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Abstract

Transfer Learning (TL) is a promising technique to improve the performance of
a target task by transferring the knowledge of models trained on relevant source
datasets. With the advent of advanced depth models, various methods of exploiting
pre-trained depth models at a large scale have come into the limelight. How-
ever, for multi-label classification tasks, TL approaches suffer from performance
degradation in correctly predicting multiple objects in an image with significant
size differences. Since such a hard instance contains imperceptible objects, most
pre-trained models lose their ability during downsampling. For the hard instance,
this paper proposes a simple but effective classifier for multiple predictions by
using the hidden representations from the fixed backbone. To this end, we mix
the pre-logit with the intermediate representation with a learnable scale. We show
that our method is effective as fine-tuning with few additional parameters and is
particularly advantageous for hard instances.

1 Introduction
Transfer learning (TL) methods have been developed into two categories: finetuning and linear
probing. While finetuning aims to fully optimize pre-trained network for target task, linear probing
trains only a head classifier while freezing the backbone network [19, 20, 10], which they share a
trade-off between efficiency and optimization. Nevertheless, both methods show great success in
downstream tasks such as object detection [3], segmentation, and classification [24, 18]. Despite the
promise of TL, multi-labeled classification (MLC) task remains an arduous challenge since hidden
representations from existing pre-trained networks (e.g., ResNet or Swin-Transformer) must capture
a wide range of objects, from tiny imperceptible objects to large clear objects.

To address this challenge, we first conduct a pilot experiment to take a look at images with low
prediction scores, which are cluttered with small imperceptible objects and large distinct objects,
termed as hard instances. Here, the pre-trained network is linear probed with MS-COCO dataset [22]
(The concrete process is reported in AppendixA.1). Interestingly, these hard instances frequently
fail to be predicted and have visual commonalities regardless of class in that they contained multiple
objects of various sizes, including small cluttered objects. This observation leads us to three insights:
(1) lower class-wise performance has no relationship with class size or model architecture, (2) lower
class-wise performance can be attributed to containing more hard instances than others, and (3) the
representation obtained from the pre-trained network is imperfect.

In this paper, we present a simple but effective method by using intermediate representations as hints
in knowledge transfer inspired by the works [36, 30]. We propose a new representation summarization
(RS) module, which prevents the loss of spatial information from imperceptible objects by properly
transforming it into a usable form (Figure 1 (A)). Subsequently, we mix a RS module with the
feature extracted from the backbone with an adequate portion. More precisely, we use an adaptive
mix-up scale which learns from the pre-logits (Figure 1(B)). Hidden representations printed during
propagation can be good sources for model training. We show that mixing the two representations
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Figure 1: Pipeline overview: (A) Representation Summarization (RS) module refines intermediate
representation. (B) Scale Learning (SL) layer learns a proper ratio using a feature extracted from a
pre-trained network. Processed representation from (A) is properly mixed with the extracted feature
by the proportion predicted by (B). Hence, the mixed output is passed to the linear head classifier for
training.

gives comparable performance to fine-tuning where the scale value indicates the level of hardness of
instance.

2 Method: Intermediate Representation as a Hint
In order to use intermediate representation, two questions need to be answered: how to use it with
feature output extracted from the backbone and how much it involves training the classifier. The
following subsections describe two auxiliary branches that address the above requirements.

2.1 Representation Summarization (RS)

For a network of L layers, an intermediate representation at the l-th layer, zl ∈ RH×W×C , is
expressed as follows:

zl = Wl · hl−1 + bl ; hl = ϕ(zl) (1)
where h0 = x is the input, ϕ is the activation function, and zL ∈ RN is the final output from given
network.

Vision models learn to summarize input into a dense representation with downsampling operation.
More specifically, linearly embedded token [24] or feature map [18, 14] shrinks with downsampling
operation as channel size C increases. In order for the intermediate representation to be dense and
informative enough, we adapt the perspective from Hu et al. [15], which views a feature map as a
collective of local descriptors whose summarized statistics express input. Thus, the Representation
Summarization (RS) module is composed of 2d pooling to reduce channel-wise statistics and MLP
to learn inter-dependencies between channels. The representation transformed by the MLP layer is
activated by sigmoid throughout all experiments, but any other activation function can be applied.
The transformed representation is denoted by

ẑl = MLP(Pool2d(zl)). (2)

Note. For patch representation in works such as [24], the spatial dimension is already mixed in the
patch merging step. Therefore, we directly flatten the representation and apply pooling 1d.

ẑl = Pool1d(z′l)) (3)

where z′l denotes flattened zl.

2.2 Representation Mixup (RM)

Previous works either use representation extracted from Yim et al. [36] or use weights from layers
of pre-trained models by simple averaging [34] or partial selection algorithm [10]. Along the line
of this belief, intermediate representation can act as hints for capturing hard false negative samples
with simple aggregation methods such as weighted sum or concatenation. The most straightforward
method is to mix them in proper portion. We are inspired by several works on data augmentation
using interpolation for mixing up in input space or feature space for better representation learning
[39, 31]. An interpolation of hidden representations zi, zk with respect to zi is expressed as

z′ = zi + α(zk − zi) (4)
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Table 1: Mean average precision (mAP) and various metrics of transfer learning methods (FT: full
fine-tune, RM: representation mixup (proposed), LP: linear probe) and previous state-of-the-art
architectures reported from [6, 2, 5] on MS-COCO. The number of parameters are marked ≪1, <1 if
less than 0.5M and 1M respectively.

Methods Resolution Params (M) mAP CP CR CF1 OP OR OF1

ML-GCN [6] 448 x 448 46 83.0 85.1 72.0 78.0 85.8 75.4 80.3
Tresnet-l [2] 448 x 448 55 86.6 87.2 76.4 81.4 88.2 79.2 81.8
MlTr-m [5] 384 x 384 62 86.8 84.0 80.1 81.7 84.6 82.5 83.5

Pre-trained Network TL method

Swin-L
FT 384 x 384 195 74.9 83.4 46.4 64.9 88.0 54.6 70.6
RM 384 x 384 ≪1 81.0 85.1 68.7 76.1 81.3 72.4 76.6
LP 384 x 384 ≪1 76.9 84.3 60.7 70.5 87.7 64.0 74.0

Swin-B
FT 384 x 384 87 73.4 84.4 43.3 60.7 89.1 51.7 68.0
RM 384 x 384 ≪1 79.9 83.9 67.5 75.0 85.8 68.8 76.8
LP 384 x 384 ≪1 72.9 83.9 47.6 60.7 88.6 55.4 68.2

ResNet101x3
FT 448 x 448 387 79.4 85.5 64.9 73.9 85.3 68.6 76.1
RM 448 x 448 5 79.4 87.0 65.1 74.4 86.9 67.9 76.2
LP 448 x 448 <1 77.5 84.9 62.0 71.7 87.0 65.3 74.6

ResNet50x3
FT 448 x 448 216 75.1 76.4 36.7 49.6 82.1 46.5 59.3
RM 448 x 448 5 79.3 85.4 64.6 73.5 86.5 67.6 75.9
LP 448 x 448 <1 75.6 83.5 61.1 71.2 84.3 64.2 73.4

where α denotes the scaling factor.

Given pre-trained backbone f , newly initialized linear classifier g, and input image x, the final output
score s is s = g ◦ f(x). The final output representation from the pre-trained backbone is f(x) = zL.
The pre-trained backbone can be expressed as two parts f(x) = f2 ◦ f1(x) and intermediate
representation h can be retrieved while passing partial backbone f1. The final representation z′L
passed to classifier g can be retrieved as follows:

h = f1(x), ĥ = RS(h) ∈ RN , z′L = ĥ · α+ f2(h) · (1− α) (5)

In this paper, following the recent works, we design a learninable parameter α by summarizing the
hidden representation into a single value between 0 and 1 as

α = σ(W · zL + b). (6)

While previous mixup-based works [41, 13] use a beta distribution for α, here we use an auxiliary
linear layer to learn the level of mix in an instance-wise manner.

3 Experiments
Result Experiments are conducted on MS-COCO [22] and Pascal-VOC [11]. The proposed method
RM is compared with conventional TL methods, i.e., to linear probe (LP) and to full fine-tune
entire network (FT). As shown in Table 1, the number of parameters involved in training of RM
is drastically smaller than that of any other comparisons [5, 2, 6] as well as FT. With the small
number of parameters that involve in optimization, the proposed method gives comparable or better
performance to fine-tuning. Also, note that our method requires much less training. Models in
comparisons [5, 2, 6] require 100, 80, and 200 epochs respectively to achieve the desired performance,
while ours show comparable results in 30 epochs. Details for setting are in AppendixA.2. Metrics
show that the proposed method has the most gain in recall (CR, OR), meaning that the method can
identify false negative hard instances as true positives. All the results from RM in Table 1 are of
representation extracted from the first block (RM@1). Comparisons between different blocks are
reported in Table2a, 2b.

Activation Maps Figure 2 shows activation maps of samples in MS-COCO with ResNet101x3
trained with proposed method with representation extracted from 1st block. Here, we use an
EigenCAM method [25] for printing the activation maps. The samples are all true positives and
show top 3 highest scores within each class when inferred by the aforementioned model while had
showed worst 3 lowest scores when inferred by baseline (i.e., linear probing). The labels which class
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Table 2: MAP of intermediate representation mixup extracted from different blocks (@1, @2, @3)
compared with other methods, LP, and FT.

(a) MS-COCO dataset.

ResNet101x3 ResNet50x3 Swin-B Swin-L

LP 77.53 75.38 72.30 76.68
FT 79.40 79.40 73.44 74.88

RM@1 79.44 79.31 79.89 81.01
RM@2 79.47 79.14 79.90 80.76
RM@3 79.45 79.22 78.91 80.82

(b) Pascal-VOC dataset.

ResNet50x3 Swin-B
LP 93.7 91.6
FT 95.5 96.4

RM@1 93.4 93.9
RM@2 93.5 93.9
RM@3 93.5 93.9

(a) banana (b) Block1 (c) Block2 (d) Block3 (e) Block4

(f) toaster (g) Block1 (h) Block2 (i) Block3 (j) Block4

Figure 2: Class activation maps with EigenCAM [25] at each block of ResNet101x3 trained with
proposed method, which support class label (banana, suitcase, toaster).

activation maps support for are presented in leftmost column. As can be seen from original images,
the corresponding objects are unclear and partially occluded. The activation maps show they are only
captured by lower blocks.

Table 3: 8 Classes with largest mean scale values.
Class banana toaster orange apple microwave oven bird brocoli

Scale value α 9.09E-10 7.91E-10 7.47E-10 6.92E-10 6.70E-10 6.34E-10 6.12E-10 6.07E-10

Mixup Scale Values Table 3 shows 10% largest class-wise mean scale values out of 80 classes,
extracted from the inference results of the proposed method on MS-COCO validation set with
ResNet101. In short, classes with large values were found to have shown poor performance in
baseline (LP). They are marked in bold which belong in Figure 3(b). This implies that the greater the
value, the more support can be provided to classes with low performance.

4 Conclusion and Future Work
This paper explores the effect of using intermediate representation, which can deal with hard samples
in multi-label classification. Mixing up intermediate representation can maintain the efficiency which
lies in linear probing and properly captures spatial information that could be lost when a feature
is extracted in deep backbone networks. We provide methods to effectively refine the raw hidden
representation into a form that could be interpolated with features extracted from a backbone network.
The proposed method requires very few additional parameters from linear probing and achieves
comparable performance to full fine-tuning. We confirm that intermediate representation can act
as a hint for exploiting spatial information from any part of deep neural networks. We suggest
future works could explore methods for instance-wise training using intermediate representation from
different layers, which could pave the way for adaptive linear probing.
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A Appendix

A.1 Investigation

Here, the architectures are trained on ImageNet21k (or ImageNet22k), and the linear classifier is
trained for 50 epochs with SGD optimizer of momentum 0.9. For learning rate, we use one cycle
learning rate scheduler with maximum learning rate 0.1 following recent work on MLC in MS-COCO
[29].

Investigation. In Figure 3, we list the best and worst 10% performing classes for various backbone
networks, which shows consistency throughout all networks. Then, for each class in poor performance,
we arrange images that contain it as a true label according to model output scores. They often contain
small objects that are hard to recognize and partially occluded. Figure 4 is one of the examples that
shows the object labels take part in different number of areas. Further examples can be found in
Appendix A.

Hard Samples in MLC. As we visually explore samples throughout each class, typical hard
samples have a small part of an object co-occurred with other larger-sized objects. Previous works [12]
that analyze intermediate feature maps can resort to CNN stimulus in final output proved a high
correlation between average precision and average part size of each class. For example, Figure 5
contains multiple labels of various sizes. With explainable visualization method [4], we look through
how each layer reacts to the class label "banana" differently. As expected, the small-sized object
reacts the most on intermediate layers ((d) and (h)), but this reaction disappears on the last layer.
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(a) Best performing classes
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8 Worst performing classes

(b) Wost performing classes

Figure 3: Class-wise performance per backbone out of 80 classes in total. The backbone networks
mostly share similar result. We note that these classes ranged widely in terms of class size.

(a) Top 3 largest probabilities (b) Top 3 smallest probabilities

Figure 4: Images with ‘Banana‘ class whose predicted probability is either the largest(a) or small-
est(b).

(a) Input Image (b) at stage1 (c) at stage2 (d) at stage3 (e) at stage4

Figure 5: Original Image of class labels [backpack, banana, bed, tv, book, bottle, person] and
GradCAM++ results [4].

Figure 5 shows that this complicated sample means many false negatives vanish as passing large and
deep backbone networks. Therefore, the performance has room for improvement by capturing the
hard samples, and intermediate representations can be the key to the solution.

A.2 Experiment Setting

Datasets. We use backbone network pre-trained on ImageNet-21K or ImageNet-22k [28, 8] which
contains upto 14.2 milllion images from 22K classes. For evaluation of proposed method, we use
MS-COCO [22], Pascal-VOC [11] which contain 2.5 million annotated objects in 328k images and
24,640 annotated objects in 9,963 images, respectively.

Metrics. For multi-label classification task, the labels are predicted as positive if the confidences of
them are greater than 0.5. We compute class-wise precision (CP), recall (CR), F1 (CF1) and overall
precision (OP), recall (OR) and F1 (OF1). Those not reported in main section are reported in A.
Recent works on MLC [6, 29, 21, 35, 5] report mean average precision (mAP) as main metric. Hence,
we follow the convention.
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Table 4: Classwise AP difference between LP and RM on MS-COCO dataset.
class snowboard surfboard car toilet refrigerator broccoli traffic light truck banana cell phone

LP 13.53 37.51 40.08 45.49 45.71 51.45 56.31 57.69 60.60 60.96
RM 16.37 47.08 40.44 46.82 45.21 54.29 61.39 60.60 62.95 62.43

difference 2.83 9.57 0.35 1.33 -0.50 2.85 5.08 2.91 2.35 1.47

class pizza sink boat train baseball bat toothbrush backpack bed mouse chair

LP 61.50 62.37 63.19 64.57 64.95 65.01 65.64 66.36 66.92 67.00
RM 63.30 63.08 65.75 65.20 66.69 65.93 66.99 66.98 69.98 68.88

difference 1.80 0.71 1.56 0.63 1.74 0.92 1.35 0.62 3.06 1.88

class tv toaster microwave orange cat parking meter suitcase sandwich laptop potted plant

LP 67.25 68.26 68.99 69.29 69.67 70.34 70.96 71.75 73.69 74.04
RM 68.82 69.38 74.1 73.72 71.08 70.89 74.44 75.62 74.26 75.19

difference 1.57 1.12 5.11 4.43 1.41 0.55 3.48 3.87 0.57 1.15

class oven donut airplane bench fire hydrant bear bus dog fork kite

LP 74.47 74.69 75.47 75.9 76.11 76.38 76.67 77.02 77.28 78.97
RM 76.00 76.48 79.56 78.44 79.28 78.78 77.67 79.84 78.13 80.50

difference 1.53 1.80 4.10 2.54 3.17 2.40 1.00 2.81 0.85 1.54

class zebra dining table umbrella horse apple scissors remote bird cow knife

LP 79.47 80.07 80.09 80.16 80.65 80.93 81.19 81.95 82.67 82.81
RM 79.66 83.12 81.92 81.19 81.12 82.81 85.26 82.7 84.79 85.13

difference 0.18 3.05 1.84 1.03 0.46 1.88 4.07 0.75 2.12 2.32

class baseball glove skateboard clock vase frisbee book cake handbag motorcycle couch

LP 83.18 83.26 83.53 86.15 87.17 87.79 88.97 89.03 90.52 90.66
RM 83.83 85.43 85.47 88.5 88.44 88.44 90.03 90.24 93.35 91.71

difference 0.65 2.17 1.93 2.36 1.27 0.64 1.05 1.21 2.83 1.05

class tie keyboard wine glass bicycle sports ball bottle elephant stop sign cup sheep

LP 91.75 92.88 93.08 93.1 94.38 94.53 94.68 94.75 95.65 95.87
RM 93.80 93.88 94.45 94.59 95.45 95.21 95.71 95.79 96.03 97.04

difference 2.04 1.01 1.36 1.49 1.07 0.69 1.03 1.04 0.37 1.16

class hot dog teddy bear skis person spoon bowl hair drier giraffe carrot tennis racket

LP 95.94 96.03 96.11 96.73 97.54 97.64 98.57 98.58 99.04 99.16
RM 96.43 97.56 96.61 96.96 98.34 97.71 98.25 98.57 99.18 99.42

difference 0.49 1.54 0.50 0.23 0.80 0.07 -0.32 -0.01 0.14 0.26

Implementation Details. We use SGD optimizer with momentum 0.9, MultiLabelSoftMarginLoss
and one-cycle learning rate scheduler. The chosen maximum learning rate is 0.1 by default, except
for fine-tuning parameters which are set to 0.01. We checked for convergence in order to figure
out appropriate length of training epochs and 30 was enough to show the gain. In addition, the aim
of transfer learning is to achieve efficacy in training. Therefore, all the results reported are best
results during training for 30 epochs. We tried using augmentation methods such as cutout [9] and
RandAugment [7], but decided to omit them for the effect was minimal due to short training time.

A.3 Classwise AP

Table 4 shows the classwise AP difference between LP and RM on MS-COCO dataset. We verify
that the proposed RM method outperforms LP method in most classes. Especially, we can observe
that certain minor classes are significantly improved.

A.4 Related Work

To improve the transferability against a target domain, the methods for transfer learning have been
evolving into two main directions: (1) Architecture-based Transfer Learning, which utilizes the
weight parameters of pre-trained networks, and (2) Feature-based Transfer Learning, which designs
new objective functions to transfer the output knowledge of pre-trained networks.

Architecture-based Transfer Learning Architecture-based transfer learning approaches focus
on finding the optimal backbone model and its representation for a given target task. Alain and
Bengio [1] use an auxiliary linear classifier to evaluate intermediate layers of black box deep neural
networks. Kumar et al. [20] show accuracy trade-off between in-distribution and out-of-distribution
(OOD) of target datasets with fine-tuning and suggest a fine-tuning strategy for OOD distribution
with initialization of linear-probed head. Also, greedy selection of pre-trained models and averaging
their weights can show similar results as the logit ensembling method concerning the flatness of loss
and confidence (Wortsman et al. [34]). Kirichenko et al. [17] use linear probing linear classifier as a
tool to separate pre-trained networks from spurious features and focus on core features.
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Feature-based Transfer Learning The indispensable key to the success of deep neural networks
is huge parameters. However, the increase in performance cannot be achieved without increasing the
training and testing time. Therefore, several methods have been developed to save on training costs
with pre-trained networks. Knowledge transfer aims to make the network smaller while maintaining
the performance of pre-trained large neural networks. For this purpose, the knowledge from the
teacher network is distilled into a smaller student network. Romero et al. [30] use interlayer values
used as clues to enable knowledge distillation for deeper and sparser student networks. Yim et al.
[36] present a hint-based transfer learning technique in which the hint is generated from features of
two intermediate layers of the teacher network. Evci et al. [10] propose a TL method that selects
intermediate features of the backbone network to train the classifier head. Likewise, some recent
work focuses on measuring values with pre-trained weights for matching source models and target
data that do not require fine-tuning [16, 27, 26, 37].

Multi-label Classification Many recent advanced deep learning architectures have been developed
for MLC tasks [23]. Wu et al. [35] deal with tail class instances in long-tailed distribution and propose
re-sampling and re-weight-based approach to improve training. However, most ML approaches utilize
both image and label embedding to effectively learn semantic label dependency and relevance between
them. Wang et al. [32] use RNN to learn high-order label dependencies in an image. Chen et al.
[5] build a directed graph over object labels and employ GCN to model the label correlations, and
learned label representation is mapped to the classifier. Wang et al. [33] add a lateral connection
between GCN classifier and CNN backbone at intermediate layers so that label information can
be injected into the backbone. Furthermore, more recent approaches use attention models such as
GAT or Transformer, where attention is computed on labels and images. Cheng et al. [6], Yuan
et al. [38] introduce Transformer models for MLC tasks in which self-attention is applied to image
representation. Some researchers [40, 29, 21] use learnable label embedding initialized by the
pre-trained model to compute attention with the input image.
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