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Abstract

Current evaluation practices in Simultaneous001
Speech Translation (SimulST) systems typi-002
cally involve segmenting the input audio and003
corresponding translations, calculating quality004
and latency metrics for each segment, and av-005
eraging the results. Although this approach006
may provide a reliable estimation of translation007
quality, it can lead to misleading values of la-008
tency metrics due to an inherent assumption009
that average latency values are good enough010
estimators of SimulST systems’ response time.011
However, our detailed analysis of latency eval-012
uations for state-of-the-art SimulST systems013
demonstrates that latency distributions are of-014
ten skewed and subject to extreme variations.015
As a result, the mean in latency metrics fails to016
capture these anomalies, potentially masking017
the lack of robustness in some systems and met-018
rics. In this paper, a thorough analysis of the019
results of systems submitted to recent editions020
of the IWSLT simultaneous track is provided021
to support our hypothesis and alternative ways022
to report latency metrics are proposed in order023
to provide a better understanding of SimulST024
systems’ latency.025

1 Introduction026

In recent years, there has been a growing demand027

for real-world applications that use Simultaneous028

Speech Translation (SimulST) systems to provide029

real-time translation across languages. Current use030

cases include live broadcasts of news, lectures, and031

debates, where the continuous audio stream mainly032

consists of spoken speech. These applications re-033

quire systems that do not only deliver high-quality034

translations consistently, but also maintain low la-035

tency to ensure effective communication and keep036

the audience engaged with the audiovisual content.037

Current evaluation of latency in SimulST re-038

lies on automatic or reference segmentation of039

datasets (Di Gangi et al., 2019; Wang et al., 2020)040

to split the input audio and its translations, comput- 041

ing metrics for each segment, and averaging the re- 042

sults. However, this latency estimation for SimulST 043

systems has significant limitations (Iranzo-Sánchez 044

et al., 2021; Papi et al., 2024), and reported latency 045

figures may differ from the actual behavior of sys- 046

tems in a real-world scenario. 047

Beyond the segmentation-related issues identi- 048

fied in these previous work, we argue that a major 049

cause of the observed discrepancies may be due to 050

the exclusive reliance on the mean when reporting 051

results. While mean latencies allow to simplify sys- 052

tem comparison to speed up their development, we 053

hypothesize that by relying solely on the mean, we 054

may be overlooking spurious or faulty system be- 055

haviors, as well as anomalies in the current latency 056

metrics. While the presence of outliers is relatively 057

common when evaluating machine learning sys- 058

tems with any metric, their significance and impact 059

in latency evaluation of SimulST systems are cur- 060

rently being greatly underestimated. Thus, mean 061

values of latency metrics may result in misleading 062

conclusions when comparing SimulST systems. 063

In this paper we demonstrate that latency met- 064

rics, as currently reported by their average values, 065

are not a sufficiently accurate characterization of 066

SimulST systems’ response time in the presence 067

of latency distributions that do not follow a normal 068

distribution. To this purpose, latency metrics of 069

systems submitted to recent editions of the IWSLT 070

SimulST track were thoroughly analysed. Our find- 071

ings reveal that average latency metrics can mask 072

undesirable systems’ behavior, potentially result- 073

ing in misleading conclusions. This highlights the 074

need for more robust evaluation methods for la- 075

tency in SimulST systems. Our contributions are 076

summarized as follows: 077

• We performed a detailed analysis of recent 078

SimulST systems submitted to IWSLT in 079

terms of latency metrics. 080
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• This analysis demonstrates the limitations of081

current latency metrics as reported by their082

mean in order to detect undesirable SimulST083

systems’ response time, preventing a fair com-084

parison across systems.085

• We report a series of latency phenomena that086

must be considered and gauged when eval-087

uating SimulST systems to guarantee their088

consistent response time.089

• We propose the usage of a series of descriptive090

statistics that provide a more robust overview091

of SimulST systems’ response time and allows092

for a more holistic comparison.093

2 Related Work094

The evaluation of SimulST systems is performed095

in two dimensions: translation quality and la-096

tency. While translation quality is typically evalu-097

ated by using conventional translation metrics such098

as BLEU (Papineni et al., 2002; Post, 2018) and099

COMET (Rei et al., 2020, 2022; Guerreiro et al.,100

2024), multiple metrics have been developed for101

measuring the latency of SimulST systems. Ear-102

lier proposed metrics such as Average Proportion103

(AP) (Cho and Esipova, 2016) and Consecutive104

Wait Length (CW) (Gu et al., 2017) have been105

mostly superseded in usage by Average Latency106

(AL) (Ma et al., 2019) and proposed variants such107

as Differentiable Average Lagging (DAL) (Cherry108

and Foster, 2019) and Length-Adaptive Average109

Lagging (LAAL) (Papi et al., 2022) which try to110

remedy several limitations in the original AL met-111

ric definition. Another more recent metric which112

has received a fair amount of adoption is Average113

Token Delay (ATD) (Kano et al., 2023a,b), which114

tries to fix several limitations underlining AL based115

metrics. Additionally, Wein et al. (2024) and Mak-116

inae et al. (2024) have proposed metrics tailored117

towards the evaluation of the quality and latency of118

translations closer to human interpretation.119

As characterized in Iranzo-Sánchez et al. (2021),120

current latency measures for SimulST can be de-121

fined as a normalisation of a latency cost (in terms122

of words or milliseconds) required to generate a123

translation ŷ provided a source sentence x and its124

corresponding reference translation y125

L(x,y, ŷ) =
1

Z(x, ŷ)

∑
i

Ci(x,y, ŷ) (1)126

with Z being a normalisation function, i an index127

over the target positions and Ci a cost function for128

each target position i. Depending on the latency 129

metric, Ci is defined as 130

Ci(x,y, ŷ) =


g(i)− i−1

γ̂ AL

g(i)− i−1
γ LAAL

g′(i)− i−1
γ̂ DAL

T (ŷi)− T (xa(i)) ATD

(2) 131

with 132

g′(i) = max

{
g(i)

g′(i− 1) + 1
γ̂

(3) 133

and 134

a(i) = min

{
g(i)

i− d(i)
(4) 135

136
d(i) = (i− 1)− a(i− 1). (5) 137

where g(i) is the number of tokens or millisec- 138

onds read when a token is written at position i, and 139

γ̂ = |ŷ|
|x| and γ = max(|ŷ|,|y|)

|x| are target-to-source 140

length ratios. On the other hand, T (·) represents 141

the ending time of each input or output token, a(i) 142

the index of the input token corresponding to ŷi 143

and d(i) measures the difference between previous 144

input-translation prefix pairs (x≤g(i), ŷ≤i). The 145

normalisation function Z depends on the metric 146

according to 147

Z(x, ŷ) =

{
argmin
i:g(i)=|x|

i AL, LAAL

|ŷ| DAL, ATD
(6) 148

Papi et al. (2024) analyzed the behaviour of 149

current SimulST systems surveying the current 150

literature to define standardized terminology and 151

taxonomy across different SimulST papers, while 152

also identifying overlooked challenges in current 153

SimulST systems and recommendations for future 154

work in the field. Related to this, Xu et al. (2024) 155

identified how current computationally-aware met- 156

rics are incorrectly calculated in current standard 157

SimulST evaluation toolkits. Finally, Macháček 158

et al. (2023a) showed how MT quality metrics have 159

good correlation with Human Ratings for IWSLT 160

2022 and Sperber et al. (2024) analyzed the IWSLT 161

2023 evaluation campaign across different aspects. 162

3 Limitations of mean latencies 163

In this section, the limitations of mean latencies are 164

illustrated with a simplified example computed on 165

real data from IWSLT competitions to show how 166
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Mean P90 P95 P99 Max

System A 2.4 4.2 5.3 7.5 31.3
System B 2.4 3.5 3.9 4.8 10.4

Table 1: Comparison of latency mean, percentiles 90%,
95% and 99%, and maximum value for two SimulST
systems.

high latencies may be underestimated in SimulST.167

Table 1 shows a latency comparison in seconds168

between two SimulST systems falling in a low la-169

tency band and with similar translation quality. La-170

tency figures for the mean, percentile scores for171

90%, 95% and 99%, and the maximum value are172

reported. As observed, the mean latency of both,173

system A and B, is 2.4 seconds. However, system174

A provides 10% of their translations with a latency175

between 4.2 and 31.3 seconds, while system B does176

in the range from 3.5 to 10.4 seconds.177

If we were to pick between the two systems con-178

sidering conventional latency metrics based on the179

mean, system A would be considered as good as180

system B. However, by looking into latency dis-181

tribution across samples, the values of system A182

on approximately 10% of the samples significantly183

differs from the mean more than system B. By de-184

ploying system A instead of B in a real streaming185

ST scenario, the probability that latency spikes ap-186

pear is high enough to lead to an accumulation of187

delays that causes desynchronization between the188

audio stream and the translation text being gen-189

erated. This behaviour is highly undesirable for190

the end-user experience, and system A would not191

be an acceptable choice in a real streaming sce-192

nario, while system B with a more consistent la-193

tency would have been selected on the basis of its194

percentile scores.195

4 IWLST as a Case Study196

To investigate the limitations of the conventional197

latency metrics illustrated in the simplified example198

provided above, the latency of SimulST systems199

on IWSLT evaluation campaigns are analyzed and200

compared. In this study, the evaluation logs from201

IWSLT 2022 and 2024 Simultaneous Translation202

Speech-to-Text tracks (Anastasopoulos et al., 2022;203

Ahmad et al., 2024) were processed for all available204

team submissions provided in standard JSON files1205

1https://dl.fbaipublicfiles.com/simultaneous_
translation/iwslt2022_simul-s2t_logs.tgz

Year #L Task Tgt Avg Len #S #T

2022 3

Must-C
de 5.79 2580 5
ja 5.12 2841 3
zh 5.12 2841 3

IWSLT
de 6.25 2059 5
ja 5.38 1768 3
zh 5.42 2136 3

2024 1 IWSLT ja 5.92 1570 3

Table 2: Basic information of the evaluation logs from
IWSLT 2022 and 2024 SimulST tracks. The number
of latency bands, samples and teams are represented by
#L, #S and #T, respectively. In addition, tasks, target
languages (Tgt), average length in seconds are provided.

of the SimulEval toolkit (Ma et al., 2020). 206

Table 2 shows a general overview of the evalua- 207

tion logs involved in the study. The IWSLT 2022 208

SimulST task featured English (En) as the source 209

language, with three target directions evaluated: 210

German (De), Japanese (Ja), and Mandarin Chinese 211

(Zh). Five teams entered the German track, while 212

three teams do it for both, Japanese and Chinese 213

tracks. For the 2022 edition, three latency bands 214

were defined and systems were classified into low, 215

medium and high latency bands given by the AL 216

metric. For IWSLT 2024, we were only able to get 217

access to En-Ja results where three teams partici- 218

pated under a single latency band. In IWSLT 2024, 219

team names were anonymized as requested by the 220

IWSLT organizers. 221

Results for IWSLT 2022 shared tasks were avail- 222

able for the MuST-C 2.0 tst-COMMON parti- 223

tion (Di Gangi et al., 2019) and various segmenta- 224

tions of the official test set, for which the reference 225

segmentation of the datasets was selected. For 226

IWSLT 2024, results were only available on the 227

official test sets. We focused on the Speech-to-Text 228

track logs and left out the available Text-to-Text 229

logs from our study. 230

For the IWSLT 2022, the delays available in the 231

evaluations logs were used to recalculate AL and 232

DAL scores using the latest version of the SimulE- 233

val toolkit2. In addition, LAAL and ATD scores, 234

which were still not available at the time of the 235

shared task, were calculated. For each team the 236

2SimulEval 1.1.4: commit 536de82. We found slight dis-
crepancies between the metric scores values provided in the
original logs and those obtained with this SimulEval version.
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corresponding submitted system was selected. For237

those systems that did not comply with the latency238

constraints, we treat them as if they were in the239

nearest latency band. Finally, the CUNI-KIT par-240

ticipation in the En-De track was left out due to241

tokenization issues, while the Xiaomi participation242

in the En-Zh track was not available.243

5 IWSLT Analysis244

First of all, the evaluation logs were checked to245

detect the possible errors in the dataset, such as246

mismatched source-target pairs and misaligned seg-247

mentations. These errors would jeopardize the anal-248

ysis of latency solely explained by the performance249

of SimulST systems. As a result of this initial er-250

ror analysis, we decided to focus on the official251

IWSLT 2022 and 2024 test sets, as these proved252

largely error-free in contrast to the IWSLT 2022253

MuST-C sets. Results for the MuST-C partition can254

be found in Appendix A.255

5.1 Violin plots256

Figure 1 shows from top to bottom latency sample257

distributions as violin plots for AL, DAL, LAAL258

and ATD, respectively. For each latency metric259

the three teams participating in the official IWSLT260

2024 English-Japanese task are displayed. Each261

violin plot also represents the mean (orange dot),262

the median (white bar) when not overlapped with263

the mean, and the range from the first to the third264

quartile (horizontal bar). When comparing these265

four latency metrics, it can be observed that AL,266

DAL and LAAL exhibit similar shape distributions,267

while ATD distributions are clearly different from268

the rest. However, LAAL and DAL distributions269

in contrast to the AL distribution, stay in the posi-270

tive range avoiding negative delays. As expected,271

latency distributions for all the three teams possess272

right long tails for high latencies that translates273

into a certain degree of right-skewness. However,274

right-skewness in Team 1 and Team 2 is aggra-275

vated compared to Team 3, observing mean values276

clearly falling on the right-hand side of median val-277

ues. Based on these observations, we decided to278

focus our analysis on the latency metric LAAL, as279

this does not significantly impact the overall con-280

clusions. Figures for the rest of latency metrics are281

available in Appendix B.282

Figure 2 shows LAAL distributions for the283

IWLST 2022 team participations for English into284

German (top), Mandarin Chinese (middle) and285

0 2 4 6

AL

0 2 4 6

DAL

0 2 4 6

LAAL

0 2 4 6

ATD

Figure 1: AL, DAL, LAAL and ATD latency distribu-
tions for the IWSLT 2024 En-Ja task represented from
top to bottom as violin plots for the three teams. Long
tails extending beyond a 8-second delay were cropped
for clearer visualisation.

Japanese (bottom), across low (left), medium (cen- 286

ter) and high (right) latency bands. Compared to 287

the IWSLT 2024 latency distributions in Figure 1, 288

differences between systems are more pronounced 289

across all participations in IWSLT 2022, with sys- 290

tems seemingly following more unique distribution 291

shapes. However, most systems exhibit similar 292

mean values with slight latency differences of a 293

few tenths of a second that, as shown, concealed 294

widely different latency patterns. In addition, dras- 295

tic changes in distribution shapes can be observed 296
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0 5 10 0 5 10 0 5 10

(a) Top to bottom: FBK, HW-TSC, NAIST, UPV.

0 5 10 0 5 10 0 5 10

(b) Top to bottom: AISP_SJTU, CUNI-KIT, HW-TSC.

0 5 10 0 5 10 0 5 10

(c) Top to bottom: CUNI-KIT, HW-TSC, NAIST.

Figure 2: LAAL distributions for the IWSLT2022 team
participations for English into German (top), Mandarin
Chinese (middle) and Japanese (bottom), across low
(left), medium (center) and high (right) latency bands.

in all languages across teams and latencies bands.297

For example, latency distributions in the NAIST298

En-De 2022 systems for low and medium latency299

bands significantly differ from that for the high la-300

tency band. In general, long right tails representing301

high latencies are observed for all models in a sim-302

ilar way to the IWSLT 2024 systems. However,303

these right tails are specially long in IWSLT 2022304

systems for the high latency band when compared305

to those in the low and medium latency bands.306

5.2 Normal probability plots307

From the latency distributions in Figures 1 and 2,308

it can be observed that the shapes and right tails of309

these distributions significantly deviate from those310

expected in a normal distribution. Therefore, the311

mean may not properly capture the expected la-312

tency of these systems whose latency distributions313

move away from normality (Sainani, 2012). Thus, 314

we assessed the degree of normality of the latency 315

distributions as a proxy of how reliable the mean is 316

as a estimation of the system’s response time. 317

Shapiro–Wilk tests for normality (Shapiro and 318

Wilk, 1965) were performed for all systems and 319

latency metrics. In all tests the null hypothesis 320

with p-values below α = 0.01 was rejected. To 321

graphically represent how the latency distributions 322

deviate from normal distributions, normal proba- 323

bility plots (Dodge, 2008) were generated from the 324

evaluation logs. Normal probability plots are a vari- 325

ant of Q-Q plots (Wilk and Gnanadesikan, 1968) in 326

which observed values of our data sample are dis- 327

played with respect to the quantiles obtained from 328

a normal distribution, typically N (0, 1). More pre- 329

cisely, in our case sample-level latencies (y-axis) 330

are sorted from lowest to highest and distributed 331

along the percentiles (x-axis) of a N (0, 1). In this 332

way, the sample-level latency at the 50th percentile 333

is the median value leaving 50% of the data sam- 334

ples below, that is, data samples with a lower la- 335

tency. Intuitively, if our data samples comes from 336

a normal distribution, the resulting plotted points 337

would closely follow a straight line. Data samples 338

featuring a high curvature with distribution edges 339

diverging from a straight line denote latency distri- 340

butions away from normality. 341

Figure 3 shows the normal probability plot for 342

the English-Japanese IWLST 2024 systems. As 343

explained above, sample-level latencies are repre- 344

sented in the y-axis, along, in this case, percentiles 345

of a N (0, 1) are displayed in the x-axis. As ob- 346

served, Team 1 and Team 2 latency distributions 347

turn away from normality more clearly than Team 3 348

whose latency distribution approximately follows a 349

straight line. On the one hand, as already observed 350

in Figure 1, percentile values above 80%-90% for 351

Team 1 and Team 2 suffer from considerable longer 352

right tails than Team 3. On the other hand, normal 353

probability plots also allow to easily compare sys- 354

tems on the left side of the tail with Team 3 low 355

latencies being higher than those of the other teams. 356

To further illustrate the capability of normal 357

probability plots as a visual aid to compare systems 358

and capture latency distributions, Figure 4 shows 359

sample-level latencies for AISP_SJTU (top) and 360

HW-TSC (bottom) IWSLT 2022 En-Zh systems. 361

In this figure reference lines were plotted repre- 362

senting the ideal expected percentiles that would 363

be obtained from a normal distribution with the 364

observed mean and standard deviation of each sys- 365
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Figure 3: LAAL normal probability plot for IWSLT
2024 English-Japanese teams representing sample-level
latencies (y-axis) w.r.t. percentiles (x-axis) of a N (0, 1).

tem. While HW-TSC’s latency distribution in the366

low (orange), medium (magenta) and high (blue)367

latency bands seem to follow considerable normal368

distributions, AISP_SJTU’s latency distribution in369

the same bands tend to show a steep slope towards370

the right tails, denoting a higher frequency of sam-371

ples with increased latencies. Normal probability372

plots for other teams involved in the IWSLT 2022373

task are available in Appendix C.374

Having shown the capability of normal proba-375

bility plots to compare latency distributions across376

systems, Table 3 shows a complementary view of377

latency distributions to the normal probability plot378

in Figure 3. More precisely, Table 3 shows from379

left to right for each team in the English-Japanese380

IWSLT 2024 task: BLEU score, and LAAL mean381

(M), median (mdn), percentiles 90%, 95% and382

99%, and maximum value. This table is an exten-383

sion of Table 1 provided in the simplified example384

of Section 3, corresponding Team 2 and Team 3 to385

System A and System B, respectively. As observed,386

percentiles 90%, 95% and 99% allow to character-387

ize systems’ high latencies, while all three systems388

having similar mean and median values. Team 2389

exhibits the highest BLEU score at the cost of sam-390

ples with higher latency ending up with a sample of391

up to 31 seconds. In this case, one could consider392

that Team 3, while slightly behind in terms of trans-393

lation quality to that of Team 2, can be considered394

a better system due to its consistent lower latency395

towards the right tail of the distributions.396

Similarly to Table 3, Table 4 shows from top397

to bottom, low, medium and latency bands in the398

English-Chinese IWSLT 2022 task, and reporting399
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Figure 4: LAAL normal probability plot for IWSLT
2022 En-Zh AISP_SJTU (top) and HW-TSC (bottom)
participations representing sample-level latencies (y-
axis) w.r.t percentiles (x-axis) of a N (0, 1).

from left to right: BLEU score, and LAAL mean 400

(M), median (mdn), percentiles 90%, 95% and 401

99%, and maximum value. As shown, across all 402

bands the AISP_SJTU system achieves the high- 403

est BLEU scores and fairly low mean and me- 404

dian LAAL values ranging from 2.0 to 4.1 sec- 405

onds. However, its latency for percentiles 90%, 406

95% and 99% are significantly higher than those of 407

the other two teams, consistently suffering across 408

latency bands from considerable worst cases with 409

deltas ranging from 4.0 to 5.5 seconds between 410

percentiles 95% and 99%, and from 10.1 to 19.7 411

seconds between 99% and the maximum value. 412

Similar tables for English-German and English- 413

Japanese IWSLT 2022 are available in Appendix D. 414

5.3 Over-wait 415

When analysing high latency samples on the right 416

end of the distribution, a considerable amount of 417
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team BLEU M mdn p90 p95 p99 max

Team 1 12.1 2.1 1.9 3.3 4.0 6.5 14.6
Team 2 19.3 2.4 2.0 4.2 5.3 7.5 31.3
Team 3 17.9 2.3 2.2 3.5 3.9 4.8 10.4

Table 3: BLEU scores and LAAL mean (M), median
(mdn), percentiles 90%, 95% and 99%, and maximum
value in the English-Japanese IWSLT 2024 task.

team BLEU M mdn p90 p95 p99 max

Low

AISP_SJTU 30.7 2.0 1.6 3.3 4.5 8.6 18.5
CUNI-KIT 26.7 1.9 1.8 2.9 3.3 4.6 8.4
HW-TSC 19.1 2.2 2.2 3.4 3.7 4.6 12.2

Medium

AISP_SJTU 31.2 3.0 2.5 5.4 7.0 11.5 27.5
CUNI-KIT 27.0 2.9 2.8 4.4 5.1 6.6 10.4
HW-TSC 26.0 3.0 3.0 4.5 4.9 6.0 11.4

High

AISP_SJTU 32.0 4.1 3.8 6.8 8.2 12.2 32.1
CUNI-KIT 27.2 3.9 4.0 6.0 6.9 8.8 12.4
HW-TSC 27.6 3.6 3.6 5.5 6.1 7.3 12.5

Table 4: BLEU scores and LAAL mean (M), median
(mdn), percentiles 90%, 95% and 99%, and maximum
value in the English-Chinese IWSLT 2022 task for low
(top), medium (middle), high (bottom) latency bands.

long samples are detected in which some SimulST418

systems exhibit a degenerated behavior waiting419

approximately until the end of the input to generate420

the translation. We refer to this phenomenon as421

the over-wait of a system. In other words, the422

ratio between the latency score and the length of423

the input tends to one. While this behavior is to424

expected to appear in short samples, it is extremely425

undesirable in the case of long samples.426

Figure 5 illustrates the phenomenon of over-wait427

using sample-level latencies from the low (top),428

medium (middle) and high (bottom) latency bands429

generated by the AISP_SJTU system participat-430

ing in the English-Chinese IWSLT 2022 task. As431

shown, each sample is plotted according to its432

source length (x-axis) and its latency (y-axis), with433

points falling on the diagonal indicating that the434

system did not write any token until reading the435

complete input. Lighter and darker colors corre-436

spond to ratios closer and further to one, respec-437

tively. As expected, short samples tend to accumu-438

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Input Length (s)

LAAL (s)

latency = low — team = AISP SJTU

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Input Length (s)

LAAL (s)

latency = medium — team = AISP SJTU

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Input Length (s)

LAAL (s)

latency = high — team = AISP SJTU

Figure 5: Sample-level latencies versus input length in
low (top), medium (middle) and high (bottom) latency
bands for the participation of the AISP_SJTU team in
the English-Chinese IWSLT 2022 task.

late ratios close to one, while it is not so frequent 439

for long samples, but yet significant. 440

To characterize over-wait, let us define OW r
t as 441

the percentage of samples whose duration is higher 442

than t and the ratio between their latency score 443

and their input length exceeds r. Table 5 reports 444

over-wait OW r
5 with r ∈ {0.75, 0.85, 0.95, 1.00} 445
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r

Lat. band 0.75 0.85 0.95 1.00

low 6.5 6.5 6.2 6.2
medium 17.0 16.0 15.7 15.7
high 48.3 38.7 33.1 32.6

Table 5: Over-wait (%) considering samples longer than
5 seconds with ratio r ∈ {0.75, 0.85, 0.95, 1.00} in the
low, medium and high latency bands for the AISP_SJTU
team in the English-Chinese IWSLT 2022 task.

in terms of LAAL in the low, medium and high446

latency bands for the AISP_SJTU team in the447

English-Chinese IWSLT 2022 task. As expected,448

over-wait increases as we move from low over449

medium to high latency band. In the latter band,450

this means that in approximately one third of the451

samples the system waited for the end of the in-452

put to generate the full translation, behaving as a453

conventional offline translation system. The com-454

putation of over-wait for SimulST systems allows455

to easily detect this undesirable behavior in simulta-456

neous translation. Over-wait figures for the rest of457

IWSLT 2022 systems are available in Appendix E.458

6 Recommendations459

In the previous section, a series of tools for descrip-460

tive statistics have been presented and illustrated461

on real data to study and characterize the latency462

of SimulST systems. The results presented in the463

previous section has allowed us to reflect on effec-464

tive ways to report latency for SimulST systems in465

order to gain insight into their actual behavior in a466

real scenario.467

First of all, as already encouraged in the evalua-468

tion of translation quality (Post, 2018; Zouhar et al.,469

2024), it is strongly recommended to report, in ad-470

dition to the evaluation tool, the software version471

of the tool in order to guarantee reproducibility.472

Our analysis shows how reporting a measure473

of central tendency such as the mean is not able474

to properly capture the underlying latency of475

a SimulST system and misleading comparisons476

across systems could be drawn. For this reason,477

it is convenient to provide descriptive statistics478

that offer an overall view of the system latency be-479

yond the mean. In this sense, violin and specially480

normal probability plots were found significantly481

useful and enlightening to consistently compare482

systems and detect undesirable system latencies.483

In addition, normal probability plots proved to be 484

an effective tool for assessing the normality of la- 485

tency distributions, while also capturing other key 486

descriptive statistics such as skewness and kurto- 487

sis, as well as the differences in percentile values 488

across different systems. Complementarily, figures 489

reporting latencies for higher percentiles, along 490

with mean and median, are also recommended to 491

prove the robustness of the system latency. Finally, 492

over-wait scores are very valuable to identify the 493

percentage of samples in which a SimulST system 494

is exhibiting a degenerated offline behavior. 495

7 Conclusions 496

In this paper, we have critically examined the cur- 497

rent practices for evaluating latency in SimulST sys- 498

tems, focusing on the limitations of relying solely 499

on mean latency metrics. Through a detailed anal- 500

ysis of systems submitted to recent editions of the 501

IWSLT SimulST track, mean latency metrics have 502

demonstrated to fail to provide a complete view of 503

SimulST systems’ response time, particularly in the 504

presence of skewed latency distributions and high 505

latency values. Our findings reveal that the mean la- 506

tency can mask unacceptable latency values which 507

are critical for understanding the performance of 508

these systems in a real scenario. 509

Alternative methods have been proposed for re- 510

porting descriptive statistics of latency metrics, em- 511

phasizing the importance of considering the entire 512

latency distribution rather than just the mean value. 513

Specifically, violin and specially normal probabil- 514

ity plots were recommended to graphically report 515

latency values per percentile in order to provide a 516

more comprehensive view of the system behavior. 517

Our analysis underscores the need for more ro- 518

bust evaluation practices in SimulST research. We 519

strongly believe that by adopting the recommenda- 520

tions outlined in this paper, researchers and practi- 521

tioners can gain a deeper understanding of system 522

performance, leading to more reliable and consis- 523

tent SimulST systems in real-world applications. 524

Future work should continue to explore the de- 525

velopment of new metrics and evaluation method- 526

ologies that better align with the challenges of real- 527

time translation, ensuring that SimulST systems 528

meet the demands of end-users in dynamic and 529

continuous speech scenarios. In particular, the 530

more realistic stream-level latency metrics (Iranzo- 531

Sánchez et al., 2021) must be revisited taking into 532

account the lessons learned in this work. 533
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8 Limitations534

In this article we have restricted ourselves to the535

usage of non-computationally aware metrics to sim-536

plify the resulting analysis and to avoid possible537

inconsistencies such as those indicated in Sper-538

ber et al. (2024). Findings in non-computationally539

aware metrics can be easily extrapolated to com-540

putationally aware measures, since the former can541

be understood as a best case scenario for the latter.542

In addition, this study was performed on a limited543

subset of languages and models obtained from the544

past IWSLT editions. A more extensive study with545

larger models (Macháček et al., 2023b; Commu-546

nication et al., 2023; Labiausse et al., 2025), lan-547

guages directions and datasets may provide deeper548

insight on distinct aspects of latency evaluation.549
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A IWSLT 2022: MuST-C784

Figure 6 shows MuST-C violin plots for LAAL.785

Figures 7, 8 and 9 show LAAL normal probability786

plots for En-De, En-Zh and En-Ja of the MuST-C787

partition from IWSLT 2022. Figure 10, 11 and 12788

show LAAL vs Input length over-wait graphs for789

En-De, En-Zh and En-Ja of MuST-C from IWSLT790

2022.791

B IWSLT 2022: Official, Other Metrics792

Figures 13, 14 and 15 show violin plots for AL,793

DAL and ATD on the official IWSLT 2022 datasets794

for all available languages.795

C IWSLT 2022: Normal Probability Plots796

Figures 16, 17 and 18 show LAAL normal proba-797

bility plots for En-De, En-Zh and En-Ja of IWSLT798

2022.799

D IWSLT 2022: Additional Tables800

Tables 6 and 7 show numerical results for En-De801

and En-Ja.802

E IWSLT 2022-2024: Over-wait803

Figure 19, 20 and 21 show LAAL vs Input length804

over-wait graphs for En-De, En-Zh and En-Ja of805

IWSLT 2022. Figure 22 shows results for IWSLT806

2024 En-Ja.807

0 5 10 0 5 10 0 5 10

(a) En-De. Top to bottom: FBK, HW-TSC, NAIST, UPV.

0 5 10 0 5 10 0 5 10

(b) En-Zh. Top to bottom: AISP_SJTU, CUNI-KIT, HW-TSC.

0 5 10 0 5 10 0 5 10

(c) En-Ja. Top to bottom: CUNI-KIT, HW-TSC, NAIST.

Figure 6: LAAL distributions for the IWSLT 2022 Must-
C team participations. From left to right, low, medium
and high band systems for each language.
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Figure 7: IWSLT2022 En-De MuST-C Test set LAAL normal probability plot.
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Figure 8: IWSLT2022 En-Zh MuST-C Test set LAAL
normal probability plot.
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Figure 9: IWSLT2022 En-Ja MuST-C Test set LAAL
normal probability plot.
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Figure 10: Over-wait graphs for MuST-C 2022 LAAL En-De.
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Figure 11: Over-wait graphs for MuST-C 2022 LAAL En-Zh.
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Figure 12: Over-wait graphs for MuST-C 2022 LAAL En-Ja.
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Figure 13: AL distributions for the IWSLT 2022 official
test sets team participations. From left to right, low,
medium and high band systems for each language.
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Figure 14: DAL distributions for the IWSLT 2022 offi-
cial test sets team participations. From left to right, low,
medium and high band systems for each language.
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Figure 15: ATD distributions for the IWSLT 2022 offi-
cial test sets team participations. From left to right, low,
medium and high band systems for each language.

team BLEU M p50 p90 p95 p99 max

Low

FBK 10.2 0.9 0.8 1.6 2.0 3.4 10.6
HW-TSC* 13.9 1.9 1.8 2.9 3.3 4.3 12.5
NAIST 13.4 1.0 0.9 1.7 2.0 2.9 8.4
UPV 16.0 1.0 0.9 1.6 1.9 2.8 8.9

Medium

FBK 20.1 1.9 1.8 3.0 3.5 4.9 9.3
HW-TSC 19.1 2.6 2.5 3.8 4.3 5.4 10.9
NAIST 15.2 1.8 1.5 3.1 3.8 8.4 18.7
UPV 21.1 1.9 1.8 2.8 3.1 4.3 10.9

High

FBK 23.6 4.0 4.0 5.8 6.5 8.0 12.0
HW-TSC 19.7 4.2 4.2 6.2 6.9 8.0 13.1
NAIST 15.4 4.6 3.5 9.5 12.5 17.7 28.3
UPV 23.5 3.5 3.6 5.0 5.4 6.8 10.9

Table 6: Metric Values for Official Test Set for
IWSLT2022 English to German. The low HW-TSC
system did not originally comply with the latency con-
straints.

team BLEU M mdn p90 p95 p99 max

Low

CUNI-KIT 16.5 2.7 2.6 4.2 4.7 5.9 10.0
HW-TSC 5.6 2.4 2.3 3.6 4.1 4.8 12.7
NAIST 8.7 2.3 2.2 3.3 3.6 4.3 9.8

Medium

CUNI-KIT 16.6 4.1 4.1 6.7 7.5 9.6 13.5
HW-TSC 11.7 3.1 3.1 4.7 5.1 6.2 12.0
NAIST 9.4 3.4 2.4 7.1 9.3 14.6 32.1

High

CUNI-KIT 16.7 4.4 4.4 7.3 8.3 10.7 18.3
HW-TSC 11.4 3.6 3.6 5.7 6.2 7.3 13.2
NAIST 9.8 4.6 3.4 9.3 12.2 17.0 32.1

Table 7: Metric Values for Official Test Set for
IWSLT2022 English to Japanese.
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Figure 16: IWSLT2022 En-De Official Test set LAAL normal probability plot.
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Figure 17: IWSLT2022 En-Zh Official Test set LAAL
normal probability plot.
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Figure 18: IWSLT2022 En-Ja Official Test set LAAL
normal probability plot.
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Figure 19: Over-wait graphs for IWSLT 2022 LAAL En-De.
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Figure 20: Over-wait graphs for IWSLT 2022 LAAL En-Zh.
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Figure 21: Over-wait graphs for IWSLT 2022 LAAL En-Ja.
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Figure 22: Over-wait graphs for IWSLT 2024 LAAL En-Ja.
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