
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL FEATURE GEOMETRY EVOLVES AS DISCRETE
RICCI FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks learn feature representations via complex geometric trans-
formations of the input data manifold. Despite the models’ empirical success
across domains, our understanding of neural feature representations is still incom-
plete. In this work we investigate neural feature geometry through the lens of
discrete geometry. Since the input data manifold is typically unobserved, we ap-
proximate it using geometric graphs that encode local similarity structure. We
provide theoretical results on the evolution of these graphs during training, show-
ing that nonlinear activations play a crucial role in shaping feature geometry in
feedforward neural networks. Moreover, we discover that the geometric trans-
formations resemble a discrete Ricci flow on these graphs, suggesting that neural
feature geometry evolves analogous to Ricci flow. This connection is supported by
experiments on over 20,000 feedforward neural networks trained on binary clas-
sification tasks across both synthetic and real-world datasets. We observe that the
emergence of class separability corresponds to the emergence of community struc-
ture in the associated graph representations, which is known to relate to discrete
Ricci flow dynamics. Building on these insights, we introduce a novel frame-
work for locally evaluating geometric transformations through comparison with
discrete Ricci flow dynamics. Our experimental results further suggest connec-
tions between the evolution of feature geometry, and training time and network
depth.1

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse domains. Yet, a compre-
hensive theoretical understanding of why these models generalize and perform so well in practice
remains elusive. To address this challenge, recent works have investigated how the geometry (Bap-
tista et al., 2024; Ansuini et al., 2019; Cohen et al., 2020) and topology (Magai & Ayzenberg, 2022;
Naitzat et al., 2020) of neural feature representations evolve as data propagates through network
layers. Beyond advancing interpretability and explainability, such analyses also provide practical
benefits, offering principled guidance for model and hyperparameter selection.

In this work we adopt a geometric perspective to analyze how deep neural networks evolve feature
representations. Since the underlying manifold is not directly observable, we approximate its ge-
ometry by constructing geometric graphs from local similarity structure in the data. To the best of
our knowledge, no prior work has provided theoretical results on how the geometry of such graphs
evolves as data manifolds propagate through network layers. We provide initial theoretical insights
by proving that, in the wide regime, deep linear networks preserve feature geometry, whereas non-
linear activations, such as ReLU, enable genuine geometric transformations.

Among the geometric concepts available for studying these transformations, Ricci curvature and
its associated Ricci flow stand out as fundamental tools from Riemannian geometry. Originally
introduced by Hamilton (1982), the Ricci flow intuitively describes the smoothing of a manifold’s
geometry through the evolution of its metric tensor. Famously, Perelman (2002; 2003b;a) employed
it to prove the Poincaré conjecture and Thurston’s geometrization conjecture. By carefully handling
singularities, Perelman’s work revealed topological insights through the progressive smoothing of

1Code available at https://anonymous.4open.science/r/RF_FG-33A2/

1

https://anonymous.4open.science/r/RF_FG-33A2/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the manifold’s geometry. This mathematical framework bears a compelling analogy to deep neu-
ral networks, which progressively simplify and smooth the geometry of data manifolds, thereby
uncovering richer information about the underlying classes in classification tasks.

Building on this intuition, we propose a novel framework for locally evaluating geometric transfor-
mations through comparison with discrete Ricci flow dynamics. We conduct experiments on more
than 20,000 feedforward neural networks trained on binary classification tasks across both synthetic
and real-world datasets. We find that across datasets and architectures, neural networks consistently
impose curvature-driven transformations closely aligned with the Ricci flow dynamics. Moreover,
the emergence of class separability is reflected in the development of community structure in the as-
sociated graph representations, an evolution known to be closely tied to discrete Ricci flow dynamics
(Tian et al., 2025; Ni et al., 2019; Lai et al., 2022).

Our experimental results indicate connections between the evolution of feature geometry, and train-
ing time and network depth. We find evidence that the emergence of geometrically informed feature
transformations during training can inform early stopping. Additionally, by analyzing curvature-
driven transformations layer-wise, we identify a critical point beyond which additional layers cease
to yield meaningful curvature-driven changes. This suggests a relation between feature geometry
and network depth selection.

Our proposed framework opens new avenues for understanding the geometric principles underly-
ing deep learning that could inform practical tools for improving training efficiency and parameter
selection across diverse applications.

Summary of contributions The main contributions of this work are as follows:

1. We prove that, in the wide regime, deep linear networks preserve feature geometry, whereas
non-linear activations such as ReLU enable meaningful geometric transformations (Sec. 3.1).

2. Our experiments show that the progressive emergence of class separability is reflected in the
emergence of community structure within the corresponding graph representations (Sec. 4.2).

3. We provide experimental evidence that links the evolution of feature geometry to optimal training
time selection (Sec. 4.3).

4. By analyzing layer-wise curvature-driven transformations, we show that the evolution of feature
geometry relates to optimal network depth (Sec. 4.4).

Related work A variety of approaches have been proposed to better understand the feature trans-
formations of deep neural networks. The connection between deep learning and Ricci flow was first
explored by Baptista et al. (2024), who analyzed geometric transformations via Ricci flow at a global
scale. Our approach differs by capturing the inherently local behavior of Hamilton’s Ricci flow and
by leveraging more refined discretizations of Ricci curvature. Other efforts include topology-based
analyses (Naitzat et al., 2020), and geometric measures of simplification (Brahma et al., 2015; An-
suini et al., 2019; Cohen et al., 2020). We defer a more detailed discussion of related literature to
Appendix A.1.

2 BACKGROUND AND NOTATION

Following standard notation, we use a,a, and A to denote scalars, vectors, and matrices. For
x ∈ Rn, ∥x∥ denotes the L2 norm. N (µ, σ2) represents a normal distribution with mean µ and
variance σ2. We denote a graph as G = (V,E), where V is the vertex set and E ⊆ V × V the
edge set. We write u ∼ v if (u, v) ∈ E and d(u, v) denotes the shortest path distance between u
and v. The 1-hop neighborhood of v is denoted by N(v) = {u ∈ V : u ∼ v} and the degree by
deg(v) = |N(v)|. The maximum degree is given by degmax = maxv∈V deg(v).

2.1 SETTING

To study the feature geometry of deep neural networks, we focus on binary classification, a funda-
mental task in supervised learning. Following the notation of Naitzat et al. (2020), we consider a
compact manifold M =Ma ∪Mb ⊆ Rn, given by the disjoint union of two submanifolds. The task
is to determine, given a sample x ∈M , whether it belongs to Ma or Mb.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Schematic illustration of evolving feature manifolds (top row) along with the correspond-
ing geometric graphs (bottom row) approximating their evolving geometry.

To this end, we train a feed-forward neural network Φ : Rn → [0, 1] with L hidden layers, given by

Φ = ϕL+1 ◦ ϕL ◦ . . . ◦ ϕ1.

Each layer of the network is defined as the composition of an affine transformation and a non-
linear activation function σ, i.e., ϕℓ : Rnℓ−1 → Rnℓ is given by, ϕℓ(x) = σ(Wℓx + bℓ), where
Wℓ ∈ Rnℓ×nℓ−1 is the weight matrix and bℓ ∈ Rnℓ is the bias vector. Here, nℓ denotes the width
of layer ℓ, with n0 = n corresponding to the input dimension. In this work, we use the ReLU
activation function, defined as σ(z) = max(0, z), applied elementwise in all hidden layers. To
produce probabilistic outputs, we apply a sigmoid activation in the final layer, i.e., ϕL+1(x) =
ρ(WL+1x+ bL+1), where WL+1 ∈ R1×nℓ , bL+1 ∈ R and ρ(z) = 1

1+e−z .

We study how the geometry of data evolves as it propagates through neural networks. Given an input
manifoldM , we denote by Φℓ = ϕℓ◦. . .◦ϕ1 the composition of the first ℓ layers, and refer to Φℓ(M)
as the feature manifold at layer ℓ. In practice, M is unobserved, and we only have access to a finite
set of samples X = {x(i)}Ni=1 ⊂ M . To approximate the geometry of the feature manifolds, we
construct geometric graphs on the transformed samples {Φℓ(x

(i))}Ni=1, as schematically illustrated
in Figure 1. Graphs based on local connectivity patterns, such as k-nearest neighbor graphs or r-
neighborhood graphs, are known to preserve geometric and topological properties of the manifold
when samples are sufficiently dense, including Ricci curvature (Van Der Hoorn et al., 2021; Trillos
& Weber, 2023). This approach is well-established in manifold learning and geometric data analysis,
where such graph-based representations are commonly used to study the geometry of data.

Specifically, we consider the k-nearest neighbor graph, denoted by Gk(X), where the vertices of
Gk(X) correspond exactly to the samples in X , and two vertices are connected if either is among
the k-nearest neighbors of the other, i.e., a symmetric k-NN graph.Additionally, we construct r-
neighborhood graphs Gr(X), where an edge is drawn between two vertices if their distance is less
than a fixed radius r > 0. These graphs provide discrete approximations of the evolving feature
manifolds.

2.2 RICCI CURVATURE OF GRAPHS

Ricci curvature plays a fundamental role in Riemannian geometry and provides the foundation for
our analysis of feature geometry. To extend curvature concepts to graphs, we adopt two of the most
widely used discretizations, proposed by Ollivier (2009) and Forman (2003). We briefly introduce
them below.

Intuitively, Ricci curvature measures how the local geometry of a manifold deviates from being flat.
This can be captured by comparing the distance between two nearby points with the distance be-
tween small geodesic balls centered at them: in regions of positive (negative) curvature, the geodesic
balls are closer together (farther apart) than the points themselves.

Building on this intuition, Ollivier (2009) extends the classical notion of Ricci curvature to graphs
by replacing geodesic balls with the transition probability of a random walk. For a vertex u, let µu

denote the uniform distribution over its neighbors, i.e., µu(v) = 1
deg(u) if u ∼ v and µu(v) = 0

otherwise. Ollivier-Ricci curvature then compares the distance between these distributions to the
distance between their centers, mirroring the comparison between geodesic balls and their centers
in the Riemannian case:

O(u, v) = 1− W1(µu, µv)

d(u, v)
,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where W1(µu, µv) is the 1-Wasserstein distance, defined by

W1(µu, µv) = inf
π∈Π(µu,µv)

∑
a∈V

∑
b∈V

d(a, b)π(a, b),

and Π(µu, µv) denotes the set of all couplings of µu and µv .

Computing Ollivier-Ricci curvature is computationally demanding, as it requires solving an optimal
transport problem for each edge with complexity O(deg3max) via the Hungarian algorithm. This can
be mitigated by approximating the Wasserstein distance using Sinkhorn distances (Cuturi, 2013) or
through direct combinatorial approximations of the Ollivier-Ricci curvature (Tian et al., 2025). We
adopt the latter, detailed in Appendix A.2.1, in our experiments.

On the other hand, Forman (2003) introduced a discretization of Ricci curvature on CW complexes
via a discrete analogue of the Bochner–Weitzenböck formula. For a simple, unweighted graph, the
Forman-Ricci curvature of an edge u ∼ v is defined as

F(u, v) = 4− deg(u)− deg(v).

While this definition is well-founded in Forman’s framework and computationally efficient, it is
often too simplistic to capture the geometric complexity required in many applications. To ad-
dress this limitation, augmented versions of Forman’s curvature have been considered (Bloch, 2014;
Samal et al., 2018; Weber et al., 2018). A widely used refinement incorporates contributions from
three-cycles, yielding the following combinatorial expression:

AF(u, v) = 4− deg(u)− deg(v) + 3|N(u) ∩N(v)|.

This augmentation can be computed in O(E degmax) time, providing a scalable alternative to the
computationally demanding Ollivier–Ricci curvature. A more detailed introduction to the Forman-
Ricci curvature is provided in Appendix A.2.2.

2.2.1 CURVATURE GAP

When two adjacent vertices belong to the same community, their neighborhoods tend to be more
tightly connected. This lowers the transport cost between neighborhood distributions, yielding
higher Ollivier-Ricci curvature, and likewise increases augmented Forman-Ricci curvature due to
a higher incidence of triangles. Both measures are therefore effective for community detection (Sia
et al., 2019; Gosztolai & Arnaudon, 2021; Fesser et al., 2024). By contrast, the original For-
man–Ricci curvature depends only on endpoint degrees and cannot reliably distinguish intra- from
inter-community edges. As a result, Ollivier- and augmented Forman–Ricci curvature show a bi-
modal distribution in graphs with strong community structure. To quantify this bimodality, we use
the curvature gap (Gosztolai & Arnaudon, 2021):

∆O =
1

σ
(Ointra −Ointer)

where Ointra and Ointer denote the mean curvature of intra- and inter-community edges, and σ is
the pooled standard deviation. This measure captures how strongly the local graph geometry, as
encoded by Ricci curvature, reflects community structure. The curvature gap can be analogously
defined for augmented Forman–Ricci curvature. Visualizations and further community structure
metrics (modularity, normalized cut, spectral gap) are presented in Appendix A.2.3.

2.3 RICCI FLOW

To analyze the evolving geometry of the feature manifolds, it is natural to draw inspiration from
the Ricci flow, a central concept in Riemannian geometry introduced by Hamilton (1982). The
Ricci flow evolves a Riemannian metric g according to ∂

∂tg(t) = −2Ric(g(t)) with initial condition
g(0) = g, where Ric(g(t)) denotes the Ricci curvature tensor; further details are provided in Ap-
pendix A.2.4. This evolution is often compared to heat diffusion, as the underlying equation shares
a similar averaging effect, smoothing out curvature irregularities by shrinking positively curved re-
gions and expanding negatively curved ones. While there is no unique notion of discrete Ricci flow
on graphs, this fundamental geometric evolution characterizes the current versions, first proposed
by Ollivier (2010), and we show below that well-trained networks follow the same mechanism.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 APPROXIMATING FEATURE GEOMETRY

This section establishes theoretical results on feature manifold evolution in wide neural networks,
emphasizing the key role of non-linear activations in geometric transformations. We then introduce
a novel measure that compares local network-induced geometric changes with those predicted by
discrete Ricci flow.

3.1 THEORETICAL RESULTS

As a first result, we show that for randomly initialized, sufficiently wide neural networks without
nonlinearity, the graph structures encoding the feature geometry are preserved with high probability.
Two graphs G and H are said to be isomorphic, denoted by G ∼= H , if there exists a bijection
between their vertex sets that preserves adjacency relations, i.e., the graphs are identical up to vertex
relabeling. The following theorem establishes explicit lower bounds on the network width that
guarantee the existence of an isomorphism between the k-nearest neighbor graphs.
Theorem 3.1. Let X ⊂ Rn be a finite set, and assume there exists 0 < ϵ < 1 such that

min
Y⊂X
|Y |=k

max
y∈Y

∥x− y∥2 ≤ 1− ϵ

1 + ϵ
min
Y⊂X

|Y |=k+1

max
y∈Y

∥x− y∥2 ∀x ∈ X.

Furthermore, let A ∈ Rm×n be a random matrix with i.i.d. entries Aij ∼ N (0, 1/m). Then, the
map ψ : X 7→ AX := {Ax : x ∈ X}, defined by ψ(x) = Ax, is a graph isomorphism between
Gk(X) and Gk(AX) with probability bounded from below

P (Gk(X) ∼= Gk(AX) under ψ) ≥ 1− |X|(|X| − 1)e
m
4 (ϵ3−ϵ2).

Remark. Since the addition of a bias term does not affect pairwise distances, the same result holds
for one-layer linear networks with bias.

The proof builds on the Johnson–Lindenstrauss Lemma, which implies that randomly initialized
weight matrices act as approximate isometries with high probability. The complete proof of Theo-
rem 3.1 is deferred to Appendix A.3.1. Analogous results for r-neighborhood graphs (Theorem A.6),
generalizations to deep networks (Theorem A.7), and empirical validation (Appendix A.4.1) are also
provided.

Random initialization combined with over-parameterization keeps network weights near their initial
values during gradient descent. We show that, without nonlinearities, network dynamics cannot
alter the feature geometry encoded by graph structures, regardless of the number of gradient descent
steps. Consider a two-layer network Φ = ϕ2 ◦ ϕ1 with ϕ1(x) = σ

(
1√
m
Wx

)
, where σ denotes the

ReLU activation andm the width of the hidden layer. We minimize the empirical loss by keeping the
second-layer weights fixed, while gradient descent updates the first-layer weight matrix W , denoted
by W (l) after l gradient descent steps. Then, the k-nearest neighbor graphs remain invariant prior
to the nonlinearity, as stated in the following theorem.
Theorem 3.2 (Informal). Let X ⊂ Rn be a finite set. Under suitable technical assumptions, for
networks of sufficient width m and any number of gradient descent steps l ≥ 0, the map

ψ : X → X(l) :=

{
1√
m
W (l)x : x ∈ X

}
; ψ(x) =

1√
m
W (l)x

is a graph isomorphism between Gk(X) and Gk(X(l)) with high probability.

A formal version of this result, including exact lower bounds on the required network width and
the full proof, is provided in Appendix A.3.2. There, we also present an analogous theorem for
r-neighborhood graphs.

The results above establish that wide linear neural networks cannot alter the underlying feature ge-
ometry, as their weight matrices act as approximate isometries. In contrast, once a nonlinearity is
introduced, our experiments show clear changes in the geometry, as captured by the graph struc-
tures (see Section 4). This highlights the essential role of the ReLU activation in enabling such
transformations. Building on this observation, we further demonstrate that even when the weight
matrices are exact isometries, adding the ReLU nonlinearity is sufficient to change the geometry of
the feature manifolds.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 3.3 (Informal). For any three vertices, there exists a linear isometry such that composing it
with a ReLU activation changes the ordering of their pairwise distances. In particular, this operation
can rewire the k-nearest neighbor graph.

This provides not only empirical but also theoretical evidence for the fundamental role of the acti-
vation function in changing the feature geometry. A formal treatment of this result is provided in
Appendix A.3.3.

3.2 LOCAL RICCI EVOLUTION COEFFICIENTS

In this section, we introduce a novel framework to evaluate the geometric changes induced by deep
neural networks by drawing an analogy with the Ricci flow. Recall that the Ricci flow regularizes the
geometry of a manifold by shrinking regions of positive curvature and expanding regions of negative
curvature. We aim to assess whether neural networks induce feature transformations that exhibit a
similar curvature-driven regularization. Since the feature manifolds cannot be directly observed,
we instead approximate their geometry using the k-nearest neighbor graph Gk(Φℓ(X)), constructed
from the transformed samples Φℓ(X) = {Φℓ(x

(i))}Ni=1 after layer ℓ. A discussion on the choice of
the parameter k is provided in Appendix A.5.1.

To reflect the local nature of the Ricci flow in our graph-based framework, we focus on the smallest
neighborhoods, i.e., the one-hop neighborhoods. The curvature of a one-hop neighborhood centered
at a vertex x at layer ℓ is approximated by the discrete scalar curvature of Ollivier (2010),

Oℓ(x) =
1

degℓ(x)

∑
y∈Nℓ(x)

O(x,y),

where degℓ(x) and Nℓ(x) denote the degree and one-hop neighborhood of x in Gk(Φℓ(X)). To
capture how a local region evolves across layers, we define the average change in distances

ηℓ(x) =
1

degℓ(x)

∑
y∈Nℓ(x)

(dℓ+1(x,y)− dℓ(x,y)) ,

where dℓ(x,y) is the distance between x and y at layer ℓ. Ideally, we would use geodesic distances
on the underlying manifold; since the manifold is unobservable, we instead use the shortest path
distances in the k-NN graph as a discrete analog. Intuitively, ηℓ(x) measures whether the neighbor-
hood of x expands during the transition from layer ℓ to ℓ+1. Under the Ricci flow, positively curved
regions contract while negatively curved regions expand, implying a negative correlation between
Oℓ(x) and ηℓ(x). To quantify this, we compute the Pearson correlation coefficient across layers,

ρ(x) =

∑L−1
ℓ=1 (ηℓ(x)− η̄(x))(Oℓ(x)− Ō(x))√∑L−1

ℓ=1 (ηℓ(x)− η̄(x))2
√∑L−1

ℓ=1 (Oℓ(x)− Ō(x))2
,

where η̄(x) = 1
L−1

∑L−1
ℓ=1 ηℓ(x) and Ō(x) = 1

L−1

∑L−1
ℓ=1 Oℓ(x) denote the averages across lay-

ers. We refer to ρ(x) as the local Ricci evolution coefficient of the network at point x. Although
introduced here in the context of Ollivier curvature, the framework is general and can likewise be
instantiated with alternative notions of discrete curvature, such as the augmented Forman curvature
or efficient approximations of Ollivier curvature.
Remark. Appendix A.1.1 provides a detailed comparison between our local framework and the
global approach of Baptista et al. (2024).

In addition to evaluating Ricci flow–like behavior at the level of individual neighborhoods, we can
also assess it layer by layer. Specifically, we ask whether the geometric transformations induced by
a given layer ℓ align with those expected under the Ricci flow. To this end, we define the layer Ricci
coefficient

ρ(ℓ) =

∑
x∈Φℓ(X)(ηℓ(x)− η̄ℓ)(Oℓ(x)− Ōℓ)√∑

x∈Φℓ(X)(ηℓ(x)− η̄ℓ)2
√∑

x∈Φℓ(X)(Oℓ(x)− Ōℓ)2
,

where η̄ℓ = 1
|X|
∑

x∈Φℓ(X) ηl(x) and Ōℓ =
1

|X|
∑

x∈Φℓ(X) Oℓ(x).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL ANALYSIS

4.1 LOCAL RICCI EVOLUTION COEFFICIENTS

Using our framework of local Ricci evolution coefficients, we empirically examine whether deep
neural networks exhibit curvature-driven dynamics in the evolution of their feature geometry. To this
end, we study both synthetic and real-world datasets. The synthetic datasets are constructed to span
varying degrees of geometric and topological entanglement. For real-world benchmarks, we con-
sider visually similar digit pairs from MNIST (1 vs. 7, 6 vs. 9), fine-grained visual distinctions from
Fashion-MNIST—sneakers vs. sandals (FMNIST-SvS) and shirts vs. dresses (FMNIST-SvD)—and
from CIFAR-10 (cars vs. planes). Further details on datasets and task setup are provided in Ap-
pendix A.5. We train feed-forward networks with varying widths and depths, all of which achieve
over 99% training accuracy, ensuring that our analysis reflects meaningful learned feature represen-
tations. To account for randomness in training, results are averaged over 50 independently initialized
and trained networks per dataset–architecture pair. In total, we analyze the feature geometry of more
than 20,000 networks.

Table 1 reports results on real-world datasets, consistently showing negative local Ricci evolution
coefficients, providing strong evidence of Ricci flow–like dynamics in feature geometry. The large
majority of vertices exhibit negative coefficients, indicating that curvature-driven dynamics are a
global phenomenon on the data manifold. To reduce computational overhead, we further compute
local Ricci evolution coefficients using augmented Forman curvature and the approximate Ollivier
curvature of Tian et al. (2025). Both yield results consistent with the exact Ollivier curvature while
being substantially more efficient (see Tables 4 and 5). For completeness, we present the entire
distribution of local Ricci evolution coefficients in Appendix A.4.2, along with results on synthetic
datasets. Strikingly, we observe qualitatively identical behavior across all architectures and datasets,
both synthetic and real, underscoring the robustness and universality of this phenomenon. Addi-
tionally, we calculated the local Ricci evolution coefficients using the Spearman correlation instead
of the Pearson correlation. Since the Spearman correlation captures monotonic relationships, it is
less sensitive to outliers or non-normal distributions. The results are presented in Table 10, and are
closely aligned with the results using the Pearson correlation. Together, these findings provide com-
pelling evidence that the evolution of feature geometry in deep neural networks is fundamentally
curvature-driven, closely aligned with Ricci flow.

Table 1: Average local Ricci evolution coefficients on real-world data. Values are means ± stan-
dard deviations over 50 independently trained networks per architecture; proportion of vertices with
negative coefficients is reported in parentheses. Networks were randomly initialized.
(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR

(15, 7) −0.58 ± 0.08 (88.7%) −0.51 ± 0.09 (85.3%) −0.43 ± 0.05 (84.0%) −0.27 ± 0.08 (73.4%) −0.44 ± 0.12 (87.8%)
(15, 10) −0.60 ± 0.06 (91.8%) −0.59 ± 0.06 (92.6%) −0.40 ± 0.05 (84.4%) −0.29 ± 0.12 (77.6%) −0.43 ± 0.15 (87.8%)
(15, 15) −0.61 ± 0.07 (93.3%) −0.58 ± 0.11 (92.9%) −0.52 ± 0.11 (93.8%) −0.40 ± 0.12 (88.2%) −0.55 ± 0.18 (93.3%)
(25, 7) −0.58 ± 0.05 (89.3%) −0.48 ± 0.10 (83.3%) −0.41 ± 0.03 (81.9%) −0.28 ± 0.08 (74.3%) −0.48 ± 0.13 (89.9%)
(25, 10) −0.62 ± 0.05 (92.8%) −0.59 ± 0.05 (92.8%) −0.40 ± 0.05 (84.8%) −0.32 ± 0.09 (80.4%) −0.54 ± 0.13 (94.8%)
(25, 15) −0.60 ± 0.06 (94.2%) −0.61 ± 0.07 (94.9%) −0.47 ± 0.08 (93.5%) −0.46 ± 0.08 (92.2%) −0.71 ± 0.06 (98.1%)
(50, 7) −0.59 ± 0.05 (90.6%) −0.46 ± 0.14 (82.0%) −0.42 ± 0.03 (83.0%) −0.35 ± 0.09 (80.8%) −0.57 ± 0.12 (95.4%)
(50, 10) −0.65 ± 0.04 (94.6%) −0.61 ± 0.07 (93.3%) −0.43 ± 0.07 (86.5%) −0.44 ± 0.10 (88.8%) −0.70 ± 0.05 (98.5%)
(50, 15) −0.63 ± 0.06 (95.2%) −0.61 ± 0.08 (95.0%) −0.54 ± 0.05(96.0%) −0.53 ± 0.07 (95.0%) −0.76 ± 0.04 (98.3%)

4.2 COMMUNITY STRUCTURE

We study graphs whose nodes can be naturally partitioned into two communities according to the
true labels of the underlying binary classification task. This setup is well suited for a community-
detection perspective. In this section, we examine whether the class separability learned by deep
neural networks induces a rewiring that strengthens the community structure of the k-nearest neigh-
bor graphs.

To this end, we evaluate how well the geometry of the graphs aligns with the prescribed commu-
nity structure by measuring the curvature gap, modularity, and normalized cut. Our experiments
on both synthetic and real-world datasets show that the community structure becomes increasingly
pronounced as the networks evolve the feature geometry. Figure 2 reports the evolution of modu-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Modularity and normalized cut across network layers on synthetic datasets. Reported
values are averaged over 50 independently trained networks with random initialization and one
standard deviation is shown as envelopes around the mean.

larity and normalized cut across network layers, averaged over 50 independently trained models to
mitigate stochastic variability. In all datasets, we observe a consistent increase in modularity and a
corresponding decrease in normalized cut, indicating that the learned feature geometry progressively
aligns with the prescribed community structure. For real-world datasets, this effect is still present
but less pronounced, as the k-nearest neighbor graphs constructed from raw inputs already exhibit
relatively high modularity, particularly in the case of MNIST (see Figure 9).

Figure 3: Curvature gaps be-
fore and after removing mis-
classified samples.

In our setting, the curvature gap does not reliably capture how well
the graph geometry aligns with the prescribed community structure.
Most inter-community edges arise from misclassified nodes con-
nected to correctly classified ones with the same label, which the
network effectively treats as intra-community edges, making them
indistinguishable through the curvature lens. To clarify this effect,
Figure 3 compares the curvature gaps on the MNIST 1-vs-7 dataset
computed on the full test set with those computed after removing
the five misclassified points (out of 1000). While removing such a
small fraction of samples should not noticeably alter the graph ge-
ometry, it leads to a qualitatively different behavior: the curvature
gap increases consistently across layers instead of collapsing. This
is expected, as inter-community edges now differ structurally from
intra-community ones. We discuss this phenomenon in more detail
in Appendix A.4.3.

Overall, these results demonstrate that deep neural networks progressively evolve the geometry of
feature manifolds in a manner that amplifies the underlying community structure.

4.3 OVERFITTING AND LOCAL RICCI EVOLUTION COEFFICIENTS

To better understand how neural networks learn the geometry of the data manifold, we track the local
Ricci evolution coefficients during training. Across all datasets, we observe a strikingly consistent
pattern: at the beginning of training, the mean coefficients exhibit a sharp decline, suggesting that
the network is effectively learning the underlying geometric structure. Once test accuracy stabilizes,
however, this trend reverses: the mean coefficients plateau or rise again. We hypothesize that this
marks a shift in training dynamics, where the network ceases to capture new geometric structure
and instead begins to overfit individual samples. This pattern suggests that monitoring local Ricci
evolution coefficients during training could serve as a principled stopping heuristic. In practice,
this can be made more efficient by approximating Ollivier–Ricci curvature or by using augmented
Forman curvature, both of which lower computational cost while retaining the essential geometric
signal. Figure 4 illustrates this phenomenon on the Fashion-MNIST dataset, showing the local Ricci
evolution coefficients alongside train and test accuracy throughout training.

4.4 ANALYSIS ACROSS LAYERS

We now turn to the evaluation of the layer-Ricci coefficients, introduced in Section 3.2. We compute
these coefficients across both synthetic and real-world datasets, considering networks of varying
depth, while keeping the width fixed. As before, all models are trained to exceed 99% training
accuracy to ensure that we analyze meaningful learned representations. For each dataset-architecture

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Average local Ricci evolution coefficients, computed from the approximated Ol-
livier–Ricci curvature, shown with the corresponding accuracies throughout training on the Fashion-
MNIST dataset. Reported values are averaged over 50 independently trained networks with random
initialization.

Figure 5: Layer-Ricci coefficients, computed from the augmented Forman-Ricci curvature, on the
MNIST 1-vs-7 dataset for networks of varying depth (width fixed to 25). Reported values are aver-
aged over 50 independently trained networks with random initialization.

pair, results are averaged over 50 independently trained networks to account for stochasticity in
initialization and optimization.

Across all experiments, we observe a strikingly consistent behavior: the curves of the layer-Ricci
coefficients follow the same trend across network depths. Specifically, there appears to be a critical
depth up to which the coefficients decrease, and after which they begin to increase again. This
turning point suggests a balance between the network’s ability to capture geometric structure and its
tendency to overfit. Up to the critical depth, additional layers appear to enrich the evolution of the
feature geometry, as reflected by decreasing Ricci coefficients. Beyond this point, however, further
depth no longer contributes meaningful geometric transformations, which manifests as increasing
Ricci coefficients. This phenomenon highlights the critical depth as a potential heuristic for selecting
network architectures: it indicates the point at which adding more layers ceases to provide geometric
benefits. An example of this behavior on the MNIST dataset is shown in Figure 5. Notably, the depth
identified by this procedure coincides with the depth that maximizes test accuracy when averaged
over 50 independently trained networks.

5 DISCUSSION

Summary In this paper we have introduced the local Ricci evolution coefficients, a tool to eval-
uate locally the geometric transformations of feature manifolds by comparing them to Ricci flow
dynamics. We theoretically show that nonlinear activations are essential for reshaping feature ge-
ometry. Empirically, we demonstrate that the progressive emergence of class separability is mirrored
in the development of community structure within the corresponding graph representations. More-
over, our experiments indicate that well-trained networks exhibit curvature-driven transformations
closely aligned with Ricci flow, and that this behavior emerges during training. We further provide
experimental evidence for connections to optimal training time and depth selection.

Limitations and future work While we have established the importance of non-linear activations
in reshaping feature geometry, deriving exact evolution equations for graphs constructed from lo-
cal connectivity patterns in non-linear networks remains an open problem. Moreover, our study
was conducted on relatively small datasets and focused exclusively on feed-forward architectures;
extending the analysis to larger-scale datasets and more diverse architectures (e.g., convolutional
neural networks) as well as kernel-based methods represents a valuable direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Another interesting avenue for future study is to analyze the double descent phenomenon (Belkin
et al., 2019) through the framework of local Ricci evolution coefficients. In the overparameterized
regime, our results show that increasing network size—either by expanding depth at fixed width
or width at fixed depth—systematically raises the proportion of vertices with negative Ricci coef-
ficients. This suggests that larger networks operate in a more geometry-aware manner, providing a
novel geometric perspective on the mechanisms underlying double descent. Further discussion and
initial experimental results can be found in Appendix A.4.4. The connections between the evolution
of feature geometry, and training time and network depth suggest heuristics for optimal stopping and
optimal choice of the number of layers. A systematic investigation of these heuristics is an impor-
tant direction for future work. Furthermore, local Ricci evolution coefficients could serve as a novel
tool to detect geometric anomalies and support uncertainty quantification in deep neural networks,
since regions of the data manifold with non-negative coefficients may signal unexpected geometric
behavior by the network. Additionally, investigating our curvature-driven geometric measures in
conjunction with node-level graph curvatures, such as Bakry-Émery or resistance curvature, offers a
particularly interesting avenue for future study. Finally, while the relationship between intrinsic di-
mensionality and the geometric measures introduced in this work remains unclear to us, we consider
this an especially intriguing question to investigate in future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-
layer neural networks: An asymptotic viewpoint. In International Conference on Learning Rep-
resentations, 2020.

Shuliang Bai, Yong Lin, Linyuan Lu, Zhiyu Wang, and Shing-Tung Yau. Ollivier ricci-flow on
weighted graphs. arXiv preprint arXiv:2010.01802, 2020.

Anthony Baptista, Alessandro Barp, Tapabrata Chakraborti, Chris Harbron, Ben D MacArthur, and
Christopher RS Banerji. Deep learning as ricci flow. Scientific Reports, 14(1):23383, 2024.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Ethan Bloch. Combinatorial ricci curvature for polyhedral surfaces and posets. arXiv preprint
arXiv:1406.4598, 2014.

Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep learning works: A manifold
disentanglement perspective. IEEE transactions on neural networks and learning systems, 27
(10):1997–2008, 2015.

Jialong Chen, Bowen Deng, Chuan Chen, Zibin Zheng, et al. Graph neural ricci flow: Evolving
feature from a curvature perspective. In The Thirteenth International Conference on Learning
Representations, 2025.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of
object manifolds in deep neural networks. Nature communications, 11(1):746, 2020.

David Cushing, Supanat Kamtue, Shiping Liu, Florentin Münch, Norbert Peyerimhoff, and Ben
Snodgrass. Bakry-émery curvature sharpness and curvature flow in finite weighted graphs: theory.
manuscripta mathematica, 176(1):11, 2025.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for high-
dimensional binary linear classification. Information and Inference: A Journal of the IMA, 11(2):
435–495, 2022.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Matthias Erbar and Eva Kopfer. Super ricci flows for weighted graphs. Journal of Functional
Analysis, 279(6):108607, 2020.

Lukas Fesser, Sergio Serrano de Haro Ivánez, Karel Devriendt, Melanie Weber, and Renaud Lam-
biotte. Augmentations of forman’s ricci curvature and their applications in community detection.
Journal of Physics: Complexity, 5(3):035010, 2024.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-
las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):
1–8, 2021. URL http://jmlr.org/papers/v22/20-451.html.

11

http://jmlr.org/papers/v22/20-451.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete &
Computational Geometry, 29:323–374, 2003.

Daniel Friedan. Nonlinear models in 2+ ε dimensions. Physical Review Letters, 45(13):1057, 1980.

Krzysztof Gawedzki. Lectures on conformal field theory. quantum fields and strings: A course for
mathematicians. Princeton, pp. 727–805, 1996-1997.

Adam Gosztolai and Alexis Arnaudon. Unfolding the multiscale structure of networks with dynam-
ical ollivier-ricci curvature. Nature Communications, 12(1):4561, 2021.

Xianfeng Gu, Ying He, Miao Jin, Feng Luo, Hong Qin, and Shing-Tung Yau. Manifold splines with
single extraordinary point. In Proceedings of the 2007 ACM symposium on Solid and physical
modeling, pp. 61–72, 2007a.

Xianfeng Gu, Sen Wang, Junho Kim, Yun Zeng, Yang Wang, Hong Qin, and Dimitris Samaras. Ricci
flow for 3d shape analysis. In 2007 IEEE 11th International Conference on Computer Vision, pp.
1–8, 2007b. doi: 10.1109/ICCV.2007.4409028.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), 2008.

Richard S Hamilton. Three-manifolds with positive ricci curvature. Journal of Differential geometry,
17(2):255–306, 1982.

Michael Hauser and Asok Ray. Principles of riemannian geometry in neural networks. Advances in
neural information processing systems, 30, 2017.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. Discrete surface ricci flow. IEEE Transactions
on Visualization and Computer Graphics, 14(5):1030–1043, 2008.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

Jürgen Jost and Shiping Liu. Ollivier’s ricci curvature, local clustering and curvature-dimension
inequalities on graphs. Discrete & Computational Geometry, 51(2):300–322, 2014.

Jürgen Jost and Florentin Münch. Characterizations of forman curvature. arXiv preprint
arXiv:2110.04554, 2021.

Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International
conference on learning representations (ICLR), volume 5. California;, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Xin Lai, Shuliang Bai, and Yong Lin. Normalized discrete ricci flow used in community detection.
Physica A: Statistical Mechanics and its Applications, 597:127251, 2022.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Ruowei Li and Florentin Münch. The convergence and uniqueness of a discrete-time nonlinear
markov chain. arXiv preprint arXiv:2407.00314, 2024.

German Magai and Anton Ayzenberg. Topology and geometry of data manifold in deep learning.
arXiv preprint arXiv:2204.08624, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing systems, 27, 2014.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. Journal
of Machine Learning Research, 21(184):1–40, 2020.

Mark EJ Newman. Analysis of weighted networks. Physical Review E—Statistical, Nonlinear, and
Soft Matter Physics, 70(5):056131, 2004.

Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with ricci
flow. Scientific reports, 9(1):9984, 2019.

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

Yann Ollivier. A survey of ricci curvature for metric spaces and markov chains. In Probabilistic
approach to geometry, volume 57, pp. 343–382. Mathematical Society of Japan, 2010.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep
feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85):
2825–2830, 2011. URL http://jmlr.org/papers/v12/pedregosa11a.html.

Grisha Perelman. The entropy formula for the ricci flow and its geometric applications. arXiv
preprint math/0211159, 2002.

Grisha Perelman. Finite extinction time for the solutions to the ricci flow on certain three-manifolds.
arXiv preprint math/0307245, 2003a.

Grisha Perelman. Ricci flow with surgery on three-manifolds. arXiv preprint math/0303109, 2003b.

Areejit Samal, RP Sreejith, Jiao Gu, Shiping Liu, Emil Saucan, and Jürgen Jost. Comparative
analysis of two discretizations of ricci curvature for complex networks. Scientific reports, 8(1):
8650, 2018.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):888–905, 2000.

Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-ricci curvature-based method to com-
munity detection in complex networks. Scientific reports, 9(1):9800, 2019.

Yu Tian, Zachary Lubberts, and Melanie Weber. Curvature-based clustering on graphs. Journal of
Machine Learning Research, 26(52):1–67, 2025.

Nicolas Garcia Trillos and Melanie Weber. Continuum limits of ollivier’s ricci curvature on data
clouds: pointwise consistency and global lower bounds. arXiv preprint arXiv:2307.02378, 2023.

Pim Van Der Hoorn, William J Cunningham, Gabor Lippner, Carlo Trugenberger, and Dmitri Kri-
oukov. Ollivier-ricci curvature convergence in random geometric graphs. Physical Review Re-
search, 3(1):013211, 2021.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

13

http://jmlr.org/papers/v12/pedregosa11a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Melanie Weber, Emil Saucan, and Jürgen Jost. Characterizing complex networks with forman-ricci
curvature and associated geometric flows. Journal of Complex Networks, 5(4):527–550, 2017.

Melanie Weber, Emil Saucan, and Jürgen Jost. Coarse geometry of evolving networks. Journal of
complex networks, 6(5):706–732, 2018.

E Woolgar. Some applications of ricci flow in physics. Canadian Journal of Physics, 86(4):645–651,
2008.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Wei Zeng and Xianfeng David Gu. Ricci flow for shape analysis and surface registration: theories,
algorithms and applications. Springer Science & Business Media, 2013.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

A.1 Extended related work . 16

A.1.1 Comparison of local and global Ricci coefficients 16

A.2 Extended background . 18

A.2.1 Approximation of Ollivier-Ricci curvature 18

A.2.2 Forman-Ricci curvature and its augmentations 18

A.2.3 Measures of community strength . 19

A.2.4 Ricci flow . 20

A.3 Deferred proof details . 21

A.3.1 Random initialization . 21

A.3.2 Trained networks . 25

A.3.3 Impact of nonlinearity on feature geometry 28

A.4 Additional experimental results . 30

A.4.1 Experimental confirmation of theoretical insights 30

A.4.2 Local Ricci evolution coefficients . 30

A.4.3 Community structure . 32

A.4.4 Double descent phenomenon . 32

A.5 Details on experimental setup . 34

A.5.1 Hyperparameters . 35

A.5.2 Licenses . 37

A.6 LLM usage disclosure . 37

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1 EXTENDED RELATED WORK

Numerous works have addressed the challenge of explaining the remarkable success of deep neu-
ral networks from diverse theoretical perspectives. One line of research characterizes network ex-
pressivity in terms of the complexity of decision boundaries. Pascanu et al. (2013) and Montufar
et al. (2014) established bounds on the number of linear regions generated by deep ReLU networks,
demonstrating that deep models can generate substantially more linear regions than their shallow
counterparts. Furthermore, the Neural Tangent Kernel framework by Jacot et al. (2018) offers an
analytical tool to understand the training dynamics of wide networks by relating them to kernel
methods.

Other lines of research explore how the geometry and topology of neural feature representations
evolve as data propagate through network layers. Using tools from topological data analysis, such
as persistent homology, Naitzat et al. (2020) experimentally showed that neural networks progres-
sively simplify the topology of feature representations. Geometric approaches have uncovered sim-
ilar phenomena of simplification and regularization. Brahma et al. (2015) observed flattening and
disentanglement in manifold-shaped data, Ansuini et al. (2019) reported decreasing intrinsic dimen-
sion in deeper layers, and Cohen et al. (2020) demonstrated improved classification capacity via
geometric simplification.

Beyond empirical observations, several works propose theoretical frameworks building on classical
mathematical tools. Hauser & Ray (2017) argued that deep networks can be naturally interpreted
using the language of Riemannian geometry, with network layers acting on the coordinate represen-
tation of the underlying data manifold. Meanwhile, Haber & Ruthotto (2017) propose to interpret
deep learning as a parameter estimation problem for nonlinear dynamical systems, a framework
well-suited for analyzing stability and well-posedness of deep learning.

Closest to our work is the framework introduced by Baptista et al. (2024), which evaluates geometric
transformations via Ricci flow at a global scale. A comparison between their global analysis and our
local analysis is provided in the following section.

A.1.1 COMPARISON OF LOCAL AND GLOBAL RICCI COEFFICIENTS

Baptista et al. (2024) introduced a metric that quantifies the geometric transformations induced by
deep neural networks relative to those predicted by the Ricci flow at a global scale. In this section,
we compare their global metric to our local Ricci evolution coefficients.

Their framework is based on comparing the Forman-Ricci curvature at a global scale to a global
approximation of the expansion or contraction of the manifold. Specifically, they define

Fℓ =
∑
e∈Eℓ

F(e),

where Eℓ denotes the edge set of the k-nearest-neighbor graph constructed from the set Φℓ(X) =
{Φℓ(x

(i)) : i = 1, . . . , N}. To quantify the global expansion or contraction of the manifold across
layers, they consider all pairwise distances:

ηℓ =
∑

x,y∈Φℓ+1(X)

dℓ+1(x,y)−
∑

x,y∈Φℓ(X)

dℓ(x,y).

The relation between these two quantities is then summarized via the Pearson correlation coefficient

ρ =

∑L−1
ℓ=1 (ηℓ − η̄)(Fℓ − F̄)√∑L−1

ℓ=1 (ηℓ − η̄)2
√∑L−1

ℓ=1 (Fℓ − F̄)2
,

where η̄ and F̄ denote the respective layer-wise averages. We will refer to the quantity ρ as the
global Ricci coefficient. A negative global Ricci coefficient indicates that the geometric changes
induced by the network follow the dynamics predicted by Ricci flow at global scale—large ”global
curvature” corresponds to contraction, while small ”global curvature” corresponds to expansion.

Our approach differs in two key aspects. First, it explicitly leverages the inherently local nature of
the Ricci flow, which evolves the Riemannian metric tensor at each point of the manifold according

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Global Ricci coefficients of untrained neural networks, averaged over 100 independently
and randomly initialized models.

Syn-I Syn-II Syn-III Syn-IV

Mean ± std. −0.389± 0.258 −0.349± 0.151 −0.231± 0.193 −0.204± 0.186
Minimum −0.772 −0.644 −0.744 −0.577
Negative share 91% 99% 89% 89%

Table 3: Mean local Ricci evolution coefficients of untrained neural networks, averaged over 100
independently and randomly initialized models.

Syn-I Syn-II Syn-III Syn-IV

Mean ± std. −0.037± 0.077 0.039± 0.052 −0.019± 0.081 −0.035± 0.054
Minimum −0.234 −0.117 −0.173 −0.133
Negative share 66% 21% 63% 76%

to the local curvature, rather than relying on global approximations. Second, we adopt the more
refined notion of Ollivier-Ricci curvature, which comes with consistency guarantees relative to the
curvature of the underlying manifold given sufficiently dense samples (Van Der Hoorn et al., 2021;
Trillos & Weber, 2023). In contrast, Baptista et al. (2024) employ the Forman-Ricci curvature, which
cannot capture higher-order structures and is therefore too simplistic to provide a rich geometric
characterization.

To propose an early-stopping heuristic, we evaluate the local Ricci evolution coefficients throughout
training. The global Ricci coefficient turns out to be too coarse to provide meaningful insights into
the learning dynamics. Indeed, even for randomly initialized, untrained networks, the global Ricci
coefficient typically takes negative values, suggesting Ricci flow-like behavior. Table 2 reports the
global Ricci coefficients of randomly initialized, untrained networks with 10 layers across different
datasets, averaged over 100 runs per dataset. For completeness, we also provide the percentage of
networks with negative global Ricci coefficient and the minimum observed value.

This phenomenon is consistent with a simple heuristic indicating an inherent negative correlation
between ηℓ and Fℓ. Specifically, the estimate of the global curvature of the underlying manifold at
layer ℓ is given by

Fℓ =
∑
e∈Eℓ

F(e) = 4|Eℓ| −
∑

x∈Φℓ(X)

deg(x)2.

From this expression, Fℓ takes large negative values in densely connected graphs with many high-
degree vertices. Such graphs, however, tend to exhibit smaller pairwise distances, thereby yielding
larger values of ηℓ. As a result, a negative correlation between ηℓ and Fℓ is expected regardless of
the specific neural network under consideration.

In contrast, when examined using the framework of local Ricci evolution coefficients, no systematic
correlation is observed. For randomly initialized networks, the local Ricci evolution coefficients
remain close to zero (Table 3), reflecting the lack of correlation between the expansion of local
neighborhoods and the Ollivier-Ricci curvature within those neighborhoods. This underscores the
value of local Ricci evolution coefficients for studying learning dynamics: since no Ricci flow-
like behavior is present at random initialization, they allow us to track the genuine emergence of
curvature-driven dynamics during training.

Finally, note that computing the global Ricci coefficient requires the k-nearest-neighbor graphs of
each layer to be connected. In practice, however, this condition may not be met, especially for
smaller values of k. In contrast, an advantage of the local Ricci evolution coefficients is that they can
still be computed even when the k-nearest-neighbor graphs are disconnected. The only requirement
is that each point x is connected to its neighbors in the subsequent layer — a significantly weaker
condition.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 EXTENDED BACKGROUND

A.2.1 APPROXIMATION OF OLLIVIER-RICCI CURVATURE

Computing the Ollivier-Ricci curvature is computationally demanding, since it involves solving an
optimal transport problem for every edge in the graph. Using the Hungarian algorithm, each such
computation has complexity O(deg3max). However, the computational burden can be alleviated by
approximating the Ollivier-Ricci curvature. Tian et al. (2025) proposed an approximation by taking
the arithmetic mean of an upper and a lower bound, each of which can be efficiently computed in
linear time. These bounds were first established by Jost & Liu (2014).

Theorem A.1 (Jost & Liu (2014)). Let G = (V,E) be a locally finite graph and let u, v ∈ V with
u ∼ v. Then, the Ollivier-Ricci curvature is bounded from below by

O(u, v) ≥−
(
1− 1

deg(u)
− 1

deg(v)
− |N(u) ∩N(v)|

deg(u) ∧ deg(v)

)
+

−
(
1− 1

deg(u)
− 1

deg(v)
− |N(u) ∩N(v)|

deg(u) ∨ deg(v)

)
+

+
|N(u) ∩N(v)|
deg(u) ∨ deg(v)

.

Furthermore, the Ollivier-Ricci curvature is bounded from above by

O(u, v) ≤ |N(u) ∩N(v)|
deg(u) ∨ deg(v)

.

Using these bounds, Tian et al. (2025) propose to approximate the Ollivier-Ricci curvature by taking
the arithmetic mean, i.e.,

Õ(u, v) =
1

2

(
Oup(u, v) +Olow(u, v)

)
,

where Oup(u, v) and Olow(u, v) denote the upper and lower bound established in Theorem A.1.
Note that this approximation can be computed with complexity O(degmax), which strongly reduces
the cost compared to computing the exact Ollivier-Ricci curvature.

A.2.2 FORMAN-RICCI CURVATURE AND ITS AUGMENTATIONS

Forman (2003) introduced a discretization of the classical Ricci curvature on CW complexes, derived
from a discrete analogue of the Bochner-Weitzenböck formula. Viewing a simple graph as a one-
dimensional CW complex, with edges corresponding to one-cells, allows this notion to be applied
naturally to graphs. In particular, for a simple, unweighted graph, the Forman-Ricci curvature of an
edge u ∼ v is defined as

F(u, v) = 4− deg(u)− deg(v).

Although this definition is well-founded in Forman’s framework and computationally efficient, it
is often too simplistic to provide the rich geometric characterization required in many practical
and theoretical applications. For example, a key limitation of the Forman-Ricci curvature is that it
disregards the number of triangles adjacent to an edge, one of the most elementary and important
geometric properties of a graph Jost & Liu (2014).

To address this limitation, augmentations of the Forman-Ricci curvature have been considered
(Bloch, 2014; Samal et al., 2018; Weber et al., 2018). The core idea is to incorporate additional
information about the local geometry by constructing a two-dimensional CW-complex from the
graph, inserting two-cells into cycles up to a given length. This approach provides a natural way
to capture higher-order correlations among vertices in the network. We augment the Forman-Ricci
curvature with all cycles of length three, balancing improved empirical performance in community
detection (Fesser et al., 2024) with computational tractability. The resulting augmented Forman-
Ricci curvature for an edge u ∼ v is given by the following combinatorial formula:

AF(u, v) = 4− deg(u)− deg(v) + 3|N(u) ∩N(v)| = F(u, v) + 3|N(u) ∩N(v)|.

This approximation can be computed in O(E degmax) time on the whole graph, significantly reduc-
ing the cost relative to the computation of Ollivier–Ricci curvature.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Distribution of Ollivier–Ricci curvature for two stochastic block models. The first row
shows weak community structure with two communities of 40 nodes each, intra-community edge
probability 0.5, and inter-community edge probability 0.2. The second row shows strong community
structure with intra-community edge probability 0.7, and inter-community edge probability 0.1.

A.2.3 MEASURES OF COMMUNITY STRENGTH

Beyond curvature-based measures, the strength of community structure is often assessed using a set
of well-established classical metrics. For completeness, we summarize the most widely used ones
below. We consider a graph G = (V,E), where the vertex set is partitioned into disjoint communities
C1,Cn, i.e.,

V =

n⊔
i=1

Ci.

Modularity. One of the most prevalent measures for assessing community strength is modularity,
first introduced by Newman (2004). It quantifies the density of edges within communities relative
to the expected density in a random graph with the same degree distribution. Formally, it is defined
by

Q =
1

2|E|
∑

u,v∈V

(
Auv −

deg(u) deg(v)

2|E|

)
δ(Cu, Cy),

where δ(Cu, Cv) denotes the Kronecker delta, which equals 1 if u and v belong to the same commu-
nity and 0 otherwise. Modularity equal to zero indicates that the density of intra-community edges
is no greater than what would be expected in a random graph with the same degree distribution.
Positive modularity, on the other hand, indicates a higher density of intra-community edges, with
values above 0.3 typically reflecting strong community structure.

Normalized Cut. Another classical approach for assessing the strength of community structure is
based on the cut size, i.e., the number of edges crossing between different communities. Since raw
cut size tends to favor unbalanced partitions, Shi & Malik (2000) introduced a normalized variant,
defined as

Ncut(C1, . . . , Cn) =
1

2

n∑
i=1

cut(Ci)

vol(Ci)
,

where cut(Ci) = |{u ∼ v : u ∈ Ci, v /∈ Ci}|, and vol(Ci) =
∑

v∈Ci
deg(v).

Algebraic connectivity. There exists a whole field dedicated to the study of graph Laplacians and
their spectra, known as spectral graph theory. The eigenvalues and eigenvectors of the graph Lapla-
cian are closely related to community structure, forming the basis of spectral clustering methods. In
particular, the second-smallest eigenvalue of the Laplacian, called the algebraic connectivity, reflects
how well connected the graph is: it is greater than zero if and only if the graph is connected, and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

larger values indicate stronger connectivity. For more details, we refer the reader to the comprehen-
sive book by Chung (1997).

Curvature Gap. The neighborhoods of two adjacent vertices tend to be more tightly connected
when they belong to the same community. This results in a lower transport cost between their neigh-
borhood distributions and thus higher Ollivier-Ricci curvature. Building on this observation, graphs
with community structure exhibit a bimodal distribution of curvature values, reflecting the system-
atic difference between intra-community and inter-community edges. To quantify this separation,
Gosztolai & Arnaudon (2021) introduced the curvature gap:

∆O =
1

σ
(Ointra −Ointer) ,

where Ointra denotes the average curvature of intra-community edges, Ointer denotes the average

curvature of inter-community edges, and σ =
√

1
2 (σ

2
intra + σ2

inter) is the pooled standard deviation.
A large curvature gap indicates a significant distinction in local geometry between edges within
communities and those connecting different communities. Figure 6 illustrates this effect for two
graphs with different degrees of community strength.

A.2.4 RICCI FLOW

The Ricci flow, introduced by Hamilton (1982), is a second-order nonlinear partial differential equa-
tion for the Riemannian metric. Given a smooth Riemannian manifold M with metric g, the Ricci
flow evolves the metric according to

∂

∂t
g(t) = −2Ric(g(t)),

g(0) = g,
(1)

where Ric(g(t)) denotes the Ricci curvature associated with the time-dependent metric g(t). The
constant factor −2 is conventional; any negative scalar would yield a qualitatively equivalent evolu-
tion under an appropriate time reparametrization.

Hamilton proved the short-time existence of solutions to the Ricci flow for arbitrary smooth initial
metrics on compact manifolds.
Theorem A.2 ((Hamilton, 1982), Theorem 4.2). The Ricci flow introduced in 1 has a solution for a
short time on any compact Riemannian manifold with any initial metric at t = 0.

The prove is based on the Nash-Moser implicit function theorem and also ensures the uniqueness
of a short-time solution. Furthermore, Hamilton established the long-time existence theorem, which
guarantees the existence and uniqueness of a solution as long as the curvature remains bounded.
Theorem A.3 ((Hamilton, 1982), Theorem 14.1). The Ricci flow introduced in 1 has a unique
solution on a maximal time interval [0, T) with T ≤ ∞ for any compact Riemannian manifold M
with any initial metric at t = 0. If T <∞, then

sup
x∈M

|Rm(g(t))|(x) → ∞

as t → T , where |Rm(g(t))| denotes the norm of the Riemannian curvature tensor associated with
the metric g(t).

In mathematics, the Ricci flow has obtained significant attention as a tool for proving Thurston’s
Geometrization Conjecture. This conjecture asserts that every closed 3-manifold can be decom-
posed in a canonical way into pieces, each admitting one of eight distinct geometric structures,
now often called Thurston’s model geometries. The Geometrization Conjecture can be viewed as
a three-dimensional analogue of the classical Uniformization Theorem for 2-dimensional surfaces,
which states that every simply connected Riemannian surface is conformally equivalent to either the
Riemann sphere, the complex plane, or the open unit disk.

Hamilton developed a program to prove the Geometrization Conjecture using Ricci flow. While the
Ricci flow produces singularities, Hamilton proposed that one might be able to continue the flow
past such singularities by using a procedure called ”surgery”, which cuts the manifold at singu-
lar regions and then continues the flow on the resulting pieces. Perelman’s breakthrough in 2003

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

completed this program, introducing a rigorous framework for Ricci flow with surgery and proving
the Geometrization Conjecture (Perelman, 2002; 2003b;a). Furthermore, Perelman showed that for
simply connected 3-manifolds, the Ricci flow with surgery becomes extinct in finite time. When ex-
tinction occurs, Perelman showed that all connected components before extinction must have been
round three-dimensional spheres. Using this, he was able to prove the Poincaré conjecture, one of
the well-known Millennium Prize Problems.

The topological interpretation of Ricci flow, that it reveals fundamental structure by smoothing ge-
ometry, directly parallels what we observe in neural networks. Just as the Ricci flow uncovers the
topological type of a manifold by evolving its metric, neural networks reveal the class structure by
evolving the geometry of feature representations. The emergence of community structure in our
graph representations corresponds to the emergence of distinct geometric pieces in the manifold
decomposition.

Interestingly, Ricci flow emerged independently in theoretical physics around the same time, ap-
pearing in the work of Friedan (1980). In quantum field theory, Ricci flow arises as a leading-order
approximation to the renormalization group flow of the two-dimensional nonlinear σ-model; see,
e.g., Gawedzki (1996-1997). For a comprehensive overview of applications of Ricci flow in physics,
we refer the reader to Woolgar (2008).

Since the input manifold in our framework is not directly observed, and the layers of a deep neural
network can be viewed as discrete time steps, our focus naturally shifts to discrete formulations
of Ricci flow. A variety of discrete Ricci flows on graphs have been developed, based on the idea
that negatively curved regions expand while positively curved ones contract. Although no canonical
version exists, many build on this intuition. Ollivier (2010) introduced discrete Ricci flow using
Ollivier-Ricci curvature. Later work established convergence and uniqueness results, such as Li &
Münch (2024) for discrete-time flows, and Bai et al. (2020) for continuous-time flows on weighted
graphs. Other flows based on different curvature notions include the Bakry-Émery flow (Cushing
et al., 2025) and Forman-Ricci flow (Weber et al., 2017). Additionally, Erbar & Kopfer (2020) in-
troduce a concept of super Ricci flow for weighted graphs. These discrete versions of Ricci flow on
graphs have been explored in several machine learning contexts, including applications to commu-
nity detection (Ni et al., 2019; Sia et al., 2019; Fesser et al., 2024; Gosztolai & Arnaudon, 2021) and
to graph neural networks Chen et al. (2025).

Another discretization of Ricci flow, the discrete surface Ricci flow, has found many applications in
enginneering fields. Here, the discrete surface Ricci flow can be used to design a Riemannian metric,
which is conformal to the original metric and induces a user-defined Gaussian-curvature function on
the surface (Jin et al., 2008).

Beyond graphs, the discrete surface Ricci flow has become widely adopted in engineering applica-
tions. Here, it can be used for designing Riemannian metrics, which are conformal to the original
metric and induce a user-specified Gaussian curvature function (Jin et al., 2008). In engineering
and computer graphics, surface Ricci flow has been applied to a variety of tasks, including surface
parameterization (Jin et al., 2008), 3D shape analysis (Gu et al., 2007b), and the construction of
manifold splines (Gu et al., 2007a). For a broader overview of applications across medical imaging,
computer graphics, computer vision, and wireless sensor networks, we refer the reader to Zeng &
Gu (2013). Notably, the underlying principle parallels our neural network analysis: just as surface
Ricci flow deforms metrics to satisfy geometric constraints, we observe that neural feature spaces
evolve analogous to Ricci flow to satisfy task-relevant geometric objectives such as class separation
in classification.

A.3 DEFERRED PROOF DETAILS

In this section, we provide the deferred proofs for the theoretical results stated in Section 3.1.

A.3.1 RANDOM INITIALIZATION

To derive lower bounds on the network width that ensure the preservation of graph structures under
random initialization, we build upon the Johnson–Lindenstrauss Lemma.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Theorem A.4 (Johnson-Lindenstrauss Lemma, (Johnson et al., 1984)). Let x ∈ Rn and let A ∈
Rm×n be a random matrix with i.i.d. entries Aij ∼ N (0, 1). Then, for 0 < ϵ < 1, we have

P

(
(1− ϵ)∥x∥2 ≤

∥∥∥∥ 1√
m
Ax

∥∥∥∥2 ≤ (1 + ϵ)∥x∥2
)

≥ 1− 2 exp
(m
4
(ϵ3 − ϵ2)

)
.

Proof. Let x ∈ Rn be arbitrary. First, observe that the entries of Ax are normally distributed, as
the sum of independent, normally distributed random variables. Furthermore, we have

E [(Ax)i] = E

 n∑
j=1

Aijxj

 =

n∑
j=1

E [Aij]xj = 0,

and

V[(Ax)i] = E
[
((Ax)i)

2
]
− E [((Ax)i)]

2
= E


 n∑

j=1

Aijxj

2


= E

 n∑
k,j=1

AijAikxjxk

 =

n∑
k,j=1

E [AijAik]xjxk =

n∑
j=1

x2j = ∥x∥2.

Hence, the random variables

Xi =
(Ax)i
∥x∥

are i.i.d. with Xi ∼ N (0, 1). Therefore, we obtain

P

(∥∥∥∥ 1√
m
Ax

∥∥∥∥2 > (1 + ϵ)∥x∥2
)

= P

(∥∥∥∥Ax

∥x∥

∥∥∥∥2 > (1 + ϵ)m

)
= P

(
m∑
i=1

X2
i > (1 + ϵ)m

)
,

where
∑m

i=1X
2
m is distributed according to the chi-squared distribution withm degrees of freedom.

Using standard concentration inequalities for the chi-squared distribution, we obtain

P

(∥∥∥∥ 1√
m
Ax

∥∥∥∥2 > (1 + ϵ)∥x∥2
)

≤ e
m
4 (ϵ3−ϵ2).

Analogously, one can prove that

P

(∥∥∥∥ 1√
m
Ax

∥∥∥∥2 < (1− ϵ)∥x∥2
)

≤ e
m
4 (ϵ3−ϵ2).

This concludes the proof.

Using Boole’s inequality, we immediately obtain the following corollary.
Corollary A.5. Let X ⊂ Rn be a finite set, and let A ∈ Rm×n be a random matrix with i.i.d.
entries Aij ∼ N (0, 1/m). Then, for 0 < ϵ < 1, we have

P
(
(1− ϵ)∥x− y∥2 ≤ ∥Ax−Ay∥2 ≤ (1 + ϵ)∥x− y∥2 : ∀x,y ∈ X

)
≥ 1− δ,

where
δ = |X|(|X| − 1) exp

(m
4
(ϵ3 − ϵ2)

)
.

We are now prepared to prove Theorem 3.1.
Theorem 3.1. Let X ⊂ Rn be a finite set, and assume there exists 0 < ϵ < 1 such that

min
Y⊂X\{x}

|Y |=k

max
y∈Y

∥x− y∥2 ≤ 1− ϵ

1 + ϵ
min

Y⊂X\{x}
|Y |=k+1

max
y∈Y

∥x− y∥2 ∀x ∈ X.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Furthermore, let A ∈ Rm×n be a random matrix with i.i.d. entries Aij ∼ N (0, 1/m). Then, the
map

ψ : X → AX := {Ax : x ∈ X}; ψ(x) = Ax

is a graph isomorphism between Gk(X) and Gk(AX) with probability bounded from below

P (Gk(X) ∼= Gk(AX) under ψ) ≥ 1− |X|(|X| − 1)e
m
4 (ϵ3−ϵ2).

Remark. To bound the probability of error by δ, i.e.,

P (Gk(X) ̸∼= Gk(AX) under ψ) ≤ δ,

we have to choose the width of the network

m ≥ 4(log(|X|(|X| − 1))− log(δ))

ϵ2 − ϵ3
.

Proof. We first prove that ψ is a graph isomorphism, if

(1− ϵ)∥x− y∥2 ≤ ∥Ax−Ay∥2 ≤ (1 + ϵ)∥x− y∥2 ∀x,y ∈ X. (2)

Let x,y ∈ X such that x ∼ y in Gk(X). Without loss of generality, we may assume that y is
among the k-nearest neighbors of x. We claim that Ay is among the k-nearest neighbors of Ax.
Assume for contradiction that this is not the case. Hence, there exists a z ∈ X , which is not among
the k-nearest neighbors of x, such that

∥Ax−Az∥ < ∥Ax−Ay∥.
This contradicts our assumption, since

∥Ax−Ay∥2 ≤ (1 + ϵ)∥x− y∥2 ≤ (1− ϵ)∥x− z∥2 ≤ ∥Ax−Az∥2,
where we applied our assumption on ϵ to obtain the second inequality. Therefore, our assumption
is false, implying that Ay belongs to the k-nearest neighbors of Ax and therefore Ax ∼ Ay in
Gk(AX).

Conversely, let Ax ∼ Ay be an arbitrary edge in Gk(AX), and assume without loss of generality
that Ay is among the k-nearest neighbors of Ax. It remains to show that x ∼ y in Gk(X). Assume
for contradiction that this is not the case. Hence, there exists z ∈ X among the k-nearest neighbors
of x such that

∥Ax−Az∥ > ∥Ax−Ay∥.
This contradicts our assumption, since

∥Ax−Az∥2 ≤ (1 + ϵ)∥x− z∥2 ≤ (1− ϵ)∥x− y∥2 ≤ ∥Ax−Ay∥2,
where we again applied our assumption on ϵ to obtain the second inequality. Thus, the assumption
is contradicted, and x ∼ y in Gk(X) must hold.

This concludes the proof that the map ψ is a graph isomorphism, assuming that condition 2 holds.
By Corollary A.5, the probability for this is bounded from below by

1− |X|(|X| − 1) exp
(m
4
(ϵ3 − ϵ2)

)
.

This concludes the proof.

We can prove a similar result for r-neighborhood graphs.
Theorem A.6. Let X ⊂ Rn be a finite set, and denote by N(x) the one-hop neighborhood of x in
Gr(X). Choose 0 < ϵ < 1 such that

ϵ < min

{
r2 −maxy∈N(x)∥x− y∥2

maxy∈N(x)∥x− y∥2
,
miny ̸∈N(x)∥x− y∥2 − r2

miny ̸∈N(x)∥x− y∥2

}
∀x ∈ X.

Furthermore, let A ∈ Rm×n be a random matrix with i.i.d. entries Aij ∼ N (0, 1/m). Then, the
map

ψ : X → AX := {Ax : x ∈ X}; ψ(x) = Ax

is a graph isomorphism between Gr(X) and Gr(AX) with probability bounded from below by

P (Gr(X) ∼= Gr(AX) under ψ) ≥ 1− |X|(|X| − 1)e
m
4 (ϵ3−ϵ2).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. We first prove that ψ is a graph isomorphism, if
(1− ϵ)∥x− y∥2 ≤ ∥Ax−Ay∥2 ≤ (1 + ϵ)∥x− y∥2 ∀x,y ∈ X. (3)

Let x ∼ y be an arbitrary edge in Gr(X). Using our assumption and the upper bound on ϵ, we
obtain

∥Ax−Ay∥2 ≤ (1 + ϵ)∥x− y∥2 < r2.

Therefore, we obtain Ax ∼ Ay in Gr(AX). Analogously, consider an arbitrary edge Ax ∼ Ay
in Gr(AX). It remains to show that x ∼ y in Gr(X). Assume this is not the case. Hence,
∥x− y∥ > r and therefore

∥Ax−Ay∥2 ≥ (1− ϵ)∥x− y∥2 > r2,

contradicting Ax ∼ Ay. Hence, the assumption leads to a contradiction, and we conclude that ψ is
a graph isomorphism, provided that (3) holds. By Corollary A.5, the probability for this is bounded
from below by

1− |X|(|X| − 1) exp
(m
4
(ϵ3 − ϵ2)

)
.

This concludes the proof.

Thus, for sufficiently wide, randomly initialized one-layer networks without non-linear activation
functions, the graph structures are preserved. This result can be naturally extended to multi-layer
networks in the following way.
Theorem A.7. Let X ⊂ Rn be a finite set, and assume there exists 0 < ϵ < 1 such that

min
Y⊂X\{x}

|Y |=k

max
y∈Y

∥x− y∥2 ≤
(
1− ϵ

1 + ϵ

)L

min
Y⊂X\{x}
|Y |=k+1

max
y∈Y

∥x− y∥2 ∀x ∈ X.

Furthermore, let A1 ∈ Rm×n and A2, . . . ,AL ∈ Rm×m be random matrices with i.i.d. entries
(Aℓ)ij ∼ N (0, 1/m) for ℓ = 1, . . . , L. Then, the map

ψL : X → XL := {ALAL−1 . . .A1x : x ∈ X}; ψL(x) = ALAL−1 . . .A1x

is a graph isomorphism between Gk(X) and Gk(XL) with probability bounded from below

P (Gk(X) ∼= Gk(XL) under ψL) ≥
(
1− |X|(|X| − 1)e

m
4 (ϵ3−ϵ2)

)L
.

Proof. We first prove that ψL is an isomorphism, if the following inequality holds for all x, y ∈ X
and ℓ = 1, . . . , L:

(1− ϵ)∥ψℓ−1(x)− ψℓ−1(y)∥2 ≤ ∥ψℓ(x)− ψℓ(y)∥2 ≤ (1 + ϵ)∥ψℓ−1(x)− ψℓ−1(y)∥2, (4)
where we use the convention ψ0(x) = x.

To this end, consider an arbitrary edge x ∼ y in Gk(X), and assume without loss of generality that
y is among the k-nearest neighbors of x. We aim to show that ψL(x) ∼ ψL(y) in Gk(XL). Assume
this is not the case. Hence, there exists a vertex z ∈ X , which is not among the k-nearest neighbors
of x, such that

∥ψL(x)− ψL(z)∥ < ∥ψL(x)− ψL(y)∥.
This contradicts our assumption, since

∥ψL(x)− ψL(y)∥2 ≤ (1 + ϵ)L∥x− y∥2 ≤ (1− ϵ)L∥x− z∥2∥≤ ∥ψL(x)− ψL(z)∥2,
where we applied our assumption on ϵ to obtain the second inequality. Therefore, our assumption is
false, implying that ψL(x) ∼ ψL(y) in Gk(XL) must hold. Using a similar argument, one can show
that ψL(x) ∼ ψL(y) in Gk(XL) implies x ∼ y in Gk(X).

Thus, ψL is a graph isomorphism, provided that condition (4) holds. For fixed ℓ, the probability
that this condition is satisfied can be bounded from below by Corollary A.5. Since all entries of
all weight matrices are independent, the corresponding events are independent across the different
layers ℓ = 1, . . . , L. Consequently, we obtain a lower bound by taking the product of the individual
probabilities:

P (Gk(X) ∼= Gk(XL) under ϕL) ≥
(
1− |X|(|X| − 1)e

m
4 (ϵ3−ϵ2)

)L
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.3.2 TRAINED NETWORKS

Random initialization together with over-parameterization ensures that the network’s weights remain
close to their initial values throughout gradient descent. To illustrate, consider a two-layer neural
network Φ = ϕ2 ◦ ϕ1, where the first layer is

ϕ1(x) = σ

(
1√
m
Wx

)
with σ denoting the ReLU activation and W ∈ Rm×n the weight matrix. The second layer computes
a weighted linear combination, ϕ2(x) = ⟨a,x⟩ with a ∈ Rm.

Given a training data set {(xi, yi)}Ni=1, we aim to minimize the empirical loss

L(W ,a) =
1

2

N∑
i=1

(Φ(xi)− yi)
2.

To this end, we fix the second-layer weights a ∈ Rm and apply gradient descent to optimize the
first-layer weight matrix W ∈ Rm×n via the update rule

W (k + 1) = W (k)− η
∂L(W (k),a)

∂W (k)
,

where η > 0 denotes the learning rate. We denote by

u(k) = (Φ(x1), . . . ,Φ(xN)) ∈ RN

the prediction vector after k steps of gradient descent. Our main result in this section relies on an
assumption regarding the smallest eigenvalue of the Gram matrix, so we briefly recall this concept
here.

Definition 1 (Gram matrix). The Gram matrix H∞ ∈ RN×N is defined by

H∞
ij = Ew∼N (0,1)n

[
x⊤
i xj1{w⊤xi≥0,w⊤xj≥0}

]
.

We denote by λ0 = λmin(H
∞) the smallest eigenvalue of the Gram matrix.

Remark. If xi ̸∥ xj for all i ̸= j, then λ0 > 0. Since this condition is typically satisfied in
real-world datasets, the assumption λ0 > 0 is not restrictive in practice.

Assuming that the smallest eigenvalue of the Gram matrix is strictly positive, Du et al. (2018) proved
that gradient descent converges to a global minimum at a linear rate.

Theorem A.8 ((Du et al., 2018)). Suppose that λ0 > 0 and ∥xi∥ = 1 and |yi| ≤ C for all

i = 1, . . . , N . Assume that the width m = Ω
(

N6

λ4
0δ

3

)
, and Wij ∼ N (0, 1), ai ∼ Unif({−1, 1}),

and set the step size η = O
(
λ0

N2

)
. Then, with probability at least 1− δ we obtain

∥u(k)− y∥2 ≤
(
1− ηλ0

2

)k

∥u(0)− y∥2.

Remark. The assumption ∥xi∥ = 1 can be easily relaxed. If the inputs satisfy 0 < c ≤ ∥xi∥ ≤ C
for all i = 1, . . . , N , then the result still holds, but the required network width will now also depend
on the ratio C

c .

Using this, Du et al. (2018) prove that the weight matrix remains close to its initialization throughout
training.

Corollary A.9. Assume that the assumptions of Theorem A.8 are satisfied. Then, with probability
at least 1− δ, we have for all k ≥ 0 and every row index r ∈ {1, . . . ,m} that

∥Wr,:(k)−Wr,:(0)∥ ≤ 4
√
N√

mλ0
∥u(0)− y∥,

where Wr,:(k) denotes the r-th row of the weight matrix W (k).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We are now almost ready to prove that, even after an arbitrary number of gradient descent steps,
the network remains unable to alter the feature geometry encoded in the graph structures before the
application of the nonlinearity. To this end, we introduce one final technical lemma.

Lemma A.10. Let A ∈ Rm×n satisfying ∥Ar,:∥ ≤ ϵ for every r ∈ {1, . . . ,m}. For x ∈ Rn, we
obtain the following upper bound

∥Ax∥ ≤
√
mϵ∥x∥.

Proof. This follows immediately from the Cauchy-Schwarz inequality:

∥Ax∥2 =

m∑
r=1

⟨Ar,:,x⟩2 ≤
m∑
r=1

∥Ar,:∥2∥x∥2 ≤ mϵ2∥x∥2.

Taking the square root on both sides completes the proof.

We now show that with large probability, sufficiently wide networks cannot alter the geometry of
the k-nearest neighbor graph before the activation function is applied, regardless of the number of
gradient descent steps performed. This highlights the crucial role of the non-linearity.

Theorem 3.2. Let X ⊂ Rn be a finite set, and assume there exists 0 < ϵ < 1 such that

min
Y⊂X\{x}

|Y |=k

max
y∈Y

∥x− y∥ ≤ 1− ϵ

1 + ϵ
min

Y⊂X\{x}
|Y |=k+1

max
y∈Y

∥x− y∥ ∀x ∈ X.

Assume that the assumptions of Theorem A.8 are satisfied. Furthermore, assume that

m ≥ 64N∥u(0)− y∥2

ϵ2λ20
.

Then, for any number of gradient descent steps l ≥ 0, the map

ψ : X → X(l) :=

{
1√
m
W (l)x : x ∈ X

}
; ψ(x) =

1√
m
W (l)x

is a graph isomorphism between Gk(X) and Gk(X(l)) with probability bounded from below by

P(Gk(X) ∼= Gk(X(l)) under ψ) ≥ 1− δ − |X|(|X| − 1)e
m
4

(
ϵ3

8 − ϵ2

4

)
.

Proof. For ease of notation, we define A(l) = 1√
m
W (l). Note that the matrixA(0) has i.i.d. entries

with A(0)ij ∼ N (0, 1/m). We first show that ψ is a graph isomorphism, if

(1− ϵ

2
)∥x− y∥2 ≤ ∥A(0)(x− y)∥2 ≤ (1 +

ϵ

2
)∥x− y∥2 ∀x,y ∈ X, (5)

and for every l ≥ 0

∥Wr,:(l)−Wr,:(0)∥ ≤ 4
√
N√

mλ0
∥u(0)− y∥. (6)

To this end, observe that, for any x ∈ Rn, we have

∥(A(l)−A(0))x∥ =
1√
m
∥(W (l)−W (0))x∥ ≤ 4

√
N√

mλ0
∥u(0)− y∥∥x∥ ≤ ϵ

2
∥x∥,

where the first inequality is a consequence of Lemma A.10, and the second follows from our as-
sumption on m. Using this inequalities, we obtain

∥A(l)x−A(l)y∥ ≤ ∥(A(l)−A(0))(x− y)∥+ ∥A(0)(x− y)∥

≤ ϵ

2
∥x− y∥+

√
1 +

ϵ

2
∥x− y∥

≤ (1 + ϵ)∥x− y∥

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

for all x,y ∈ X . On the other hand, using the reverse triangle inequality, we obtain

∥(A(l)x−A(l))y∥ ≥
∣∣∣∥A(0)(x− y)∥ − ∥(A(l)−A(0))(x− y)∥

∣∣∣
≥
√

1− ϵ

2
∥x− y∥ − ϵ

2
∥x− y∥

≥ (1− ϵ)∥x− y∥.
for all x,y ∈ X .

We are now prepared to prove that ψ is a graph isomorphism. To this end, let x ∼ y be an arbitrary
edge in Gk(X). Without loss of generality, we may assume that y is among the k-nearest neighbors
of x. We claim that ψ(y) is among the k-nearest neighbors of ψ(x). Assume this is not the case.
Hence, there exists a z ∈ X , which is not among the k-nearest neighbors of x, such that

∥ψ(x)− ψ(z)∥ = ∥A(l)x−A(l)z∥ < ∥A(l)x−A(l)y∥ = ∥ψ(x)− ψ(y)∥.
This contradicts

∥A(l)x−A(l)y∥ ≤ (1 + ϵ)∥x− y∥ ≤ (1− ϵ)∥x− z∥ ≤ ∥A(l)x−A(l)z∥,
where we applied our assumption on ϵ to obtain the second inequality. Therefore, our assumption is
false, implying that ψ(y) belongs to the k-nearest neighbors of ψ(x) and therefore ψ(x) ∼ ψ(y) in
Gk(X(l)).

Conversely, let ψ(x) ∼ ψ(y) be an arbitrary edge in Gk(X(l)), and assume without loss of gener-
ality that ψ(y) is among the k-nearest neighbors of ψ(x). It remains to show that x ∼ y in Gk(X).
Assume for contradiction that this is not the case. Hence, there exists z ∈ X among the k-nearest
neighbors of x such that

∥ψ(x)− ψ(z)∥ = ∥A(l)x−A(l)z∥ > ∥ψ(x)− ψ(y)∥ = ∥A(l)x−A(l)y∥.
This contradicts our assumption, since

∥A(l)x−A(l)z∥ ≤ (1 + ϵ)∥x− z∥ ≤ (1− ϵ)∥x− y∥ ≤ ∥A(l)x−A(l)y∥,
where we again applied our assumption on ϵ to obtain the second inequality. Thus, the assumption
is contradicted, and x ∼ y in Gk(X) must hold.

Hence, ψ is a graph isomorphism between Gk(X) and Gk(X(l)), provided that (5) and (6) hold.
According to Corollary A.5, the probability that (5) holds is bounded from below by

1− |X|(|X| − 1) exp

(
m

4

(
ϵ3

8
− ϵ2

4

))
.

On the other hand, by Corollary A.9, we know that the probability that (6) holds is bounded from
below by 1− δ. The claim now follows from the Bonferroni inequality.

An analogous result can also be established for r-neighborhood graphs.
Theorem A.11. Let X ⊂ Rn be a finite set, and denote by N(x) the one-hop neighborhood of x in
Gr(X). Choose 0 < ϵ < 1 such that

ϵ < min

{
r −maxy∈N(x)∥x− y∥
maxy∈N(x)∥x− y∥

,
miny ̸∈N(x)∥x− y∥ − r

miny ̸∈N(x)∥x− y∥

}
∀x ∈ X.

Assume that the assumptions of Theorem A.8 are satisfied. Furthermore, assume that

m ≥ 64N∥u(0)− y∥2

ϵ2λ20
.

Then, for any number of gradient descent steps l ≥ 0, the map

ψ : X → X(l) :=

{
1√
m
W (l)x : x ∈ X

}
; ψ(x) =

1√
m
W (l)x

is a graph isomorphism between Gr(X) and Gr(X(l)) with probability bounded from below by

P(Gr(X) ∼= Gr(X(l)) under ψ) ≥ 1− δ − |X|(|X| − 1)e
m
4

(
ϵ3

8 − ϵ2

4

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. For ease of notation, we define A(l) = 1√
m
W (l). Note that the matrix A(0) has i.i.d.

entries with A(0)ij ∼ N (0, 1/m). We first show that ψ is a graph isomorphism, if

(1− ϵ

2
)∥x− y∥2 ≤ ∥A(0)(x− y)∥2 ≤ (1 +

ϵ

2
)∥x− y∥2 ∀x,y ∈ X, (7)

and for every l ≥ 0

∥Wr,:(l)−Wr,:(0)∥ ≤ 4
√
N√

mλ0
∥u(0)− y∥. (8)

By employing the same reasoning as in Theorem 3.2, it follows that

(1− ϵ)∥x− y∥ ≤ ∥A(l)x−A(l)y∥ ≤ (1 + ϵ)∥x− y∥
holds for every x,y ∈ X and l ≥ 0.

We now proceed to show that ψ is a graph isomorphism. To this end, let x ∼ y be an arbitrary edge
in Gr(X). Using our upper bound, we obtain

∥ψ(x)− ψ(y)∥ = ∥A(l)x−A(l)y∥ ≤ (1 + ϵ)∥x− y∥ < r,

by our assumption on ϵ. Therefore, we conclude ψ(x) ∼ ψ(y) in Gr(X(l)). Conversely, consider
an arbitrary edge ψ(x) ∼ ψ(y) in Gr(X(l)). It remains to show that x ∼ y in Gr(X). Assume
this is not the case. Hence, ∥x− y∥ > r and therefore

∥ψ(x)− ψ(y)∥ = ∥A(l)x−A(l)y∥ ≥ (1− ϵ)∥x− y∥ > r,

contradicting ψ(x) ∼ ψ(y).

Hence, ψ is a graph isomorphism between Gr(X) and Gr(X(l)), provided that (7) and (8) hold.
Again, according to Corollary A.5, the probability that (7) holds is bounded from below by

1− |X|(|X| − 1) exp

(
m

4

(
ϵ3

8
− ϵ2

4

))
.

On the other hand, by Corollary A.9, we know that the probability that (8) holds is bounded from
below by 1− δ. The claim now follows from the Bonferroni inequality.

A.3.3 IMPACT OF NONLINEARITY ON FEATURE GEOMETRY

We have seen that, in wide linear networks, the feature geometry captured by the graph structures
remains unchanged, as the learned weight matrices act approximately as isometries. In this section,
we show that this behavior changes once a ReLU activation is introduced. Specifically, we prove
that, even when the weight matrices are exact isometries, adding the ReLU nonlinearity is sufficient
to change the geometry of the feature manifolds.

It is a standard result from linear algebra that the linear isometries of Rn correspond precisely to the
set of orthogonal matrices, denoted by O(n), defined as

O(n) = {A ∈ Rn×n : A⊤A = In}.

The proof of the main theorem of this section relies on the following lemma.
Lemma A.12. Let x ∈ Rn be arbitrary. Then, there exists a linear isometry A ∈ O(n) such that

Ax = (∥x∥, 0, . . . , 0)⊤.

Proof. If ∥x∥ = 0, the claim holds for every linear isometry A ∈ O(n). Hence, assume ∥x∥ > 0,
and define the normalized vector

u1 =
x

∥x∥
.

Using the Basis Extension Theorem and the Gram-Schmidt Process, we can extend the set {u1} to
an orthogonal basis {u1, . . . ,un} of Rn. Then, the matrix

A =

u⊤
1
...

u⊤
n

 ∈ O(n)

satisfies Ax = (∥x∥, 0, . . . , 0)⊤ by construction.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

We are now prepared to prove the main theorem of this section.

Theorem 3.3. Let x,y, z ∈ Rn, such that z ̸∈ span{x,y} and

∥x− y∥ ≥ ∥x− z∥.

Then, for m ≥ n, there exists a linear isometry A ∈ Rm×n and a bias vector b ∈ Rm, such that

∥σ(Ax+ b)− σ(Ay + b) < ∥σ(Ax+ b)− σ(Az + b)∥.

Remark. As shown above, a wide linear neural network cannot change the geometry of the features,
since its weight matrices are almost isometries. However, as Theorem 3.3 demonstrates, this is no
longer the case once the ReLU activation function is introduced: for any three vertices, the ordering
of their pairwise distances can be altered by applying an orthogonal matrix followed by the ReLU
activation, thereby rewiring the k-nearest neighbor graph.

Proof. Without loss of generality, we may assume m = n. In the case m > n, any n-dimensional
vector can be embedded into Rm by appending m − n zero coordinates. If ∥x∥ = 0, then by
assumption ∥y∥ > 0 must hold. According to Lemma A.12, there exists A1 ∈ O(n), such that

A1y = (−∥y∥, 0, . . . , 0)⊤.

By assumption, we have z ̸∈ span{x,y} = span{y}. Therefore, there exists i ∈ {2, . . . , n} such
that (A1z)i ̸= 0. Without loss of generality, we may assume that (A1z)i > 0. Choose b to be the
zero vector in Rn. Then,

∥σ(A1x+ b)− σ(A1y + b)∥ = 0 < ((A1z)i)
2 ≤ ∥σ(A1x+ b)− σ(A1z + b)∥.

Thus, we may assume ∥x∥ > 0.

According to Lemma A.12, there exists A1 ∈ O(n), such that

A1x = (−∥x∥, 0, . . . , 0)⊤.

The proof proceeds by cases.

Case 1: y ∈ span{x}. Hence, there exists α ∈ R such that y = αx. Thus, we obtain

A1y = (−α∥x∥, 0, . . . , 0).

By assumption, we have z ̸∈ span{x}. Therefore, there exists i ∈ {2, . . . , n} such that (A1z)i ̸= 0.
Without loss of generality, we may assume that (A1z)i > 0. Define the bias vector

b =

{
(α∥x∥, 0, . . . , 0), if α < 0,

0, otherwise,

where 0 ∈ Rn denotes the zero vector. Thus, by construction, we obtain

∥σ(A1x+ b)− σ(A1y + b)∥ = 0 < ((A1z)i)
2 ≤ ∥σ(A1x+ b)− σ(A1z + b)∥.

Case 2: y ̸∈ span{x}. Denote by

(A1y)−1 = ((A1y)2, . . . , (A1y)n) ∈ Rn−1

the vector obtained from A1y by removing its first coordinate. Note that ∥(A1y)−1∥ > 0, since
y ̸∈ span{x}. Define

ũ1 =
(A1y)−1

∥(A1y)−1∥
.

and u1 = (0,−ũ1) ∈ Rn, so that the first coordinate of u1 is zero and the remaining coordinates
are given by ũ1.

Denote by e(i) the i-th standard basis vector. The set {e(1),u1} forms an orthonormal system
and can therefore be extended to an orthonormal basis {e(1),u1, . . . ,un−1} of Rn using the Basis

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Extension Theorem together with the Gram–Schmidt Process. Note that for every i ∈ {1, . . . , n−1},
we have ⟨ui, e

(1)⟩ = 0, and therefore ⟨ui,A1x⟩ = 0. Define the matrix

A2 =


e(1)⊤

u⊤
1
...

u⊤
n−1

 ∈ O(n) and A = A2A1 ∈ O(n).

By construction, we obtain

Ax = (−∥x∥, 0, . . . , 0)⊤ and Ay = ((A1y)1,−∥(A1y)−1∥, 0, . . . , 0).

By assumption, we have z ̸∈ span{x,y}. Hence, there exists i ∈ {3, . . . , n} such that (Az)i ̸= 0.
Without loss of generality, we may assume that (Az)i > 0.

Finally, define the bias vector

b =

{
(−(A1y)1, 0, . . . , 0), if (A1y)1 > 0,

0, otherwise.

Therefore, by construction, we obtain

∥σ(Ax+ b)− σ(Ay + b)∥ = 0 < ((Az)i)
2 ≤ ∥σ(Ax+ b)− σ(Az + b)∥.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

A.4.1 EXPERIMENTAL CONFIRMATION OF THEORETICAL INSIGHTS

We supplement the theoretical results of Section 3.1 with experimental validation. Specifically, we
sample points uniformly from the d-dimensional unit ball and construct k-nearest neighbor graphs
on these point clouds. Note that any point cloud can be rescaled to the unit ball without altering
its k-nearest neighbor graph, ensuring generality of this setup. For varying network widths, we
apply randomly initialized neural networks and test whether the induced graphs remain isomorphic
to the original ones. Figure 7 reports the proportion of linear neural networks that preserve the k-
nearest neighbor and r-neighborhood graphs across different widths. For each width, 1,000 linear
neural networks were independently initialized. Consistent with our theoretical predictions, the
preservation probability converges to one as the width increases. The faster convergence observed
for r-neighborhood graphs is explained by the fact that the maximal ϵ satisfying the condition of
Theorem A.6 was larger than the corresponding bound from Theorem 3.1.

Across all experiments, we find that the network widths required for the estimated probabilities to
exceed a given threshold 1−δ are in practice smaller than the widths for which Theorems 3.1 and A.6
guarantee this. This is expected, since the proofs rely on Boole’s inequality, which generally does
not provide a tight bound for the probability of a union.

A.4.2 LOCAL RICCI EVOLUTION COEFFICIENTS

In this subsection, we present additional experimental results for the computation of local Ricci
evolution coefficients. In addition to the Ollivier-Ricci curvature, we also compute the coefficients
using the augmented Forman curvature and the approximation of Ollivier-Ricci curvature proposed
by Tian et al. (2025). For all curvature notions, we evaluate both our synthetic and real-world
datasets by training deep neural networks of varying width and depth and subsequently computing
the local Ricci evolution coefficients. We average our results over 50 independently trained networks
for each dataset-architecture pair, to account for the inherent randomness in neural network training,
making sure our observed patterns are robust rather than accidental.

Results on real-world datasets using augmented Forman curvature and approximated Ollivier cur-
vature are reported in Table 4 and Table 5, respectively. In all cases, we observe strongly negative
local Ricci evolution coefficients, highlighting pronounced curvature-driven dynamics in the evo-
lution of feature geometry. To further support this finding, we evaluate the proportion of vertices

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 7: Proportion of linear neural networks that preserve the k-nearest neighbor and r-
neighborhood graphs, constructed from the feature manifolds, across different network widths. The
graphs are built from a point cloud of 50 samples in the 3-dimensional unit ball. We consider the
5-nearest neighbor graph, and for the r-neighborhood graph we set the radius equal to 0.3.

Figure 8: Distribution of local Ricci evolution coefficients for networks of depth 15 and width 50
on real-world datasets, shown for augmented Forman–Ricci curvature (top row) and Ollivier–Ricci
curvature (bottom row).

with negative local coefficients, consistently showing that the vast majority of vertices exhibit such
behavior. Hence, curvature-driven dynamics appear almost universally across the data manifold.
Figure 8 shows the entire distribution of local Ricci evolution coefficients on the real-world datasets
for both Ollivier–Ricci curvature and augmented Forman-Ricci curvature. Complementary results
on synthetic datasets are provided in Table 6 for Ollivier-Ricci curvature, in Table 8 for augmented
Forman-Ricci curvature, and in Table 9 for approximated Ollivier-Ricci curvature. The results are
consistent with those observed on the real-world datasets.

Furthermore, we observe consistent results for all three discretizations of Ricci curvature. The
numerical values obtained using the augmented Forman-Ricci curvature and the approximation of
the Ollivier-Ricci curvature are nearly identical, which is expected since both curvature notions are
primarily influenced by three-cycles. Moreover, Jost & Münch (2021) show that Ollivier–Ricci
curvature coincides with the maximal Forman curvature over cell complexes having the given graph
as their 1-skeleton, providing a theoretical explanation for the close agreement observed across the
different notions. In contrast, we also calculated the local Ricci evolution coefficients using the
classical Forman-Ricci curvature, as shown in Table 8. As anticipated, the correlation observed
in previous experiments is substantially reduced or absent when using the unaugmented curvature,
validating the necessity of a more expressive measure for our purposes

Above, we computed the Pearson correlation between the Ricci curvature and the local expansion or
contraction. As a further analysis, we evaluated the Spearman rank correlation coefficients for the
same quantities. This non-parametric measure captures monotonic relationships and is less sensitive
to outliers or non-normal distributions. The results presented in Table 10 confirm that the observed
correlations are consistent across both Pearson and Spearman metrics.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 4: Average local Ricci evolution coefficients, computed using augmented Forman curvature,
on real-world data. Values are means ± standard deviations over 50 independently trained net-
works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
Networks were randomly initialized.
(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR

(15, 7) −0.82 ± 0.06 (98.5%) −0.79 ± 0.09 (97.5%) −0.81 ± 0.08 (98.7%) −0.53 ± 0.13 (91.2%) −0.73 ± 0.11 (98.2%)
(15, 10) −0.83 ± 0.05 (99.3%) −0.83 ± 0.06 (99.5%) −0.82 ± 0.06 (99.8%) −0.58 ± 0.16 (94.0%) −0.76 ± 0.15 (97.5%)
(15, 15) −0.84 ± 0.05 (99.8%) −0.88 ± 0.03 (99.9%) −0.86 ± 0.05 (99.9%) −0.66 ± 0.13 (97.5%) −0.79 ± 0.21 (97.4%)
(25, 7) −0.80 ± 0.05 (97.8%) −0.69 ± 0.18 (94.0%) −0.80 ± 0.04 (99.5%) −0.54 ± 0.11 (91.9%) −0.69 ± 0.13 (96.7%)
(25, 10) −0.83 ± 0.07 (99.0%) −0.83 ± 0.06 (99.4%) −0.83 ± 0.05 (99.8%) −0.62 ± 0.12 (96.2%) −0.80 ± 0.09 (99.3%)
(25, 15) −0.83 ± 0.05 (99.8%) −0.85 ± 0.04 (99.9%) −0.85 ± 0.04 (100%) −0.74 ± 0.07 (99.4%) −0.90 ± 0.03 (99.9%)
(50, 7) −0.81 ± 0.04 (98.3%) −0.61 ± 0.16 (91.1%) −0.79 ± 0.04 (99.3%) −0.58 ± 0.10 (92.9%) −0.76 ± 0.08 (98.8%)
(50, 10) −0.84 ± 0.03 (99.7%) −0.79 ± 0.09 (98.5%) −0.84 ± 0.05 (99.8%) −0.70 ± 0.12 (97.2%) −0.87 ± 0.03 (100%)
(50, 15) −0.83 ± 0.04 (99.9%) −0.86 ± 0.05 (99.9%) −0.88 ± 0.02 (100%) −0.80 ± 0.06 (100%) −0.91 ± 0.02 (100%)

Table 5: Average local Ricci evolution coefficients, computed using approximated Ollivier curva-
ture, on real-world data. Values are means ± standard deviations over 50 independently trained
networks per architecture; proportion of vertices with negative coefficients is reported in parenthe-
ses. Networks were randomly initialized.
(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR

(15, 7) −0.75 ± 0.21 (94.6%) −0.76 ± 0.12 (96.4%) −0.77 ± 0.07 (98.8%) −0.50 ± 0.13 (89.5%) −0.66 ± 0.13 (96.5%)
(15, 10) −0.82 ± 0.05 (99.5%) −0.84 ± 0.04 (99.7%) −0.77 ± 0.06 (99.7%) −0.54 ± 0.16 (92.7%) −0.69 ± 0.16 (96.4%)
(15, 15) −0.83 ± 0.04 (99.8%) −0.83 ± 0.07 (99.1%) −0.81 ± 0.06 (99.9%) −0.64 ± 0.14 (97.0%) −0.75 ± 0.18 (97.2%)
(25, 7) −0.79 ± 0.05 (98.1%) −0.66 ± 0.20 (92.3%) −0.76 ± 0.04 (99.2%) −0.50 ± 0.12 (90.0%) −0.62 ± 0.15 (94.6%)
(25, 10) −0.81 ± 0.04 (99.4%) −0.82 ± 0.05 (99.6%) −0.78 ± 0.04 (99.6%) −0.59 ± 0.12 (95.3%) −0.74 ± 0.10 (98.9%)
(25, 15) −0.81 ± 0.06 (99.8%) −0.84 ± 0.03 (100%) −0.79 ± 0.04 (100%) −0.72 ± 0.08 (99.2%) −0.86 ± 0.04 (99.9%)
(50, 7) −0.79 ± 0.04 (98.5%) −0.57 ± 0.21 (87.9%) −0.75 ± 0.04 (98.9%) −0.56 ± 0.11 (91.4%) −0.69 ± 0.10 (98.1)%
(50, 10) −0.82 ± 0.03 (99.8%) −0.82 ± 0.04 (99.7%) −0.80 ± 0.05 (99.7%) −0.68 ± 0.12 (96.6%) −0.83 ± 0.03 (100%)
(50, 15) −0.83 ± 0.04 (99.9%) −0.84 ± 0.04 (100%) −0.83 ± 0.03 (100%) −0.78 ± 0.07 (100%) −0.89 ± 0.03 (100%)

A.4.3 COMMUNITY STRUCTURE

In this section, we examine how the curvature gap evolves as the data manifold propagates through
the layers of the deep neural network. Whereas both modularity and the normalized cut provide
clear evidence that the network rewires the k-nearest neighbor graph derived from the point clouds
such that its geometry aligns more closely with the community structure induced by the true labels
(see Figure 2 and Figure 9), the behavior of the curvature gap is less straightforward.

The explanation for this is that most inter-community edges connect misclassified nodes to cor-
rectly classified nodes with the same label, making them indistinguishable from intra-community
edges. This effect is clearly illustrated in Figure 10, where we show the full curvature distribu-
tion on the MNIST 1-vs-7 dataset, comparing inter-community edges (orange) and intra-community
edges (blue). As expected, intra-community edges systematically shift toward more positive curva-
ture values as the k-nearest neighbor graphs are transformed through the layers of the deep neural
network. In contrast, the behavior of inter-community edges is more intricate. The left column
displays the distributions computed on the entire test set. In the final layer, two structurally distinct
types of inter-community edges emerge. The majority exhibit positive curvature and vanish once
the five misclassified points are removed. These are precisely the edges described above, connecting
a misclassified point with a correctly classified one. In contrast, a small subset of inter-community
edges remains, characterized by highly negative curvature values. These correspond to the true inter-
community edges. This distinction explains the vanishing of the curvature gaps before removing the
misclassified samples, and we find the same qualitative pattern consistently across all synthetic and
real-world datasets considered.

A.4.4 DOUBLE DESCENT PHENOMENON

In modern machine learning, it is common to train extremely large and heavily overparameterized
models that achieve zero training error while still exhibiting strong generalization performance.
This surprising behavior is captured by the double descent phenomenon, introduced by Belkin et al.
(2019), which refines the classical view of the bias–variance trade-off. Whereas the traditional
theory predicts a U-shaped generalization curve as model capacity increases, double descent reveals

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 6: Average local Ricci evolution coefficients, computed using Ollivier curvature, on synthetic
data. Values are means ± standard deviations over 50 independently trained networks per archi-
tecture; proportion of vertices with negative coefficients is reported in parentheses. Networks were
randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-III Syn-IV

(15,7) −0.38 ± 0.07 (80.9%) −0.31 ± 0.11 (78.2%) −0.53 ± 0.09 (92.1%) −0.39 ± 0.09 (82.9%)
(15,10) −0.43 ± 0.07 (83.9%) −0.29 ± 0.14 (81.2%) −0.59 ± 0.09 (92.7%) −0.45 ± 0.10 (87.1%)
(15,15) −0.43 ± 0.12 (81.0%) −0.36 ± 0.09 (84.9%) −0.64 ± 0.07 (93.9%) −0.49 ± 0.13 (86.2%)
(25,7) −0.37 ± 0.06 (81.9%) −0.34 ± 0.10 (79.7%) −0.56 ± 0.07 (93.8%) −0.32 ± 0.09 (77.4%)
(25,10) −0.43 ± 0.07 (83.8%) −0.37 ± 0.08 (86.9%) −0.63 ± 0.05 (96.2%) −0.40 ± 0.09 (85.4%)
(25,15) −0.49 ± 0.04 (86.5%) −0.40 ± 0.05 (87.6%) −0.69 ± 0.04 (95.5%) −0.51 ± 0.05 (90.3%)
(50,7) −0.38 ± 0.06 (83.2%) −0.38 ± 0.07 (81.6%) −0.59 ± 0.05 (96.3%) −0.29 ± 0.05 (74.9%)
(50,10) −0.47 ± 0.05 (88.0%) −0.41 ± 0.05 (86.9%) −0.66 ± 0.05 (97.3%) −0.34 ± 0.07 (81.8%)
(50,15) −0.53 ± 0.04 (89.1%) −0.42 ± 0.04 (88.2%) −0.72 ± 0.03 (97.0%) −0.53 ± 0.06 (91.7%)

Table 7: Average local Ricci evolution coefficients, computed using augmented Forman curvature,
on synthetic data. Values are means ± standard deviations over 50 independently trained networks
per architecture; proportion of vertices with negative coefficients is reported in parentheses. Net-
works were randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-III Syn-IV

(15,7) −0.43 ± 0.10 (87.2%) −0.32 ± 0.16 (78.4%) −0.64 ± 0.08 (97.6%) −0.37 ± 0.12 (81.7%)
(15,10) −0.51 ± 0.16 (90.4%) −0.34 ± 0.12 (87.4%) −0.72 ± 0.10 (98.5%) −0.48 ± 0.13 (90.0%)
(15,15) −0.63 ± 0.10 (95.3%) −0.45 ± 0.09 (91.6%) −0.70 ± 0.15 (96.0%) −0.63 ± 0.20 (94.3%)
(25,7) −0.43 ± 0.09 (88.4%) −0.36 ± 0.14 (81.6%) −0.63 ± 0.08 (97.6%) −0.27 ± 0.09 (73.7%)
(25,10) −0.57 ± 0.07 (95.5%) −0.40 ± 0.10 (91.5%) −0.74 ± 0.06 (99.3%) −0.44 ± 0.11 (88.1%)
(25,15) −0.65 ± 0.09 (97.0%) −0.50 ± 0.07 (95.9%) −0.75 ± 0.12 (98.2%) −0.67 ± 0.07 (97.4%)
(50,7) −0.39 ± 0.09 (86.0%) −0.45 ± 0.08 (89.0%) −0.62 ± 0.07 (97.4%) −0.22 ± 0.08 (68.7%)
(50,10) −0.58 ± 0.07 (96.7%) −0.50 ± 0.08 (95.5%) −0.76 ± 0.05 (99.8%) −0.33 ± 0.10 (79.8%)
(50,15) −0.69 ± 0.06 (98.4%) −0.55 ± 0.05 (97.1%) −0.81 ± 0.03 (99.8%) −0.63 ± 0.10 (96.5%)

an additional regime: once the interpolation threshold is crossed, generalization error can decrease
again with increasing capacity. Recent work has shown that this phenomenon is a fundamental
property of overparameterized models, appearing across a wide range of settings including neural
networks, ensemble methods, decision trees, and classical linear regression (Belkin et al., 2019; Ba
et al., 2020; Deng et al., 2022).

Several explanations have been proposed for this behavior. One line of reasoning sug-
gests that enlarging the function class increases the number of interpolating solutions,
thereby making it more likely to find functions that not only fit the data but also ex-
hibit higher smoothness and regularity. Such simpler solutions are favored by an im-
plicit form of Occam’s razor, indicating that overparameterization can promote generaliza-
tion by biasing learning toward these low-complexity explanations (Belkin et al., 2019).

Figure 11: Proportion of ver-
tices with negative local Ricci
evolution coefficient for net-
works of varying depth.

A promising direction for future work is to investigate the double
descent phenomenon through the lens of local Ricci evolution co-
efficients. In the overparameterized regime, double descent sug-
gests that further enlarging the network should lead to improved
generalization. Our experiments show that increasing network
size—either by adding depth at fixed width or by expanding width
at fixed depth—systematically increases the proportion of vertices
with negative Ricci coefficients. Figure 11 illustrates these findings
on real-world datasets using neural networks with a fixed width of
50 neurons per layer while varying the depth. This observation in-
dicates that larger models exhibit curvature-driven dynamics on a
more global scale, potentially enabling them to capture the under-
lying geometry of the problem more effectively. Since models that
better align with data geometry are expected to generalize better,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 8: Average local Ricci evolution coefficients, computed using approximated Ollivier curva-
ture, on synthetic data. Values are means ± standard deviations over 50 independently trained net-
works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
Networks were randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-III Syn-IV

(15,7) −0.44 ± 0.10 (89.6%) −0.37 ± 0.16 (82.9%) −0.64 ± 0.11 (96.6%) −0.36 ± 0.11 (81.0%)
(15,10) −0.52 ± 0.11 (92.6%) −0.39 ± 0.08 (91.5%) −0.72 ± 0.12 (98.1%) −0.51 ± 0.16 (90.6%)
(15,15) −0.60 ± 0.15 (94.7%) −0.44 ± 0.11 (91.6%) −0.73 ± 0.19 (96.2%) −0.65 ± 0.13 (95.9%)
(25,7) −0.43 ± 0.08 (89.5%) −0.34 ± 0.13 (83.0%) −0.64 ± 0.08 (97.8%) −0.26 ± 0.11 (72.6%)
(25,10) −0.56 ± 0.07 (95.8%) −0.44 ± 0.09 (94.2%) −0.75 ± 0.05 (99.7%) −0.44 ± 0.13 (87.5%)
(25,15) −0.66 ± 0.04 (98.3%) −0.49 ± 0.08 (94.9%) −0.79 ± 0.05 (99.6%) −0.64 ± 0.13 (96.1%)
(50,7) −0.38 ± 0.07 (87.5%) −0.46 ± 0.07 (91.2%) −0.66 ± 0.06 (98.7%) −0.22 ± 0.08 (68.4%)
(50,10) −0.60 ± 0.06 (97.4%) −0.53 ± 0.04 (97.3%) −0.77 ± 0.04 (100%) −0.35 ± 0.09 (81.2%)
(50,15) −0.69 ± 0.04 (99.1%) −0.55 ± 0.05 (97.5%) −0.83 ± 0.03 (100%) −0.64 ± 0.08 (97.9%)

Table 9: Average local Ricci evolution coefficients, computed using Forman Ricci curvature, on
synthetic data. Values are means ± standard deviations over 50 independently trained networks per
architecture; proportion of vertices with negative coefficients is reported in parentheses. Networks
were randomly initialized.

(Width,Depth) Syn-I Syn-II Syn-III Syn-IV

(15,7) −0.16 ± 0.08 (65.1%) −0.23 ± 0.11 (70.9%) −0.22 ± 0.09 (70.0%) −0.09 ± 0.08 (58.0%)
(15,10) −0.15 ± 0.07 (62.2%) −0.19 ± 0.08 (71.9%) −0.29 ± 0.07 (74.7%) −0.17 ± 0.10 (65.3%)
(15,15) −0.16 ± 0.07 (62.5%) −0.16 ± 0.10 (66.2%) −0.28 ± 0.08 (72.9%) −0.22 ± 0.17 (67.7%)
(25,7) −0.17 ± 0.07 (65.6%) −0.26 ± 0.08 (74.0%) −0.22 ± 0.07 (70.2%) −0.02 ± 0.07 (51.6%)
(25,10) −0.16 ± 0.06 (63.9%) −0.26 ± 0.06 (75.2%) −0.25 ± 0.08 (72.6%) −0.11 ± 0.09 (60.3%)
(25,15) −0.17 ± 0.06 (62.1%) −0.22 ± 0.06 (71.5%) −0.28 ± 0.07 (73.4%) −0.26 ± 0.06 (71.7%)
(50,7) −0.20 ± 0.04 (67.4%) −0.32 ± 0.07 (78.1%) −0.21 ± 0.07 (71.0%) +0.02 ± 0.05 (46.5%)
(50,10) −0.19 ± 0.07 (64.6%) −0.35 ± 0.05 (79.2%) −0.27 ± 0.05 (74.7%) −0.04 ± 0.05 (53.6%)
(50,15) −0.16 ± 0.07 (60.7%) −0.30 ± 0.05 (75.2%) −0.28 ± 0.06 (73.2%) −0.24 ± 0.06 (71.1%)

this perspective highlights a potential interplay between capacity growth and geometric representa-
tion, offering a novel geometric perspective on the double descent phenomenon.

A.5 DETAILS ON EXPERIMENTAL SETUP

All experiments were implemented in Python. Neural networks were built using PyTorch (v2.7.1).
Default initialization schemes were used for the initial network weights. Networks were trained with
binary cross-entropy loss and optimized using the standard Adam optimizer (Kinga et al., 2015)
with a learning rate of 0.001. To solve the optimal transport problems required for computing
Ollivier–Ricci curvature, we relied on the POT Python Optimal Transport library (v0.9.5). For
constructing k-nearest neighbor graphs we used scikit-learn (v1.7.1), and for computing classical
community strength measures such as modularity we employed NetworkX (v3.5). All figures in the
main text were generated using Matplotlib (v3.10.5).

Our experiments were conducted on a local server with the specifications presented in the following
table.

We evaluate our approach on both synthetic and real-world datasets. The synthetic datasets, pre-
sented in Figure 12, are designed to exhibit different degrees of geometric and topological com-
plexity, providing controlled settings to study curvature dynamics. For real-world data, we consider
three benchmarks. MNIST (LeCun, 1998) consists of 28 × 28 grayscale images of handwritten
digits (0–9). We focus on visually similar digit pairs, i.e., 1 vs. 7 (MNIST-1v7) and 6 vs. 9 (MNIST-
6v9), to test the sensitivity of our approach to subtle shape differences. On Fashion-MNIST (Xiao
et al., 2017), which contains grayscale images of clothing items, we consider sneakers vs. sandals
(FMNIST-SvS) and shirts vs. dresses (FMNIST-SvD) as representative examples of fine-grained vi-
sual distinctions. Finally, on CIFAR-10 (Krizhevsky, 2009), a dataset of color natural images across
ten object categories, we study cars vs. planes (CIFAR) as an example of two closely related classes.
Figure 13 illustrates representative samples from the real-world datasets.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 10: Average local Ricci evolution coefficients on real-world data computed using the Spear-
man correlation. Values are means ± standard deviations over 50 independently trained networks per
architecture; proportion of vertices with negative coefficients is reported in parentheses. Networks
were randomly initialized.
(Width,Depth) MNIST-1v7 MNIST-6v9 FMNIST-SvS FMNIST-SvD CIFAR

(15, 7) −0.51 ± 0.08 (89.8%) −0.44 ± 0.12 (84.5%) −0.39 ± 0.06 (82.1%) −0.27 ± 0.06 (74.0%) −0.40 ± 0.11 (85.4%)
(15, 10) −0.52 ± 0.06 (90.8%) −0.51 ± 0.07 (90.2%) −0.36 ± 0.08 (82.8%) −0.31 ± 0.09 (80.1%) −0.39 ± 0.16 (85.8%)
(15, 15) −0.36 ± 0.06 (88.6%) −0.48 ± 0.05 (87.7%) −0.51 ± 0.10 (92.4%) −0.42 ± 0.10 (89.0%) −0.55 ± 0.19 (92.9%)
(25, 7) −0.50 ± 0.09 (88.6%) −0.45 ± 0.11 (85.1%) −0.36 ± 0.04 (79.0%) −0.27 ± 0.06 (74.2%) −0.45 ± 0.12 (89.0%)
(25, 10) −0.53 ± 0.07 (91.1%) −0.54 ± 0.08 (90.8%) −0.36 ± 0.08 (82.5%) −0.31 ± 0.08 (80.8%) −0.55 ± 0.14 (94.1%)
(25, 15) −0.49 ± 0.04 (88.5%) −0.48 ± 0.06 (87.9%) −0.49 ± 0.09 (92.6%) −0.47 ± 0.10 (91.2%) −0.68 ± 0.05 (96.9%)
(50, 7) −0.60 ± 0.07 (93.1%) −0.45 ± 0.11 (84.1%) −0.37 ± 0.05 (79.9%) −0.33 ± 0.08 (80.1%) −0.52 ± 0.12 (93.1%)
(50, 10) −0.58 ± 0.07 (93.1%) −0.59 ± 0.09 (92.9%) −0.39 ± 0.10 (84.2%) −0.43 ± 0.10 (88.4%) −0.70 ± 0.04 (97.9%)
(50, 15) −0.53 ± 0.03 (89.9%) −0.55 ± 0.05 (90.6%) −0.56 ± 0.06 (94.6%) −0.55 ± 0.07 (92.7%) −0.71 ± 0.03 (97.1%)

Figure 9: Modularity and normalized cut across network layers on real-world datasets. Reported
values are averaged over 50 independently trained networks with random initialization.

Across all our experiments, we train the networks to achieve training accuracy above 99%, ensuring
that our experiments evaluate meaningful learned feature representations.

A.5.1 HYPERPARAMETERS

Figure 14: Mean local Ricci
evolution coefficients for
different neighborhood sizes
k on real datasets. Reported
values are averaged over
50 independently trained
networks.

The computation of local Ricci evolution coefficients requires con-
structing k-nearest neighbor graphs to approximate the geometry of
the underlying manifold. The parameter k, which determines the
number of neighbors each point connects to and thus controls the
local scale of connectivity, plays a central role. Small values of k
capture fine-grained geometric structure but increase sensitivity to
noise and may disconnect the graph. Larger values emphasize more
global structure, at the cost of oversmoothing important local varia-
tions and raising the computational cost of Ollivier–Ricci curvature,
which scales cubically with the vertex degree. It is therefore not a
priori clear how to choose k, as it mediates a fundamental trade-off
between locality, robustness, and efficiency.

To investigate this trade-off, we conduct experiments across a range
of neighborhood sizes. Specifically, we vary k from 1% to 15% of
the total size of the point cloud X , and compute the local Ricci
evolution coefficients for each value of k. The resulting average
coefficients on the real-world data are shown in Figure 14, where
all reported values are averaged over 50 independently trained net-
works, each with width fixed to 50 and depth fixed to 10. We find that for small neighborhood sizes
(k between 1% and 5%), the local Ricci evolution coefficients remain relatively stable or even de-
crease. As k increases further, the coefficients tend to rise, reflecting a weaker correlation between
local Ricci curvature and the expansion or contraction of this region. This behavior is consistent
across all datasets and across all network widths and depths examined in our experiments. Table 12
reports the local Ricci evolution coefficients for different neighborhood sizes and for different widths

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 10: Curvature distributions for inter-community edges (orange) and intra-community edges
(blue) on MNIST 1-vs-7 before (left column) and after (right column) removing misclassified sam-
ples.

Table 11: Hardware specifications.

Components Specifications

ARCHITECTURE X86 64
OS Rocky Linux 8.10 (Green Obsidian)
CPU Intel Xeon Platinum 8480CL 56-Core (×2)
GPU NVIDIA H200 Tensor Core
RAM 40GB

and depths on the MNIST-1v7 dataset. Across all architectures, we observe the same qualitative pat-
tern as in Figure 14.

Table 12: Average local Ricci evolution coefficients on the MNIST-1v7 dataset across different
neighborhood sizes k. Values are means ± standard deviations over 50 independently trained net-
works per architecture; proportion of vertices with negative coefficients is reported in parentheses.
Networks were randomly initialized.

(Width,Depth) k = 10 k = 30 k = 50 k = 70 k = 100

(15, 7) −0.61 ± 0.07 (93.4%) −0.61 ± 0.07 (91.7%) −0.58 ± 0.08 (88.7%) −0.53 ± 0.07 (83.9%) −0.43 ± 0.06 (76.6%)
(15, 10) −0.63 ± 0.05 (96.6%) −0.65 ± 0.07 (95.4%) −0.60 ± 0.06 (91.8%) −0.56 ± 0.05 (88.0%) −0.45 ± 0.05 (79.0%)
(15, 15) −0.66 ± 0.06 (98.1%) −0.62 ± 0.17 (95.1%) −0.61 ± 0.07 (93.3%) −0.55 ± 0.08 (88.1.0%) −0.41 ± 0.09 (78.6%)
(25, 7) −0.60 ± 0.06 (93.3%) −0.59 ± 0.07 (91.0%) −0.58 ± 0.05 (89.2%) −0.52 ± 0.05 (84.4%) −0.44 ± 0.05 (77.2%)
(25, 10) −0.64 ± 0.04 (96.8%) −0.64 ± 0.05 (95.5%) −0.62 ± 0.05 (92.8%) −0.57 ± 0.05 (88.4%) −0.45 ± 0.03 (79.2%)
(25, 15) −0.65 ± 0.04 (98.2%) −0.65 ± 0.06 (97.0%) −0.60 ± 0.06 (94.2%) −0.55 ± 0.05 (89.1%) −0.43 ± 0.04 (79.6%)
(50, 7) −0.58 ± 0.07 (92.3%) −0.62 ± 0.05 (93.3%) −0.59 ± 0.05 (90.5%) −0.55 ± 0.05 (86.1%) −0.46 ± 0.05 (78.3%)
(50, 10) −0.65 ± 0.05 (97.6%) −0.67 ± 0.05 (96.9%) −0.65 ± 0.04 (94.6%) −0.58 ± 0.05 (89.7%) −0.47 ± 0.04 (80.4%)
(50, 15) −0.66 ± 0.05 (98.3%) −0.64 ± 0.06 (97.3%) −0.63 ± 0.06 (95.2%) −0.55 ± 0.05 (90.4%) −0.43 ± 0.04 (80.2%)

This behavior is expected, since we are approximating local geometric properties of the manifold
using k-nearest neighbor graphs. When the neighborhood scale becomes too large, the one-hop
neighborhoods of these graphs no longer correspond to genuinely local regions of the manifold.
Consequently, we expect a weaker correlation between the two quantities, as they cease to reflect
the local nature of the Ricci flow.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 12: The synthetic datasets.

Figure 13: The real-world datasets.

To balance these effects, we fix k = 5% of the total size of the point cloud in the experiments
reported in the main text. We additionally repeated the same experiments with k = 3% and k = 7%,
and observed quantitatively similar outcomes, showing that our findings are robust with respect to
the precise choice of neighborhood size.

A.5.2 LICENSES

We summarize the licenses of all code and datasets used in our experiments in Table 13.

Table 13: Licenses of code and datasets.
Model/Dataset License

MNIST (LeCun, 1998) CC BY-SA 3.0
Fashion-MNIST (Xiao et al., 2017) MIT
CIFAR-10 (Krizhevsky, 2009) MIT
PyTorch (Paszke et al., 2019) 3-clause BSD
Scikit-learn (Pedregosa et al., 2011) 3-clause BSD
POT (Python Optimal Transport) (Flamary et al., 2021) 3-clause BSD
NetworkX (Hagberg et al., 2008) 3-clause BSD
SciPy (Virtanen et al., 2020) 3-clause BSD

A.6 LLM USAGE DISCLOSURE

We used an LLM during paper writing to improve grammar and wording.

37

	Introduction
	Background and Notation
	Setting
	Ricci Curvature of Graphs
	Curvature Gap

	Ricci Flow

	Approximating Feature Geometry
	Theoretical Results
	Local Ricci evolution coefficients

	Experimental Analysis
	Local Ricci evolution coefficients
	Community structure
	Overfitting and local Ricci evolution coefficients
	Analysis across layers

	Discussion
	Appendix
	Extended related work
	Comparison of local and global Ricci coefficients

	Extended background
	Approximation of Ollivier-Ricci curvature
	Forman-Ricci curvature and its augmentations
	Measures of community strength
	Ricci flow

	Deferred proof details
	Random initialization
	Trained networks
	Impact of nonlinearity on feature geometry

	Additional experimental results
	Experimental confirmation of theoretical insights
	Local Ricci evolution coefficients
	Community structure
	Double descent phenomenon

	Details on experimental setup
	Hyperparameters
	Licenses

	LLM usage disclosure

