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Abstract

In this paper, we address the data scarcity prob-001
lem in automatic data-driven glossing for low-002
resource languages by coordinating multiple003
sources of linguistic expertise. We supplement004
models with translations at both the token and005
sentence level as well as leverage the exten-006
sive linguistic capability of modern LLMs. Our007
enhancements lead to an average absolute im-008
provement of 5%-points in word-level accuracy009
over the previous state of the art on a typologi-010
cally diverse dataset spanning six low-resource011
languages. The improvements are particularly012
noticeable for the lowest-resourced language013
Gitksan, where we achieve a 10%-point im-014
provement. Furthermore, in a simulated ultra-015
low resource setting for the same six languages,016
training on fewer than 100 glossed sentences,017
we establish an average 10%-point improve-018
ment in word-level accuracy over the previous019
state-of-the-art system.020

1 Introduction021

The extinction rate of languages is alarmingly022

high, with an estimated 90% of the world’s lan-023

guages at risk of disappearing within the next cen-024

tury (Krauss, 1992). As speech communities dwin-025

dle, linguists are urgently prioritizing the docu-026

mentation of these languages. This is a multi-step027

process involving: 1. phonetic and orthographic028

transcription, 2. translation into a so-called matrix029

language like English or Spanish, which provides030

a common frame of reference for all annotations,031

3. morpheme segmentation, and 4. grammatical032

annotation (Crowley, 2007). The end-result is rep-033

resented as Interlinear Glossed Text (IGT) like the034

Gitksan example below (see Appendix A for addi-035

tional details):036

Orthography: Ii hahla’lsdi’y goohl IBM
Segmentation: ii hahla’lst-’y goo-hl IBM
Gloss: CCNJ work-1SG.II LOC-CN IBM
Translation: And I worked for IBM.

037

038

The traditional manual approach to language 039

documentation, while thorough, is notably labor- 040

intensive. This has spurred the development of 041

automated tools leveraging machine learning for 042

tasks such as word segmentation and glossing. For 043

example, Moeller and Hulden (2018) train neural 044

models for automatic glossing of Lezgi, a Nakh- 045

Daghestanian language. Their models deliver rea- 046

sonable performance when trained on a small train- 047

ing set of 3,000 glossed tokens of Lezgi text. How- 048

ever, neural models are data-hungry and the small 049

training set prevents the models from reaching their 050

full potential. The most straightforward way to im- 051

prove model performance would be to manually 052

gloss more training data. However, as stated above, 053

manual glossing is a very time-consuming process. 054

Therefore, additional data sources should be con- 055

sidered. 056

Figure 1: When glossing input such as the French sen-
tence Le chien aboie, our system utilizes multiple infor-
mation sources: an English sentence-level translation,
general linguistic knowledge provided by an LLM and
dictionary definitions for the input tokens.

Many recent glossing approaches (Girrbach, 057

2023; Moeller and Hulden, 2018) exclusively train 058

on glossed source language transcripts. However, 059
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we often have access to additional helpful knowl-060

edge sources. One option is to augment the data061

using translations of the training examples into062

the matrix language.1 These provide an impor-063

tant source of lexical information because the gloss064

of nouns and verbs can often be found within the065

translation.2 Because translation is a part of the066

language documentation process, these are often067

readily available and, thus, represent a quick and068

cost-effective way to provide an additional source069

of supervision. Our system incorporates transla-070

tions as an added information source.071

Unfortunately, the availability of translations for072

IGT data is necessarily limited simply because the073

quantity of IGT data itself is limited. As an ad-074

ditional source of lexical information, our system075

incorporates external dictionaries which provide076

word-level translations of target language lexemes077

into the matrix language. This helps the system078

generalize to words missing from the training data.079

Recently, powerful pretrained models have080

emerged as a viable approach to strengthen and081

supplement the training signal for NLP tasks in082

low-resource settings (Ogueji et al., 2021; Bhat-083

tacharjee et al., 2021; Hangya et al., 2022). Ad-084

vancements in large language models (LLMs) also085

present new opportunities for enhancing the lan-086

guage documentation process. Pretrained language087

models such as BERT (Devlin et al., 2018) and088

LLMs like GPT-4 (Achiam et al., 2023), trained on089

billions of tokens of text, encode extensive lexical090

and linguistic knowledge in the matrix language,091

and their incorporation has improved the bench-092

marks in many natural language tasks (Zhao et al.,093

2023; Bommasani et al., 2021; Zhou et al., 2023).094

We integrate LLMs into our glossing pipeline as095

a post-correction step through in-context learning.096

It is worth noting that our approach does not re-097

quire fine-tuning and is, therefore, appropriate in098

low-resource settings where compute capacity is099

limited.100

By leveraging three external sources of informa-101

tion (see Figure 1): utterance translations, exter-102

nal dictionaries and LLMs, our glossing pipeline103

achieves an average absolute improvement of 5%-104

points over the previous state-of-the-art on datasets105

from the SIGMORPHON 2023 Shared Task on106

1Frequently, the matrix language will be English but can
also be another language like Spanish or Russian.

2For the French sentence Le chien aboie, the correct gloss
of both chien ’dog’ and aboyer ’bark’ can be found in its
English translation: The dog barks.

Interlinear Glossing (Ginn et al., 2023). In par- 107

ticular, the incorporation of dictionaries leads to 108

significant advancements for ultra-low resource lan- 109

guages such as Gitksan, resulting in a 10%-points 110

increase in word-level accuracy. Our key contribu- 111

tions are: 112

1. We enhance the training of glossing systems—in 113

addition to plain glossed training examples, we in- 114

troduce additional supervision in the form of input 115

translations which are encoded using a pre-trained 116

language model. 117

2. We utilize external dictionaries which improve 118

glossing performance, particularly for the lowest- 119

resourced languages. 120

3. We pioneer the use of LLM prompting and in- 121

context learning techniques as a post-correction 122

step in the glossing pipeline. To our knowledge, 123

this is the first time LLMs have been applied to the 124

automatic glossing task. Our findings show that 125

in-context prompting results in substantial improve- 126

ments, especially when very limited training data 127

is available. 128

2 Related Work 129

Interlinear Glossing Research into automatic 130

glossing starts with rule-based analysis (Bender 131

et al., 2014; Snoek et al., 2014) followed by data- 132

driven neural models (Moeller and Hulden, 2018; 133

Girrbach, 2023; Ginn and Palmer, 2023; Zhao et al., 134

2020). More recently, the integration of pre-trained 135

multilingual models (Ginn et al., 2024; Sheikh 136

et al., 2024) has shown great potential to aid doc- 137

umentation projects. Our work is inspired by the 138

success of these powerful models and aims to build 139

upon their strengths. 140

Integrating Translation into the Glossing Task 141

We are not unique in incorporating translation in- 142

formation into a glossing system in the presence 143

of small training datasets. The system presented 144

by Okabe and Yvon (2023) is based on CRFs (Sut- 145

ton et al., 2012), and also employs translations. 146

However, in contrast to our approach, they heavily 147

rely on source and target word alignments derived 148

from an unsupervised alignment system (Jalili Sa- 149

bet et al., 2020). In low-resource settings, it is hard 150

to learn an accurate alignment model. 3 151

3Moreover, Okabe and Yvon (2023) assume
morphologically-segmented input, which considerably
simplifies the glossing task. We instead address the much
harder task of predicting glosses without segmentation
information.
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Pioneering studies by Zoph and Knight (2016),152

Anastasopoulos and Chiang (2018) and Zhao et al.153

(2020), show that leveraging translations can en-154

hance the performance of a neural glossing system.155

A notable limitation in all of these approaches is156

the scarcity of available English translations for157

training models. Therefore, only modest improve-158

ments in glossing accuracy are observed. Our159

work, in contrast, incorporates translation infor-160

mation through large pre-trained language models,161

which leads to greater improvements in glossing162

performance. This strategy has lately become in-163

creasingly popular in low-resource NLP and shows164

promise across various language processing tasks165

(Ogueji et al., 2021; Hangya et al., 2022).166

Similarly to our approach, Okabe and Yvon167

(2023) also take advantage of the BERT model in168

their study, but only utilize BERT representations169

for translation alignment. In contrast, we directly170

incorporate encoded translations into our glossing171

model. He et al. (2023) also use pre-trained lan-172

guage models, namely, XLM-Roberta (Conneau173

et al., 2020), mT5 (Xue et al., 2021) and ByT5174

(Xue et al., 2022), as part of their glossing model.175

However, they do not incorporate IGT translation176

information.4 Instead, they directly fine-tune the177

pre-trained models for glossing.178

LLM Prompting In recent years, the application179

of LLMs for various NLP tasks has expanded sig-180

nificantly, demonstrating remarkable potential in181

few-shot and in-context learning. This approach182

leverages the inherent knowledge and adaptabil-183

ity of LLMs like GPT-4 (Achiam et al., 2023) and184

LLaMA-3 (Touvron et al., 2023), allowing them to185

perform tasks based on a few examples provided186

as context, without requiring further fine-tuning.187

Margatina et al. (2023) introduce a novel perspec-188

tive by applying active learning (AL) principles189

to in-context learning with LLMs. Their study190

frames the selection of in-context examples as a191

pool-based AL problem conducted over a single192

iteration. Various AL algorithms, including uncer-193

tainty, diversity, and similarity-based sampling, is194

explored to identify the most informative examples195

for in-context learning. The findings consistently196

indicate that selecting examples semantically sim-197

ilar to the test instances significantly outperforms198

other methods, including random sampling and tra-199

ditional uncertainty-based approaches .200

4Though He et al. (2023) do use external dictionary infor-
mation for post-correction of glosses.

Language Train(num) Dev(num) Test(num) Matrix lang.

Arapaho (arp) 39,501 4,938 4,892 (eng)
Gitksan (git) 31 42 37 (eng)
Lezgi (lez) 701 88 87 (eng)
Natügu (ntu) 791 99 99 (eng)
Tsez (ddo) 3,558 445 445 (eng)
Uspanteko (usp) 9,774 232 633 (spa)

Table 1: 2023 Sigmorphon Shared Task Dataset Infor-
mation (Ginn et al., 2023)

Building on these insights, our proposed work 201

aims to enhance the task of automatic glossing in 202

low-resource settings by integrating LLM prompt- 203

ing and active learning principles. Our approach 204

applies the strategies outlined by (Margatina et al., 205

2023) by focusing on similarity-based methods for 206

selecting in-context examples. This ensures that 207

the most relevant and informative examples are 208

utilized, enhancing the model’s ability to generate 209

accurate glosses. Additionally, we explore the ef- 210

fectiveness of various active learning methods such 211

as BERT-similarity, word overlapping, longest com- 212

mon subsequence, and random sampling, tailoring 213

these approaches to the specific needs of the gloss- 214

ing task. 215

3 Data 216

We conduct experiments on data from the 2023 217

SIGMORPHON shared task on interlinear gloss- 218

ing (Ginn et al., 2023). The shared task provides 219

two distinct tracks: an open track, where the input 220

is morphologically segmented, and a closed track, 221

where no segmentations are provided. Our anal- 222

ysis focuses on data from the closed track. This 223

setting is substantially more challenging because 224

morphological segmentation now, effectively, be- 225

comes a part of the glossing task. The closed-track 226

languages are Arapaho (arp), Gitksan (git), Lezgi 227

(lez), Natügu (ntu), Tsez (ddo), and Uspanteko 228

(usp).5 Data details are shown as in Table 1. With 229

most languages, except Arapaho, comprising fewer 230

than training 10,000 sentences, our datasets can be 231

called low-resourced. For all languages, the data 232

includes translations in a matrix language which is 233

English, except from Uspanteko, where it is Span- 234

ish. 235

4 Baseline Model 236

Our glossing system is based upon a neural gloss- 237

ing model developed by Girrbach (2023). This is 238

5We exclude one language Nyangbo, because its dataset
lacks translations.
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Figure 2: Pipeline
of Girrbach (2023)’s
model.

Figure 3: Pipeline of the proposed work. The lower portion of the diagram demonstrates
how attention weights inform the model when predicting the glossing targets.

the winning system of the 2023 SIGMORPHON239

shared task on internlinear glossing. As shown in240

Figure 2, the model accomplishes glossing of mor-241

phological segments through a three-stage process:242

input encoding, unsupervised morpheme segmen-243

tation, and morpheme classification.244

Input encoder The model input consists of a245

character-sequence s = s1, ..., sN , representing246

a sentence. A bidirectional long short-term mem-247

ory network (BiLSTM) encodes the input into a248

sequence of contextualized embeddings hi, one for249

every character in s.250

Morpheme Segmenter Next, the model per-251

forms unsupervised morphological segmentation252

using the forward-backward algorithm (Kim et al.,253

2016). In a first step, an MLP is used to predict the254

number of morphemes Jw for each word w in input255

sentence s. For each character si, the model applies256

a linear layer with Sigmoid activation function to257

its character encoding hi to get the probability p
seg
i258

that indicates whether si is the last character of the259

morpheme segment. Then the forward and back-260

ward scores (α and β, respectively) for each input261

position i and target morpheme j can be computed262

as follows:263

αi,j = αi−1,j · (1− p
seg
i−1) + αi−1,j−1 · pseg

i−1264
265

βi,j = βi+1,j · (1− p
seg
i ) + βi+1,j+1 · pseg

i266

Finally, the marginal probability of a morpheme267

boundary at position i relating to morpheme j is268

given by:269

ξi,j =
αi,j · βi,j
αN,Jw

270

where N is the sequence length, and Jw is the 271

number of morphemes in the word w. 272

Morpheme classifier After segmentation, we get 273

each morpheme encoding ej through averaging its 274

corresponding character encodings. An MLP is 275

then used to predict the gloss for each morpheme 276

based on its morpheme encoding. Model training 277

optimizes the cross-entropy loss between the pre- 278

dicted and ground-truth gloss labels. 279

5 Our Methods 280

Our glossing system enhances the baseline model 281

by incorporating utterance translations (both at the 282

sentence level and token level) and a character- 283

based decoder.6 Model and training details are pro- 284

vided in Appendix B. Additionally, we implement 285

a gloss post-correction component using LLM- 286

powered in-context learning. Figure 3 presents 287

an overview of the system. 288

5.1 Character-Based Gloss Decoder 289

Our first addition to the Girrbach (2023) model is a 290

character-based decoder. The baseline model is un- 291

able to predict glosses which were not observed in 292

the training data, because it treats glossing as a mor- 293

pheme classification task with a closed set of po- 294

tential gloss labels. This deficiency is particularly 295

harmful when predicting glosses for lexical mor- 296

phemes (i.e. word stems) which represent a much 297

larger inventory than grammatical morphemes (i.e. 298

inflectional and derivational affixes). A character- 299

based decoder can enhance the model’s capability 300

6Our code is publicly available: https://link/to/our/
repo
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to use words from a translation of the input ex-301

ample. Following Kann and Schütze (2016), we302

implemented a LSTM decoder. However, we adapt303

it to function at the character level for lexical mor-304

phemes and at the morpheme level for grammatical305

morphemes. 7306

5.2 Translation Encoder307

We then extend the model of Girrbach (2023) by308

incorporating matrix-language translations. We en-309

code the English or Spanish (in the case of Uspan-310

teko) translations in the shared task datasets using311

a deep encoder. We experiment with three different312

encoders: a character-based BiLSTM (Hochreiter313

and Schmidhuber, 1997) and pre-trained transform-314

ers BERT-base (Kenton and Toutanova, 2019) and315

T5-large (Raffel et al., 2020).8 To represent trans-316

lations, we then either use the final hidden state317

from the translation encoder, or attend over the318

translation hidden states.319

When attending over the hidden states, we apply320

Bahdanau attention (Bahdanau et al., 2014) scoring321

the association between each encoder hidden states322

and the previous decoder state di−1. We separately323

attend to the encoded morpheme representations ej324

in the input example (morphemes are discovered by325

our baseline model in an unsupervised manner as326

explained above) and the encoded subword-tokens327

tk in the translation. This gives us a morpheme328

representation ei =
∑J

j=1w
e
jej and a translation329

representation ti =
∑K

k=1w
t
ktk at time-step i. We330

then use the concatenated representation [ei; ti] to331

compute the next gloss decoder state di.332

5.3 Post-correction through in-context333

learning334

Preliminary experiments revealed that the glossing335

system sometimes generates typos and non-sensical336

glosses such as stoply instead of story. To miti-337

gate this issue, we introduce a post-correction step338

leveraging LLM prompting. We enhance the accu-339

racy and reliability of glosses through an in-context340

learning approach.341

For each language, we generate conservative sil-342

ver glosses (requiring correction) using a BERT-343

based model with attention (BERT+attn+chr) to344

prevent excessive corrections, as the baseline345

model (Girrbach, 2023) already provides a reason-346

ably accurate starting point. We use one-quarter of347

7For instance, if the word gloss is "dog-FOC", the decoder
will generate it as "d-o-g-FOC".

8See Appendix B for details concerning the encoders.

the training data to produce silver glosses for the 348

remaining training data, fine-tuning the model on 349

the original development split. To reduce noise, we 350

apply an edit distance constraint, retaining exam- 351

ples where the gloss edit distance from the gold 352

gloss is limited to 4-8 characters.9 The initial one- 353

quarter of data is then reintroduced into the training 354

set, ensuring completeness and accuracy, as these 355

glosses match the original training data. 356

Here we prepare a prompt which asks the LLM 357

to correct the lexical morphemes in a glossed input 358

sentence. A prompt is generated by selecting two 359

training examples as in-context learning examples 360

for each test example. Each in-context learning 361

example includes the source language transcript, 362

morpheme/word translations based on the training 363

data, the English translation of the sentence, the 364

silver gloss, and the gold gloss. The test exam- 365

ple is structured similarly but omits the gold gloss, 366

prompting the language model to generate the cor- 367

rected gloss. The prompting pipeline is illustrated 368

in Figure 4. When using an external dictionary, 369

we additionally provide word translations in the 370

prompt. Following the in-context paradigm, we 371

do not perform any further training or fine-tuning 372

of the LLM. The template used for the prompt- 373

ing is detailed in Appendix F. We experiment with 374

two models in this scenario: GPT-4 (Achiam et al., 375

2023) and LLaMA-3 (Touvron et al., 2023). 376

In-context Learning Examples Selection Tech- 377

niques In our experiment, we compare three tech- 378

niques to optimize the selection of in-context learn- 379

ing examples. We evaluate these techniques against 380

random selection. BERT Similarity (BERT-Sim) 381

We first embed the translated test sentence from 382

the IGT using BERT (we use multilingual BERT 383

for Uspanteko). We then find the two training sen- 384

tences with the lowest embedded cosine distance 385

from the test case, and use them as our in-context 386

examples. Overlapping Words (Overlap) We cal- 387

culate the number of overlapping words between 388

source sentences in the test and training datasets. 389

In-context examples are selected to maximize the 390

number of overlapping words between the test case 391

and the training sentences. Longest Common Sub- 392

strings (LCS) We select in-context examples from 393

the training sentences that maximize the LCS with 394

the test case. 395

9The character number is determined by half the length of
the word glosses, depending on the language.
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Figure 4: The procedure of selecting in-context learning examples to generate components for LLM prompting.

6 Experiments and Results396

In all experiments, we evaluate based on word-level397

glossing accuracy.398

6.1 Translation Enriched Model Results399

Table 2 shows the glossing accuracy across dif-400

ferent model settings and languages.10 We re-401

port performance separately for original shared402

task datasets and our simulated ultra low-resource403

datasets spanning 100 training sentences. We group404

the Gitksan shared task dataset in the ultra low-405

resource category because it only has 30 training406

examples.11407

Shared Task Data When only integrating trans-408

lations through the final state of a bidirectional409

LSTM, we observe an improvement in average410

glossing accuracy, but performance is reduced for411

two languages (Arapaho and Uspanteko).412

Augmenting translations via an attentional mech-413

anism (LSTM+attn) does not confer consistent im-414

provements. In contrast, translation information415

incorporated via a pre-trained model (BERT+attn)416

renders consistent improvements in glossing ac-417

curacy across all languages and we see notable418

gains in average glossing accuracy over the base-419

line. Incorporating a character-based decoder leads420

to further improvements in average glossing ac-421

curacy and for all individual languages. The T5422

model (T5+attn+chr) attains the highest average423

performance: 82.56%, which represents a 3.97%-424

points improvement over the baseline. It also425

delivers the highest performance for three out426

of our five test languages (Arapaho, Lezgi and427

Tsez), while the BERT-based model with attention428

10We additionally present edit distance in Appendix C.
11Apart from the baseline, all systems apply majority voting

from 10 independently trained models. Its impact is discussed
in Appendix D.

(BERT+attn+chr) delivers the best performance 429

for the remaining two (Natügu and Uspanteko). 430

Among all languages, we see improvements over 431

the baseline model ranging from 2.32%-points to 432

5.95%-points.12 433

Ultra Low-Resource Data In order to investi- 434

gate the performance of our model in ultra low- 435

resource settings, we additionally form smaller 436

training sets by sampling 100 sentences from the 437

original shared task training data. We use the origi- 438

nal shared task development and test sets for vali- 439

dation and testing, respectively. 440

Translations integrated through the final state of 441

a randomly initialized bidirectional LSTM (LSTM 442

and LSTM+attn), lead to an average 6%-points 443

improvement in accuracy over the baseline. We 444

achieve particularly impressive gains for Uspan- 445

teko, surpassing the baseline accuracy by over 446

15%-points. Incorporating pre-trained models 447

(BERT+attn) exhibits a slight increase in accuracy 448

for certain languages. However, when we incor- 449

porate both pre-trained models and the character- 450

based decoder (BERT+attn+chr and T5+attn+chr), 451

we see larger gains in accuracy across the board. 452

Here, BERT achieves the highest average accuracy 453

of 42.04%, which represents a 9.78%-points im- 454

provement over the baseline. It achieves the highest 455

performance for three languages (Arapaho, Gitk- 456

san and Uspanteko), while T5 delivers the best 457

performance for two of the languages (Lezgi and 458

Natügu). The plain LSTM model attains the best 459

performance for Tsez. 460

6.2 Prompting Model Results 461

The prompting experiments aim to further improve 462

the output of the T5/BERT+attn+chr model by post- 463

12We visualize the attention patterns over the English trans-
lation representations. The visualizations are shown in Ap-
pendix E
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Model setting arp lez ntu ddo usp ave arp-low git-low lez-low ntu-low ddo-low usp-low ave

Girrbach (2023) 78.79 78.78 81.04 80.96 73.39 78.59 19.12 21.09 48.84 51.08 36.12 17.32 32.26
LSTM 77.04 81.42 83.55 84.99 73.01 80.00 18.67 20.71 54.29 59.56 44.5 32.92 38.44
LSTM+attn 79.31 76.19 83.01 85.12 76.24 79.97 24.38 18.49 55.75 58.48 42.37 29.52 38.17
BERT+attn 78.98 81.87 84.57 85.84 77.63 81.78 27.33 20.31 55.86 60.13 41.85 33.04 39.75
BERT+attn+chr 80.79 82.19 85.41 84.13 79.34 82.37 28.82 28.11 56.99 62.73 39.72 35.84 42.04
T5+attn+chr 81.11 82.37 84.68 85.91 78.72 82.56 27.31 24.23 57.33 62.82 39.97 33.59 40.88

Table 2: Word-level accuracy of languages in the 2023 Sigmorphon Shared Task (Ginn et al., 2023) (left) and ultra
low-resource settings (right). Model specifics are elaborated in Section 5.

Model setting arp lez ntu ddo usp git

T5/BERT+attn+chr 81.11 82.37 85.41 85.91 79.34 28.11
+GPT4-random 81.12 83.52 85.79 84.76 70.62 28.58
+GPT4-BERT-Sim 81.17 84.70 86.07 85.32 72.44 29.02
+GPT4-Overlap 81.57 84.47 86.11 85.53 73.64 29.14
+GPT4-LCS 81.25 83.86 86.38 84.98 72.78 28.77
+LLaMA3-Overlap 81.23 83.01 86.09 83.77 70.99 30.11

Table 3: Word-level accuracy of all languages. We
incorporate prompts using different selection techniques
for in-context examples, which add into the information
enriched models (T5/BERT+attn+chr).
Model setting arp lez ntu ddo usp git ave

Girrbach (2023) 78.79 78.78 81.04 80.96 73.39 21.09 69.01
T5/BERT+attn+chr 81.11 82.37 85.41 85.91 79.34 28.11 73.88
T5/BERT+attn+chr+Prmpt 81.57 84.70 86.38 85.53 73.64 30.11 73.66

Table 4: Word-level accuracy of all languages. We
compare the performance of models that incorporate
prompts from our optimal in-context example selection
techniques with other models.

correcting its glossed output using an LLM. We464

only allow the LLM to change the gloss of lexi-465

cal morphemes because preliminary experiments466

demonstrated that post-processing tends to worsen467

performance on grammatical morphemes. The468

word-level accuracy shown in Table 3 highlights469

the performance of various training data selection470

techniques across multiple languages.13 We further471

select the best setting to compare with the baseline472

model and translation enriched models. The com-473

parison demonstrates that using in-context learn-474

ing continues to boost glossing accuracy. This ap-475

proach delivers further improvements for Arapaho,476

Lezgi, Natügu, and Gitksan. It presents the high-477

est accuracy for Lezgi , showing a 2.33%-points478

increase over the highest-performing translation479

enriched model T5/BERT+attn+chr.480

When applying GPT-4 for post-correction, the481

Overlapping Words selection technique emerges482

as the most effective, achieving the highest accu-483

racy for Arapaho at 81.57% and maintaining strong484

13We additionally present lexical morpheme accuracy in
Appendix G.

performance across other languages. The BERT 485

similarity and LCS techniques also provide sub- 486

stantial improvements over random selection, with 487

notable improvements for Lezgi at 84.70% and 488

Natügu at 86.38% accuracy, respectively. Addition- 489

ally, the LLaMA-3 model using the Overlapping 490

Words method shows competitive results, particu- 491

larly excelling in the low-resource language Gitk- 492

san at 30.11%, indicating its potential utility in 493

such challenging settings. 494

We further examine predictions from the prompt- 495

ing model. One such example in Lezgi includes 496

a sentence whose translation is "She was lonely". 497

The pre-corrected gloss from our encoder-decoder 498

model (T5/BERT+attn+chr) contains incorrect lex- 499

ical morpheme glosses, including “pie” and “he”. 500

It is evident that the prompting model successfully 501

changed these lexical morphemes according to the 502

words in the translation line of the IGT14. Results 503

are as shown below: 504

Silver Gloss: pie old.woman was he
Prompt Gloss: alone old.woman was still.be
Gold Gloss: alone old.woman was still.be,.remain

505

Interestingly, both the GPT-4 and LLaMA-3 in- 506

context learning setups perform worse when the 507

translations are in Spanish than in English, as ev- 508

idenced by the accuracy drop in Uspanteko. The 509

reasons behind this require further investigation. 510

6.3 External Dictionaries 511

We also assess the impact of introducing additional 512

word translations into the in-context prompts to en- 513

hance accuracy. We expand the word translations 514

in the prompt using word translations from an ex- 515

ternal dictionary for Arapaho, Lezgi, and Gitksan. 516

The source and detailed information about the dic- 517

14We observe that the prompting results can contain syn-
onyms. To gain a better understanding of our model’s per-
formance, we use BERT score as an alternative evaluation
metric to evaluate the lexical morphemes. Results are shown
in Appendix H.
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Model setting arp lez git ave

Girrbach (2023) 78.79 78.78 21.09 59.55
T5/BERT+attn+chr 81.11 82.37 28.11 63.86
T5/BERT+attn+chr+Prmpt 81.57 84.70 30.11 65.46
T5/BERT+attn+chr+Prmpt+Dict 81.61 85.30 31.32 66.08

Table 5: Word-level accuracy of all languages. We com-
pare the model performance among the accumulated
effort of incorporating external dictionaries with other
models.

tionaries are shown in Appendix I. The word-level518

results, as presented in Table 5 illustrate that the in-519

tegration of out-of-domain dictionary resources is520

highly beneficial, especially for languages with lim-521

ited training data like Gitksan. Dictionary transla-522

tions consistently boost the performance of our best523

models, enhancing benefits obtained solely through524

prompting. The dictionary-supplemented models525

achieve the best results in all three languages, with526

an overall average accuracy of 66.08%, surpassing527

the baseline model by 6.53%-points and the plain528

prompting model by 0.62%-points.529

6.4 Learning Curves530

The learning curves in Figure 5 illustrate the impact531

of prompting on model performance when using532

varying amounts of IGT training data. This compar-533

ison includes models with and without prompting,534

focusing on both word-level and lexical morpheme535

accuracy. We focuse on the Arapaho language,536

which has the largest number of manually glossed537

training examples: 39,501 training sentences, in538

total.539

Figure 5: Lexical morpheme and word-level accu-
racy on Arapaho. We incorporate prompting with the
encoder-decoder model which is enriched with transla-
tion.

The bar chart represents the word-level accu-540

racy for models trained with varying amounts of541

data (100 sentences, 25% data, 50% data, and 542

100% data). The results clearly demonstrate that in- 543

context post-correction greatly improves glossing 544

accuracy. In ultra-low data conditions, the post- 545

corrected model is more than twice as accurate as 546

the uncorrected model. As the amount of training 547

data increases, the benefits gained through prompt- 548

ing diminish. 549

The line chart maps the accuracy of lexical 550

morphemes prior- and post-correction. Similarly 551

to the word-level accuracy, the accuracy of lex- 552

ical morphemes benefits greatly from in-context 553

post-correction. The most significant improve- 554

ments are again observed when training data is 555

restricted. With only 100 training sentences, the 556

post-corrective model achieves a lexical morpheme 557

accuracy that is nearly as high as that obtained 558

using the full dataset. 559

7 Conclusions 560

This paper offers a promising and efficient solu- 561

tion by introducing multiple resources to aid in 562

the glossing task, particularly in linguistically di- 563

verse and data-sparse environments. The current 564

study demonstrates the effectiveness of incorporat- 565

ing translation information at both the token and 566

sentence level, alongside LLM prompting in au- 567

tomatic glossing for low-resource languages. The 568

proposed system, based on a modified version of 569

Girrbach’s model (Girrbach, 2023), shows signif- 570

icant performance enhancements, particularly in 571

low-resource settings. By leveraging translation 572

data and integrating a character-based decoder, our 573

approach provides a robust solution for unobserved 574

lexical morphemes (stems). 575

This research pioneers the application of LLM 576

prompting to the glossing task. By employing var- 577

ious in-context example selection strategies and 578

adding extra dictionary words as a resource, we 579

have shown that LLM prompting can substantially 580

refine lexical morpheme glosses, leading to higher 581

word-level accuracy. This approach is also partic- 582

ularly beneficial in scenarios with limited training 583

data, as it maximizes the potential of minimal data 584

resources. 585

In all, the integration of translation information, 586

additional dictionary resources, along with LLM 587

prompting, sets a new benchmark in automatic 588

glossing. 589
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8 Limitations590

The limitations of our study primarily pertain to the591

extent of our experimentation and the models we592

have chosen. Firstly, our investigation relies solely593

on an LSTM decoder. This decision was influ-594

enced by time constraints, which limited our ability595

to explore more complex decoders. Additionally,596

our experimentation is confined to the T5-large597

model. While this model has shown promising re-598

sults in our study, we acknowledge the existence599

of other large language models in the field of natu-600

ral language processing. Although we did explore601

other large language models such as LLaMA-2602

(Touvron et al., 2023), our preliminary experiments603

yielded unsatisfactory results compared to T5. Con-604

sequently, we made the decision not to include605

LLaMA-2 in our paper due to its inferior perfor-606

mance. These limitations underscore the need for607

future research to explore a wider range of decod-608

ing architectures and incorporate various large lan-609

guage models to enhance our understanding of the610

subject matter. However, using large language mod-611

els requires significant computational resources,612

which can have an environmental impact due to613

increased energy consumption.614
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A IGT Information809

In the IGT data, the second line includes segmen-810

tations with morphemes normalized to a canonical811

orthographic form. The third line has an abbrevi-812

ated gloss for each segmented morpheme. Lexical813

morphemes typically correspond to the stems of814

words. The morpheme glosses usually have two cat-815

egories: Lexical and Grammatical morphemes. For816

example, in glossing labels such as work-1SG.II,817

“work" would be considered a Lexical morpheme,818

representing the core semantic unit. On the other819

hand, Grammatical morphemes like ‘1SG.II" are820

often denoted by uppercase glosses and generally821

signify grammatical functions, such as tense, as-822

pect, or case, rather than specific lexical content.823

B Model Settings824

Our experimental framework and hyperparame-825

ters draw inspiration from Girrbach’s methodology,826

with a focus on organizing and optimizing the tech-827

nical setup. For model optimization, we employ the828

AdamW optimizer (Loshchilov and Hutter, 2017),829

excluding weight decay, and set the learning rate830

at 0.001. Except for this specific adjustment, we831

maintain PyTorch’s default settings for all other832

parameters.833

Our configuration is structured to allow a range834

of experiments, varying from 1 to 2 LSTM layers,835

with hidden sizes spanning from 64 to 512, and836

dropout rates fluctuating between 0.0 and 0.5. The837

scheduler γ is adjusted within a range of 0.9 to838

1.0, and batch sizes are diversified, ranging from 2839

to 64. This versatile approach is designed to thor-840

oughly evaluate the model’s performance across a841

spectrum of hyperparameter configurations.842

Departing from the original model which was843

trained for 25 epochs, our approach extends the844

training duration to 300 epochs when using large845

pretrained models. In cases where the BERT model846

is utilized, we sometime apply a 0.5 dropout rate847

during the BERT training phase. We exclusively848

employ the multilingual BERT model for Uspan-849

teko, while we utilize the standard BERT model850

for all other languages. This comprehensive and851

meticulously organized setup is aimed at enhanc-852

ing the effectiveness and efficiency of our model853

training process.854

To prevent coincidences, for each proposed855

model configuration, we train the model for 10856

iterations, and the final prediction is determined857

through majority voting.858

C Edit Distance 859

Results are shown in Table 6. 860

D Influence of Majority Voting 861

Average accuracy across 10 models and results uti- 862

lized majority voting are shown in Table 7. Im- 863

provements in performance can be achieved even 864

without resorting to voting, particularly accentu- 865

ated in ultra low-resource datasets as opposed to 866

the Shared Task datasets. 867

E Attention Distribution 868

To assess whether our model is able to success- 869

fully incorporate translation information, we visu- 870

alize attention patterns (from the BERT+attn+chr 871

model) over the English translation representations. 872

Figure 6 presents an example for Natügu. Atten- 873

tion weights are displayed in a heat map, where 874

each cell indicates difference from mean attention: 875

a − 1/(n + 2). Here n is the length of the trans- 876

lation in tokens (+2 here because of the start-of- 877

sequence and end-of-sequence tokens [CLS] and 878

[SEP] which are concatenated to the translation). 879

Positive red cells inidicate high attention and neg- 880

ative blue cells low attention. The visualization 881

clearly indicates that the model attends to the rele- 882

vant tokens in the translation when predicting the 883

stems people, mankind and kill. Figure 7-Figure 12 884

shows randomly picked heat maps for the rest of the 885

languages. We can see that attention weights for the 886

larger shared task datasets tend to express relevant 887

associations, while attention weights for the ultra 888

low-resource training sets largely represent noise. 889

Figure 7-Figure 12 also displays attention distri- 890

butions when translations are incorporated using a 891

randomly initialized LSTM instead of a pre-trained 892

language model. These distributions also largely 893

represent noise indicating that pre-trained models 894

confer an advantage. 895

F Prompt template 896

You are a linguistic annotator for the Gitksan lan- 897

guage, tasked with correcting errors in glossing 898

based on translation details and morpheme transla- 899

tions. Your task is to adjust errors in the stems (in 900

lowercase) without changing the total number of 901

morphemes or words in the gloss. Each gloss ele- 902

ment is separated by hyphens within morphemes 903

and spaces between words. 904

Here are two examples: 905

11



Model setting ara git(-low) lez ntu ddo usp ara-low lez-low ntu-low ddo-low usp-low

Girrbach (2023) - - - - - - 6.59 3.64 4.78 4.92 3.79
LSTM 1.52 5.65 1.22 1.17 0.72 0.88 6.50 3.28 4.12 3.93 2.84
LSTM+attn 1.31 6.27 1.62 1.34 0.72 0.86 6.04 3.26 3.81 4.25 3.21
BERT+attn 1.39 5.57 1.24 1.23 0.69 0.70 5.97 3.20 3.81 4.1 2.88
BERT+attn+chr 1.50 5.30 1.20 1.25 0.53 0.81 5.54 3.04 3.55 4.27 2.78
T5+attn+chr 1.40 5.51 1.18 1.27 0.52 0.78 5.62 3.00 3.55 4.36 2.74

Table 6: Word-level edit distance of languages in the 2023 Sigmorphon Shared Task (Ginn et al., 2023) (left) and
low-resource settings (right), with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’ for Lezgi, ‘ntu’ for Natügu,
‘ddo’ for Tsez, and ‘usp’ for Uspanteko. Model specifics are elaborated in Section 2.

Model setting arp lez ntu ddo usp ave arp-low git-low lez-low ntu-low ddo-low usp-low ave

Girrbach (2023) 78.79 78.78 81.04 80.96 73.39 78.59 19.12 21.09 48.84 51.08 36.12 17.32 32.26
BERT/T5+attn+chr-average 79.32 79.49 80.76 81.00 74.92 79.10 25.43 23.95 54.28 57.18 32.41 28.77 37.00
BERT/T5+attn+chr-majority 81.11 82.37 85.41 85.91 79.34 82.83 28.82 28.11 57.33 62.82 39.97 35.84 42.14

Table 7: Word-level accuracy of languages in the 2023 Sigmorphon Shared Task (Ginn et al., 2023) and low-resource
settings. We compute the average across 10 models and also utilized majority voting accuracy results. Language
abbreviations were used, with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’ for Lezgi, ‘ntu’ for Natügu, ‘ddo’
for Tsez, and ‘usp’ for Uspanteko. Model specifics are elaborated in Section 2.

Figure 6: Difference from mean attention weights
of glossed output tokens (y-axis) with respect to en-
coded translation tokens (x-axis) for a Natügu exam-
ple (attention weights are derived from the model
BERT+attn+chr).

Example 1: Gitksan sentence is {example[’train1-906

raw-sentence’]}. You are provided with907

morpheme translations according to the dic-908

tionary: {example[’train1-word/morpheme-909

translation’]}. The English translation for910

this sentence is: {example[’train1-sentence-911

translation’]}. The glossing pending to be revised912

is: {example[’train1-silver-gloss’]}. The corrected913

gloss is {example[’train1-gold-gloss’]}.914

Example 2: Gitksan sentence is {example[’train2-915

raw-sentence’]}. You are provided with916

morpheme translations according to the dic- 917

tionary: {example[’train2-word/morpheme- 918

translation’]}. The English translation for 919

this sentence is: {example[’train2-sentence- 920

translation’]}. The glossing pending to be revised 921

is: {example[’train2-silver-gloss’]}. The corrected 922

gloss is {example[’train2-gold-gloss’]}. 923

Now, here’s the gloss you need to correct: 924

Gitksan sentence is {example[’test-raw- 925

sentence’]}. You are provided with mor- 926

pheme translations according to the dictio- 927

nary: {example[’test-word/morpheme-gloss’]}. 928

The English translation for this sentence is: 929

{example[’test-translation’]}. The glossing pend- 930

ing to be revised is: {example[’test-silver-gloss’]}. 931

What is the corrected gloss for this sentence? You 932

should answer in this format: The corrected gloss 933

is: (your generated answer). Note, don’t change 934

the total number of words or morphemes in the 935

gloss. 936

G Lexical Morpheme Accuracy 937

Here we only evaluate the lexical morpheme accu- 938

racy. Results are shown in Table 8. 939

H BERT score 940

Specifically, we compare tokens using BERT em- 941

beddings and calculate similarity scores with the 942

BERT model. The results are shown in Table 9. As 943

we do not have access to the results from Girrbach 944

12



Figure 7: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded transla-
tion tokens (x-axis) for an Arapaho example (attention weights are derived from the model BERT+attn+chr (left) and
the model LSTM+attm (right)). The gold-standard glosses for this sentence: IC.it.is-2S IC.be.had.as.father.by.all-2S.

Figure 8: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Gitksan example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: CCNJ want-3.II PROSP-3.I
tell-T-3.II OBL-1PL.II MANR LVB-3.II.
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Figure 9: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Lezgi example (attention weights are derived from the model BERT+attn+chr (left)
and the model LSTM+attm (right)). The gold-standard glosses for this sentence: 1pl.abs return-AOR this one there
village-ERG-DAT.

Figure 10: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Natügu example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: but mankind MID-kill-COS-
3MINIS people SUBR PAS-see-INTS-just.
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Figure 11: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Tsez example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: DEM2.ISG.OBL-LAT
village-IN.ESS beautiful girl give-PST.UNW

Figure 12: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Uspanteko example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: CONJ INC-ir PREP árbol.
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Model setting arp lez ntu ddo usp git

T5/BERT+attn+chr 83.68 81.29 81.51 92.79 82.75 12.83
+GPT4-random 84.78 85.12 83.19 90.52 70.54 26.79
+GPT4-BERT-Sim 85.13 86.35 83.33 91.23 73.28 27.13
+GPT4-Overlap 86.54 86.20 84.17 91.76 74.91 27.17
+GPT4-LCS 85.97 85.86 84.87 90.87 73.65 26.98
+LLaMA3-Overlap 85.23 84.05 83.88 89.54 71.43 29.81

Table 8: Lexical morpheme accuracy across languages
in the 2023 Sigmorphon Shared Task (Ginn et al., 2023)
with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’
for Lezgi, ‘ntu’ for Natügu, ‘ddo’ for Tsez, and ‘usp’ for
Uspanteko. Model specifics are elaborated in Section 2.

Model setting arp lez ntu ddo usp git

LSTM 0.889 0.873 0.826 0.925 0.783 0.434
T5/BERT+attn+chr 0.895 0.913 0.860 0.942 0.864 0.468
T5/BERT+attn+chr+Prmpt 0.896 0.922 0.862 0.940 0.807 0.526

Table 9: BERT score of lexical morphemes of languages
in the 2023 Sigmorphon Shared Task (Ginn et al., 2023),
with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’
for Lezgi, ‘ntu’ for Natügu, ‘ddo’ for Tsez, and ‘usp’ for
Uspanteko. Model specifics are elaborated in Section 2.

(2023), we use the LSTM-encoder classifier model945

as our baseline instead. The BERT score results946

align closely with the word-level accuracy.947

I Dictionary Information948

The Arapaho dictionary was accessed from949

https://homewitharapaho.wordpress.950

com/wp-content/uploads/2015/03/951

arapaho-dictionary1.pdf.952

The Gitksan dictionary is downloaded953

from http://www.gitxsansimalgyax.com/954

dictionaries.html.955

Lezgi data is unpublished and obtained through956

personal communication with a linguist.957

Word number information of these dictionaries958

are in Table 10.959

Language total words(num) new words(num)

Arapaho 2436 2155
Lezgi 2081 1299
Gitksan 2034 2019

Table 10: The table details the dictionary information
for Arapaho, Lezgi, and Gitksan, including the number
of total words and the number of new words compared
with the training data.
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