
1678
Table 4: Average local Ricci evolution coefficients, computed using augmented Forman curvature,
on real-world data. Values are means \pm standard deviations over 50 independently trained net-
works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
Networks were randomly initialized.

(Width,Depth)	MNIST-1v7	MNIST-6v9	FMNIST-SvS	FMNIST-SvD	CIFAR
(15, 7)	-0.82 ± 0.06 (98.5%)	-0.79 ± 0.09 (97.5%)	-0.81 ± 0.08 (98.7%)	-0.53 ± 0.13 (91.2%)	-0.73 ± 0.11 (98.2%)
(15, 10)	-0.83 ± 0.05 (99.3%)	-0.83 ± 0.06 (99.5%)	-0.82 ± 0.06 (99.8%)	-0.58 ± 0.16 (94.0%)	-0.76 ± 0.15 (97.5%)
(15, 15)	-0.84 ± 0.05 (99.8%)	-0.88 ± 0.03 (99.9%)	-0.86 ± 0.05 (99.9%)	-0.60 ± 0.13 (97.5%)	-0.79 ± 0.21 (97.4%)
(25, 7)	-0.80 ± 0.05 (97.8%)	-0.69 ± 0.18 (94.0%)	-0.80 ± 0.04 (99.5%)	-0.54 ± 0.11 (91.9%)	-0.69 ± 0.13 (96.7%)
(25, 10)	-0.83 ± 0.07 (99.0%)	-0.83 ± 0.06 (99.4%)	-0.83 ± 0.05 (99.8%)	-0.62 ± 0.12 (96.2%)	-0.80 ± 0.09 (99.3%)
(25, 15)	-0.83 ± 0.05 (99.8%)	-0.85 ± 0.04 (99.9%)	-0.85 ± 0.04 (100%)	-0.74 ± 0.07 (99.4%)	-0.90 ± 0.03 (99.9%)
(50, 7)	-0.81 ± 0.04 (98.3%)	-0.61 ± 0.16 (91.1%)	-0.79 ± 0.04 (99.3%)	-0.58 ± 0.10 (92.9%)	-0.76 ± 0.08 (98.8%)
(50, 10)	-0.84 ± 0.03 (99.7%)	-0.79 ± 0.09 (98.5%)	-0.84 ± 0.05 (99.8%)	-0.70 ± 0.12 (97.2%)	-0.87 ± 0.03 (100%)
(50, 15)	-0.83 ± 0.04 (99.9%)	-0.86 ± 0.05 (99.9%)	-0.88 ± 0.02 (100%)	-0.80 ± 0.06 (100%)	-0.91 ± 0.02 (100%)

1686

1687

1688
1689
1690
1691
Table 5: Average local Ricci evolution coefficients, computed using approximated Ollivier curva-
ture, on real-world data. Values are means \pm standard deviations over 50 independently trained
networks per architecture; proportion of vertices with negative coefficients is reported in parenthe-
ses. Networks were randomly initialized.

(Width,Depth)	MNIST-1v7	MNIST-6v9	FMNIST-SvS	FMNIST-SvD	CIFAR
(15, 7)	-0.75 ± 0.21 (94.6%)	-0.76 ± 0.12 (96.4%)	-0.77 ± 0.07 (98.8%)	-0.50 ± 0.13 (89.5%)	-0.66 ± 0.13 (96.5%)
(15, 10)	-0.82 ± 0.05 (99.5%)	-0.84 ± 0.04 (99.7%)	-0.77 ± 0.06 (99.7%)	-0.54 ± 0.16 (92.7%)	-0.69 ± 0.16 (96.4%)
(15, 15)	-0.83 ± 0.04 (99.8%)	-0.83 ± 0.07 (99.1%)	-0.81 ± 0.06 (99.9%)	-0.64 ± 0.14 (97.0%)	-0.75 ± 0.18 (97.2%)
(25, 7)	-0.79 ± 0.05 (98.1%)	-0.66 ± 0.20 (92.3%)	-0.76 ± 0.04 (99.2%)	-0.50 ± 0.12 (90.0%)	-0.62 ± 0.15 (94.6%)
(25, 10)	-0.81 ± 0.04 (99.4%)	-0.82 ± 0.05 (99.6%)	-0.78 ± 0.04 (99.6%)	-0.59 ± 0.12 (95.3%)	-0.74 ± 0.10 (98.9%)
(25, 15)	-0.81 ± 0.06 (99.8%)	-0.84 ± 0.03 (100%)	-0.79 ± 0.04 (100%)	-0.72 ± 0.08 (99.2%)	-0.86 ± 0.04 (99.9%)
(50, 7)	-0.79 ± 0.04 (98.5%)	-0.57 ± 0.21 (87.9%)	-0.75 ± 0.04 (98.9%)	-0.56 ± 0.11 (91.4%)	-0.69 ± 0.10 (98.1%)
(50, 10)	-0.82 ± 0.03 (99.8%)	-0.82 ± 0.04 (99.7%)	-0.80 ± 0.05 (99.7%)	-0.68 ± 0.12 (96.6%)	-0.83 ± 0.03 (100%)
(50, 15)	-0.83 ± 0.04 (99.9%)	-0.84 ± 0.04 (100%)	-0.83 ± 0.03 (100%)	-0.78 ± 0.07 (100%)	-0.89 ± 0.03 (100%)

1699

1700

1701
A.4.3 COMMUNITY STRUCTURE1702
1703
1704
1705
1706
In this section, we examine how the curvature gap evolves as the data manifold propagates through
the layers of the deep neural network. Whereas both modularity and the normalized cut provide
clear evidence that the network rewrites the k -nearest neighbor graph derived from the point clouds
such that its geometry aligns more closely with the community structure induced by the true labels
(see Figure 2 and Figure 9), the behavior of the curvature gap is less straightforward.1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
The explanation for this is that most inter-community edges connect misclassified nodes to cor-
rectly classified nodes with the same label, making them indistinguishable from intra-community
edges. This effect is clearly illustrated in Figure 10, where we show the full curvature distribu-
tion on the MNIST 1-vs-7 dataset, comparing inter-community edges (orange) and intra-community
edges (blue). As expected, intra-community edges systematically shift toward more positive curva-
ture values as the k -nearest neighbor graphs are transformed through the layers of the deep neural
network. In contrast, the behavior of inter-community edges is more intricate. The left column
displays the distributions computed on the entire test set. In the final layer, two structurally distinct
types of inter-community edges emerge. The majority exhibit positive curvature and vanish once
the five misclassified points are removed. These are precisely the edges described above, connecting
a misclassified point with a correctly classified one. In contrast, a small subset of inter-community
edges remains, characterized by highly negative curvature values. These correspond to the true inter-
community edges. This distinction explains the vanishing of the curvature gaps before removing the
misclassified samples, and we find the same qualitative pattern consistently across all synthetic and
real-world datasets considered.

1722

1723

A.4.4 DOUBLE DESCENT PHENOMENON

1724
1725
1726
1727
In modern machine learning, it is common to train extremely large and heavily overparameterized
models that achieve zero training error while still exhibiting strong generalization performance.
This surprising behavior is captured by the *double descent* phenomenon, introduced by Belkin et al.
(2019), which refines the classical view of the bias–variance trade-off. Whereas the traditional
theory predicts a U-shaped generalization curve as model capacity increases, double descent reveals

1728

1729 Table 6: Average local Ricci evolution coefficients, computed using Ollivier curvature, on synthetic
 1730 data. Values are means \pm standard deviations over 50 independently trained networks per archi-
 1731 tecture; proportion of vertices with negative coefficients is reported in parentheses. Networks were
 1732 randomly initialized.

(Width,Depth)	Syn-I	Syn-II	Syn-III	Syn-IV
(15,7)	-0.38 ± 0.07 (80.9%)	-0.31 ± 0.11 (78.2%)	-0.53 ± 0.09 (92.1%)	-0.39 ± 0.09 (82.9%)
(15,10)	-0.43 ± 0.07 (83.9%)	-0.29 ± 0.14 (81.2%)	-0.59 ± 0.09 (92.7%)	-0.45 ± 0.10 (87.1%)
(15,15)	-0.43 ± 0.12 (81.0%)	-0.36 ± 0.09 (84.9%)	-0.64 ± 0.07 (93.9%)	-0.49 ± 0.13 (86.2%)
(25,7)	-0.37 ± 0.06 (81.9%)	-0.34 ± 0.10 (79.7%)	-0.56 ± 0.07 (93.8%)	-0.32 ± 0.09 (77.4%)
(25,10)	-0.43 ± 0.07 (83.8%)	-0.37 ± 0.08 (86.9%)	-0.63 ± 0.05 (96.2%)	-0.40 ± 0.09 (85.4%)
(25,15)	-0.49 ± 0.04 (86.5%)	-0.40 ± 0.05 (87.6%)	-0.69 ± 0.04 (95.5%)	-0.51 ± 0.05 (90.3%)
(50,7)	-0.38 ± 0.06 (83.2%)	-0.38 ± 0.07 (81.6%)	-0.59 ± 0.05 (96.3%)	-0.29 ± 0.05 (74.9%)
(50,10)	-0.47 ± 0.05 (88.0%)	-0.41 ± 0.05 (86.9%)	-0.66 ± 0.05 (97.3%)	-0.34 ± 0.07 (81.8%)
(50,15)	-0.53 ± 0.04 (89.1%)	-0.42 ± 0.04 (88.2%)	-0.72 ± 0.03 (97.0%)	-0.53 ± 0.06 (91.7%)

1741

1742

1743 Table 7: Average local Ricci evolution coefficients, computed using augmented Forman curvature, on
 1744 synthetic data. Values are means \pm standard deviations over 50 independently trained networks per
 1745 architecture; proportion of vertices with negative coefficients is reported in parentheses. Net-
 1746 works were randomly initialized.

(Width,Depth)	Syn-I	Syn-II	Syn-III	Syn-IV
(15,7)	-0.43 ± 0.10 (87.2%)	-0.32 ± 0.16 (78.4%)	-0.64 ± 0.08 (97.6%)	-0.37 ± 0.12 (81.7%)
(15,10)	-0.51 ± 0.16 (90.4%)	-0.34 ± 0.12 (87.4%)	-0.72 ± 0.10 (98.5%)	-0.48 ± 0.13 (90.0%)
(15,15)	-0.63 ± 0.10 (95.3%)	-0.45 ± 0.09 (91.6%)	-0.70 ± 0.15 (96.0%)	-0.63 ± 0.20 (94.3%)
(25,7)	-0.43 ± 0.09 (88.4%)	-0.36 ± 0.14 (81.6%)	-0.63 ± 0.08 (97.6%)	-0.27 ± 0.09 (73.7%)
(25,10)	-0.57 ± 0.07 (95.5%)	-0.40 ± 0.10 (91.5%)	-0.74 ± 0.06 (99.3%)	-0.44 ± 0.11 (88.1%)
(25,15)	-0.65 ± 0.09 (97.0%)	-0.50 ± 0.07 (95.9%)	-0.75 ± 0.12 (98.2%)	-0.67 ± 0.07 (97.4%)
(50,7)	-0.39 ± 0.09 (86.0%)	-0.45 ± 0.08 (89.0%)	-0.62 ± 0.07 (97.4%)	-0.22 ± 0.08 (68.7%)
(50,10)	-0.58 ± 0.07 (96.7%)	-0.50 ± 0.08 (95.5%)	-0.76 ± 0.05 (99.8%)	-0.33 ± 0.10 (79.8%)
(50,15)	-0.69 ± 0.06 (98.4%)	-0.55 ± 0.05 (97.1%)	-0.81 ± 0.03 (99.8%)	-0.63 ± 0.10 (96.5%)

1755

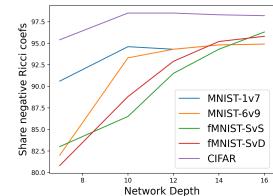
1756

1757

1758 an additional regime: once the interpolation threshold is crossed, generalization error can decrease
 1759 again with increasing capacity. Recent work has shown that this phenomenon is a fundamental
 1760 property of overparameterized models, appearing across a wide range of settings including neural
 1761 networks, ensemble methods, decision trees, and classical linear regression (Belkin et al., 2019; Ba
 1762 et al., 2020; Deng et al., 2022).

1763 Several explanations have been proposed for this behavior. One line of reasoning sug-
 1764 gests that enlarging the function class increases the number of interpolating solutions,
 1765 thereby making it more likely to find functions that not only fit the data but also ex-
 1766 hibit higher smoothness and regularity. Such simpler solutions are favored by an im-
 1767 plicit form of Occam’s razor, indicating that overparameterization can promote generalization
 1768 by biasing learning toward these low-complexity explanations (Belkin et al., 2019).

1769
 1770 A promising direction for future work is to investigate the double
 1771 descent phenomenon through the lens of local Ricci evolution co-
 1772 efficients. In the overparameterized regime, double descent sug-
 1773 gests that further enlarging the network should lead to improved
 1774 generalization. Our experiments show that increasing network
 1775 size—either by adding depth at fixed width or by expanding width
 1776 at fixed depth—systematically increases the proportion of vertices
 1777 with negative Ricci coefficients. Figure 11 illustrates these findings
 1778 on real-world datasets using neural networks with a fixed width of
 1779 50 neurons per layer while varying the depth. This observation in-
 1780 dicates that larger models exhibit curvature-driven dynamics on a
 1781 more global scale, potentially enabling them to capture the under-
 lying geometry of the problem more effectively. Since models that
 better align with data geometry are expected to generalize better,



1782 Figure 11: Proportion of ver-
 1783 tices with negative local Ricci
 1784 evolution coefficient for net-
 1785 works of varying depth.

1782
 1783 Table 8: Average local Ricci evolution coefficients, computed using approximated Ollivier curva-
 1784 ture, on synthetic data. Values are means \pm standard deviations over 50 independently trained net-
 1785 works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
 1786 Networks were randomly initialized.

(Width,Depth)	Syn-I	Syn-II	Syn-III	Syn-IV
(15,7)	-0.44 ± 0.10 (89.6%)	-0.37 ± 0.16 (82.9%)	-0.64 ± 0.11 (96.6%)	-0.36 ± 0.11 (81.0%)
(15,10)	-0.52 ± 0.11 (92.6%)	-0.39 ± 0.08 (91.5%)	-0.72 ± 0.12 (98.1%)	-0.51 ± 0.16 (90.6%)
(15,15)	-0.60 ± 0.15 (94.7%)	-0.44 ± 0.11 (91.6%)	-0.73 ± 0.19 (96.2%)	-0.65 ± 0.13 (95.9%)
(25,7)	-0.43 ± 0.08 (89.5%)	-0.34 ± 0.13 (83.0%)	-0.64 ± 0.08 (97.8%)	-0.26 ± 0.11 (72.6%)
(25,10)	-0.56 ± 0.07 (95.8%)	-0.44 ± 0.09 (94.2%)	-0.75 ± 0.05 (99.7%)	-0.44 ± 0.13 (87.5%)
(25,15)	-0.66 ± 0.04 (98.3%)	-0.49 ± 0.08 (94.9%)	-0.79 ± 0.05 (99.6%)	-0.64 ± 0.13 (96.1%)
(50,7)	-0.38 ± 0.07 (87.5%)	-0.46 ± 0.07 (91.2%)	-0.66 ± 0.06 (98.7%)	-0.22 ± 0.08 (68.4%)
(50,10)	-0.60 ± 0.06 (97.4%)	-0.53 ± 0.04 (97.3%)	-0.77 ± 0.04 (100%)	-0.35 ± 0.09 (81.2%)
(50,15)	-0.69 ± 0.04 (99.1%)	-0.55 ± 0.05 (97.5%)	-0.83 ± 0.03 (100%)	-0.64 ± 0.08 (97.9%)

1795
 1796 Table 9: Average local Ricci evolution coefficients, computed using Forman Ricci curvature, on
 1797 synthetic data. Values are means \pm standard deviations over 50 independently trained networks per
 1798 architecture; proportion of vertices with negative coefficients is reported in parentheses. Networks
 1799 were randomly initialized.

(Width,Depth)	Syn-I	Syn-II	Syn-III	Syn-IV
(15,7)	-0.16 ± 0.08 (65.1%)	-0.23 ± 0.11 (70.9%)	-0.22 ± 0.09 (70.0%)	-0.09 ± 0.08 (58.0%)
(15,10)	-0.15 ± 0.07 (62.2%)	-0.19 ± 0.08 (71.9%)	-0.29 ± 0.07 (74.7%)	-0.17 ± 0.10 (65.3%)
(15,15)	-0.16 ± 0.07 (62.5%)	-0.16 ± 0.10 (66.2%)	-0.28 ± 0.08 (72.9%)	-0.22 ± 0.17 (67.7%)
(25,7)	-0.17 ± 0.07 (65.6%)	-0.26 ± 0.08 (74.0%)	-0.22 ± 0.07 (70.2%)	-0.02 ± 0.07 (51.6%)
(25,10)	-0.16 ± 0.06 (63.9%)	-0.26 ± 0.06 (75.2%)	-0.25 ± 0.08 (72.6%)	-0.11 ± 0.09 (60.3%)
(25,15)	-0.17 ± 0.06 (62.1%)	-0.22 ± 0.06 (71.5%)	-0.28 ± 0.07 (73.4%)	-0.26 ± 0.06 (71.7%)
(50,7)	-0.20 ± 0.04 (67.4%)	-0.32 ± 0.07 (78.1%)	-0.21 ± 0.07 (71.0%)	$+0.02 \pm 0.05$ (46.5%)
(50,10)	-0.19 ± 0.07 (64.6%)	-0.35 ± 0.05 (79.2%)	-0.27 ± 0.05 (74.7%)	-0.04 ± 0.05 (53.6%)
(50,15)	-0.16 ± 0.07 (60.7%)	-0.30 ± 0.05 (75.2%)	-0.28 ± 0.06 (73.2%)	-0.24 ± 0.06 (71.1%)

1809
 1810 this perspective highlights a potential interplay between capacity growth and geometric representa-
 1811 tion, offering a novel geometric perspective on the double descent phenomenon.

1814 A.5 DETAILS ON EXPERIMENTAL SETUP

1816 All experiments were implemented in Python. Neural networks were built using PyTorch (v2.7.1).
 1817 Default initialization schemes were used for the initial network weights. Networks were trained with
 1818 binary cross-entropy loss and optimized using the standard Adam optimizer (Kinga et al., 2015)
 1819 with a learning rate of 0.001. To solve the optimal transport problems required for computing
 1820 Ollivier-Ricci curvature, we relied on the POT Python Optimal Transport library (v0.9.5). For
 1821 constructing k -nearest neighbor graphs we used scikit-learn (v1.7.1), and for computing classical
 1822 community strength measures such as modularity we employed NetworkX (v3.5). All figures in the
 1823 main text were generated using Matplotlib (v3.10.5).

1824 Our experiments were conducted on a local server with the specifications presented in the following
 1825 table.

1826 We evaluate our approach on both synthetic and real-world datasets. The synthetic datasets, pre-
 1827 sented in Figure 12, are designed to exhibit different degrees of geometric and topological com-
 1828 plexity, providing controlled settings to study curvature dynamics. For real-world data, we consider
 1829 three benchmarks. MNIST (LeCun, 1998) consists of 28×28 grayscale images of handwritten
 1830 digits (0–9). We focus on visually similar digit pairs, i.e., 1 vs. 7 (MNIST-1v7) and 6 vs. 9 (MNIST-
 1831 6v9), to test the sensitivity of our approach to subtle shape differences. On Fashion-MNIST (Xiao
 1832 et al., 2017), which contains grayscale images of clothing items, we consider sneakers vs. sandals
 1833 (FMNIST-SvS) and shirts vs. dresses (FMNIST-SvD) as representative examples of fine-grained vi-
 1834 sual distinctions. Finally, on CIFAR-10 (Krizhevsky, 2009), a dataset of color natural images across
 1835 ten object categories, we study cars vs. planes (CIFAR) as an example of two closely related classes.
 Figure 13 illustrates representative samples from the real-world datasets.

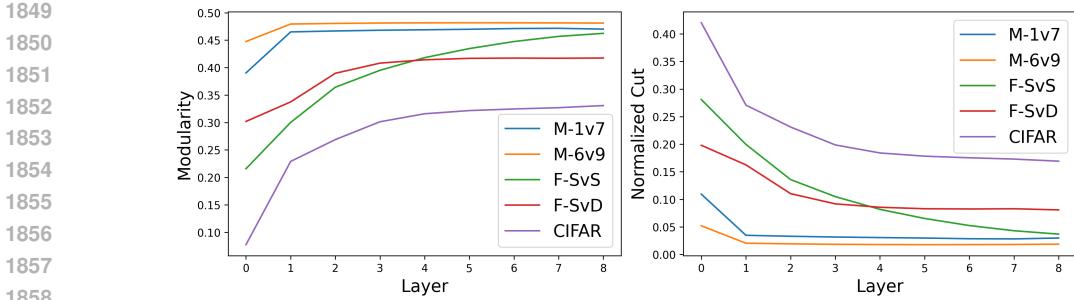
1836

Table 10: Average local Ricci evolution coefficients on real-world data computed using the Spearman correlation. Values are means \pm standard deviations over 50 independently trained networks per architecture; proportion of vertices with negative coefficients is reported in parentheses. Networks were randomly initialized.

1841

(Width,Depth)	MNIST-1v7	MNIST-6v9	FMNIST-SvS	FMNIST-SvD	CIFAR
(15, 7)	-0.51 ± 0.08 (89.8%)	-0.44 ± 0.12 (84.5%)	-0.39 ± 0.06 (82.1%)	-0.27 ± 0.06 (74.0%)	-0.40 ± 0.11 (85.4%)
(15, 10)	-0.52 ± 0.06 (90.8%)	-0.51 ± 0.07 (90.2%)	-0.36 ± 0.08 (82.8%)	-0.31 ± 0.09 (80.1%)	-0.39 ± 0.16 (85.8%)
(15, 15)	-0.36 ± 0.06 (88.6%)	-0.48 ± 0.05 (87.7%)	-0.51 ± 0.10 (92.4%)	-0.42 ± 0.10 (89.0%)	-0.55 ± 0.19 (92.9%)
(25, 7)	-0.50 ± 0.09 (88.6%)	-0.45 ± 0.11 (85.1%)	-0.36 ± 0.04 (79.0%)	-0.27 ± 0.06 (74.2%)	-0.45 ± 0.12 (89.0%)
(25, 10)	-0.53 ± 0.07 (91.1%)	-0.54 ± 0.08 (90.8%)	-0.36 ± 0.08 (82.5%)	-0.31 ± 0.08 (80.8%)	-0.55 ± 0.14 (94.1%)
(25, 15)	-0.49 ± 0.04 (88.5%)	-0.48 ± 0.06 (87.9%)	-0.49 ± 0.09 (92.6%)	-0.47 ± 0.10 (91.2%)	-0.68 ± 0.05 (96.9%)
(50, 7)	-0.60 ± 0.07 (93.1%)	-0.45 ± 0.11 (84.1%)	-0.37 ± 0.05 (79.9%)	-0.33 ± 0.08 (80.1%)	-0.52 ± 0.12 (93.1%)
(50, 10)	-0.58 ± 0.07 (93.1%)	-0.59 ± 0.09 (92.9%)	-0.39 ± 0.10 (84.2%)	-0.43 ± 0.10 (88.4%)	-0.70 ± 0.04 (97.9%)
(50, 15)	-0.53 ± 0.03 (89.9%)	-0.55 ± 0.05 (90.6%)	-0.56 ± 0.06 (94.6%)	-0.55 ± 0.07 (92.7%)	-0.71 ± 0.03 (97.1%)

1848



1859

Figure 9: Modularity and normalized cut across network layers on real-world datasets. Reported values are averaged over 50 independently trained networks with random initialization.

1860

Across all our experiments, we train the networks to achieve training accuracy above 99%, ensuring that our experiments evaluate meaningful learned feature representations.

1866

A.5.1 HYPERPARAMETERS

1868

The computation of local Ricci evolution coefficients requires constructing k -nearest neighbor graphs to approximate the geometry of the underlying manifold. The parameter k , which determines the number of neighbors each point connects to and thus controls the local scale of connectivity, plays a central role. Small values of k capture fine-grained geometric structure but increase sensitivity to noise and may disconnect the graph. Larger values emphasize more global structure, at the cost of oversmoothing important local variations and raising the computational cost of Ollivier–Ricci curvature, which scales cubically with the vertex degree. It is therefore not a priori clear how to choose k , as it mediates a fundamental trade-off between locality, robustness, and efficiency.

1879

To investigate this trade-off, we conduct experiments across a range of neighborhood sizes. Specifically, we vary k from 1% to 15% of the total size of the point cloud X , and compute the local Ricci evolution coefficients for each value of k . The resulting average coefficients on the real-world data are shown in Figure 14, where all reported values are averaged over 50 independently trained networks, each with width fixed to 50 and depth fixed to 10. We find that for small neighborhood sizes (k between 1% and 5%), the local Ricci evolution coefficients remain relatively stable or even decrease. As k increases further, the coefficients tend to rise, reflecting a weaker correlation between local Ricci curvature and the expansion or contraction of this region. This behavior is consistent across all datasets and across all network widths and depths examined in our experiments. Table 12 reports the local Ricci evolution coefficients for different neighborhood sizes and for different widths

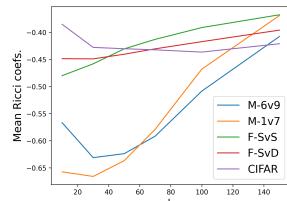


Figure 14: Mean local Ricci evolution coefficients for different neighborhood sizes k on real datasets. Reported values are averaged over 50 independently trained networks.

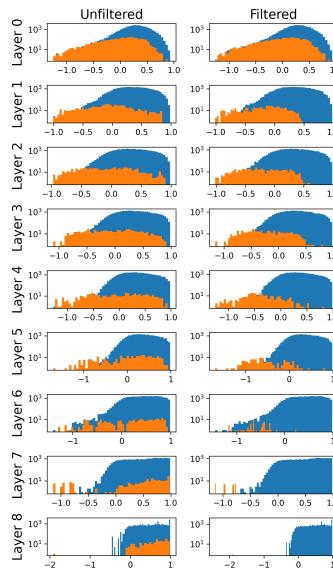


Figure 10: Curvature distributions for inter-community edges (orange) and intra-community edges (blue) on MNIST 1-vs-7 before (left column) and after (right column) removing misclassified samples.

Table 11: Hardware specifications.

Components	Specifications
ARCHITECTURE	X86_64
OS	Rocky Linux 8.10 (Green Obsidian)
CPU	Intel Xeon Platinum 8480CL 56-Core ($\times 2$)
GPU	NVIDIA H200 Tensor Core
RAM	40GB

and depths on the MNIST-1v7 dataset. Across all architectures, we observe the same qualitative pattern as in Figure 14.

Table 12: Average local Ricci evolution coefficients on the MNIST-1v7 dataset across different neighborhood sizes k . Values are means \pm standard deviations over 50 independently trained networks per architecture; proportion of vertices with negative coefficients is reported in parentheses. Networks were randomly initialized.

(Width,Depth)	$k = 10$	$k = 30$	$k = 50$	$k = 70$	$k = 100$
(15, 7)	-0.61 ± 0.07 (93.4%)	-0.61 ± 0.07 (91.7%)	-0.58 ± 0.08 (88.7%)	-0.53 ± 0.07 (83.9%)	-0.43 ± 0.06 (76.6%)
(15, 10)	-0.63 ± 0.05 (96.6%)	-0.65 ± 0.07 (95.4%)	-0.60 ± 0.06 (91.8%)	-0.56 ± 0.05 (88.0%)	-0.45 ± 0.05 (79.0%)
(15, 15)	-0.66 ± 0.06 (98.1%)	-0.62 ± 0.17 (95.1%)	-0.61 ± 0.07 (93.3%)	-0.55 ± 0.08 (88.1.0%)	-0.41 ± 0.09 (78.6%)
(25, 7)	-0.60 ± 0.06 (93.3%)	-0.59 ± 0.07 (91.0%)	-0.58 ± 0.05 (89.2%)	-0.52 ± 0.05 (84.4%)	-0.44 ± 0.05 (77.2%)
(25, 10)	-0.64 ± 0.04 (96.8%)	-0.64 ± 0.05 (95.5%)	-0.62 ± 0.05 (92.8%)	-0.57 ± 0.05 (88.4%)	-0.45 ± 0.03 (79.2%)
(25, 15)	-0.65 ± 0.04 (98.2%)	-0.65 ± 0.06 (97.0%)	-0.60 ± 0.06 (94.2%)	-0.55 ± 0.05 (89.1%)	-0.43 ± 0.04 (79.6%)
(50, 7)	-0.58 ± 0.07 (92.3%)	-0.62 ± 0.05 (93.3%)	-0.59 ± 0.05 (90.5%)	-0.55 ± 0.05 (86.1%)	-0.46 ± 0.05 (78.3%)
(50, 10)	-0.65 ± 0.05 (97.6%)	-0.67 ± 0.05 (96.9%)	-0.65 ± 0.04 (94.6%)	-0.58 ± 0.05 (89.7%)	-0.47 ± 0.04 (80.4%)
(50, 15)	-0.66 ± 0.05 (98.3%)	-0.64 ± 0.06 (97.3%)	-0.63 ± 0.06 (95.2%)	-0.55 ± 0.05 (90.4%)	-0.43 ± 0.04 (80.2%)

This behavior is expected, since we are approximating local geometric properties of the manifold using k -nearest neighbor graphs. When the neighborhood scale becomes too large, the one-hop neighborhoods of these graphs no longer correspond to genuinely local regions of the manifold. Consequently, we expect a weaker correlation between the two quantities, as they cease to reflect the local nature of the Ricci flow.

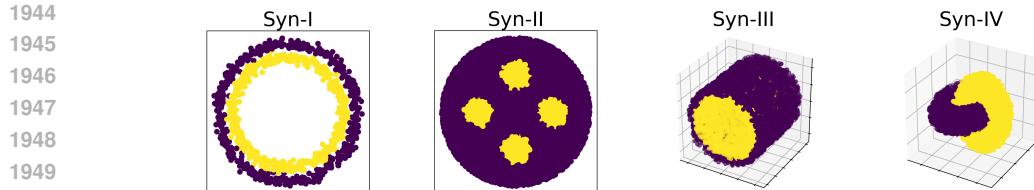


Figure 12: The synthetic datasets.

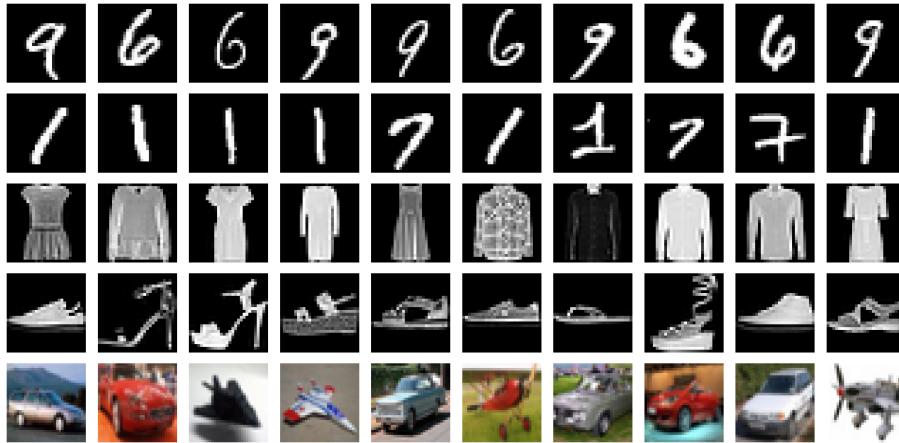


Figure 13: The real-world datasets.

To balance these effects, we fix $k = 5\%$ of the total size of the point cloud in the experiments reported in the main text. We additionally repeated the same experiments with $k = 3\%$ and $k = 7\%$, and observed quantitatively similar outcomes, showing that our findings are robust with respect to the precise choice of neighborhood size.

A.5.2 LICENSES

We summarize the licenses of all code and datasets used in our experiments in Table 13.

Table 13: Licenses of code and datasets.

Model/Dataset	License
MNIST (LeCun, 1998)	CC BY-SA 3.0
Fashion-MNIST (Xiao et al., 2017)	MIT
CIFAR-10 (Krizhevsky, 2009)	MIT
PyTorch (Paszke et al., 2019)	3-clause BSD
Scikit-learn (Pedregosa et al., 2011)	3-clause BSD
POT (Python Optimal Transport) (Flamary et al., 2021)	3-clause BSD
NetworkX (Hagberg et al., 2008)	3-clause BSD
SciPy (Virtanen et al., 2020)	3-clause BSD

A.6 LLM USAGE DISCLOSURE

We used an LLM during paper writing to improve grammar and wording.