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ABSTRACT

In medical imaging, inverse problems aim to infer high-quality images from in-
complete, noisy measurements, aiming to minimize expenses and risks to patients
in clinical settings. The Diffusion Models have recently emerged as a promising
approach to such practical challenges, proving particularly useful for the zero-shot
inference of images from partially acquired measurements in Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT). A central challenge in this ap-
proach, however, is how to guide an unconditional prediction to conform to the
measurement information. Existing methods rely on deficient projection or inef-
ficient posterior score approximation guidance, which often leads to suboptimal
results. In this paper, we propose a Meta-Guided Diffusion Model (MGDM) that
tackles this challenge through a bi-level guidance strategy, where the outer level
solves a proximal optimization problem to impose measurement consistency and
the inner level approximates the measurement-conditioned posterior mean as the
initial prediction. Furthermore, we introduce a refinement phase, termed the ‘dis-
crepancy gradient’, designed to reduce the distance between the outputs of the
aforementioned levels, thereby acting as an effective regularizer to further en-
hance data consistency in the recovered samples. Empirical results on publicly
available medical datasets in MRI and CT highlight the superior performance of
our proposed algorithm, faithfully reproducing high-fidelity medical images con-
sistent with measurements, and notably mitigating the generation of hallucinatory
images observed in state-of-the-art methods under similar conditions.

1 INTRODUCTION

Contemporary diagnostic medicine highly relies on advanced, non-invasive imaging techniques,
notably Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). Their unparalleled
accuracy in capturing detailed anatomical measurements is of paramount importance for identifying
internal abnormalities. In MRI, the Fourier transform of the spatial distribution of proton spins from
the subject is acquired as measurements, which is commonly referred to as ‘k-space’ in medical
imaging contexts. In the case of CT, raw measurements, also known as ‘sinograms’, are derived
from X-ray projections obtained at various orientations around the patient. However, full k-space
and sinogram acquisitions in MRI and CT often require prolonged scan durations and may pose
health risks due to increased heat and radiation exposures (Lustig et al., 2007; Brenner & Hall,
2007). In light of these implications, there have been ongoing efforts toward reducing the number
of measurements, exemplified by undersampled k-spaces in MRI and sparse-view sinograms in CT.
While advantageous in accelerating medical imaging procedures, sparsification and undersampling
introduce difficulties in reconstructing accurate and high-quality images (Donoho, 2006).

Medical image reconstruction can be mathematically characterized as solving an ill-posed linear
inverse problem (Arridge, 1999; Bertero et al., 2021). The linear inverse problem is formulated as
recovering an unknown target signal of interest x ∈ X ⊆ Cn from a noisy observed measurement
y ∈ Y ⊆ Cm, given by y = Ax + n, where A ∈ Cm×n is a matrix that models a known linear
measurement acquisition process (a.k.a. forward operator A : Cm → Cn), and n ∈ Cm×1 is an ad-
ditive noise, simply treated here to follow the Gaussian distribution n ∼ N (0,σ2

yI). If the forward
operator A is singular, e.g., when m < n, the problem is ill-posed, indicating that the solution might
not exist, be unique, or depend continuously on the measurements (O’Sullivan, 1986). To mitigate
the ill-posedness, it is essential to incorporate an additional assumption based on prior knowledge to
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constrain the space of possible solutions. In this manner, the inverse problem then can be addressed
by optimizing or sampling a function that integrates this prior or regularization term with a data
consistency or likelihood term (Ongie et al., 2020). A prevalent approach for prior imposition is to
employ pre-trained deep generative models (Bora et al., 2017; Jalal et al., 2021).

Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song
et al., 2020b) are a novel class of deep generative models (Yang et al., 2022) that have recently shown
powerful capabilities in solving ill-posed inverse problems. These models are primarily designed
to encode implicit prior probability distributions over data manifolds, represented as ∇x log p(x).
Once trained, they can be leveraged as a chain of denoisers to produce conditional samples at in-
ference time in a zero-shot fashion (a.k.a. plug-and-play approach) (Zhang et al., 2021; Jalal et al.,
2021; Chung et al., 2022a; Wang et al., 2022). This approach is particularly of significance in
medical imaging, as measurement acquisitions can vary significantly upon such circumstances as
instrumentations, scan protocols, acquisition time limit, and radiation dosage (Jalal et al., 2021;
Song et al., 2021; Chung & Ye, 2022).

Top-performing methods that utilize DMs to tackle inverse problems in a zero-shot setting typically
follow a three-phase progression in the iterative reverse diffusion process. Initially, they begin with
an unconditional prediction, which might be either a transient noisy image (Song et al., 2021) or
its denoised estimate version (Chung et al., 2022b;a; Song et al., 2022). The subsequent phase,
crucial for conditional sampling, entails guiding the initial prediction with information drawn from
observed measurements. This has been accomplished via projecting images into the measurement-
consistent subspaces (Song et al., 2021; Lugmayr et al., 2022; Kawar et al., 2022; Wang et al., 2022),
approximating posterior score towards higher time-dependent likelihood (Chung et al., 2022a; Meng
& Kabashima, 2022; Feng et al., 2023; Fei et al., 2023; Mardani et al., 2023), and performing prox-
imal optimization steps (Chung et al., 2023). While the radical projection might throw the sampling
trajectory off the data manifold (Chung et al., 2022a), and subtle score approximation may fail
to generalize well to fewer timesteps (Song et al., 2023), proximal optimization appears promis-
ing, particularly for medical imaging applications (Chung et al., 2023). Nonetheless, the efficiency
of this iterative proximal gradient-based optimization significantly diminishes in the absence of a
closed-form solution (Chung et al., 2023). Ultimately, in the third phase, the procedure progresses
to the sampling, which is performed using Langevin dynamics (Song et al., 2020b; Ho et al., 2020)
or more efficient samplers (Song et al., 2020a; Chung et al., 2022c).

In this paper, we introduce Meta-Guided Diffusion Models (MGDM), an approach that guides the
diffusion process through a bi-level strategy, which leverages the unique strengths of different guid-
ance mechanisms, aiming to provide a more effective and efficient way of measurement incorpora-
tion. To this end, we first theoretically examine the range-null space decomposition (Wang et al.,
2022), a projection-based technique, from an optimization perspective, leading us to an alternative
proximal optimization objective. This outer-level objective explicitly takes into account both data
fidelity and proximity terms, where the former enforces that the reconstructed image is consistent
with the acquired measurements in the transformed domains (k-space and sinograms), and the lat-
ter ensures that the solution remains close to its initial prediction estimated by the denoiser—the
pre-trained DM. Notably, this optimization problem offers a closed-form solution. However, its
effectiveness relies on a more accurate, and consistent initial prediction. To achieve this without
deviation from the clean manifold, we propose to implement an inner-level estimate of the clean
image conditioned on its noisy counterpart and the measurement. Furthermore, we introduce an
additional phase named the ‘discrepancy gradient’, through which the generated samples from each
reverse diffusion step are refined by gradient descent of the discrepancy between the bi-levels with
respect to the transient noisy image. We empirically found that this adjustment further encourages
data consistency, especially for the CT reconstruction task.

The contribution of our work is as follows. In theory, we delve into the effective strategies tai-
lored for addressing medical imaging inverse problems in a zero-shot setting. At the core of our
approach is an assurance of data consistency achieved through analytical measures complemented
by the integration of prior information extracted from pre-trained diffusion models. In practice,
our methodology is rigorously evaluated across a spectrum of challenges, including under-sampled
MRI and sparse-view CT reconstructions. Empirical results consistently indicate that our approach
surpasses the state-of-the-art performance benchmarks, exhibiting robustness across diverse accel-
eration rates, projection counts, and anatomical variations (human brains, lungs, and knees).
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2 PRELIMINARIES

2.1 DIFFUSION MODELS

A diffusion model (Sohl-Dickstein et al., 2015) is composed of two processes with T timesteps. The
first is the forward noising process (diffusion process), which gradually introduces Gaussian noise
into the data sample x0 ∼ q(x0). During this procedure, a series of latent variables x1, ...xT are se-
quentially generated, with the final one, xT , roughly conforming to a standard Gaussian distribution,
i.e., q(xT ) ≈ N (xT ;0, I). This process is formally defined as a Markov chain

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where q(xt|xt−1) signifies the Gaussian transition kernel with a predefined variance schedule βt.
One can further compute the probabilistic distribution of xt given x0 via reparametrization trick as
q(xt|x0) = N (xt;

√
αtx0, (1− αt)I) with αt = 1− βt and αt =

∏t
i=0 αi. Equivalently, xt can be

expressed as xt =
√
αtx0 + σtϵ, where σt =

√
1− αt and ϵ ∼ N (0, I). The other is the reverse

denoising process, which aims to recover the data-generating sample x0 by iteratively denoising the
initial sample xT drawn from standard Gaussian distribution p(xT ) = N (xT ;0, I). This procedure
is also characterized by the following Markov chain:

pθ(x0:T ) = p(xT )

1∏
t=T

pθ(xt−1|xt), pθ(xt−1|xt) =

∫
x0

q(xt−1|xt,x0)pθ(x0|xt)dx0, (2)

where pθ(xt−1|xt) is a denoising transition module with parameters θ approximating the forward
posterior probability distribution q(xt−1|xt) = q(xt−1|xt,x0). The objective is to maximize the
likelihood of pθ(x0) =

∫
pθ(x0:T )dx1:T . Denoising Diffusion Probabilistic Models (DDPM) (Ho

et al., 2020) assumes pθ(xt−1|xt) = N (xt−1;µθ(xt, t),σθ(xt, t)I) by considering pθ(x0|xt) to be
a Dirac delta distribution centered at the point estimate E[x0|xt], which is minimum mean squared
error (MMSE) estimator of x0 given xt, and q(xt−1|xt,x0) to be a fixed Gaussian. Under this
scheme, the loss ℓ(θ) can be simplified as

min
θ

ℓ(θ) := min
θ

Et∼(0,T ),x0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥22

]
. (3)

Therefore, given the trained denoising function ϵθ(xt, t), samples can be generated using DDPM,
Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a), or other solvers (Lu et al., 2022;
Zhang & Chen, 2022).

2.2 SOLVING LINEAR INVERSE PROBLEMS WITH DIFFUSION MODELS

An inverse problem seeks to estimate an unknown image x from partially observed, noisy mea-
surement y. They are generally approached by optimizing or sampling a function that combines a
term for data fidelity or likelihood with a term for regularization or prior (Ongie et al., 2020). A
detailed exploration of methods for solving linear inverse problems can be found in Appendix A.1.
A common method for regularization involves using pre-trained priors from generative models. Re-
cently, pre-trained diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021) have been leveraged
as a powerful generative prior (a.k.a. denoiser), in a zero-shot fashion, to efficiently sample from
the conditional posterior. Due to their unique characteristics, namely the ability to model complex,
the efficient iterative nature of the denoising process, and the capacity to effectively conduct con-
ditional sampling, these models stand out as a potent solution for solving inverse problems (Daras
et al., 2022; Rombach et al., 2022). A primary difficulty, however, is how to guide the unconditional
prediction to conform to the measurement information in each iteration. Methods addressing this
generally fall into two distinct categories as follows.

Posterior Score Approximation. The reverse Stochastic Differential Equation (SDE) for a condi-
tional generation can be written as

dxt =
[
f(xt, t)− g2(t)∇xt log pt(xt|y)

]
dt̄+ g(t)dw̄t, (4)

where ∇xt
log pt(xt|y) is referred to as posterior score that can be decomposed through Bayesian’

rule as follows.
∇xt

log p(xt|y) = ∇xt
log p(xt) +∇xt

log p(y|xt). (5)
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The composite score results from the prior score combined with the time-dependent likelihood
score. While one can closely approximate the prior score with a pre-trained diffusion model, i.e.,
∇xt

log p(xt) ≃ −1√
1−αt

ϵθ(xt, t), the likelihood score is analytically intractable to compute. This
becomes evident when considering p(y|xt) =

∫
x0

p(y|x0)p(x0|xt) dx0 according to the graphical
inferences x0 → y and x0 → xt. The measurement models can be represented by p(y|x0) :=
N (Ax0,σ

2
y). The intractability of p(y|xt) arises from p(x0|xt). Several strategies have been

proposed to approximate the likelihood term. Among the most prevalent are DPS (Chung et al.,
2022a) and ΠGDM (Song et al., 2022), where point-estimate p(x0|xt) = δ(x0 − x0|t) and Gaus-
sian assumption p(x0|xt) ∼ N (x0|t, σ

2
t/σ2

t+1 I) are considered respectively to estimate p(y|xt).
The term x0|t is posterior mean (or denoised estimate) of x0 conditioned on xt, defined as
x0|t := E[x0|xt] = Ex0∼p(x0|xt)[x0]. As a result, the likelihood score can be reformulated as

∇xt log p(y|xt) ≃
∂ (x0|t)

∂xt︸ ︷︷ ︸
J

H(y −A x0|t)︸ ︷︷ ︸
V

, (6)

which is essentially a Vector (V)-Jacobian (J) Product (VJP) that enforces consistency between the
denoising result and the measurements, with H corresponding to A⊤ in DPS and to A† (the Moore-
Penrose pseudoinverse of A) in ΠGDM. These methods efficiently handle inverse problems over
extended timesteps, yet face challenges with shorter durations (Chung et al., 2023). Moreover, in
the context of MRI reconstruction in medical imaging, DPS leads to noisy outputs (Chung et al.,
2023). More recently, variational posterior approximation has been proposed (Mardani et al., 2023),
yet it requires computationally expensive test-time optimization.

Decomposition/Projection Based. Denoising Diffusion Restoration Model (DDRM) (Kawar et al.,
2022) attempted to solve inverse problems in a zero-shot way using singular value decomposition
(SVD) of A. However, for medical imaging applications with complex measurement operators,
the SVD decomposition can be prohibitive (Chung et al., 2023). Song et al. (2021) proposed an
alternative decomposition of A in the sampling process, suitable for medical imaging, assuming that
A is of full rank. Denoising Diffusion Null-Space Models (DDNM) (Wang et al., 2022) introduces
a range-null space decomposition for zero-shot image reconstruction, where the range space ensures
data consistency, and the null space enhances realism. Both Song’s method and DDNM essentially
use back-projection tricks (Tirer & Giryes, 2020) to meet the measurement consistency in a non-
noisy measurement scenario, which can be expressed as:

x̂t =
√
αt

(
A†y + (I−A†A)x0|t

)
+ σtϵ, (7)

where the extra noise σtϵ is excluded in DDNM, yielding a higher performance. However, these
projection-based methods frequently encounter challenges in maintaining the sample’s realness, as
the projection might shift the sample path away from the data manifold (Chung et al., 2022b).

3 METHOD

We motivate our approach by highlighting two critical drawbacks inherent in projection-based meth-
ods, especially in DDNM, which utilizes the range-null space decomposition to construct a general
solution x̂ as

x̂ = A†y + (I−A†A)x̄, (8)

where x̄ can be chosen arbitrarily from Cn without affecting the consistency. The foundational
interplay between these spaces is evident: the range space, represented by A†y, embodies the so-
lution components originating from observations, whereas the null space, denoted by (I −A†A)x̄,
encompasses the solution’s unobserved elements. We illuminate a new interpretation of this decom-
position from an optimization perspective in the following proposition, whose proof can be found in
Appendix A.2.

Proposition 3.1 Consider the least squares problem minx∈Rn ∥y−Ax∥22 where A ∈ Rm×n is any
matrix and y ∈ Rm. Gradient descent, initialized at x̄ ∈ Rn and with small enough learning rate,
converges to x̂ = A†y + (I−A†A)x̄.

4



Under review as a conference paper at ICLR 2024

Algorithm 1 DDNM Sampling (Wang et al., 2022)

Require: The measurement y, and the forward operatorA
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: αt−1 ← 1− σ2

t

4: c1 ← η
√

1− αt−1

5: c2 ←
√

1− αt−1 − c21

6: ϵ ∼ N (0, I) if t > 0, else ϵ = 0
7: x0|t ← 1√

αt

(
xt −

√
1− αtϵθ(xt, t)

)

8: x̂0|t ← A†y + (I−A†A)x0|t

9: xt−1 ←
√

αt−1x̂0|t + (c2ϵθ(xt, t) + c1ϵ)

10: end for

11: return x0

Algorithm 2 MGDM Sampling
Require: The measurement y, and the forward operatorA
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: αt−1 ← 1− σ2

t

4: c1 ← η
√

1− αt−1

5: c2 ←
√

1− αt−1 − c21

6: ϵ ∼ N (0, I) if t > 0, else ϵ = 0

7: x0|t ← 1√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
8: x̃0|t ← x0|t − ζ∇xt∥y −Ax0|t∥22

9: x̂0|t ← argmin
x

1
2∥y −Ax∥22 + λ

2 ∥x− x̃0|t∥22

10: xt−1 ←
√

αt−1x̂0|t + (c2ϵθ(xt, t) + c1ϵ)

11: x̂t−1 ← xt−1 − ρ∇xt∥x̂0|t − x̃0|t∥22
12: end for
13: return x0
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(a) DDIM (Song et al., 2020a) (b) DPS (Chung et al., 2022a) (c) DDNM (Wang et al., 2022) (d) MGDM (ours)
Figure 1: An illustration of the geometric principles underpinning diffusion samplers and various
guidance schemes. (a) DDIM is an unconditional diffusion sampler devoid of guidance. (b) DPS
employs gradient guidance ensuring updated samples remain on the accurate manifold. (c) DDNM
projects denoised samples into a measurement-consistent subspace. (d) Our proposed method em-
ploys a bi-level guidance strategy; the inner level approximates the initial prediction with a con-
ditional posterior mean through gradient guidance, while the outer level tackles an optimization
problem to further impose measurement consistency. Note that ACPM stands for Approximated
Conditional Posterior Mean derived in Eq. (A.4.2).

Proposition 3.1 highlights the behavior of gradient descent on a least squares problem when initiated
from any initial point, in particular x̄ = x0|t. The solution, upon convergence, can be expressed as

x̂0|t = x0|t +A†(y −Ax0|t). (9)

Here, the term A†(y − Ax0|t) represents the correction applied to the initial estimate, factoring in
the difference between predicted and observed measurements. However, this method is not devoid
of challenges. The correction term, solely determined by (y−Ax0|t), can be significantly affected if
y is noisy, potentially leading our estimates astray. Furthermore, this correction direction, which is
purely governed by the gradient of the discrepancy, can lead us to a suboptimal estimate, particularly
when x0|t itself holds uncertainties. To address these concerns, we define the decomposition Eq. (9)
explicitly by embedding a regularization term into our optimization objective, acting as a penalty
against large deviations from our initial estimate. This results in the following outer-level regularized
objective:

x̂0|t = argmin
x

1

2
∥y −Ax∥22︸ ︷︷ ︸

Fidelity

+
λ

2
∥x− x0|t∥22︸ ︷︷ ︸

Proximity

, (10)

where the fidelity term aims to minimize the discrepancy between the predicted and observed mea-
surements, while the proximity term penalizes deviations from the initial estimate. This is crucial,
especially when our initial estimate x0|t is founded on substantive prior knowledge. The regular-
ization parameter λ offers a balance between these two objectives, ensuring our new estimate aligns
with observations while respecting our initial belief encapsulated in x0|t. Note that x̂0|t usually has
a solution in closed form. For MRI reconstruction, the details can be found in appendix A.3.

Secondly, as previously noted, different choices of x̄ result in estimates that are all equally consis-
tent, and the choice of x0|t represents just one specific solution among the possibilities. We postulate
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that the chosen x̄ can profoundly influence the trajectory of the projections. By strategically choos-
ing x̄, we can make our solutions more efficient and accurate, yet ensuring that they respect the
desired distribution q(x). In a similar reasoning, the effectiveness of the proximity term in Eq. (10)
highly relies on the quality of the prior x0|t. If the prior is not a desirable estimate, it might mislead
the optimization. To identify a solution, we return to the posterior mean of x0 given xt discussed
in Section 2.2. For Variance Preserving SDE (VPSDEs), the posterior mean is driven based on
Tweedie’s formula as

x0|t = E[x0|xt] =
1√
αt

(
xt + (1− αt)∇xt

log p(xt)
)
. (11)

Ravula et al. (2023) extended Tweedie’s formula with an additional measurement y for Variance
Exploding SDE (VESDEs). The updated formula for the conditional posterior mean in VPSDEs
(see Appendix A.4.1), can also be presented as

x̃0|t := E[x0|xt,y] =
1√
αt

(
xt + (1− αt)∇xt

log p(xt|y)
)
. (12)

This new estimation for the initial unconditional prediction functions as an inner-level guidance
for our method. Hence, we call our bi-level guidance strategy, Meta-Guided Diffusion Models
(MGDM). Given the relation in Eq. (5), it becomes clear that by integrating the prior score with the
likelihood score, we can procure a more precise estimate of x0|t than by solely relying on the prior.
Also, in DPS framework (Chung et al., 2022a), the time-dependent likelihood score is approximated
as ∇xt

log p(y|xt) ≃ ∇xt
log p(y|x0|t). For the scenario where the measurement noise is Gaussian,

i.e., y ∼ N (y;A(x0),σ
2
yI), we then have ∇xt

log pt(y|xt) ≃ −1/σ2
y∇xt

∥y −A(x0|t)∥22. In prac-
tice, it is assumed that pt(y|x0|t) ∼ N (y;Ax0|t,σ

2
t I). Building on DPS’s result, an approximation

of the expectation in Eq. (12) can be established (see Appendix A.4.2) as

x̃0|t ≃
1√
αt

[
xt −

√
1− αtϵθ(xt, t)− ζ∇xt

∥y −Ax0|t∥22
]
, (13)

where ζ is a likelihood step size. For sampling xt−1, we employ DDIM, one of the most recognized
accelerated diffusion sampling methods. This method transitions the stochastic ancestral sampling
of DDPM to deterministic sampling, thereby expediting the sampling process.

In addition to the aforementioned procedures, we have implemented a further step termed the ‘dis-
crepancy gradient’, aiming to refine the recovered samples. This step updates samples by subtracting
it from the gradient of the squared norm of the discrepancy between the optimized estimate x̂0|t and
the initial prediction x̃0|t formulated as

x̂t−1 = xt−1 − ρ∇xt
∥x̂0|t − x̃0|t∥22, (14)

where ρ is the step size. Discrepancy gradient guides xt−1 towards an equilibrium between two
values x̂0|t and x̃0|t. Our high-level interpretation of this step is that it aids in improving the accuracy
of the approximated measurement-conditioned posterior mean x̃0|t and reduces the necessity of the
proximal optimization step in Alg 2 (line 9).

From the discussion presented above, we summarized the steps of our proposed method in Algorithm
2. We also provided a schematic illustration of the geometrical differences between our MGDM
guidance strategy and other SOTA guidance techniques in Figure 1.

4 EXPERIMENTS

In this section, we first present the experimental setup, then provide the results, wherein we quan-
titatively and qualitatively compare our model with the state-of-the-art (SOTA) methods, followed
by the ablation study discussed in the last subsection; details on implementation can be found in
Appendix A.5.

4.1 DATA SETS

To demonstrate the performance of our proposed method, we present our sampling evaluation on
three publicly available datasets. For undersampled MRI experiments, we rely on real-valued Brain
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Figure 2: The qualitative results of undersampled MRI reconstruction on the BraTS dataset, depicted
for Acceleration Rates (ACR) 4, 8, and 24.

Tumor Segmentation (BraTS) 2021 (Menze et al., 2014; Bakas et al., 2017) and complex-valued
fastMRI knee datasets (Zbontar et al., 2018). In our evaluation with the BraTS dataset, we follow the
approach outlined in (Song et al., 2021), where 3D MRI volumes are sliced to obtain 297,270 images
with a resolution of 240 × 240 for the training set. We simulate MRI measurements using the Fast
Fourier Transform (FFT) and undersample the k-space using an equispaced Cartesian mask, from an
acceleration factor of 4 to 24. When conducting experiments on fastMRI, we follow (Chung & Ye,
2022) to appropriately crop the raw k-space data to 320 × 320 pixels. We then generate single-coil
minimum variance unbiased estimator (MVUE) images as our ground truth references. The mea-
surements of these images are derived from the fully sampled k-space data multiplied by sensitivity
maps computed through the ESPIRiT (Uecker et al., 2014) algorithm. To simulate measurements for
fastMRI, the data is processed using the FFT and then undersampled with a one-dimensional Gaus-
sian mask acceleration factor 4 and 8. For the sparse-view CT reconstruction experiment, we used
the Lung Image Database Consortium (LIDC) dataset (Armato III et al., 2011; Clark et al., 2013).
From this dataset, we derived 130,304 two-dimensional images with a resolution of 320 × 320 by
slicing the original 3D CT volumes. We produce simulated CT measurements (sinograms), using
a parallel-beam setup and evenly spaced 10 and 23 projection angles over 180 degrees to simulate
sparse-view acquisition.

4.2 BASELINES

We primarily compare our proposed method with two state-of-the-art zero-shot inverse problem
solvers: DPS (Chung et al., 2022a) and DDNM (Wang et al., 2022). For the Knee fastMRI dataset,
we reported the result of Score-MRI (Chung & Ye, 2022) directly from their paper. To ensure a
fair comparison, we adopt the incorporation strategies from these methods, along with appropriate
parameter settings within our architecture. Also, for CT reconstruction, we replaced the DPS method
with Song’s method (ScoreMed) (Song et al., 2021). In our experiments, it was observed that the
recurrent use of Filtered Back Projection (FBP) tends to be numerically unstable in DPS, frequently
resulting in overflow. This has also been reported by (Chung et al., 2022b). For all experiments,
results are reported in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
metrics on a dataset of 1,000 test images. To further validate the performance of our approach, we
provide a quantitative comparison with SOTA-supervised methods. These comparisons are detailed
in Appendix A.6.
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Figure 3: In the array of graphs, the upper row illustrates the undersampled MRI reconstruction
results for 200 timesteps at various acceleration rates (ACR), and the lower row displays the results
over a span of 350 timesteps at a fixed acceleration rate of 4.

Table 1: Results for undersampled MRI reconstruction on complexed-valued fastMRI Knee dataset.

Method 4× ACR 8× ACR
PSNR↑ SSIM↑ PSNR↑ SSIM↑

DPS (Chung et al., 2022a) 22.41±3.33 0.650± 0.080 21.87±2.91 0.607±0.076
DDNM (Wang et al., 2022) 35.87±2.68 0.873± 0.065 34.04±2.70 0.847±0.071

Score-MRI (Chung & Ye, 2022) 33.96± 1.27 0.858±0.028 30.82±1.37 0.762± 0.034

MGDM (ours) 36.94±2.70 0.888±0.062 34.98±2.66 0.856±0.070

(a) Mask (a) DPS (b) DDNM (d) MGDM (ours) (d) Reference
Figure 4: The qualitative representative results of the fastMRI knee dataset at ACR 4 with 100 steps.

4.3 RESULTS

In Figure 2, we display the BraTS image reconstruction results using different methods for test
measurements undersampled at 4x, 8x, and 24x acceleration factors. Our MGDM method achieves
superior image fidelity, preserving lesion heterogeneities at 4x and 8x undersampling levels. Unlike
other methods, MGDM maintains data fidelity even at 24x undersampling, producing highly con-
sistent images with the ground truth. More examples can be found in Appendix A.8, showcasing
MGDM’s noise and motion handling. In Figure 3, a comparative analysis of reconstruction quality
is presented, employing metrics such as PSNR and SSIM on a dataset of 1000 BraTS images across
a diverse range of Network Function Evaluators (NFEs) and Acceleration Rates (ACR). The evalu-
ation underscores the superior performance of MGDM over other methods, demonstrating not only
higher accuracy but also efficiency in computational time. Notably, MGDM, even at a modest 100
NFEs, significantly performs better than other methods operating at a substantially higher 350 NFEs,
establishing its noteworthy efficacy in producing accurate reconstructions swiftly. The comparison
of various methods on the fastMRI knee dataset with 100 NFEs is presented in Table 1, with an
illustrative case showcased in Figure 4. DPS failed to reconstruct acceptable images due to the short
100 sampling steps. Notably, our MGDM method demonstrated superior performance compared to
Score-MRI (Chung et al., 2023) and DDNM by a margin of 3dB and 1dB, respectively. Figure 5
illustrates the results of reconstructing a CT lung image from 23 projections using multiple methods.
Our method recovers finer details, as seen in the zoomed-in views, and achieves the highest PSNR
and SSIM values. Table 2 shows the average results from 1000 test CT images using both 23 and 10
projections. Our method slightly outperforms ScoreMed in terms of PSNR and SSIM values, with
both significantly surpassing DDNM.
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Table 2: Quantitative results of sparse-view CT reconstruction on the LIDC dataset with 350 NFEs.

Method 23 projection 10 projection
PSNR↑ SSIM↑ PSNR↑ SSIM↑

FBP 10.07±1.40 0.218±0.070 – –
DDNM (Wang et al., 2022) 23.76±2.21 0.624±0.077 18.35±2.30 0.696±0.047

ScoreMed (Song et al., 2021) 35.24±2.71 0.905±0.046 29.52±2.63 0.823±0.061
Ours no-r 25.89±2.43 0.671±0.069 20.14±2.35 0.723±0.043

MGDM (ours) 35.82±2.45 0.911±0.052 30.22±2.48 0.834±0.056

(a) FBP (b) DDNM (b) ScoreMed (d) MGDM (ours) (e) Reference
Figure 5: Examples of sparse-view CT reconstruction results on LIDC, all with 23 projections.
Table 3: Ablation study results for undersampled MRI reconstruction using the BraTS dataset.

Method 4× ACR 8× ACR 24× ACR
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DPS (Chung et al., 2022a) 37.84±2.26 0.948±0.018 35.98±2.15 0.939±0.020 29.46±3.66 0.815±0.067
DDNM (Wang et al., 2022) 39.92±2.35 0.965±0.012 35.18±2.10 0.940±0.017 27.09±2.94 0.841±0.049

Ours no-pr 32.38±1.89 0.874±0.030 29.56±2.01 0.845±0.034 23.16±2.53 0.794±0.044
Ours no-ir 39.97±2.31 0.969±0.011 35.36±2.03 0.943±0.015 27.36±2.78 0.849±0.041
Ours no-r 41.54±2.90 0.980±0.008 38.02±2.31 0.961±0.009 29.87±3.31 0.887±0.036
Ours no-i 41.37±2.72 0.967±0.009 37.06±2.04 0.923±0.011 28.37±3.23 0.832±0.047

MGDM (ours) 41.94±2.88 0.977±0.008 38.46±2.54 0.964±0.011 30.04±3.33 0.887±0.039

(a) Ours no-pr (b) Ours no-ir (c) Ours no-i (d) Ours no-r (e) MGDM (f) Reference

Figure 6: A representative visual result of the ablation study, showcasing the 24x scenario.

4.4 ABLATION STUDIES

To assess the impact of key components in our sampling algorithm, we performed ablations on the
undersampled MRI task using the BraTS dataset. The summarized outcomes are presented in Ta-
ble 3, evaluating four key variations in Algorithm 2: (i) the exclusion of proximal optimization
(step 9) and refinement (step 11) termed ‘no-pr’, (ii) the omission of initial prediction (step 8) and
refinement (step 11) designated as ‘no-ir’, (iii) the absence of initial prediction alone (step 8) noted
as ‘no-i’, and (iv) the removal of refinement alone (step 11) referred to as ‘no-r’. Our observations
indicate that proximal optimization plays the most substantial role in our MGDM method, with
improvements achieved through more accurate initial prediction and further refinement. Remark-
ably, our algorithm outperforms all baselines even without the refinement step, yet further improves
performance when this step is incorporated, as illustrated in Fig 6 (see d and e).

5 CONCLUSION

In this paper, we propose an effective approach for tackling inverse problems in medical imaging.
Through extensive experiments, our method demonstrates its superiority to other methods on several
highly heterogeneous, publicly available medical datasets, thereby validating our analysis. Theo-
retically, our approach is amenable to resolving other linear inverse problems such as inpainting,
super-resolution, deblurring, and so forth, provided that the pertinent diffusion model is accessible.
The limitations of this study and future work are discussed in Appendix A.7.
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A APPENDIX

A.1 RELATED WORKS

A solution to the inverse problem y = Ax + n, can be probabilistically derived via the maximum
likelihood estimation (MLE), defined as xML = argmaxx log p(y|x), where p(y|x) := N (Ax, σ2

y)
represents the likelihood of observation y, ensuring data consistency. Nevertheless, if the forward
operator A is singular, e.g., when m < n, the problem is ill-posed. In such cases, it is fundamen-
tally infeasible to uniquely recover the signal set X using only the observed measurements Y , even
in the noiseless scenario where Y = AX . This challenge arises due to the nontrivial nature of the
null space of A. To mitigate the ill-posedness, it is therefore essential to incorporate an additional
assumption based on prior knowledge to constrain the space of possible solutions. A predominantly
adopted framework that offers a more meaningful solution is Maximum a Posteriori (MAP) esti-
mation which is formulated as xMAP = argmaxx[log p(y|x) + log p(x)], where the term log p(x)
encapsulates the prior information of the clean image x.

The concept of priors in solving inverse problems has evolved considerably over time. Classically,
many methodologies relied on hand-crafted priors, which are analytically defined constraints such
as sparsity (Candès & Wakin, 2008; Tang et al., 2009), low-rank (Fazel et al., 2008; Cui et al.,
2014), total variation (Candès et al., 2006), to name but a few, to enhance reconstruction. With
the advent of deep learning models, priors have transitioned to being data-driven, yielding sig-
nificant gains in reconstruction quality (Bora et al., 2017; Mardani et al., 2018; Ardizzone et al.,
2018; Goh et al., 2019; Asim et al., 2020; Whang et al., 2021). These priors, whether learned in
a supervised or unsupervised fashion, have been integrated within the MAP framework to address
ill-posed inverse problems. In the supervised paradigm, the reliance on the availability of paired
original images and observed measurements also can potentially limit the model’s generalizability.
As a result, the trend has shifted towards an increasing interest in unsupervised approaches, where
priors are learned implicitly or explicitly using deep generative models. The strategies within the
unsupervised learning paradigm vary based on how the learned priors (a.k.a. generative priors) are
imposed. For instance, generators Gθ in pre-trained generative models such as Generative Adversar-
ial Networks (GANs)(Goodfellow et al., 2016; Bora et al., 2017), Variational Autoencoders (VAEs)
(Ardizzone et al., 2018), and Normalizing Flows (NFs) (Asim et al., 2020), are employed as priors
to identify the latent code that explains the measurements, as described by the optimization problem
ẑ = argmaxz log p(y|Gθ(z)) + log p(z). In such a way, the solution ẑ is constrained to be within
the domain of the generative model. This approach, however, suffers from critical restrictions. In
the first place, the low dimensionality of the latent space is a major concern, as it hampers the
reconstruction of images that lie outside their manifold. Additionally, it demands computationally
expensive iterative updates, given the complexity of generator Gθ. Crucially, the deterministic nature
of the recovered solutions hinders the assessment of the reliability of reconstruction. In fact, MAP
inference fails to fully capture the entire range of the solution spectrum, particularly when solv-
ing an ill-posed problem that might hold multiple solutions aligned closely with both the observed
measurements and prior assumptions.

To account for the variety within the solution domain and to measure reconstruction certainty, the in-
verse problem is tackled from a Bayesian inference standpoint. Bayesian inference yields a posterior
distribution, p(x|y), from which multiple conditional samples can be extracted (Brooks et al., 2011;
Blei et al., 2017). Recently, pre-trained diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021)
are utilized as a powerful generative prior (a.k.a denoiser), in a zero-shot manner, to effectively sam-
ple from the conditional posterior (Kadkhodaie & Simoncelli, 2021; Daras et al., 2022; Rombach
et al., 2022). The strategies for posterior (conditional) sampling via diffusion models fall into two
distinct approaches. In the first approach, diffusion models are trained conditionally, directly em-
bedding the conditioning information y during the training phase (Ho et al., 2020; Rombach et al.,
2022; Liu et al., 2023). However, conditional training tends to require: (i) the assembly of a massive
amount of paired data and its corresponding conditioning (x,y), and (ii) retraining when testing
on new conditioning tasks, highlighting the adaptability issues. In the second approach, uncondi-
tionally pre-trained diffusion models are employed as generative prior (a.k.a denoiser) to perform
conditional sampling for certain tasks. A primary difficulty, however, is how to impose data consis-
tency between measurements and the generated images in each iteration (Chung et al., 2022a; Wang
et al., 2022; Chung et al., 2023).
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Figure 7: Linear measurement processes for undersampled MR

A.2 PROOF OF PROPOSITION 3.1

Consider an iteration of gradient descent, initialized from x(0), on the least squares problem

x(t+1) = x(t) + αAT (y −Ax(t)).

Defining r(t) = y −Ax(t), it follows that

r(t+1) =
(
I− αAAT

)
r(t) = . . . =

(
I− αAAT

)t+1
r(0).

Hence,

x(t+1) = x(t) + αAT
(
I− αAAT

)t
r(0)

= x(0) + αAT
t∑

i=0

(
I− αAAT

)i
r(0)

= x(0) + α

t∑
i=0

(
I− αATA

)i AT r(0).

Subsequently, as long as 0 < α < 1/∥A∥2, from (Ben-Israel & Charnes, 1963, Theorem 16), we
get

lim
t→∞

x(t) = x(0) + α

∞∑
i=0

(
I− αATA

)i AT r(0) = x(0) +A†r(0).

A.3 CLOSED-FORM SOLUTIONS

Consider the following optimization problem in Eq. (10)

x̂0|t = argmin
x

1

2
∥y −Ax∥22 +

λ

2
∥x− x0|t∥22.

For the MRI reconstruction task, we express Ax = M⊙ (Fx) = M⊙w, where M represents the
Cartesian equispaced mask, F is the Fourier matrix, and ⊙ signifies element-wise multiplication.
The whole process and matrix decomposition for MRI is illustrated in Fig 7. Given this definition,
and considering the identity argminx∥x− x0|t∥22 = argminx∥Fx−Fx0|t∥22, then the optimiza-
tion problem in terms of w can be redefined as

ŵ0|t = argmin
w

1

2
∥M⊙w − y∥22 +

λ

2
∥w −w0|t∥22.

By expanding the L2-norm terms, we obtain

ŵ0|t = argmin
w

n∑
i=1

(miwi − yi)
2 + λ

n∑
i=1

(wi − wi
0|t)

2.
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The solution for ŵ0|t is

ŵ0|t =
My + λw0|t

M+ λ
.

Given the relation x̂0|t = F−1ŵ0|t, we can then deduce

x̂0|t = F−1
(My + λFx0|t

M+ λ

)
Consider the following range-null space decomposition defined in Eq. (8)

x̂0|t = A†y +
(
I−A†A

)
x0|t.

where A† denotes the pseudo-inverse of matrix A and I is the identity matrix.

For MRI, the forward operator is modelled as A = MF . An important property that arises is
AAA ≡ A, which suggests that A itself can be represented as its pseudo-inverse A†. With this
property, the pseudo-inverse is then expressed as A† = F−1M. Substituting this representation
into our original expression, we obtain

x̂0|t = F−1My +
(
I−F−1MF

)
x0|t.

Using the Fourier identity F−1F = I, we can further simplify this to:

x̂0|t = F−1
(
My + (I−M)Fx0|t

)
A.4 POSTERIOR MEAN

A.4.1 POSTERIOR MEAN WITH ADDITIONAL MEASUREMENT FOR VPSDE

A notable SDE with an analytic transition probability is the variance-preserving SDE (VPSDE)
(Song et al., 2020b; Karras et al., 2022), which considers f(xt, t) = − 1

2β(t)xt and g(t) =
√

β(t),
where β(t) = βmin + t(βmax − βmin); and its transition probability follows a Gaussian dis-
tribution of p0t(xt|x0) = N (xt;µtx0,σ

2
t I) with µt = exp{− 1

2

∫ t

0
β(s)s} and σ2

t = 1 −
exp{−

∫ t

0
β(s)s}. Given such transition probability, we seek to derive the corresponding posterior

mean with additional measurement.

Begin by representing the distribution pt(xt|y) as marginalizing out x0 conditioned on y:

pt(xt|y) =
∫
x0

pt(xt|x0,y)p0(x0|y)dx0.

Differentiate w.r.t. xt on both sides

∇xt
pt(xt|y) =

∫
x0

p0(x0|y)∇xt
pt(xt|x0,y)dx0.

With our new probability distribution model, the gradient becomes

∇xt
log pt(xt|x0) =

(µtx0 − xt)

σ2
t

.

Inserting this into our previous equation, we have

∇xtpt(xt|y) =
∫
x0

p0(x0|y)pt(xt|x0,y)
(µtx0 − xt)

σ2
t

dx0.

Simplifying the above equation, we get:

∇xt
pt(xt|y) =

1

σ2
t

[∫
x0

p0(x0|y)pt(xt|x0,y)µtx0dx0 −
∫
x0

p0(x0|y)pt(xt|x0,y)xtdx0

]
.
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Using Bayes’ rule and recognizing the marginalization, we get:

∇xtpt(xt|y) =
1

σ2
t

[∫
x0

µtx0pt(xt|y)p0(x0|xt,y)dx0 − xtpt(xt|y)
]
.

∇xtpt(xt|y) =
1

σ2
t

[µtpt(xt|y)E[x0|xt,y]− xtpt(xt|y)] .

∇xt
pt(xt|y)

pt(xt|y)
=

1

σ2
t

[µtE[x0|xt,y]− xt)] .

Using the identity property of logarithm ∇x log p(x) = ∇xp(x)/p(x), we can rewrite:

∇xt
log pt(xt|y) =

1

σ2
t

[µtE[x0|xt,y]− xt] .

From this, the posterior mean becomes:

E[x0|xt,y] =
xt + σ2

t∇xt
log pt(xt|y)

µt
.

This shows that the posterior mean of x0 conditioned on xt and y now incorporates a scaling by µt.

By considering µt =
√
αt and σ2

t = 1− αt, we have then

E[x0|xt,y] =
1√
αt

(xt + (1− αt)∇xt
log pt(xt|y)).

A.4.2 APPROXIMATED CONDITIONAL POSTERIOR MEAN

E[x0|xt,y] =
1√
αt

(
xt + (1− αt)∇xt log p(xt|y)

)
Considering Eq. (5) we have

E[x0|xt,y] =
1√
αt

(
xt + (1− αt)(∇xt

log p(xt) +∇xt
log p(y|xt))

)
By knowing that ∇xt log p(xt) ≃ −1√

1−αt
ϵθ(xt, t), then we get

E[x0|xt,y] ≃
1√
αt

(
xt + (1− αt)(

−1√
1− αt

ϵθ(xt, t) +∇xt
log p(y|xt))

)
which can be simplified further as

E[x0|xt,y] ≃
1√
αt

(
xt −

√
1− αtϵθ(xt, t) + (1− αt)∇xt

log p(y|xt))
)

From approximation made by DPS (Chung et al., 2022a), that is,
∇xt

log pt(y|xt) ≃ −1/σ2
y∇xt

∥y −A(x0|t)∥22, we then get

x̃0|t ≃
1√
αt

[
xt −

√
1− αtϵθ(xt, t)− ζ∇xt

∥y −Ax0|t∥22
]
,

A.5 IMPLEMENTATION

To learn the prior, we train diffusion-based generative networks using the ADM architecture (Dhari-
wal & Nichol, 2021) and the default parameters presented by (Song et al., 2021). The models are
trained with classifier-free diffusion guidance without dropout probability. We train one network for
the real-valued Brats dataset, one for the complexed-value fastMRI dataset, and one for the LIDC-
CT dataset.
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A.5.1 TRAINING/SAMPLING SETTINGS AND HYPER-PARAMETERS

For a sampling of our method, we fine-tune parameters (ζ, λ, ρ) using cross-validation for each
datasets. We observed that extensive hyper-parameter tuning is not required to obtain top-
performance results. Accordingly, we limit the hyper-parameter search for each task to ζ ∈ [0, 2],
ρ ∈ [0, 4.5], λ ∈ [1−2, 1−3]. For other methods of DPS and DDNM, we relied on their imple-
mentation. We mostly followed implementation by DDNM (Wang et al., 2022) for the sampling
process.

In the BraTS and fastMRI experiments, the parameter η is set to 0.85. For the LIDC-CT experiment,
η is assigned a value of 0.9. For the BraTS dataset, we sample over 200 timesteps; for fastMRI, 100
timesteps; and for the LIDC-CT dataset, 350 timesteps are considered.

A.6 COMPARING MGDM WITH SUPERVISED METHODS

Similar to other zero-shot inverse problem solvers (Chung et al., 2022a; Wang et al., 2022; Kawar
et al., 2022), MGDM is superior to existing supervised methods (Zhou & Zhou, 2020; Wei et al.,
2020) in these dimensions:

• MGDM can be a zero-shot solver for diverse tasks, while supervised methods need to train
separate models for each task and sampling patterns.

• MGDM demonstrates robustness to patterns of undersampling and sparsification, whereas
supervised techniques exhibit weak generalizability.

• MGDM, akin to ScoreMed (Song et al., 2021) and Score-MRI (Chung & Ye, 2022),
achieves notably enhanced results on medical datasets compared to supervised methods.

These claims are substantiated by the experimental results in Table 4. The results are reported from
(Song et al., 2021; Chung & Ye, 2022).

Table 4: Comparison of SSIM and PSNR indicators for different methods across three datasets with
different acceleration rates and projections each.

Method BraTS-MRI fastMRI LIDC-CT
8× ACR 24× ACR 4× ACR 8× ACR 23 Proj

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DuDoRNet (Zhou & Zhou, 2020) 37.88 0.985 18.46 0.662 33.46 0.856 29.65 0.777 – –

SIN-4c-PRN (Wei et al., 2020) – – – – – – – – 30.48 0.895
MGDM 38.46 0.964 30.04 0.887 36.94 0.888 34.98 0.856 35.82 0.911

A.7 LIMITATIONS, AND FUTURE WORK

Several limitations remain that merit further examination.

• Despite achieving superior reconstruction results compared to other methods (Song et al.,
2021; Chung et al., 2022a; Wang et al., 2022) and demonstrating more efficient sampling
for medical imaging applications (Chung & Ye, 2022; Song et al., 2021; Jalal et al., 2021;
Chung et al., 2023), MGDM remains sensitive to hyperparameters. Therefore, exploring
a more general hyperparameter tuning approach, such as Bayesian optimization, would be
beneficial.

• This study acknowledges that a comprehensive theoretical analysis of the ‘Discrepancy
Gradient’ step within the MGDM algorithm has not been thoroughly explored. While
empirical evidence suggests an enhancement in reconstruction results attributable to this
step, a gap remains in the theoretical understanding that deserves further investigation.

• It should be noted that our CT simulation adheres to the 2D parallel beam geometry as-
sumption, aligning with the baseline models used in other studies for direct comparison.
This differs from the more complex and realistic 3D cone-beam CT or helical CT simu-
lations (Kim et al., 2014). Additionally, the BraTS dataset, employed both in our study
and by the baseline methods, has been indicated in a recent paper (Shimron et al., 2022) to
have an overestimated undersampling factor, which arises from the conjugate symmetry of
k-space inherent in real-valued images.
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In future work, we intend to extend our model to work with 3D simulations and in the presence of
distributional shifts.

A.8 ADDITIONAL RESULTS

Reference

MGDM 
(Ours)

DDNM

DPS

Figure 8: Additional results from undersampled MRI reconstruction on Brats at 8x acceleration rate.
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Reference

MGDM 
(Ours)

DDNM

DPS

Figure 9: Additional results from undersampled MRI reconstruction on Brats at 24x acceleration
rate.

Reference

MGDM 
(Ours)

DDNM

Figure 10: Additional results from sparse-view CT reconstruction on LIDC dataset with 23 projec-
tions.
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Reference

MGDM 
(Ours)

DDNM

DPS

Figure 11: Additional reconstruction results for undersampled knee fastMRI at 4x acceleration rate.
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Ours no-pr

Ours no-ir

Ours no-r

Ours no-i

MGDM

Reference

Figure 12: Additional results of our ablation study from undersampled MRI reconstruction on Brats
at 24x acceleration rate.

22


	Introduction
	Preliminaries
	Diffusion Models
	Solving Linear Inverse Problems with Diffusion Models

	Method
	Experiments
	Data Sets
	Baselines
	Results
	Ablation Studies

	Conclusion
	Appendix
	Related Works
	Proof of Proposition 3.1
	Closed-form solutions
	Posterior mean
	Posterior mean with additional measurement for VPSDE 
	Approximated Conditional Posterior Mean

	Implementation
	Training/Sampling Settings and Hyper-parameters

	Comparing MGDM with Supervised Methods 
	Limitations, and Future Work 
	Additional Results


