Under review as a conference paper at ICLR 2026

NEURAL FEATURE GEOMETRY EVOLVES AS DISCRETE
Ricci FLow

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks learn feature representations via complex geometric trans-
formations of the input data manifold. Despite the models’ empirical success
across domains, our understanding of neural feature representations is still incom-
plete. In this work we investigate neural feature geometry through the lens of
discrete geometry. Since the input data manifold is typically unobserved, we ap-
proximate it using geometric graphs that encode local similarity structure. We
provide theoretical results on the evolution of these graphs during training, show-
ing that nonlinear activations play a crucial role in shaping feature geometry in
feedforward neural networks. Moreover, we discover that the geometric trans-
formations resemble a discrete Ricci flow on these graphs, suggesting that neural
feature geometry evolves analogous to Ricci flow. This connection is supported by
experiments on over 20,000 feedforward neural networks trained on binary clas-
sification tasks across both synthetic and real-world datasets. We observe that the
emergence of class separability corresponds to the emergence of community struc-
ture in the associated graph representations, which is known to relate to discrete
Ricci flow dynamics. Building on these insights, we introduce a novel framework
for locally evaluating geometric transformations through comparison with discrete
Ricci flow dynamics. Our results suggest practical design principles, including a
geomﬁry-informed early-stopping heuristic and a criterion for selecting network
depth

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse domains. Yet, a compre-
hensive theoretical understanding of why these models generalize and perform so well in practice
remains elusive. To address this challenge, recent works have investigated how the geometry (Bap-
tista et al., 2024;|Ansuini et al., | 2019; Cohen et al.,|2020) and topology (Magai & Ayzenberg, 2022
Naitzat et al [2020) of neural feature representations evolve as data propagates through network
layers. Beyond advancing interpretability and explainability, such analyses also provide practical
benefits, offering principled guidance for model and hyperparameter selection.

In this work we adopt a geometric perspective to analyze how deep neural networks evolve feature
representations. Since the underlying manifold is not directly observable, we approximate its ge-
ometry by constructing geometric graphs from local similarity structure in the data. To the best of
our knowledge, no prior work has provided theoretical results on how the geometry of such graphs
evolves as data manifolds propagate through network layers. We provide initial theoretical insights
by proving that, in the wide regime, deep linear networks preserve feature geometry, whereas non-
linear activations, such as ReLU, enable genuine geometric transformations.

Among the geometric concepts available for studying these transformations, Ricci curvature and
its associated Ricci flow stand out as fundamental tools from Riemannian geometry. Originally
introduced by [Hamilton| (1982), the Ricci flow intuitively describes the smoothing of a manifold’s
geometry through the evolution of its metric tensor. Famously, Perelman| (2002; 2003bja)) employed
it to prove the Poincaré conjecture and Thurston’s geometrization conjecture. By carefully handling
singularities, Perelman’s work revealed topological insights through the progressive smoothing of
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the manifold’s geometry. This mathematical framework bears a compelling analogy to deep neu-
ral networks, which progressively simplify and smooth the geometry of data manifolds, thereby
uncovering richer information about the underlying classes in classification tasks.

Building on this intuition, we propose a novel framework for locally evaluating geometric transfor-
mations through comparison with discrete Ricci flow dynamics. We conduct experiments on more
than 20,000 feedforward neural networks trained on binary classification tasks across both synthetic
and real-world datasets. We find that across datasets and architectures, neural networks consistently
impose curvature-driven transformations closely aligned with the Ricci flow dynamics. Moreover,
the emergence of class separability is reflected in the development of community structure in the as-
sociated graph representations, an evolution known to be closely tied to discrete Ricci flow dynamics
(Tian et al.l [2025; N1 et al., 2019; [Lai et al., [2022)).

Leveraging our geometric framework, we introduce a new early-stopping heuristic based on
the emergence of geometrically informed behavior during training. Additionally, by analyzing
curvature-driven transformations layer-wise, we propose a geometric criterion for depth selection,
identifying a critical point beyond which additional layers cease to yield meaningful curvature-
driven changes. This framework opens new avenues for understanding the geometric principles un-
derlying deep learning and offers practical tools that can improve training efficiency and parameter
selection across diverse applications.

Summary of contributions The main contributions of this work are as follows:

1. We prove that, in the wide regime, deep linear networks preserve feature geometry, whereas
non-linear activations such as ReLU enable meaningful geometric transformations (Sec. [3.1).

2. Our experiments show that the progressive emergence of class separability is reflected in the
emergence of community structure within the corresponding graph representations (Sec. [4.2).

3. We propose a novel early-stopping heuristic that leverages the emergence of curvature-driven
geometric behavior during training (Sec.[4.3).

4. By analyzing layer-wise curvature-driven transformations, we introduce a geometric criterion for
network depth selection (Sec. [4.4).

Related work A variety of approaches have been proposed to better understand the feature trans-
formations of deep neural networks. The connection between deep learning and Ricci flow was first
explored by Baptista et al.[(2024), who analyzed geometric transformations via Ricci flow at a global
scale. Our approach differs by capturing the inherently local behavior of Hamilton’s Ricci flow and
by leveraging more refined discretizations of Ricci curvature. Other efforts include topology-based
analyses (Naitzat et al.,[2020), and geometric measures of simplification (Brahma et al., 2015} |An-
suini et al., 2019; |Cohen et al., 2020). We defer a more detailed discussion of related literature to

Appendix [A.T]

2 BACKGROUND AND NOTATION

Following standard notation, we use a,a, and A to denote scalars, vectors, and matrices. For
x € R", ||x|| denotes the L? norm. N(p,c?) represents a normal distribution with mean ;. and
variance 2. We denote a graph as G = (V, E), where V is the vertex set and E C V x V the
edge set. We write u ~ v if (u,v) € F and d(u,v) denotes the shortest path distance between u
and v. The 1-hop neighborhood of v is denoted by N(v) = {u € V' : u ~ v} and the degree by
deg(v) = |N(v)|. The maximum degree is given by deg,, .., = max,cy deg(v).

2.1 SETTING

To study the feature geometry of deep neural networks, we focus on binary classification, a funda-
mental task in supervised learning. Following the notation of Naitzat et al.| (2020), we consider a
compact manifold M = M, U M; C R", given by the disjoint union of two submanifolds. The task
is to determine, given a sample « € M, whether it belongs to M, or M.

To this end, we train a feed-forward neural network ® : R™ — [0, 1] with L hidden layers, given by

@=¢L+1O¢LO...O¢1.
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Figure 1: Schematic illustration of evolving feature manifolds (top row) along with the correspond-
ing geometric graphs (bottom row) approximating their evolving geometry.

Each layer of the network is defined as the composition of an affine transformation and a non-
linear activation function o, i.e., ¢¢ : R™-1 — R™ is given by, ¢y(x) = o(Wyx + by), where
W, € R™*"-1 ig the weight matrix and b, € R™¢ is the bias vector. Here, n, denotes the width
of layer ¢, with ng = n corresponding to the input dimension. In this work, we use the ReLU
activation function, defined as o(z) = max(0, z), applied elementwise in all hidden layers. To
produce probabilistic outputs, we apply a sigmoid activation in the final layer, i.e., ¢r4+1(x) =
p(WL_HCL' + bL—i—l)» where Wi, € Rlxnf, br+1 € Rand p(Z) = H%'

We study how the geometry of data evolves as it propagates through neural networks. Given an input
manifold M, we denote by &, = ¢yo. . .o¢; the composition of the first £ layers, and refer to ®, (M)
as the feature manifold at layer ¢. In practice, M is unobserved, and we only have access to a finite

set of samples X = {az(i)}f\il C M. To approximate the geometry of the feature manifolds, we

construct geometric graphs on the transformed samples {®,(x(*)) N |, as schematically illustrated

in Figure|l| Graphs based on local connectivity patterns, such as k-nearest neighbor graphs or -
neighborhood graphs, are known to preserve geometric and topological properties of the manifold
when samples are sufficiently dense, including Ricci curvature (Van Der Hoorn et al., 2021} Trillos
& Weber, [2023)). This approach is well-established in manifold learning and geometric data analysis,
where such graph-based representations are commonly used to study the geometry of data.

Specifically, we consider the k-nearest neighbor graph, denoted by Gy (X), where the vertices of
Gr(X) correspond exactly to the samples in X, and two vertices are connected if either is among
the k-nearest neighbors of the other. Additionally, we construct r-neighborhood graphs G,.(X),
where an edge is drawn between two vertices if their distance is less than a fixed radius r > 0.
These graphs provide discrete approximations of the evolving feature manifolds.

2.2 Riccl CURVATURE OF GRAPHS

Ricci curvature plays a fundamental role in Riemannian geometry and provides the foundation for
our analysis of feature geometry. To extend curvature concepts to graphs, we adopt two of the most
widely used discretizations, proposed by |Ollivier| (2009) and |Forman| (2003). We briefly introduce
them below.

Intuitively, Ricci curvature measures how the local geometry of a manifold deviates from being flat.
This can be captured by comparing the distance between two nearby points with the distance be-
tween small geodesic balls centered at them: in regions of positive (negative) curvature, the geodesic
balls are closer together (farther apart) than the points themselves.

Building on this intuition, [Ollivier| (2009) extends the classical notion of Ricci curvature to graphs
by replacing geodesic balls with the transition probability of a random walk. For a vertex u, let p,,
denote the uniform distribution over its neighbors, i.e., 1, (v) = @ if u ~ vand p,(v) =0
otherwise. Ollivier-Ricci curvature then compares the distance between these distributions to the
distance between their centers, mirroring the comparison between geodesic balls and their centers

in the Riemannian case:
Wl (/’("um M'u)

d(u,v)
where W1 (g, pt,) is the 1-Wasserstein distance, defined by

Wi, phe) = inf d(a,b)m(a,b),
o) = ol 355 dle ()

O(u,v) =1-
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and IT(zy, pt,,) denotes the set of all couplings of i, and .

Computing Ollivier-Ricci curvature is computationally demanding, as it requires solving an optimal
transport problem for each edge with complexity O(degilax) via the Hungarian algorithm. This can
be mitigated by approximating the Wasserstein distance using Sinkhorn distances (Cuturi, [2013)) or
through direct combinatorial approximations of the Ollivier-Ricci curvature (Tian et al.| |2025). We
adopt the latter, detailed in Appendix [A.2.T] in our experiments.

On the other hand, [Forman| (2003) introduced a discretization of Ricci curvature on CW complexes
via a discrete analogue of the Bochner—Weitzenbock formula. For a simple, unweighted graph, the
Forman-Ricci curvature of an edge u ~ v is defined as

F(u,v) = 4 — deg(u) — deg(v).

While this definition is well-founded in Forman’s framework and computationally efficient, it is
often too simplistic to capture the geometric complexity required in many applications. To ad-
dress this limitation, augmented versions of Forman’s curvature have been considered (Bloch,2014;
Samal et al., [2018; [Weber et al.| 2018)). A widely used refinement incorporates contributions from
three-cycles, yielding the following combinatorial expression:

AF(u,v) = 4 — deg(u) — deg(v) + 3|N(u) N N(v)].

This augmentation can be computed in O(E deg, .. ) time, providing a scalable alternative to the
computationally demanding Ollivier—Ricci curvature. A more detailed introduction to the Forman-
Ricci curvature is provided in Appendix

2.2.1 CURVATURE GAP

When two adjacent vertices belong to the same community, their neighborhoods tend to be more
tightly connected. This lowers the transport cost between neighborhood distributions, yielding
higher Ollivier-Ricci curvature, and likewise increases augmented Forman-Ricci curvature due to
a higher incidence of triangles. Both measures are therefore effective for community detection (Sia
et al. [2019; |Gosztolai & Arnaudon, 2021} [Fesser et al.l [2024). By contrast, the original For-
man—Ricci curvature depends only on endpoint degrees and cannot reliably distinguish intra- from
inter-community edges. As a result, Ollivier- and augmented Forman—Ricci curvature show a bi-
modal distribution in graphs with strong community structure. To quantify this bimodality, we use
the curvature gap (Gosztolai & Arnaudon, |[2021):

1
AO = — (Ointra - Ointer)
g

where Ojptra and Ojpter denote the mean curvature of intra- and inter-community edges, and o is
the pooled standard deviation. This measure captures how strongly the local graph geometry, as
encoded by Ricci curvature, reflects community structure. The curvature gap can be analogously
defined for augmented Forman—Ricci curvature. Visualizations and further community structure
metrics (modularity, normalized cut, spectral gap) are presented in Appendix [A.2.3]

2.3 Ricci FLow

To analyze the evolving geometry of the feature manifolds, it is natural to draw inspiration from
the Ricci flow, a central concept in Riemannian geometry introduced by [Hamilton| (1982). The
Ricci flow evolves a Riemannian metric g according to % g(t) = —2Ric(g(t)) with initial condition
g(0) = g, where Ric(g(t)) denotes the Ricci curvature tensor; further details are provided in Ap-
pendix [A.2.4] This evolution is often compared to heat diffusion, as the underlying equation shares
a similar averaging effect, smoothing out curvature irregularities by shrinking positively curved re-
gions and expanding negatively curved ones. While there is no unique notion of discrete Ricci flow
on graphs, this fundamental geometric evolution characterizes the current versions, first proposed
by Ollivier| (2010), and we show below that well-trained networks follow the same mechanism.

3 APPROXIMATING FEATURE GEOMETRY

This section establishes theoretical results on feature manifold evolution in wide neural networks,
emphasizing the key role of non-linear activations in geometric transformations. We then introduce
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a novel measure that compares local network-induced geometric changes with those predicted by
discrete Ricci flow.

3.1 THEORETICAL RESULTS

As a first result, we show that for randomly initialized, sufficiently wide neural networks without
nonlinearity, the graph structures encoding the feature geometry are preserved with high probabil-
ity. Two graphs are said to be isomorphic if there exists a bijection between their vertex sets that
preserves adjacency relations, i.e., the graphs are identical up to vertex relabeling. The following
theorem establishes explicit lower bounds on the network width that guarantee the existence of an
isomorphism between the k-nearest neighbor graphs.

Theorem 3.1. Let X C R" be a finite set, and assume there exists 0 < € < 1 such that

min max||z — y||* < ——° min max|z —y[* Ve e X.
YCX yeYy l4+€e YCx yey
Y=k IV |=k+1

Furthermore, let A € R™*" be a random matrix with i.i.d. entries A;; ~ N(0,1/m). Then, the
map p : X — AX = {Ax : x € X}, defined by (x) = Aw, is a graph isomorphism between
Gr(X) and Gi,(AX) with probability bounded from below

P (Gr(X) = G(AX) under ) > 1 — | X|(|X] — 1)e =),

Remark. Since the addition of a bias term does not affect pairwise distances, the same result holds
for one-layer linear networks with bias.

The proof builds on the Johnson-Lindenstrauss Lemma, which implies that randomly initialized
weight matrices act as approximate isometries with high probability. The complete proof of Theo-
rem|[3.1]is deferred to Appendix[A.3.1] Analogous results for r-neighborhood graphs (Theorem|[A.6)),
generalizations to deep networks (Theorem[A.7)), and empirical validation (Appendix [A.4.1)) are also
provided.

Random initialization combined with over-parameterization keeps network weights near their initial
values during gradient descent. We show that, without nonlinearities, network dynamics cannot
alter the feature geometry encoded by graph structures, regardless of the number of gradient descent

1
mW.’c), where o denotes the

ReLU activation and m the width of the hidden layer. We minimize the empirical loss by keeping the
second-layer weights fixed, while gradient descent updates the first-layer weight matrix W, denoted
by W (I) after [ gradient descent steps. Then, the k-nearest neighbor graphs remain invariant prior
to the nonlinearity, as stated in the following theorem.

steps. Consider a two-layer network ® = ¢ o ¢ with ¢1(x) = o (

Theorem 3.2 (Informal). Let X C R” be a finite set. Under suitable technical assumptions, for
networks of sufficient width m and any number of gradient descent steps | > 0, the map

Y X = X(1) = {1W(l)cc::ceX}; ¢(m)zi

Jm WW(l)m

is a graph isomorphism between G (X)) and Gy, (X (1)) with high probability.

A formal version of this result, including exact lower bounds on the required network width and
the full proof, is provided in Appendix There, we also present an analogous theorem for
r-neighborhood graphs.

The results above establish that wide linear neural networks cannot alter the underlying feature ge-
ometry, as their weight matrices act as approximate isometries. In contrast, once a nonlinearity is
introduced, our experiments show clear changes in the geometry, as captured by the graph struc-
tures (see Section [d). This highlights the essential role of the ReLU activation in enabling such
transformations. Building on this observation, we further demonstrate that even when the weight
matrices are exact isometries, adding the ReL U nonlinearity is sufficient to change the geometry of
the feature manifolds.

Theorem 3.3 (Informal). For any three vertices, there exists a linear isometry such that composing it
with a ReLU activation changes the ordering of their pairwise distances. In particular, this operation
can rewire the k-nearest neighbor graph.
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This provides not only empirical but also theoretical evidence for the fundamental role of the acti-
vation function in changing the feature geometry. A formal treatment of this result is provided in

Appendix [A.3.3]
3.2 LocAL RicCI EVOLUTION COEFFICIENTS

In this section, we introduce a novel framework to evaluate the geometric changes induced by deep
neural networks by drawing an analogy with the Ricci flow. Recall that the Ricci flow regularizes the
geometry of a manifold by shrinking regions of positive curvature and expanding regions of negative
curvature. We aim to assess whether neural networks induce feature transformations that exhibit a
similar curvature-driven regularization. Since the feature manifolds cannot be directly observed,
we instead approximate their geometry using the k-nearest neighbor graph Gy (®¢(X)), constructed
from the transformed samples ®,(X) = {®,(x¥)}, after layer £. A discussion on the choice of
the parameter k is provided in Appendix

To reflect the local nature of the Ricci flow in our graph-based framework, we focus on the smallest
neighborhoods, i.e., the one-hop neighborhoods. The curvature of a one-hop neighborhood centered
at a vertex x at layer £ is approximated by the discrete scalar curvature of |Ollivier| (2010),

O(x) = Z O(x,y),

’yEN[ w)

where deg,(x) and Ny(x) denote the degree and one-hop neighborhood of = in Gy (®,(X)). To
capture how a local region evolves across layers, we define the average change in distances

Z (d@+1($7 y) - d5($7 y)) )

1
d
eg,(T) yeN ()

where dy(x,vy) is the distance between x and y at layer £. Intuitively, ny(x) measures whether
the neighborhood of « expands during the transition from layer ¢ to ¢ 4+ 1. Under the Ricci flow,
positively curved regions contract while negatively curved regions expand, implying a negative cor-
relation between Oy (x) and 7, (). To quantify this, we compute the Pearson correlation coefficient
across layers,

ne(x) =

(m( > 7(@)(Os() - O(x))
@@ Lol \/fo Oula) - O(x))?

where 7j(z) = 1 Ze:1 ne(x) and O(m) = ﬁ £:1 ' Oy(x) denote the averages across lay-
ers. We refer to p(x) as the local Ricci evolution coefficient of the network at point . Although
introduced here in the context of Ollivier curvature, the framework is general and can likewise be
instantiated with alternative notions of discrete curvature, such as the augmented Forman curvature
or efficient approximations of Ollivier curvature.

Remark. Appendix [A.1.1] provides a detailed comparison between our local framework and the
global approach of \Baptista et al.|(2024).

p(x) =

)

In addition to evaluating Ricci flow-like behavior at the level of individual neighborhoods, we can
also assess it layer by layer. Specifically, we ask whether the geometric transformations induced by
a given layer /£ align with those expected under the Ricci flow. To this end, we define the layer Ricci

coefficient -
D wed, (X )(W( x) — 1e)(Oc(x) — Op)

\/Zwetbz(X) ne(@) — 7¢) \/Zme‘i’g(X) Ou(x) — Op)?
where 7, = plq Za:@i)z(X) mi(x) and OZ = \X| Zwe‘i’[(x) Oy().

p(l) =

4 EXPERIMENTAL ANALYSIS

4.1 LoOCAL RICCI EVOLUTION COEFFICIENTS

Using our framework of local Ricci evolution coefficients, we empirically examine whether deep
neural networks exhibit curvature-driven dynamics in the evolution of their feature geometry. To this
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Figure 2: Modularity and normalized cut across network layers on synthetic datasets. Reported
values are averaged over 50 independently trained networks with random initialization.

end, we study both synthetic and real-world datasets. The synthetic datasets are constructed to span
varying degrees of geometric and topological entanglement. For real-world benchmarks, we con-
sider visually similar digit pairs from MNIST (1 vs. 7, 6 vs. 9), fine-grained visual distinctions from
Fashion-MNIST—sneakers vs. sandals (FMNIST-SvS) and shirts vs. dresses (FMNIST-SvD)—and
from CIFAR-10 (cars vs. planes). Further details on datasets and task setup are provided in Ap-
pendix [A.5] We train feed-forward networks with varying widths and depths, all of which achieve
over 99% training accuracy, ensuring that our analysis reflects meaningful learned feature represen-
tations. To account for randomness in training, results are averaged over 50 independently initialized
and trained networks per dataset—architecture pair. In total, we analyze the feature geometry of more
than 20,000 networks.

Table [1| reports results on real-world datasets, consistently showing negative local Ricci evolution
coefficients, providing strong evidence of Ricci flow-like dynamics in feature geometry. The large
majority of vertices exhibit negative coefficients, indicating that curvature-driven dynamics are a
global phenomenon on the data manifold. To reduce computational overhead, we further compute
local Ricci evolution coefficients using augmented Forman curvature and the approximate Ollivier
curvature of |Tian et al.| (2025). Both yield results consistent with the exact Ollivier curvature while
being substantially more efficient (see Tables ] and [5). For completeness, we present the entire
distribution of local Ricci evolution coefficients in Appendix [A.4.2] along with results on synthetic
datasets. Strikingly, we observe qualitatively identical behavior across all architectures and datasets,
both synthetic and real, underscoring the robustness and universality of this phenomenon. Together,
these findings provide compelling evidence that the evolution of feature geometry in deep neural
networks is fundamentally curvature-driven, closely aligned with Ricci flow.

Table 1: Average local Ricci evolution coefficients on real-world data. Values are means =+ stan-
dard deviations over 50 independently trained networks per architecture; proportion of vertices with
negative coefficients is reported in parentheses. Networks were randomly initialized.

(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR
(15,7) —0.58 + 0.08 (88.7%) —0.51 + 0.09 (85.3%) —0.43 + 0.05 (84.0%) —0.27 + 0.08 (73.4%) —0.44 + 0.12 (87.8%)
(15, 10) —0.60 % 0.06 (91.8%) —0.59 %+ 0.06 (92.6%) —0.40 =+ 0.05 (84.4%) —0.29 + 0.12 (77.6%) —0.43 £ 0.15 (87.8%)
(15, 15) —0.61 + 0.07 (93.3%) —0.58 + 0.11 (92.9%) —0.52 + 0.11 (93.8%) —0.40 + 0.12 (88.2%) —0.55 =+ 0.18 (93.3%)
(25,7) —0.58 £ 0.05 (89.3%) —0.48 £ 0.10 (83.3%) —0.41 £ 0.03 (81.9%) —0.28 £ 0.08 (74.3%) —0.48 & 0.13 (89.9%)
(25, 10) —0.62 + 0.05 (92.8%) —0.59 + 0.05 (92.8%) —0.40 + 0.05 (84.8%) —0.32 + 0.09 (80.4%) —0.54 + 0.13 (94.8%)
(25, 15) —0.60 + 0.06 (94.2%) —0.61 + 0.07 (94.9%) —0.47 + 0.08 (93.5%) —0.46 + 0.08 (92.2%) —0.71 + 0.06 (98.1%)
(50, 7) —0.59 £ 0.05 (90.6%) —0.46 £ 0.14 (82.0%) —0.42 £ 0.03 (83.0%) —0.35 £ 0.09 (80.8%) —0.57 £ 0.12 (95.4%)
(50, 10) —0.65 & 0.04 (94.6%) —0.61 + 0.07 (93.3%) —0.43 + 0.07 (86.5%) —0.44 =+ 0.10 (88.8%) —0.70 =+ 0.05 (98.5%)
(50, 15) —0.63 + 0.06 (95.2%) —0.61 %+ 0.08 (95.0%) —0.54 + 0.05(96.0%) —0.53 £ 0.07 (95.0%) —0.76 =+ 0.04 (98.3%)

4.2 COMMUNITY STRUCTURE

We study graphs whose nodes can be naturally partitioned into two communities according to the
true labels of the underlying binary classification task. This setup is well suited for a community-
detection perspective. In this section, we examine whether the class separability learned by deep
neural networks induces a rewiring that strengthens the community structure of the k-nearest neigh-
bor graphs.

To this end, we evaluate how well the geometry of the graphs aligns with the prescribed commu-
nity structure by measuring the curvature gap, modularity, and normalized cut. Our experiments
on both synthetic and real-world datasets show that the community structure becomes increasingly
pronounced as the networks evolve the feature geometry. Figure [2| reports the evolution of modu-
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Figure 4: Average local Ricci evolution coefficients, computed from the approximated Ol-
livier—Ricci curvature, shown with the corresponding accuracies throughout training on the Fashion-
MNIST dataset. Reported values are averaged over 50 independently trained networks with random
initialization.

larity and normalized cut across network layers, averaged over 50 independently trained models to
mitigate stochastic variability. In all datasets, we observe a consistent increase in modularity and a
corresponding decrease in normalized cut, indicating that the learned feature geometry progressively
aligns with the prescribed community structure. For real-world datasets, this effect is still present
but less pronounced, as the k-nearest neighbor graphs constructed from raw inputs already exhibit
relatively high modularity, particularly in the case of MNIST (see Figure[J).

In our setting, the curvature gap does not reliably capture how well
the graph geometry aligns with the prescribed community structure.
Most inter-community edges arise from misclassified nodes con-
nected to correctly classified ones with the same label, which the
network effectively treats as intra-community edges, making them
indistinguishable through the curvature lens. To clarify this effect,
Figure [3|compares the curvature gaps on the MNIST 1-vs-7 dataset
computed on the full test set with those computed after removing
the five misclassified points (out of 1000). While removing such a I
small fraction of samples should not noticeably alter the graph ge-
ometry, it leads to a qualitatively different behavior: the curvature
gap increases consistently across layers instead of collapsing. This
is expected, as inter-community edges now differ structurally from
intra-community ones. We discuss this phenomenon in more detail

in Appendix[A.4.3]
Overall, these results demonstrate that deep neural networks progressively evolve the geometry of
feature manifolds in a manner that amplifies the underlying community structure.

—— M-1v7 unfiltered
M-1v7 filtered

Curvature Gap

)

LI S S
Layer

Figure 3: Curvature gaps be-
fore and after removing mis-
classified samples.

4.3 OVERFITTING AND LOCAL RICCI EVOLUTION COEFFICIENTS

To better understand how neural networks learn the geometry of the data manifold, we track the local
Ricci evolution coefficients during training. Across all datasets, we observe a strikingly consistent
pattern: at the beginning of training, the mean coefficients exhibit a sharp decline, suggesting that
the network is effectively learning the underlying geometric structure. Once test accuracy stabilizes,
however, this trend reverses: the mean coefficients plateau or rise again. We hypothesize that this
marks a shift in training dynamics, where the network ceases to capture new geometric structure
and instead begins to overfit individual samples. This pattern suggests that monitoring local Ricci
evolution coefficients during training could serve as a principled stopping heuristic. In practice,
this can be made more efficient by approximating Ollivier—Ricci curvature or by using augmented
Forman curvature, both of which lower computational cost while retaining the essential geometric
signal. Figure[d]illustrates this phenomenon on the Fashion-MNIST dataset, showing the local Ricci
evolution coefficients alongside train and test accuracy throughout training.

4.4 ANALYSIS ACROSS LAYERS

We now turn to the evaluation of the layer-Ricci coefficients, introduced in Section[3.2] We compute
these coefficients across both synthetic and real-world datasets, considering networks of varying
depth, while keeping the width fixed. As before, all models are trained to exceed 99% training
accuracy to ensure that we analyze meaningful learned representations. For each dataset-architecture
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Figure 5: Layer-Ricci coefficients, computed from the augmented Forman-Ricci curvature, on the
MNIST 1-vs-7 dataset for networks of varying depth (width fixed to 25). Reported values are aver-
aged over 50 independently trained networks with random initialization.

pair, results are averaged over 50 independently trained networks to account for stochasticity in
initialization and optimization.

Across all experiments, we observe a strikingly consistent behavior: the curves of the layer-Ricci
coefficients follow the same trend across network depths. Specifically, there appears to be a critical
depth up to which the coefficients decrease, and after which they begin to increase again. This
turning point suggests a balance between the network’s ability to capture geometric structure and its
tendency to overfit. Up to the critical depth, additional layers appear to enrich the evolution of the
feature geometry, as reflected by decreasing Ricci coefficients. Beyond this point, however, further
depth no longer contributes meaningful geometric transformations, which manifests as increasing
Ricci coefficients. This phenomenon highlights the critical depth as a potential heuristic for selecting
network architectures: it indicates the point at which adding more layers ceases to provide geometric
benefits. An example of this behavior on the MNIST dataset is shown in Figure[5] Notably, the depth
identified by this procedure coincides with the depth that maximizes test accuracy when averaged
over 50 independently trained networks.

5 DISCUSSION

Summary In this paper we have introduced the local Ricci evolution coefficients, a tool to eval-
uate locally the geometric transformations of feature manifolds by comparing them to Ricci flow
dynamics. We theoretically show that nonlinear activations are essential for reshaping feature ge-
ometry. Empirically, we demonstrate that the progressive emergence of class separability is mirrored
in the development of community structure within the corresponding graph representations. More-
over, our experiments indicate that well-trained networks exhibit curvature-driven transformations
closely aligned with Ricci flow, and that this behavior emerges during training. Building on these
insights, we propose an early-stopping criterion and a heuristic for selecting network depth, based
on detecting when additional layers no longer induce curvature-driven changes.

Limitations and future work While we have established the importance of non-linear activations
in reshaping feature geometry, deriving exact evolution equations for graphs constructed from lo-
cal connectivity patterns in non-linear networks remains an open problem. Moreover, our study
was conducted on relatively small datasets and focused exclusively on feed-forward architectures;
extending the analysis to larger-scale datasets and more diverse architectures (e.g., convolutional
neural networks) represents a valuable direction for future work.

Another interesting avenue for future study is to analyze the double descent phenomenon (Belkin
et al., [2019) through the framework of local Ricci evolution coefficients. In the overparameterized
regime, our results show that increasing network size—either by expanding depth at fixed width
or width at fixed depth—systematically raises the proportion of vertices with negative Ricci coef-
ficients. This suggests that larger networks operate in a more geometry-aware manner, providing
a novel geometric perspective on the mechanisms underlying double descent. Further discussion
and initial experimental results can be found in Appendix[A.4.4] Furthermore, local Ricci evolution
coefficients could serve as a novel tool to detect geometric anomalies and support uncertainty quan-
tification in deep neural networks, since regions of the data manifold with non-negative coefficients
may signal unexpected geometric behavior by the network.
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A.1 EXTENDED RELATED WORK

Numerous works have addressed the challenge of explaining the remarkable success of deep neural
networks from diverse theoretical perspectives. One line of research characterizes network expres-
sivity in terms of the complexity of decision boundaries. [Pascanu et al.|(2013) and Montufar et al.
(2014) established bounds on the number of linear regions generated by deep ReLU networks, show-
ing that depth increases representational power. Furthermore, the Neural Tangent Kernel framework
by Jacot et al.[(2018)) offers an analytical tool to understand the training dynamics of wide networks
by relating them to kernel methods.

Other lines of research explore how the geometry and topology of neural feature representations
evolve as data propagate through network layers. Using tools from topological data analysis, such
as persistent homology, [Naitzat et al.| (2020) experimentally showed that neural networks progres-
sively simplify the topology of feature representations. Geometric approaches have uncovered sim-
ilar phenomena of simplification and regularization. |Brahma et al. (2015)) observed flattening and
disentanglement in manifold-shaped data, Ansuini et al.|(2019)) reported decreasing intrinsic dimen-
sion in deeper layers, and |Cohen et al.| (2020) demonstrated improved classification capacity via
geometric simplification.

Beyond empirical observations, several works propose theoretical frameworks building on classical
mathematical tools. [Hauser & Ray| (2017) argued that deep networks can be naturally interpreted
using the language of Riemannian geometry, with network layers acting on the coordinate represen-
tation of the underlying data manifold. Meanwhile, Haber & Ruthotto| (2017 propose to interpret
deep learning as a parameter estimation problem for nonlinear dynamical systems, a framework
well-suited for analyzing stability and well-posedness of deep learning.

Closest to our work is the framework introduced by Baptista et al.[(2024), which evaluates geometric
transformations via Ricci flow at a global scale. A comparison between their global analysis and our
local analysis is provided in the following section.

A.1.1 COMPARISON OF LOCAL AND GLOBAL RICCI COEFFICIENTS

Baptista et al.| (2024) introduced a metric that quantifies the geometric transformations induced by
deep neural networks relative to those predicted by the Ricci flow at a global scale. In this section,
we compare their global metric to our local Ricci evolution coefficients.

Their framework is based on comparing the Forman-Ricci curvature at a global scale to a global
approximation of the expansion or contraction of the manifold. Specifically, they define

=Y Fle)
eckE,

where E, denotes the edge set of the k-nearest-neighbor graph constructed from the set ®,(X) =

{®y(x™) : i =1,...,N}. To quantify the global expansion or contraction of the manifold across
layers, they consider all pairwise distances:

=Y, deal@y)— Y di(a,y).
w,y€¢g+1(X) m,y€¢‘g(X)

The relation between these two quantities is then summarized via the Pearson correlation coefficient

Zel(m’ n)(Fe — ]:)

S PR

where 7 and F denote the respective layer-wise averages. We will refer to the quantity p as the
global Ricci coefficient. A negative global Ricci coefficient indicates that the geometric changes
induced by the network follow the dynamics predicted by Ricci flow at global scale—large “global
curvature” corresponds to contraction, while small global curvature” corresponds to expansion.

Our approach differs in two key aspects. First, it explicitly leverages the inherently local nature of
the Ricci flow, which evolves the Riemannian metric tensor at each point of the manifold according
to the local curvature, rather than relying on global approximations. Second, we adopt the more
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Table 2: Global Ricci coefficients of untrained neural networks, averaged over 100 independently
and randomly initialized models.

Syn-1 Syn-IT Syn-III Syn-1V
Mean =+ std. —0.389+0.258 —0.349+0.151 —0.231 £0.193 —0.204 +0.186
Minimum —0.772 —0.644 —0.744 —0.577
Negative share 91% 99% 89% 89%

Table 3: Mean local Ricci evolution coefficients of untrained neural networks, averaged over 100
independently and randomly initialized models.

Syn-I Syn-I1 Syn-I1I Syn-1V
Mean =+ std. —0.037 £ 0.077 0.039 £0.052 —0.0194+0.081 —0.035=0.054
Minimum —0.234 —0.117 —0.173 —0.133
Negative share 66% 21% 63% 76%

refined notion of Ollivier-Ricci curvature, which comes with consistency guarantees relative to the
curvature of the underlying manifold given sufficiently dense samples (Van Der Hoorn et al.| 2021}
Trillos & Weber, 2023)). In contrast, Baptista et al.|(2024) employ the Forman-Ricci curvature, which
cannot capture higher-order structures and is therefore too simplistic to provide a rich geometric
characterization.

To propose an early-stopping heuristic, we evaluate the local Ricci evolution coefficients throughout
training. The global Ricci coefficient turns out to be too coarse to provide meaningful insights into
the learning dynamics. Indeed, even for randomly initialized, untrained networks, the global Ricci
coefficient typically takes negative values, suggesting Ricci flow-like behavior. Table [2] reports the
global Ricci coefficients of randomly initialized, untrained networks with 10 layers across different
datasets, averaged over 100 runs per dataset. For completeness, we also provide the percentage of
networks with negative global Ricci coefficient and the minimum observed value.

This phenomenon is consistent with a simple heuristic indicating an inherent negative correlation
between 7, and F,. Specifically, the estimate of the global curvature of the underlying manifold at
layer £ is given by

Fi=Y Fle)=4E| - Y deg()*

e€E, zED,(X)

From this expression, F; takes large negative values in densely connected graphs with many high-
degree vertices. Such graphs, however, tend to exhibit smaller pairwise distances, thereby yielding
larger values of 7,. As a result, a negative correlation between 7, and F is expected regardless of
the specific neural network under consideration.

In contrast, when examined using the framework of local Ricci evolution coefficients, no systematic
correlation is observed. For randomly initialized networks, the local Ricci evolution coefficients
remain close to zero (Table [3), reflecting the lack of correlation between the expansion of local
neighborhoods and the Ollivier-Ricci curvature within those neighborhoods. This underscores the
value of local Ricci evolution coefficients for studying learning dynamics: since no Ricci flow-
like behavior is present at random initialization, they allow us to track the genuine emergence of
curvature-driven dynamics during training.

Finally, note that computing the global Ricci coefficient requires the k-nearest-neighbor graphs of
each layer to be connected. In practice, however, this condition may not be met, especially for
smaller values of k. In contrast, an advantage of the local Ricci evolution coefficients is that they can
still be computed even when the k-nearest-neighbor graphs are disconnected. The only requirement
is that each point x is connected to its neighbors in the subsequent layer — a significantly weaker
condition.
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A.2 EXTENDED BACKGROUND

A.2.1 APPROXIMATION OF OLLIVIER-RICCI CURVATURE

Computing the Ollivier-Ricci curvature is computationally demanding, since it involves solving an
optimal transport problem for every edge in the graph. Using the Hungarian algorithm, each such
computation has complexity O(degf’nax). However, the computational burden can be alleviated by
approximating the Ollivier-Ricci curvature. Tian et al. (2025) proposed an approximation by taking
the arithmetic mean of an upper and a lower bound, each of which can be efficiently computed in
linear time. These bounds were first established by Jost & Liul (2014)).

Theorem A.1 (Jost & Liu|(2014)). Let G = (V, E) be a locally finite graph and let u,v € V with
u ~ v. Then, the Ollivier-Ricci curvature is bounded from below by

(11 N@NNE)
Ou.v) 2 (1 dog(u) ~ dog(v) _ deg(u) A deg(v >>

_(1_ 11 N~ <>> L V@ AN

deg(u)  deg(v) deg(u) V deg(v) deg(u) v deg(v)”

Furthermore, the Ollivier-Ricci curvature is bounded from above by

[N (u) N N(v)|
Ofu,v) < deg(u) V deg(v)

Using these bounds, |Tian et al.|(2025)) propose to approximate the Ollivier-Ricci curvature by taking
the arithmetic mean, i.e.,

6(u,v) = % (OUP(U,U) + Olow(uvv)) s

where O"P(u,v) and O'* (u,v) denote the upper and lower bound established in Theorem
Note that this approximation can be computed with complexity O(deg,,,...), which strongly reduces
the cost compared to computing the exact Ollivier-Ricci curvature.

A.2.2 FORMAN-RICCI CURVATURE AND ITS AUGMENTATIONS

Forman|(2003) introduced a discretization of the classical Ricci curvature on CW complexes, derived
from a discrete analogue of the Bochner-Weitzenbock formula. Viewing a simple graph as a one-
dimensional CW complex, with edges corresponding to one-cells, allows this notion to be applied
naturally to graphs. In particular, for a simple, unweighted graph, the Forman-Ricci curvature of an
edge u ~ v is defined as

F(u,v) = 4 — deg(u) — deg(v).

Although this definition is well-founded in Forman’s framework and computationally efficient, it
is often too simplistic to provide the rich geometric characterization required in many practical
and theoretical applications. For example, a key limitation of the Forman-Ricci curvature is that it
disregards the number of triangles adjacent to an edge, one of the most elementary and important
geometric properties of a graph Jost & Liul (2014)).

To address this limitation, augmentations of the Forman-Ricci curvature have been considered
(Blochl 2014} [Samal et al., [2018; Weber et al., 2018)). The core idea is to incorporate additional
information about the local geometry by constructing a two-dimensional CW-complex from the
graph, inserting two-cells into cycles up to a given length. This approach provides a natural way
to capture higher-order correlations among vertices in the network. We augment the Forman-Ricci
curvature with all cycles of length three, balancing improved empirical performance in community
detection (Fesser et al., 2024) with computational tractability. The resulting augmented Forman-
Ricci curvature for an edge u ~ v is given by the following combinatorial formula:

AF (u,v) = 4 — deg(u) — deg(v) + 3|N(u) N N(v)| = F(u,v) + 3|N(u) N N(v)]|.
This approximation can be computed in O(E deg,,,,...) time on the whole graph, significantly reduc-

ing the cost relative to the computation of Ollivier—Ricci curvature.
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Figure 6: Distribution of Ollivier—Ricci curvature for two stochastic block models. The first row
shows weak community structure with two communities of 40 nodes each, intra-community edge
probability 0.5, and inter-community edge probability 0.2. The second row shows strong community
structure with intra-community edge probability 0.7, and inter-community edge probability 0.1.

A.2.3 MEASURES OF COMMUNITY STRENGTH

Beyond curvature-based measures, the strength of community structure is often assessed using a set
of well-established classical metrics. For completeness, we summarize the most widely used ones
below. We consider a graph G = (V, E'), where the vertex set is partitioned into disjoint communities
Cl7 PN .Cn, i.e.,

Modularity. One of the most prevalent measures for assessing community strength is modularity,
first introduced by (2004). It quantifies the density of edges within communities relative
to the expected density in a random graph with the same degree distribution. Formally, it is defined

by
L  deg(u)deg(0)
=35 & (400 - *EQZE) 5c0),

where §(C,,, C,,) denotes the Kronecker delta, which equals 1 if  and v belong to the same commu-
nity and O otherwise. Modularity equal to zero indicates that the density of intra-community edges
is no greater than what would be expected in a random graph with the same degree distribution.
Positive modularity, on the other hand, indicates a higher density of intra-community edges, with
values above 0.3 typically reflecting strong community structure.

Normalized Cut. Another classical approach for assessing the strength of community structure is
based on the cut size, i.e., the number of edges crossing between different communities. Since raw
cut size tends to favor unbalanced partitions, [Shi & Malik| (2000) introduced a normalized variant,
defined as

1 <~ cut C;
Ncut(C’1,...,Cn) = QZVOI((C’))’
1 1

where cut(C;) = {u ~v:u € Cj,v & Ci}|, and vol(Cy) = >, o, deg(v).

Algebraic connectivity. There exists a whole field dedicated to the study of graph Laplacians and
their spectra, known as spectral graph theory. The eigenvalues and eigenvectors of the graph Lapla-
cian are closely related to community structure, forming the basis of spectral clustering methods. In
particular, the second-smallest eigenvalue of the Laplacian, called the algebraic connectivity, reflects
how well connected the graph is: it is greater than zero if and only if the graph is connected, and
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larger values indicate stronger connectivity. For more details, we refer the reader to the comprehen-
sive book by (Chung| (1997).

Curvature Gap. The neighborhoods of two adjacent vertices tend to be more tightly connected
when they belong to the same community. This results in a lower transport cost between their neigh-
borhood distributions and thus higher Ollivier-Ricci curvature. Building on this observation, graphs
with community structure exhibit a bimodal distribution of curvature values, reflecting the system-
atic difference between intra-community and inter-community edges. To quantify this separation,
Gosztolai & Arnaudon|(2021)) introduced the curvature gap:

1
AQ = — (Ointra - Ointer) )
g

where Ojntra denotes the average curvature of intra-community edges, Ointer denotes the average

. . _ 1.2 2
curvature of inter-community edges, and o = \/ 3 (O’imra + crinter)

A large curvature gap indicates a significant distinction in local geometry between edges within
communities and those connecting different communities. Figure [6] illustrates this effect for two
graphs with different degrees of community strength.

is the pooled standard deviation.

A.2.4 RICCI FLOW

The Ricci flow, introduced by Hamilton|(1982), is a second-order nonlinear partial differential equa-
tion for the Riemannian metric. Given a smooth Riemannian manifold M with metric g, the Ricci
flow evolves the metric according to

0

(1) = —2Ric(g(1))
9(0) = g,

where Ric(g(t)) denotes the Ricci curvature associated with the time-dependent metric g(¢). The

constant factor —2 is conventional; any negative scalar would yield a qualitatively equivalent evolu-
tion under an appropriate time reparametrization.

(D

Hamilton proved the short-time existence of solutions to the Ricci flow for arbitrary smooth initial
metrics on compact manifolds.

Theorem A.2 ((Hamilton, [1982)), Theorem 4.2). The Ricci flow introduced inhas a solution for a
short time on any compact Riemannian manifold with any initial metric at t = 0.

The prove is based on the Nash-Moser implicit function theorem and also ensures the uniqueness
of a short-time solution. Furthermore, Hamilton established the long-time existence theorem, which
guarantees the existence and uniqueness of a solution as long as the curvature remains bounded.
Theorem A.3 ((Hamilton| [1982), Theorem 14.1). The Ricci flow introduced in E] has a unique
solution on a maximal time interval [0, T) with T < oo for any compact Riemannian manifold M
with any initial metric att = 0. If T' < oo, then

sup |Rm(g(¢))|(z) — oo
xeM

ast — T, where |Rm(g(t))| denotes the norm of the Riemannian curvature tensor associated with
the metric g(t).

A variety of discrete Ricci flow formulations on graphs have been developed, based on the idea
that negatively curved regions expand while positively curved ones contract. Although no canonical
version exists, many build on this intuition. |Ollivier| (2010) introduced discrete Ricci flow using
Ollivier-Ricci curvature. Later work established convergence and uniqueness results, such as|Li &
Miinch| (2024) for discrete-time flows, and Bai et al.|(2020) for continuous-time flows on weighted
graphs. Other flows based on different curvature notions include the Bakry-Emery flow (Cushing
et al) [2025) and Forman-Ricci flow (Weber et al. [2017). Additionally, Erbar & Kopfer| (2020)
introduce a concept of super Ricci flow for weighted graphs.

A.3 DEFERRED PROOF DETAILS

In this section, we provide the deferred proofs for the theoretical results stated in Section
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A.3.1 RANDOM INITIALIZATION
To derive lower bounds on the network width that ensure the preservation of graph structures under
random initialization, we build upon the Johnson—Lindenstrauss Lemma.

Theorem A.4 (Johnson-Lindenstrauss Lemma, (Johnson et al.l [1984)). Let © € R"™ and let A €
R™X™ be a random matrix with i.i.d. entries A;j ~ N(0,1). Then, for 0 < € < 1, we have

2

P ((1—e>:c2 < H\/lm““” < <1+e>w2> > 120 (2 - ).

Proof. Let x € R™ be arbitrary. First, observe that the entries of Ax are normally distributed, as
the sum of independent, normally distributed random variables. Furthermore, we have

ZAijwj = ZE [Aij] T; = 0,
j=1

and
2

=E Z AZ-inka:jxk = Z E [A”Alk] TjTr = ZZ‘? = ||£L‘H2
k,j=1 j=1

k=1

Hence, the random variables

2]

are i.i.d. with X; ~ N(0, 1). Therefore, we obtain

IP’(H\/%A:B (1+e)||:c||2>—IP’<H” > (14 >—]P’<ZX2 (1+¢) )

where " | X 2 is distributed according to the chi-squared distribution with m degrees of freedom.
Using standard concentration inequalities for the chi-squared distribution, we obtain

1
Pl||l—=A
(‘m ’
Analogously, one can prove that

1
Pl||—=A
(‘\/ﬁ ’

This concludes the proof. O

X, =

2

> (1 +e>w|2) <eFE),

2
<@- e>w|2> < e,

Using Boole’s inequality, we immediately obtain the following corollary.

Corollary A.5. Let X C R"™ be a finite set, and let A € R™*" be a random matrix with i.i.d.
entries A;j ~ N(0,1/m). Then, for 0 < € < 1, we have

P((1- ol —y|? < Az — Ay|® < 1+ )@y : Va,y € X) > 1 -3,

where
6 = XI(1X] — Dexp (T = ).

We are now prepared to prove Theorem
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Theorem Let X C R" be a finite set, and assume there exists 0 < ¢ < 1 such that

1—
min max|jz — y||* < min max|jz — y[|> Vo e X.
YCcX\{z} yeY 1+ €evex\{z} yeYy
Y |=k |V |=k+1

Furthermore, let A € R™*™ be a random matrix with i.i.d. entries A;; ~ N(0,1/m). Then, the
map
Y: X > AX ={Az:xz € X}; ¢(x)=Ax

is a graph isomorphism between G (X ) and Gy, (AX) with probability bounded from below
P (Gr(X) 2 Gr(AX) under ) > 1 — | X|(|X] — 1)e ¥ (=),
Remark. 7o bound the probability of error by ¢, i.e.,
P(Gr(X) 22 Gr(AX) under ) < 6,
we have to choose the width of the network

m > 20og(|X[(|X] — 1)) —log(é))
= 2 _ 3 :

Proof. We first prove that 1) is a graph isomorphism, if
(1- oz —yl? < Az — Ay|? < (1 + )|z — yl* Va,y € X. @)

Let x,y € X such that x ~ y in G,(X). Without loss of generality, we may assume that y is
among the k-nearest neighbors of . We claim that Ay is among the k-nearest neighbors of Ax.
Assume for contradiction that this is not the case. Hence, there exists a z € X, which is not among
the k-nearest neighbors of &, such that

|Az — Az|| < ||[Axz — Ay
This contradicts our assumption, since
Az — Ay|* < (1+ ez —y|? < (1 —¢)|z - 2|° < [|Az — Az|?,

where we applied our assumption on € to obtain the second inequality. Therefore, our assumption
is false, implying that Ay belongs to the k-nearest neighbors of Ax and therefore Ax ~ Ay in
Gr(AX).

Conversely, let Az ~ Ay be an arbitrary edge in G;(AX), and assume without loss of generality
that Ay is among the k-nearest neighbors of Ax. It remains to show that & ~ y in G (X ). Assume
for contradiction that this is not the case. Hence, there exists z € X among the k-nearest neighbors
of « such that

| Az — Az|| > | Az — Ay|.
This contradicts our assumption, since
Az — Az|* < (1 +o)llz — 2| < (1 - )|z - y||* < Az — Ay,

where we again applied our assumption on € to obtain the second inequality. Thus, the assumption
is contradicted, and « ~ y in G (X) must hold.

This concludes the proof that the map 1) is a graph isomorphism, assuming that condition [2 holds.
By Corollary the probability for this is bounded from below by

1= 1x](1X] — Dexp (T = ).

This concludes the proof. O

We can prove a similar result for r-neighborhood graphs.
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Theorem A.6. Let X C R™ be a finite set, and denote by N (x) the one-hop neighborhood of x in
G (X). Choose 0 < € < 1 such that

€ < min{TQ — MaXyeN(x) ”:B - y||2 minyQN(m)H:‘c - yH2 _

2
r
O : 3 } Ve € X.
maxyen () |2 — Y| minygn(z) |2 — yl|

Furthermore, let A € R™*™ be a random matrix with i.i.d. entries A;; ~ N(0,1/m). Then, the
map
P: X > AX ={Azx:z e X}, ¢(z)= Az

is a graph isomorphism between G,.(X) and G, (AX) with probability bounded from below by
P (G (X) 2 G,.(AX) under ) > 1 — | X|(|X]| - 1)6%(63—62).

Proof. We first prove that ¢ is a graph isomorphism, if
(1-@llz—yl* <Az - Ay|* < (1 +€)[lx —y[|* Yo,y e X. 3)

Let  ~ y be an arbitrary edge in G,.(X). Using our assumption and the upper bound on €, we
obtain

Az — Ay[|* < (1 + ¢l — y||* <r*.
Therefore, we obtain Ax ~ Ay in G, (AX). Analogously, consider an arbitrary edge Ax ~ Ay

in G,(AX). It remains to show that x ~ vy in G,(X). Assume this is not the case. Hence,
|z — y|| > r and therefore

Az — Ay[* > (1 - ¢)llz - y[I* > r?,

contradicting Ax ~ Ay. Hence, the assumption leads to a contradiction, and we conclude that v is
a graph isomorphism, provided that (3] holds. By Corollary the probability for this is bounded
from below by

1= 1X](1X] = Dexp (T (€ =) .

This concludes the proof. O

Thus, for sufficiently wide, randomly initialized one-layer networks without non-linear activation
functions, the graph structures are preserved. This result can be naturally extended to multi-layer
networks in the following way.

Theorem A.7. Let X C R" be a finite set, and assume there exists 0 < € < 1 such that

L
1_
min max|jz — y||* < < €> min 1113LX||£E*’!/||2 Ve € X.

YCX\{ 1 yey 14+€/) vcx\{z} yeY
Y= Y |=k+1
Furthermore, let A1 € R™*™ and As, ..., A, € R™*™ be random matrices with i.i.d. entries

(Ag)ij ~N(0,1/m) for ¢ =1,..., L. Then, the map
¢L X = X = {ALAL—l LA € X}; ’(/)L(:E) =ALA;_1... Az
is a graph isomorphism between Gy, (X ) and Gy, (X 1,) with probability bounded from below

L

P(gk( ) gk(XL) undeer) (1_|X‘(|X| _1) 7”(53762))

Proof. We first prove that ¢, is an isomorphism, if the following inequality holds for all z,y € X
and(=1,...,L:

(1= e (@) — wer W) < (@) — wo@)[® < (1 + Ol (@) — v W2 @)

where we use the convention ¢y () = x.

To this end, consider an arbitrary edge  ~ vy in Gi(X), and assume without loss of generality that
y is among the k-nearest neighbors of . We aim to show that ¢y, (@) ~ ¥ (y) in G(X ). Assume
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this is not the case. Hence, there exists a vertex z € X, which is not among the k-nearest neighbors

of a, such that
e (z) — o (2)|| < l¥r(x) — YLyl
This contradicts our assumption, since

lr(®) = vr@))® < 1+ e le —yl* < (1 - oFllz - 2|*[I< [lvr(z) — v ()],

where we applied our assumption on € to obtain the second inequality. Therefore, our assumption is
false, implying that ¢ 7, (x) ~ ¢ (y) in G, (X) must hold. Using a similar argument, one can show
that ¢, () ~ ¥ (y) in Gx(X) implies & ~ y in G (X).

Thus, 11, is a graph isomorphism, provided that condition holds. For fixed ¢, the probability
that this condition is satisfied can be bounded from below by Corollary Since all entries of
all weight matrices are independent, the corresponding events are independent across the different
layers £ = 1,..., L. Consequently, we obtain a lower bound by taking the product of the individual
probabilities:

m.3 2\ L
P (Gr(X) = Gi(X1) under ¢1,) > (1 — [ X|(|X] - 1)e (e ))

A.3.2 TRAINED NETWORKS

Random initialization together with over-parameterization ensures that the network’s weights remain
close to their initial values throughout gradient descent. To illustrate, consider a two-layer neural
network ® = ¢9 o ¢1, where the first layer is

o)

with o denoting the ReLLU activation and W € R™*" the weight matrix. The second layer computes
a weighted linear combination, ¢o(x) = (a,x) with a € R™.

Given a training data set {(z;,;)},, we aim to minimize the empirical loss

1 N
L(W.a)= 5 > (@) — v)”

2 <
=1

To this end, we fix the second-layer weights a € R™ and apply gradient descent to optimize the
first-layer weight matrix W € R"™*" via the update rule

W(k+1) =W(k) - T}W,

where 77 > 0 denotes the learning rate. We denote by
u(k) = (®(x1),...,0(xy)) € RY

the prediction vector after k steps of gradient descent. Our main result in this section relies on an
assumption regarding the smallest eigenvalue of the Gram matrix, so we briefly recall this concept
here.

Definition 1 (Gram matrix). The Gram matrix H® € RN*N js defined by
HZO = ]E’UJNN(O,I)" [ac;r:cj 1{w7mi20,w7wj 20}] .
We denote by Ao = Apin (H®) the smallest eigenvalue of the Gram matrix.

Remark. If x; || x; for all i # j, then Ao > 0. Since this condition is typically satisfied in
real-world datasets, the assumption Ao > 0 is not restrictive in practice.

Assuming that the smallest eigenvalue of the Gram matrix is strictly positive,|Du et al.|(2018]) proved
that gradient descent converges to a global minimum at a linear rate.
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Theorem A.8 ((Du et al.| 2018)). Suppose that Ao > 0 and ||z;|| = 1 and |y;| < C for all
i =1,...,N. Assume that the width m = Q (%) and Wi; ~ N(0,1), a; ~ Unif({—1,1}),
and set the step size n = O (%) Then, with probability at least 1 — § we obtain

k
Jutk) — i < (1-52) u(o) - ol

Remark. The assumption ||x;|| = 1 can be easily relaxed. If the inputs satisfy 0 < ¢ < ||z;]| < C
foralli =1,... N, then the result still holds, but the required network width will now also depend
on the ratio %

Using this, Du et al.|(2018)) prove that the weight matrix remains close to its initialization throughout
training.

Corollary A.9. Assume that the assumptions of Theorem are satisfied. Then, with probability
at least 1 — §, we have for all k > 0 and every row index r € {1,..., m} that

4N
[W,..(k) = W,..(0)]| < m”u(o) -y,

where W, .(k) denotes the r-th row of the weight matrix W (k).

We are now almost ready to prove that, even after an arbitrary number of gradient descent steps,
the network remains unable to alter the feature geometry encoded in the graph structures before the
application of the nonlinearity. To this end, we introduce one final technical lemma.

Lemma A.10. Let A € R™*" satisfying || A,..|| < e foreveryr € {1,...,m}. Forx € R", we
obtain the following upper bound

[Az|| < V/mel|z|].

Proof. This follows immediately from the Cauchy-Schwarz inequality:

lAZ|* = (A 2)® <D AP 2l < me||z|).
r=1 r=1
Taking the square root on both sides completes the proof. O

We now show that with large probability, sufficiently wide networks cannot alter the geometry of
the k-nearest neighbor graph before the activation function is applied, regardless of the number of
gradient descent steps performed. This highlights the crucial role of the non-linearity.

Theorem 3.2} Let X C R™ be a finite set, and assume there exists 0 < € < 1 such that

1—
min max|x — y|| < °  mmin max||z —y|| Vo e X.
ycx\{z} yeY 1+ e€evex\{z} yey
Y |=k Y |=k+1

Assume that the assumptions of Theorem[A.8 are satisfied. Furthermore, assume that

64N|u(0) — y|®

Then, for any number of gradient descent steps | > 0, the map

P X = X(1):= {jﬁW(l)w rx € X}; P(x) = %W(l)w

is a graph isomorphism between G (X) and Gy, (X (1)) with probability bounded from below by

P(Gy(X) = Gr(X (1)) under ) > 1 — 5 — | X|(|X| — 1)6%(%%).
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Proof. For ease of notation, we define A(l) = ﬁ (1). Note that the matrix A(0) has i.i.d. entries
with A(0);; ~ N(0,1/m). We first show that 1) is a graph isomorphism, if

€ €
(=3l - ylI> < [JAQ0)(z —y)|I” < (1 + )z~ yl|* Va,y e X, (5)
and for every [ > 0
4N
W,.(1) — W,.(0)|| < ——|u(0) —y]. 6
[W...() 0)]] \/ﬁ/\OIIU( )=yl (6)
To this end, observe that, for any € R", we have
4N

(AW — A©)a] = —= (WD) = W(O0)2] < S fu(o) ~ ylal < Gl

where the first inequality is a consequence of Lemma [A.10} and the second follows from our as-
sumption on m. Using this inequalities, we obtain

ANz — A(Dyll < [[(A() — A0)(z — y)| + [A0)(= - y)||

IN

o -yl +/1+ <[lz -y
€l €l
2 y 2 y

IN

(1+e)lz -yl
for all z,y € X. On the other hand, using the reverse triangle inequality, we obtain

1Az — A()yll = ’IIA(O)(m =yl = [I(AQ) — A(0))(= -y

> /1= 5le—yl - 5lz -yl

z (1 =gz -yl
forallz,y € X.
We are now prepared to prove that 1) is a graph isomorphism. To this end, let  ~ y be an arbitrary
edge in G (X ). Without loss of generality, we may assume that y is among the k-nearest neighbors

of . We claim that ¢(y) is among the k-nearest neighbors of ¢ (x). Assume this is not the case.
Hence, there exists a z € X, which is not among the k-nearest neighbors of , such that

[¥() — ¢(2)[| = Az — A(D)z]| < [[A(D)z — A(D)y| = [[¢¥(z) — ¢ (y)]-
This contradicts
[A(D)z — Ayl < (T+€e)flz -yl < (1 —o)llz — 2| < [|[A)z — A()=|,

where we applied our assumption on € to obtain the second inequality. Therefore, our assumption is
false, implying that ¢)(y) belongs to the k-nearest neighbors of ¢)(x) and therefore ¢ (x) ~ ¥ (y) in
Gr(X(1)).

Conversely, let ¢ (x) ~ ¢ (y) be an arbitrary edge in G (X (!)), and assume without loss of gener-
ality that ¢)(y) is among the k-nearest neighbors of (). It remains to show that  ~ y in G (X).
Assume for contradiction that this is not the case. Hence, there exists z € X among the k-nearest
neighbors of « such that

() — ¢(2)[| = Az — AD)z] > [¢¥(x) — )| = [[AD)z — AD)y]-
This contradicts our assumption, since
ANz — Az < (A +e)fz -2z < (1 -6z -yl < [[ADz — Ayl

where we again applied our assumption on e to obtain the second inequality. Thus, the assumption
is contradicted, and @ ~ y in Gi (X ) must hold.

Hence, 1 is a graph isomorphism between G;(X) and G (X (1)), provided that (5) and (6) hold.
According to Corollary[A.3] the probability that (3] holds is bounded from below by

1—-XMX——nmp(T(§5—f)).

On the other hand, by Corollary [A.9] we know that the probability that (6) holds is bounded from
below by 1 — 4. The claim now follows from the Bonferroni inequality. [
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An analogous result can also be established for r-neighborhood graphs.

Theorem A.11. Let X C R"™ be a finite set, and denote by N (x) the one-hop neighborhood of x in
G (X). Choose 0 < € < 1 such that

r — max T — min T — —-r
p <min{ yEN(m)H yH’ yQN(w)” yH } Ve € X.
maXyeN(x) ||.’1) - y” My & N () ”3j - y”
Assume that the assumptions of Theorem[A.8 are satisfied. Furthermore, assume that
a2
L 64N]u(0) |
- €2\3

Then, for any number of gradient descent steps | > 0, the map

P X = X(1):= {\;EW(Z):B T € X}; P(x) = %W(l)w

is a graph isomorphism between G,.(X) and G,.(X (1)) with probability bounded from below by
m 63 62
P(G,(X) = C,(X (1)) under ) > 1 — 5 — |X[(|X] — 1)e (¥75).

Proof. For ease of notation, we define A(l) = ﬁW(l) Note that the matrix A(0) has i.i.d.
entries with A(0);; ~ A(0,1/m). We first show that ¢ is a graph isomorphism, if

(1-3)le -yl <[AO0) (@ -y’ < 1+ )|e—yl* VoyeX, @)

and for every [ > 0

4N
0) —y|- 8
NWCORT ®)
By employing the same reasoning as in Theorem [3.2] it follows that
(1= llz -yl < [(AQ) — AD)z[ < (1 + )]z -yl
holds for every ¢,y € X and [ > 0.

HWT’:(l) - Wr,:<0)|| <

We now proceed to show that v is a graph isomorphism. To this end, let x ~ y be an arbitrary edge
in G,.(X). Using our upper bound, we obtain

() =)l = [ADz — ADy| < (1 + e)llz -yl <7,
by our assumption on e. Therefore, we conclude () ~ ¥(y) in G, (X(1)). Conversely, consider
an arbitrary edge 1 (x) ~ ¢ (y) in G,-(X(1)). It remains to show that  ~ y in G,.(X). Assume
this is not the case. Hence, ||« — y|| > r and therefore

() =@l = [ADz — ADy[ = (1 = e)llz —yl| > 7,
contradicting ¢ (x) ~ ¥(y).

Hence, 1) is a graph isomorphism between G,.(X) and G, (X (1)), provided that (7) and (8) hold.
Again, according to Corollary [A.5] the probability that (7) holds is bounded from below by

1 X0 = e (7 (8 - 4)> |

On the other hand, by Corollary [A.9] we know that the probability that (§) holds is bounded from
below by 1 — §. The claim now follows from the Bonferroni inequality. O

A.3.3 IMPACT OF NONLINEARITY ON FEATURE GEOMETRY

We have seen that, in wide linear networks, the feature geometry captured by the graph structures
remains unchanged, as the learned weight matrices act approximately as isometries. In this section,
we show that this behavior changes once a ReLU activation is introduced. Specifically, we prove
that, even when the weight matrices are exact isometries, adding the ReLU nonlinearity is sufficient
to change the geometry of the feature manifolds.
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It is a standard result from linear algebra that the linear isometries of R™ correspond precisely to the
set of orthogonal matrices, denoted by O(n), defined as

On)={AecR™:ATA=1,}.

The proof of the main theorem of this section relies on the following lemma.

Lemma A.12. Let x € R™ be arbitrary. Then, there exists a linear isometry A € O(n) such that

Az = (|z|,0,...,0)".

Proof. If ||z|| = 0, the claim holds for every linear isometry A € O(n). Hence, assume ||| > 0,
and define the normalized vector "
Uy = —.
]

Using the Basis Extension Theorem and the Gram-Schmidt Process, we can extend the set {u; } to
an orthogonal basis {1, . .., u,} of R™. Then, the matrix

uf

A=1] 1 |€0(n)

U,

satisfies Az = (||z||,0,...,0) T by construction. O

We are now prepared to prove the main theorem of this section.
Theorem 3.3} Let x,y, z € R", such that z ¢ span{x, y} and
lz -yl > |l — 2.
Then, for m > n, there exists a linear isometry A € R™*"™ and a bias vector b € R™, such that
lo(Az + b) — o(Ay + b) < |[c(Ax + b) — 0 (Az + b)|.

Remark. As shown above, a wide linear neural network cannot change the geometry of the features,
since its weight matrices are almost isometries. However, as Theorem demonstrates, this is no
longer the case once the ReLU activation function is introduced: for any three vertices, the ordering
of their pairwise distances can be altered by applying an orthogonal matrix followed by the ReLU
activation, thereby rewiring the k-nearest neighbor graph.

Proof. Without loss of generality, we may assume m = n. In the case m > n, any n-dimensional
vector can be embedded into R™ by appending m — n zero coordinates. If ||x|| = 0, then by
assumption ||y|| > 0 must hold. According to Lemma[A.12] there exists A; € O(n), such that

Ay = (—|lyl,0,... ,O)T.

By assumption, we have z ¢ span{x,y} = span{y}. Therefore, there exists i € {2,...,n} such
that (A;2); # 0. Without loss of generality, we may assume that (A;z); > 0. Choose b to be the
zero vector in R™. Then,

|o(Aix +b) —o(A1y +b)|| =0 < ((A12);)? < |lo(A1x + b) — 0 (A2 + b)||.
Thus, we may assume ||z|| > 0.
According to Lemma|A.12] there exists A; € O(n), such that
Az = (—|z|,0,...,0)".
The proof proceeds by cases.
Case 1: y € span{x}. Hence, there exists o € R such that y = ax. Thus, we obtain

Aly = (—OéH:EH,(L v 70)
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By assumption, we have z ¢ span{x}. Therefore, there exists i € {2,...,n} suchthat (4;z); # 0.
Without loss of generality, we may assume that (A;2z); > 0. Define the bias vector

b {(ax|,o,...,0), if a <0,

0, otherwise,

where 0 € R” denotes the zero vector. Thus, by construction, we obtain

|o(Aix +b) — o(A1y +b)|| =0 < ((A12);)? < |lo(A1x + b) — 0 (A2 + b)||.

Case 2: y ¢ span{x}. Denote by
(A1y)-1 = ((A1y)2, ..., (A1y),) e R

the vector obtained from A,y by removing its first coordinate. Note that ||[(A;y)_1|| > 0, since
y ¢ span{x}. Define
__ (Ay)a
U = —F—————.
[(Ary) -1
and u; = (0, —@;1) € R™, so that the first coordinate of u; is zero and the remaining coordinates
are given by .

Denote by e(”) the i-th standard basis vector. The set {e€(!),u;} forms an orthonormal system

and can therefore be extended to an orthonormal basis {e(l), U, ..., Up_1} of R™ using the Basis
Extension Theorem together with the Gram—Schmidt Process. Note that forevery i € {1,...,n—1},

we have (u;, e")) = 0, and therefore (u;, A;x) = 0. Define the matrix
T
-
Uy
Ay = ) €0(n) and A= AsA; €0O(n).
=
n—1

By construction, we obtain
Az = (—||z|/,0,...,0)T and Ay = ((A1y)1,—|[(A1y)_1],0,...,0).

By assumption, we have z ¢ span{x, y}. Hence, there exists ¢ € {3,...,n} such that (Az); # 0.
Without loss of generality, we may assume that (Az); > 0.

Finally, define the bias vector

b (—(A19)1,0,...,0), if (A1y)1 >0,
0, otherwise.

Therefore, by construction, we obtain
loc(Ax 4+ b) —c(Ay + b)|| =0 < ((Az),»)2 <l|loc(Ax 4+ b) — c(Az + b)|.

A.4 ADDITIONAL EXPERIMENTAL RESULTS
A.4.1 EXPERIMENTAL CONFIRMATION OF THEORETICAL INSIGHTS

We supplement the theoretical results of Section [3.1 with experimental validation. Specifically, we
sample points uniformly from the d-dimensional unit ball and construct k-nearest neighbor graphs
on these point clouds. Note that any point cloud can be rescaled to the unit ball without altering
its k-nearest neighbor graph, ensuring generality of this setup. For varying network widths, we
apply randomly initialized neural networks and test whether the induced graphs remain isomorphic
to the original ones. Figure [/|reports the proportion of linear neural networks that preserve the k-
nearest neighbor and r-neighborhood graphs across different widths. For each width, 1,000 linear
neural networks were independently initialized. Consistent with our theoretical predictions, the
preservation probability converges to one as the width increases. The faster convergence observed
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—— k-NN Graph
—— r-Neighborhood Graph

104 10° 100

Network width

Figure 7: Proportion of linear neural networks that preserve the k-nearest neighbor and 7-
neighborhood graphs, constructed from the feature manifolds, across different network widths. The
graphs are built from a point cloud of 50 samples in the 3-dimensional unit ball. We consider the
5-nearest neighbor graph, and for the r-neighborhood graph we set the radius equal to 0.3.

for r-neighborhood graphs is explained by the fact that the maximal e satisfying the condition of
Theorem [A.6 was larger than the corresponding bound from Theorem 3.1}

Across all experiments, we find that the network widths required for the estimated probabilities to
exceed a given threshold 1—4 are in practice smaller than the widths for which Theorems[3.1]and[A.6]
guarantee this. This is expected, since the proofs rely on Boole’s inequality, which generally does
not provide a tight bound for the probability of a union.

A.4.2 LOCAL RICCI EVOLUTION COEFFICIENTS

In this subsection, we present additional experimental results for the computation of local Ricci
evolution coefficients. In addition to the Ollivier-Ricci curvature, we also compute the coefficients
using the augmented Forman curvature and the approximation of Ollivier-Ricci curvature proposed
by (2025). For all curvature notions, we evaluate both our synthetic and real-world
datasets by training deep neural networks of varying width and depth and subsequently computing
the local Ricci evolution coefficients. We average our results over 50 independently trained networks
for each dataset-architecture pair, to account for the inherent randomness in neural network training,
making sure our observed patterns are robust rather than accidental.

MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR
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Figure 8: Distribution of local Ricci evolution coefficients for networks of depth 15 and width 50
on real-world datasets, shown for augmented Forman—Ricci curvature (top row) and Ollivier—Ricci
curvature (bottom row).

Results on real-world datasets using augmented Forman curvature and approximated Ollivier cur-
vature are reported in Table @] and Table 3] respectively. In all cases, we observe strongly negative
local Ricci evolution coefficients, highlighting pronounced curvature-driven dynamics in the evo-
lution of feature geometry. To further support this finding, we evaluate the proportion of vertices
with negative local coefficients, consistently showing that the vast majority of vertices exhibit such
behavior. Hence, curvature-driven dynamics appear almost universally across the data manifold.
Figure 8] shows the entire distribution of local Ricci evolution coefficients on the real-world datasets

28



Under review as a conference paper at ICLR 2026

Table 4: Average local Ricci evolution coefficients, computed using augmented Forman curvature,
on real-world data. Values are means =+ standard deviations over 50 independently trained net-
works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
Networks were randomly initialized.

(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR

(15,7) —0.82 % 0.06 (98.5%) —0.79 + 0.09 (97.5%) —0.81 + 0.08 (98.7%) —0.53 £ 0.13 (91.2%) —0.73 £ 0.11 (98.2%)
(15, 10) —0.83 + 0.05 (99.3%) —0.83 %+ 0.06 (99.5%) —0.82 + 0.06 (99.8%) —0.58 + 0.16 (94.0%) —0.76 + 0.15 (97.5%)
(15, 15) —0.84 + 0.05 (99.8%) —0.88 + 0.03 (99.9%) —0.86 %+ 0.05 (99.9%) —0.66 + 0.13 (97.5%) —0.79 + 0.21 (97.4%)
(25,7) —0.80 £ 0.05 (97.8%) —0.69 £ 0.18 (94.0%) —0.80 £ 0.04 (99.5%) —0.54 £ 0.11 (91.9%) —0.69 £ 0.13 (96.7%)
(25, 10) —0.83 + 0.07 (99.0%) —0.83 + 0.06 (99.4%) —0.83 + 0.05 (99.8%) —0.62 + 0.12 (96.2%) —0.80 =+ 0.09 (99.3%)
(25, 15) —0.83 + 0.05 (99.8%) —0.85 + 0.04 (99.9%) —0.85 & 0.04 (100%) —0.74 + 0.07 (99.4%) —0.90 =+ 0.03 (99.9%)
(50, 7) —0.81 £ 0.04 (98.3%) —0.61 £ 0.16 (91.1%) —0.79 £ 0.04 (99.3%) —0.58 £ 0.10 (92.9%) —0.76 £ 0.08 (98.8%)
(50, 10) —0.84 + 0.03 (99.7%) —0.79 + 0.09 (98.5%) —0.84 + 0.05 (99.8%) —0.70 £ 0.12 (97.2%) —0.87 & 0.03 (100%)
(50, 15) —0.83 + 0.04 (99.9%) —0.86 %+ 0.05 (99.9%) —0.88 & 0.02 (100%) —0.80 & 0.06 (100%) —0.91 % 0.02 (100%)

Table 5: Average local Ricci evolution coefficients, computed using approximated Ollivier curva-
ture, on real-world data. Values are means £ standard deviations over 50 independently trained
networks per architecture; proportion of vertices with negative coefficients is reported in parenthe-
ses. Networks were randomly initialized.

(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvyD CIFAR

(15,7) —0.75 + 0.21 (94.6%) —0.76 + 0.12 (96.4%) —0.77 + 0.07 (98.8%) —0.50 + 0.13 (89.5%) —0.66 =+ 0.13 (96.5%)
(15, 10) —0.82 4+ 0.05 (99.5%) —0.84 + 0.04 (99.7%) —0.77 + 0.06 (99.7%) —0.54 + 0.16 (92.7%) —0.69 =+ 0.16 (96.4%)
(15, 15) —0.83 + 0.04 (99.8%) —0.83 + 0.07 (99.1%) —0.81 + 0.06 (99.9%) —0.64 + 0.14 (97.0%) —0.75 + 0.18 (97.2%)
(25,7) —0.79 £ 0.05 (98.1%) —0.66 £ 0.20 (92.3%) —0.76 £ 0.04 (99.2%) —0.50 £ 0.12 (90.0%) —0.62 £ 0.15 (94.6%)
(25, 10) —0.81 + 0.04 (99.4%) —0.82 %+ 0.05 (99.6%) —0.78 + 0.04 (99.6%) —0.59 + 0.12 (95.3%) —0.74 + 0.10 (98.9%)
(25, 15) —0.81 4 0.06 (99.8%) —0.84 + 0.03 (100%) —0.79 & 0.04 (100%) —0.72 =+ 0.08 (99.2%) —0.86 & 0.04 (99.9%)
(50, 7) —0.79 £ 0.04 (98.5%) —0.57 £ 0.21 (87.9%) —0.75 £ 0.04 (98.9%) —0.56 £ 0.11 (91.4%) —0.69 £ 0.10 (98.1)%
(50, 10) —0.82 + 0.03 (99.8%) —0.82 %+ 0.04 (99.7%) —0.80 + 0.05 (99.7%) —0.68 + 0.12 (96.6%) —0.83 % 0.03 (100%)
(50, 15) —0.83 +0.04 (99.9%) —0.84 = 0.04 (100%) —0.83 & 0.03 (100%) —0.78 & 0.07 (100%) —0.89 % 0.03 (100%)

for both Ollivier—Ricci curvature and augmented Forman-Ricci curvature. Complementary results
on synthetic datasets are provided in Table [6] for Ollivier-Ricci curvature, in Table [7] for augmented
Forman-Ricci curvature, and in Table [§] for approximated Ollivier-Ricci curvature. The results are
consistent with those observed on the real-world datasets.

Furthermore, we observe consistent results for all three discretizations of Ricci curvature. The
numerical values obtained using the augmented Forman-Ricci curvature and the approximation of
the Ollivier-Ricci curvature are nearly identical, which is expected since both curvature notions are
primarily influenced by three-cycles. Moreover, [Jost & Miinch| (2021) show that Ollivier—Ricci
curvature coincides with the maximal Forman curvature over cell complexes having the given graph
as their 1-skeleton, providing a theoretical explanation for the close agreement observed across the
different notions.

A.4.3 COMMUNITY STRUCTURE

In this section, we examine how the curvature gap evolves as the data manifold propagates through
the layers of the deep neural network. Whereas both modularity and the normalized cut provide
clear evidence that the network rewires the k-nearest neighbor graph derived from the point clouds
such that its geometry aligns more closely with the community structure induced by the true labels
(see Figure 2)and Figure[J), the behavior of the curvature gap is less straightforward.

The explanation for this is that most inter-community edges connect misclassified nodes to cor-
rectly classified nodes with the same label, making them indistinguishable from intra-community
edges. This effect is clearly illustrated in Figure [I0] where we show the full curvature distribu-
tion on the MNIST 1-vs-7 dataset, comparing inter-community edges (orange) and intra-community
edges (blue). As expected, intra-community edges systematically shift toward more positive curva-
ture values as the k-nearest neighbor graphs are transformed through the layers of the deep neural
network. In contrast, the behavior of inter-community edges is more intricate. The left column
displays the distributions computed on the entire test set. In the final layer, two structurally distinct
types of inter-community edges emerge. The majority exhibit positive curvature and vanish once
the five misclassified points are removed. These are precisely the edges described above, connecting
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Table 6: Average local Ricci evolution coefficients, computed using Ollivier curvature, on synthetic
data. Values are means + standard deviations over 50 independently trained networks per archi-
tecture; proportion of vertices with negative coefficients is reported in parentheses. Networks were
randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-III Syn-IV
(15,7) —0.38 4 0.07 (80.9%)  —0.31 +0.11(78.2%)  —0.53 £ 0.09 (92.1%)  —0.39 & 0.09 (82.9%)
(15,10) —0.434+0.07(83.9%) —0.29 £0.14(81.2%) —0.59 & 0.09 (92.7%)  —0.45 + 0.10 (87.1%)
(15,15) —0.43 4+ 0.12(81.0%)  —0.36 + 0.09 (84.9%) —0.64 = 0.07 (93.9%) —0.49 + 0.13 (86.2%)
@57 —0.37 £0.06 (81.9%) —0.34 £0.10(79.7%) —0.56 £ 0.07 (93.8%) —0.32 £ 0.09 (77.4%)
(25.,10) —0.43 4+ 0.07 (83.8%)  —0.37 +0.08 (86.9%) —0.63 £ 0.05(96.2%)  —0.40 % 0.09 (85.4%)
(25.15) —0.49 £ 0.04 (86.5%)  —0.40 + 0.05 (87.6%) —0.69 £ 0.04 (95.5%) —0.51 % 0.05 (90.3%)
(0.7) —0.38 £ 0.06 (83.2%) —0.38 £0.07 (81.6%) —0.59 £ 0.05(96.3%)  —0.29 £ 0.05 (74.9%)
(50,10) —0.47 +0.05(88.0%)  —0.41 +0.05(86.9%) —0.66 = 0.05(97.3%)  —0.34 + 0.07 (81.8%)
(50,15) —0.5340.04(89.1%)  —0.42 +0.04(88.2%) —0.72£0.03(97.0%)  —0.53 % 0.06 (91.7%)

Table 7: Average local Ricci evolution coefficients, computed using augmented Forman curvature,
on synthetic data. Values are means £ standard deviations over 50 independently trained networks
per architecture; proportion of vertices with negative coefficients is reported in parentheses. Net-
works were randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-IIT Syn-IV
(15.7) —0.43 4+ 0.10 (87.2%)  —0.32 +0.16 (78.4%)  —0.64 £ 0.08 (97.6%)  —0.37 + 0.12 (81.7%)
(15,10) —0.5140.16 (90.4%)  —0.34 +0.12(87.4%) —0.72+£0.10(98.5%) —0.48 % 0.13 (90.0%)
(15,15) —0.63 4 0.10 (95.3%)  —0.45 + 0.09 (91.6%) —0.70 £ 0.15(96.0%) —0.63 % 0.20 (94.3%)
@57 —0.43£0.09(88.4%) —0.36 £0.14(81.6%) —0.63 £0.08 (97.6%) —0.27 £ 0.09 (73.7%)
(25.,10) —0.57 4+ 0.07 (95.5%)  —0.40 +0.10 (91.5%)  —0.74 £ 0.06 (99.3%)  —0.44 + 0.11 (88.1%)
(25.15) —0.65 + 0.09 (97.0%)  —0.50 +0.07(95.9%) —0.75 + 0.12(98.2%)  —0.67 + 0.07 (97.4%)
(50.7) —0.39 £ 0.00 (86.0%) _ —0.45 £ 0.08 (89.0%) —0.62 £0.07 (97.4%) —0.22 £ 0.08 (68.7%)
(50,10) —0.58 + 0.07(96.7%)  —0.50 £ 0.08 (95.5%)  —0.76 = 0.05(99.8%)  —0.33 + 0.10 (79.8%)
(50,15) —0.69 & 0.06 (98.4%)  —0.55 + 0.05(97.1%)  —0.81+0.03(99.8%) —0.63 % 0.10 (96.5%)

a misclassified point with a correctly classified one. In contrast, a small subset of inter-community
edges remains, characterized by highly negative curvature values. These correspond to the true inter-
community edges. This distinction explains the vanishing of the curvature gaps before removing the
misclassified samples, and we find the same qualitative pattern consistently across all synthetic and
real-world datasets considered.

A.4.4 DOUBLE DESCENT PHENOMENON

In modern machine learning, it is common to train extremely large

and heavily overparameterized models that achieve zero training er- —
ror while still exhibiting strong generalization performance. This
surprising behavior is captured by the double descent phenomenon,
introduced by [Belkin et al.| (2019), which refines the classical view
of the bias—variance trade-off. Whereas the traditional theory pre-
dicts a U-shaped generalization curve as model capacity increases,
double descent reveals an additional regime: once the interpolation O eworcbeptn © "
threshold is crossed, generalization error can decrease again with

increasing capacity. Recent work has shown that this phenomenon  Ejgure 11: Proportion of ver-
is a fundamental property of overparameterized models, appearing  tjces with negative local Ricci
across a wide range of settings including neural networks, ensem-  eyolution coefficient for net-
ble methods, decision trees, and classical linear regression (Belkin|  yorks of varying depth.

et al.,[2019; Ba et al., [2020; |Deng et al., [2022).

MNIST-1v7
MNIST-6v9
—— fMNIST-SvS
—— fMNIST-SvD
CIFAR

Share negative Ricci coefs

Several explanations have been proposed for this behavior. One

line of reasoning suggests that enlarging the function class increases the number of interpolating
solutions, thereby making it more likely to find functions that not only fit the data but also exhibit
higher smoothness and regularity. Such simpler solutions are favored by an implicit form of Occam’s
razor, indicating that overparameterization can promote generalization by biasing learning toward
these low-complexity explanations (Belkin et al., 2019).
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Table 8: Average local Ricci evolution coefficients, computed using approximated Ollivier curva-
ture, on synthetic data. Values are means + standard deviations over 50 independently trained net-
works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
Networks were randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-III Syn-IV
(15,7) —0.44 4 0.10 (89.6%)  —0.37 +0.16 (82.9%) —0.64 £ 0.11(96.6%) —0.36 + 0.11 (81.0%)
(15,10) —0.5240.11(92.6%) —0.39 +0.08 (91.5%) —0.72+£0.12(98.1%) —0.51 % 0.16 (90.6%)
(15,15) —0.60 & 0.15 (94.7%)  —0.44 +0.11 (91.6%) —0.73 +£0.19(96.2%) —0.65 % 0.13 (95.9%)
@57 —0.43£0.08(89.5%) —0.34 £0.13(83.0%) —0.64 £0.08(97.8%) —0.26 £ 0.11 (72.6%)
(25.,10) —0.56 & 0.07 (95.8%)  —0.44 +0.09 (94.2%)  —0.75 £ 0.05(99.7%)  —0.44 + 0.13 (87.5%)
(25.15) —0.66 & 0.04 (98.3%)  —0.49 + 0.08 (94.9%) —0.79 £ 0.05(99.6%) —0.64 + 0.13 (96.1%)
(0.7) —0.38 £0.07 (87.5%)  —0.46 £0.07 (91.2%)  —0.66 £ 0.06 (98.7%) _ —0.22 £ 0.08 (68.4%)
(50,10) —0.60 + 0.06 (97.4%)  —0.53 +0.04(97.3%)  —0.77 + 0.04 (100%)  —0.35 + 0.09 (81.2%)
(50,15) —0.69 & 0.04 (99.1%)  —0.55 + 0.05 (97.5%)  —0.83 4 0.03 (100%)  —0.64 % 0.08 (97.9%)
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Figure 9: Modularity and normalized cut across network layers on real-world datasets. Reported
values are averaged over 50 independently trained networks with random initialization.

A promising direction for future work is to investigate the double descent phenomenon through the
lens of local Ricci evolution coefficients. In the overparameterized regime, double descent suggests
that further enlarging the network should lead to improved generalization. Our experiments show
that increasing network size—either by adding depth at fixed width or by expanding width at fixed
depth—systematically increases the proportion of vertices with negative Ricci coefficients. Fig-
ure [T1]illustrates these findings on real-world datasets using neural networks with a fixed width of
50 neurons per layer while varying the depth. This observation indicates that larger models exhibit
curvature-driven dynamics on a more global scale, potentially enabling them to capture the under-
lying geometry of the problem more effectively. Since models that better align with data geometry
are expected to generalize better, this perspective highlights a potential interplay between capacity
growth and geometric representation, offering a novel geometric perspective on the double descent
phenomenon.

A.5 DETAILS ON EXPERIMENTAL SETUP

All experiments were implemented in Python. Neural networks were built using PyTorch (v2.7.1).
Default initialization schemes were used for the initial network weights. Networks were trained with
binary cross-entropy loss and optimized using the standard Adam optimizer (Kinga et al., [2015)
with a learning rate of 0.001. To solve the optimal transport problems required for computing
Ollivier-Ricci curvature, we relied on the POT Python Optimal Transport library (v0.9.5). For
constructing k-nearest neighbor graphs we used scikit-learn (v1.7.1), and for computing classical
community strength measures such as modularity we employed NetworkX (v3.5). All figures in the
main text were generated using Matplotlib (v3.10.5).

Our experiments were conducted on a local server with the specifications presented in the following
table.

We evaluate our approach on both synthetic and real-world datasets. The synthetic datasets, pre-
sented in Figure [I2] are designed to exhibit different degrees of geometric and topological com-
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Figure 10: Curvature distributions for inter-community edges (orange) and intra-community edges
(blue) on MNIST 1-vs-7 before (left column) and after (right column) removing misclassified sam-
ples.

Table 9: Hardware specifications

Components Specifications

ARCHITECTURE X86_64

oS Rocky Linux 8.10 (Green Obsidian)

CPU Intel Xeon Platinum 8480CL 56-Core (x2)
GPU NVIDIA H200 Tensor Core

RAM 40GB

plexity, providing controlled settings to study curvature dynamics. For real-world data, we consider
three benchmarks. MNIST consists of 28 x 28 grayscale images of handwritten
digits (0-9). We focus on visually similar digit pairs, i.e., 1 vs. 7 (MNIST-1v7) and 6 vs. 9 (MNIST-
6v9), to test the sensitivity of our approach to subtle shape differences. On Fashion-MNIST
2017), which contains grayscale images of clothing items, we consider sneakers vs. sandals
(FMNIST-SvS) and shirts vs. dresses (FMNIST-SvD) as representative examples of fine-grained vi-
sual distinctions. Finally, on CIFAR-10 (Krizhevskyl,[2009), a dataset of color natural images across
ten object categories, we study cars vs. planes (CIFAR) as an example of two closely related classes.
Figure[T3]illustrates representative samples from the real-world datasets.

Across all our experiments, we train the networks to achieve training accuracy above 99%, ensuring
that our experiments evaluate meaningful learned feature representations. The only exception is
CIFAR-10, where such high accuracy was not attainable; in this case, we restrict our analysis to
models reaching at least 90% training accuracy.

A.5.1 HYPERPARAMETERS

The computation of local Ricci evolution coefficients requires constructing k-nearest neighbor
graphs to approximate the geometry of the underlying manifold. The parameter k£, which deter-
mines the number of neighbors each point connects to and thus controls the local scale of connec-
tivity, plays a central role. Small values of k capture fine-grained geometric structure but increase
sensitivity to noise and may disconnect the graph. Larger values emphasize more global structure,
at the cost of oversmoothing important local variations and raising the computational cost of Ol-
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Figure 13: The real-world datasets.
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livier—Ricci curvature, which scales cubically with the vertex degree. It is therefore not a priori clear
how to choose k, as it mediates a fundamental trade-off between locality, robustness, and efficiency.

To investigate this trade-off, we conduct experiments across a range
of neighborhood sizes. Specifically, we vary k from 1% to 15%
of the total size of the point cloud X, and present the results in
Figure We find that for small neighborhood sizes (k between
1% and 5%), the local Ricci evolution coefficients remain relatively
stable or even decrease. As k increases further, the coefficients tend
to rise, reflecting a weaker correlation between local Ricci curvature
and the expansion or contraction of this region.

This behavior is expected, since we are approximating local geo-
metric properties of the manifold using k-nearest neighbor graphs.
When the neighborhood scale becomes too large, the one-hop
neighborhoods of these graphs no longer correspond to genuinely
local regions of the manifold. Consequently, we expect a weaker
correlation between the two quantities, as they cease to reflect the
local nature of the Ricci flow.

To balance these effects, we fix k = 5% of the total size of the point
cloud in the experiments reported in the main text. We additionally
repeated the same experiments with k¥ = 3% and & = 7%, and

Mean Ricci coefs.

55
o \/
o

— F-SvD
—— CIFAR

Figure 14: Mean local Ricci
evolution coefficients for
different neighborhood sizes
k on real datasets. Reported
values are averaged over
50 independently trained
networks.

observed quantitatively similar outcomes, showing that our findings are robust with respect to the

precise choice of neighborhood size.

A.5.2 LICENSES

We summarize the licenses of all code and datasets used in our experiments in Table
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Table 10: Licenses of code and datasets

Model/Dataset License
MNIST (LeCun, [1998) CCBY-SA 3.0
Fashion-MNIST (Xiao et al., [2017) MIT
CIFAR-10 (Krizhevskyl 2009) MIT

PyTorch (Paszke et al.,|2019)

Scikit-learn (Pedregosa et al., 2011))

POT (Python Optimal Transport) (Flamary et al.,[2021)
NetworkX (Hagberg et al., 2008)

SciPy (Virtanen et al.,|[2020)

A.6 LLM USAGE DISCLOSURE

3-clause BSD
3-clause BSD
3-clause BSD
3-clause BSD
3-clause BSD

We used an LLM during paper writing to improve grammar and wording.
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