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Abstract001

In recent years, protein-text models have gained002
significant attention for their potential in pro-003
tein generation and understanding. Current ap-004
proaches focus on integrating protein-related005
knowledge into large language models through006
continued pretraining and multi-modal align-007
ment, enabling simultaneous comprehension008
of textual descriptions and protein sequences.009
Through a thorough analysis of existing model010
architectures and text-based protein understand-011
ing benchmarks, we identify significant data012
leakage issues present in current benchmarks.013
Moreover, conventional metrics derived from014
natural language processing fail to accurately015
assess the model’s performance in this domain.016
To address these limitations, we reorganize ex-017
isting datasets and introduce a novel evalua-018
tion framework based on biological entities.019
Motivated by our observation, we propose a020
retrieval-enhanced method, which significantly021
outperforms fine-tuned LLMs for protein-to-022
text generation and shows accuracy and effi-023
ciency in training-free scenarios. Our code and024
data will be available.025

1 Introduction026

In recent years, large language models (LLMs)027

have achieved remarkable success across diverse028

domains (Brown et al., 2020; Touvron et al., 2023;029

Wei et al., 2022; Sallam, 2023). To further en-030

hance the ability of LLMs in understanding domain-031

specific data (e.g., chemistry, biology), researchers032

have extended LLMs into the multi-modal domain,033

giving rise to multi-modal large language models034

(MLLMs) (Liu et al., 2023a; Cao et al., 2023; Maaz035

et al., 2023). Unlike traditional LLMs, which pro-036

cess single textual modality, MLLMs integrate mul-037

tiple modalities, such as images, text, and graphs,038

by aligning them within a unified framework. This039

is typically accomplished using unimodal encoders040

for each input type and cross-modal projectors that041

30

35

40

45

50

55

60

65

70

MMSeqs2 Dense KNN

BioT5+

ProLLaMA-SFT

Mol-Instructions

EvoLLAMA

Llama3.1-SFT
BioGPT-SFT

Galactica-SFT

1B0.3B0 8B7B4B

70

65

60

55

50

45

40

35

30

M
o

l-
In

s
tr

u
c
ti
o

n
s
 A

v
e

ra
g
e

 R
O

U
G

E
-L

 (
%

) 

b) Retrieval-based models beat Embedding models

10B

FAPM

Embedding-based Model

Retrieval-based Model

DecoderEmbedding

Embedding-based Methods

a) Protein-Text Understanding & Main Structures

Describe the protein <MPLTAQGD..>, 

including its function, subcellular localization

Protein functions are GTP binding, 

magnesium ion binding, typically 

found in the cytoplasm...

Protein Text Answer

Retrieval-based Methods

LLMsProtein

Database

Text Answer

(RAG)

(k-NN)

Protein

Input OutputProtein-Text 

Understanding Models

Figure 1: a) Protein understanding tasks, and LLM-
based and retrieval-based methods for this task. b) The
performance of existing methods in protein understand-
ing tasks. Retrieval methods based on protein embed-
dings or sequences outperform LLM-based approaches.

map different modalities into a shared embedding 042

space (Zhu et al., 2023). As a result, MLLMs en- 043

able sophisticated cross-modal reasoning, paving 044

the way for applications like image-text understand- 045

ing and molecule-function analysis (Li et al., 2023; 046

Cao et al., 2024; Liu et al., 2023c). 047

The advances in MLLMs have led to signif- 048

icant developments in text-based protein under- 049

standing (Liu et al., 2024c, 2023b; Zhou et al., 050

2025; Lv et al., 2024; Liu et al., 2024b). The 051

input of most tasks generally consists of a pro- 052

tein sequence paired with natural language text, 053

while the output represents a functional description. 054

Given that proteins can be represented as amino 055
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acid sequences, they are naturally compatible with056

LLMs and can be processed in two primary ways057

(Fig. 1a): (1) directly as textual inputs to a language058

model in a decoder-only or encoder-decoder ar-059

chitechture (Fang et al., 2024; Lv et al., 2024; Luo060

et al., 2022; Pei et al., 2023), or (2) as an external061

modality, where specialized encoders first extract062

high-quality protein representations before align-063

ment with LLMs for downstream tasks (Liu et al.,064

2024b). To evaluate such protein-text multimodal065

models, several benchmarks have been introduced,066

covering key tasks such as protein function predic-067

tion, subcellular localization, catalytic activity, and068

protein design (Fang et al., 2024). The model’s069

performance is assessed by comparing the model’s070

outputs against ground-truth annotations. While071

promising, existing methods raise key questions:072

Q1: Can LLMs truly understand protein sequences?
Q2: Are current benchmarks suitable for protein un-
derstanding tasks?

073

To answer the two questions, we recall that re-074

trieval methods have long served as fundamental075

approaches in protein tasks, leveraging sequence076

alignment and database search techniques to iden-077

tify functional and structural similarities (Lee et al.,078

2007; Higdon et al., 2010; Eswar et al., 2006).079

These well-established methods provide a natural080

baseline for evaluating whether modern LLMs of-081

fer genuine advances in protein understanding or082

merely replicate retrieval paradigms through al-083

ternative mechanisms. We therefore tackle Q1 by084

first comparing traditional retrieval methods against085

LLMs. Surprisingly, our analysis reveals that sim-086

ple retrieval-based approaches can match or even087

outperform current LLMs in protein sequence un-088

derstanding, challenging the prevailing view that089

LLMs are inherently superior in this domain.090

Through a comprehensive analysis of prevailing091

protein-text datasets and evaluation metrics, we092

identify two key limitations in current benchmarks:093

(1) significant data leakage issues that compromise094

benchmark validity, and (2) metrics that fail to ade-095

quately capture model performance on biologically096

meaningful tasks. We systematically evaluate both097

fine-tuning-based and alignment-based approaches098

across existing datasets, revealing that MLLMs099

primarily generate outputs by memorizing and re-100

producing similar input features. Motivated by our101

analysis and findings, we propose a more rigorous102

benchmark for text-based protein understanding103

and introduce an efficient protein knowledge re- 104

trieval system, which achieves the state-of-the-art 105

performance in protein understanding by Retrieval- 106

Augmented Protein Modeling (RAPM). 107

Our contributions are summarized as follows: 108

• We perform detailed evaluations on existing 109

protein-text benchmarks, exposing issues related 110

to data leakage and metric deficiencies. 111

• We systematically compare fine-tuned LLMs 112

with retrieval-based methods, demonstrating that 113

fine-tuning is unnecessary for specific tasks. 114

• We propose RAPM, a Retrieval-Augmented Pro- 115

tein Modeling framework with a dual-indexed 116

protein knowledge database for enhancing LLM 117

in protein understanding tasks. 118

2 Related Works 119

This section provides an overview of prior research 120

focused on three key aspects: (1) applications 121

of language models to protein science, (2) exist- 122

ing benchmarks for protein understanding, and (3) 123

retrieval-based approaches in protein research. 124

2.1 Language Models in Protein 125

Protein language models (PLMs) have successfully 126

adapted Transformer architectures to represent pro- 127

tein sequences as biological tokens, enabling ad- 128

vances in protein embedding (Hayes et al., 2025; 129

Brandes et al., 2022; Elnaggar et al., 2021; Cao and 130

Shen, 2021; Hu et al., 2024; Chen et al., 2024a,b) 131

and design (Madani et al., 2023; Nijkamp et al., 132

2023; Lv et al., 2024; Ferruz et al., 2022). How- 133

ever, their inability to integrate textual informa- 134

tion limits cross-modal reasoning, prompting re- 135

cent work to develop mixed protein-text models. 136

These approaches include Contrastive Learning 137

Methods (Xu et al., 2023; Wu et al., 2024) that 138

align protein sequences with text, Bioknowledge- 139

Augmented Pre-training (Ferruz et al., 2022; Taylor 140

et al., 2022; Lv et al., 2024; Pei et al., 2023; Zhuo 141

et al., 2024; Liu et al., 2024b) that leverage large 142

protein-text corpora, and Multi-modal LLMs (Liu 143

et al., 2024c; Abdine et al., 2024; Wang et al., 2024; 144

Chen et al., 2024b; Ma et al., 2025; Xiang et al., 145

2024) that project protein embeddings into LLM 146

spaces. Despite progress, scaling these methods 147

to larger LLMs remains challenging due to pro- 148

hibitive retraining costs and catastrophic forget- 149

ting (Kirkpatrick et al., 2017), motivating research 150

into parameter-efficient adaptation strategies. 151
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Figure 2: a) Three typical LLM-based approaches for text-based protein understanding. b) Simple nearest-neighbor
based retrieval with protein embedding or sequence similarities.

2.2 Related Benchmarks152

To advance research on protein-text hybrid mod-153

els, several relevant benchmarks have been pro-154

posed. These benchmarks can be categorized into155

two types: (1) Protein Captioning Tasks, where156

only the protein sequence is input and a corre-157

sponding textual description is generated (e.g.,158

the Swiss-Prot (Bairoch and Apweiler, 2000) and159

ProteinKG datasets (Zhang et al., 2022)), and160

(2) Protein Question-Answering Tasks, where both161

a protein sequence and a question are provided162

as input, and the model must generate an answer163

based on the protein and the query (e.g., Mol-164

Instructions (Fang et al., 2024), UniProtQA (Luo165

et al., 2024)), ProteinLMBench (Shen et al., 2024).166

To evaluate model performance on these bench-167

marks, researchers typically employ standard NLP168

metrics such as ROUGE (Lin, 2004), BLEU (Pa-169

pineni et al., 2002), and METEOR (Banerjee and170

Lavie, 2005) to measure the similarity between pre-171

dicted answers and ground-truth references. Mod-172

els that perform well on these tasks can be applied173

to automated protein annotation, protein design,174

and protein property-related QA, thereby facilitat-175

ing progress in the field.176

2.3 Protein Related Retrieval-Based Methods177

Retrieval-based approaches are fundamental to pro-178

tein science, grounded in the well-established bio-179

logical principle that sequence homology implies180

evolutionary conservation and functional similar-181

ity (Pearson, 2013). Single-sequence alignment182

approaches (Altschul et al., 1990; Buchfink et al.,183

2015; Steinegger and Söding, 2017; van Kem-184

pen et al., 2022) and multiple sequence alignment185

tools (Remmert et al., 2012; Johnson et al., 2010)186

are extensively used in bioinformatics for identify-187

ing highly homologous sequences. Many protein188

models utilize retrieval methods to assist down-189

stream tasks, where AlphaFold2 (Jumper et al.,190

2021), MSA-Transformer (Rao et al., 2021), and 191

RosettaFold (Baek et al., 2021) employ multiple se- 192

quence alignment results to aid property prediction 193

or structure folding. Furthermore, retrieval-based 194

approaches (Tan et al., 2024; Shaw et al., 2024; 195

Sgarbossa and Bitbol, 2025; Jin et al., 2024; Li 196

et al., 2024) have demonstrated the feasibility of 197

using retrieval tools to enhance LLM-based predic- 198

tions in protein research. 199

3 Analysis 200

Despite the broad usage of LLMs for protein un- 201

derstanding tasks, it remains unclear whether they 202

truly understand protein sequences or simply mem- 203

orize patterns. To answer this question, we con- 204

duct a systematic comparison between LLMs and 205

retrieval-based methods, analyzing their perfor- 206

mance and studying what LLMs actually learn. 207

3.1 Retrieval vs. LLM in Existing Tasks 208

We first evaluate both LLM-based and retrieval- 209

based approaches on existing benchmarks, with the 210

following experimental setup: 211

• LLM-based approach (Fig. 2a): After fine- 212

tuning the model on the training dataset, we pro- 213

cessed test samples using next-token prediction 214

to generate answers. 215

• Retrieval-based approach (Fig. 2b): For each 216

test sample, we retrieve the most similar protein 217

sequence from the training set and use its annota- 218

tion as the answer. 219

For LLM-based methods, we test a variety of 220

model architectures, including 5 unimodal LLMs 221

(Galactica-1.3B-SFT (Taylor et al., 2022), BioGPT- 222

347M-SFT (Luo et al., 2022), ProLLaMA-7B- 223

SFT (Lv et al., 2024), Mol-Instructions-7B (Fang 224

et al., 2024), and Llama-3.1-8B-SFT (Dubey 225

et al., 2024)), 1 encoder-decoder model (BioT5- 226

Plus (Pei et al., 2023)), and 2 multi-modal LLMs 227
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Model Arch. SFT Mol-Instructions/Protein (ROUGE-L) Avg.
Function Description Domain Catalytic

Galactica-1.3B-SFT Decoder-only ✓ 7.1 48.2 55.3 30.2 35.2
BioGPT-347M-SFT Decoder-only ✓ 50.9 49.7 55.4 54.2 52.5
ProLLaMA-7B-SFT Decoder-only ✓ 48.6 20.3 46.7 39.3 38.7
Mol-Instructions-7B Decoder-only ✓ 43.0 44.0 46.0 52.0 46.2
Llama-3.1-8B-SFT Decoder-only ✓ 52.1 54.2 51.2 59.6 54.2
BioT5-Plus-252M Encoder-Decoder ✓ 56.6 68.0 53.4 71.8 62.4
EvoLLaMA-8.8B MLP-Projector ✓ 48.0 50.0 50.0 60.0 52.0
FAPM-10B Q-Former ✓ 60.9 64.0 52.7 76.0 63.4

MMSeqs2-Align Retrieval × 60.2 76.0 55.2 75.6 66.7
ESM2-Embedding Retrieval × 59.7 74.9 54.5 75.2 66.0

Table 1: Performance comparison of LLM-based and retrieval-based methods across two text-based protein
understanding benchmarks. Arch. denotes the model architecture. SFT indicates whether the model has undergone
supervised fine-tuning on the training set. Bold indicates the best performance.

(EvoLLAMA-8.8B (Liu et al., 2024b) and FAPM-228

10B (Xiang et al., 2024)). For retrieval approaches,229

we employ MMSeqs2 (Steinegger and Söding,230

2017) for sequence retrieval and ESM-2-650M (Lin231

et al., 2022) as the protein sequence encoder for232

embedding similarity. Our evaluation results (Ta-233

ble 1) highlight a key finding: all current deep234

learning methods underperform retrieval-based235

approaches on these benchmarks. We find that236

multi-modal LLMs merely match the performance237

of retrieval methods, while unimodal LLMs demon-238

strate poorer results. More critically, fine-tuning239

LLMs requires significant GPU resources, whereas240

ESM2-based retrieval only needs to compute pro-241

tein embeddings, and MMSeqs2 retrieval com-242

pletes 100 million comparisons within 1 minute243

using only one CPU.244

To investigate why the retrieval-based methods245

beat LLMs, we first examine the data leakage in246

current benchmarks. The t-SNE visualization of the247

ESM2 embeddings of the proteins reveals samples248

forming distinct clusters with significant training-249

test contamination (Figure 3). We then quantify250

the level of data leakage by the percentage of test251

samples whose label can be directly obtained by252

retrieving the most similar sample (right table in253

Figure 3). It is easy to see that the leakage rates ex-254

ceed 50% for most tasks, surpass 95% in some ex-255

treme cases. Such pervasive leakage suggests that256

models fine-tuned on these benchmarks predom-257

inantly memorize dataset-specific features rather258

than develop meaningful biological understanding.259

3.2 What do LLMs Learn?260

A fundamental question in text-based protein under-261

standing is whether LLMs genuinely comprehend262

protein knowledge or simply act as sophisticated263

pattern matches based on input similarities. To ad-264

dress this, we perform a fine-grained comparative265

Figure 3: We evaluate the degree of data leakage in both
existing benchmarks and OOD benchmarks. “Leakage"
is defined as the probability that test set samples can
directly retrieve similar samples with the same label
from the training set.

analysis between LLM-based and retrieval-based 266

approaches. Specifically, we visualize and com- 267

pare their performance across all test samples in 268

the Protein Function task. This analysis enables 269

us to distinguish whether LLMs predict properties 270

based on protein sequence features or simply learn 271

to replicate labels from similar training samples. 272

We compare the performance of the retrieval 273

method to that of the LLM method under the mea- 274

surement of ROUGE-L (Fig. 4). The majority of 275

samples fall below the y = x reference line and 276

naturally separate into three clusters: 277

• Cluster 1: Both retrieval and LLM methods fail 278

to predict the protein function. 279

• Cluster 2: The retrieval method correctly predicts 280

the function while the LLM method fails 281

• Cluster 3: Both methods demonstrate competent 282

performance. 283
Our analysis demonstrates that LLMs fine-tuned 284
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Figure 4: The ROUGE-L score distributions of retrieval-
based methods versus LLM-based methods for all test
samples in the General Function task.

for protein function prediction fail to surpass the285

performance of retrieval-based approaches for most286

test samples, indicating they primarily serve as a287

less effective substitute for retrieval approaches.288

3.3 Is Retrieval a Silver Bullet?289

We further investigate if traditional retrieval meth-290

ods are a silver bullet as shown above. Using the291

entire training set as retrieval candidates, rather292

than creating separate pools for each subtask, leads293

to significant performance degradation for differ-294

ent methods (Table 2). Such task-specific pools295

are impractical in practice, given task diversity and296

continuous change. Furthermore, traditional meth-297

ods often return only the top-1 match, preventing298

multi-source aggregation and lacking flexibility.

Retrieval Function Description Domain Catalytic

MMSeqs2 60.2 76.0 55.2 75.6
MMSeqs2all 40.0(↓34%) 25.4(↓67%) 36.7(↓34%) 37.6(↓50%)

ESM2-Embed 59.7 74.9 54.5 75.2
ESM2-Embedall 38.7(↓35%) 17.6(↓77%) 36.7(↓33%) 26.8(↓64%)

Table 2: Performance degradation of retrieval methods
with full corpus as candidates pool.

299
Summary: For practical usage, neither retrieval-300

based methods nor LLMs provide satisfactory pro-301

tein understanding, which suggests a hybrid frame-302

work that synergistically combines the precision of303

retrieval with the reasoning capacity of LLMs.304

4 Methods: Combine Retrieval & LLM305

and New Benchmark306

To address this need, we develop Retrieval-307

Augmented Protein Modeling (RAPM) based308

on the Retrieval-Augmented Generation (RAG)309

paradigm. RAG is a proven approach for en- 310

hancing LLM factual accuracy and domain knowl- 311

edge (Lewis et al., 2020). Our method leverages a 312

Bio-Knowledge Database and contextual prompts 313

to provide LLMs with explicit protein evidence 314

during inference, thereby improving their under- 315

standing of biological information and addressing 316

the memorization vs. reasoning tradeoff inherent 317

in this problem. 318

4.1 Protein Knowledge Database 319

Construction 320

For optimal performance, an accurate and efficient 321

domain retrieval system relies on a carefully cu- 322

rated protein knowledge database. In our database, 323

existing biological annotations are standardized 324

into structured [Protein, Annotation] tuples, 325

indexed by amino acid sequence and embeddings. 326

The details of the database construction is shown 327

in Fig. 5, including: 328

• Protein Annotation Data Collection. We gather 329

protein-annotation data from InterPro (Blum 330

et al., 2025), EC-GO (Gligorijević et al., 2021), 331

and Mol-Instructions (Fang et al., 2024), ex- 332

tracting biological entity annotations using the 333

method in Sec. 4.3. 334

• Dual-key Indexing. We build database indices 335

with: (1) Sequence-based Indexing with inverted 336

K-mer indices for heuristic retrieval, and (2) 337

Feature-based Indexing using ESM-2 extracted 338

protein features with the HNSW algorithm for 339

efficient indexing. 340

• Feature Aggregation. For an annotation shared 341

by multiple proteins, we compute the mean- 342

pooled embedding of all proteins with that anno- 343

tation. This aggregated feature ensures retrieval 344

breadth while maintaining biological relevance. 345

4.2 Retrieval-Augmented Protein Modeling 346

Using a RAG-based approach, we provide LLMs 347

with explicit protein evidence during inference for 348

downstream queries. The overall retrieval and 349

query pipeline is illustrated in Fig. 5. A criti- 350

cal component is our reformatted protein knowl- 351

edge database, constructed by reorganizing existing 352

protein annotations into standardized [Protein, 353

Annotation] tuples. For precise and efficient 354

retrieval, each entry is indexed using a dual- 355

key mechanism, incorporating both amino acid 356

sequence-based indexing with inverted K-mer in- 357

dices for heuristic retrieval and feature-based index- 358
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Figure 5: We collect protein-annotation pairs from existing protein annotation databases for the Protein-Knowledge
Database construction. We extract dense features of proteins using a Protein Encoder and build database indices
using two indexing methods. For entries sharing identical labels, we incorporate meta-features into the database.
For downstream queries, we combine scores from both indices to retrieve the Top-K relevant entities, then construct
retrieval-augmented prompts after quantizing sequence similarity into High, Mid, and Low confidence levels.

ing using ESM-2 embeddings with the HNSW al-359

gorithm for efficient similarity search (details about360

the indexing refer to Appendix C.3). To further im-361

prove retrieval breadth, especially for annotation362

labels shared by multiple proteins, we aggregate363

the features by computing the mean-pooled em-364

bedding of all proteins associated with a common365

annotation and indexing these aggregated features.366

Formally, given a protein query Q, we retrieve367

K support data points {di}Ki=1 from this structured368

database by ranking candidate entries based on a369

similarity score si. This score is a weighted com-370

bination of sequence and embedding similarity:371

si = α · simseq(s, si) + (1 − α) · simemb(e, ei),372

where s and si are protein sequences, e and ei are373

the corresponding ESM-2 embeddings, and α is374

a weight parameter, currently set to 0.5. Instead375

of including full sequences in the prompt, each of376

the top-K retrieved items is formatted as a concise377

[Confidence, Annotation] tuple. The Confi-378

dence level is derived from si based on quantiles:379

> 90% as High , 90% > si > 60% as Medium,380

and ≤ 60% as Low. The final input prompt P for381

the LLM is constructed by concatenating the query,382

few-shot examples, and the formatted retrieved383

items: P = Q⊕Efew-shot⊕R1:k, where R1:k repre-384

sents the formatted top-K entries and Efew-shot are385

demonstrations from the training dataset included386

to help the LLM understand the task format and387

reasoning. The LLM is then conditioned on P to388

predict the answer: ŷ = LLM(P).389

4.3 Novel Benchmark Proposal 390

Existing benchmarks (Sec 2.2) rely on NLP- 391

derived metrics like token or sentence similarity, 392

implicitly assuming equal importance for all an- 393

swer components. This approach is fundamentally 394

flawed for biological QA tasks. In protein-related 395

questions, responses frequently include standard- 396

ized template structures while the critical biological 397

information is concentrated in just a few content 398

words, which typically appear in the final portion 399

of the answer. Consider the following example: 400

Ground Truth:
Upon evaluating your submitted sequence, our
predictive algorithms suggest the presence
of: ABC transporter domains

Prediction 1 (True Answer):
The sequence you provided has been analyzed
for potential protein domains or motifs. The
results are: ABC transporter domains

ROUGE-L = 0.27; BLEU = 0.04

Prediction 2 (False Answer):
Upon evaluating your submitted sequence, our
predictive algorithms suggest the presence
of: GGDEF, MHYT, EAL domains

ROUGE-L = 0.83; BLEU = 0.73

401
Blue: Mached Part Red: Mismatched Part 402

Although Prediction 2 achieves much higher NLP 403

metric scores, its information is biologically inac- 404

curate. This discrepancy highlights a critical flaw 405

of current evaluation metrics: they prioritize super- 406

ficial text overlap, particularly in generic template 407
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segments, and are insensitive to errors in the core408

biological content.409

To address the data leakage in Sec 3.1 and met-410

ric validity issues identified above, we construct411

a new protein domain benchmark with novel task412

partitions to avoid data leakage and a BLEU-like413

metric specifically designed for biological entities.414

Data Unification and Clustering. To mitigate415

data leakage, we restructure the protein-text data416

from Mol-Instruction through a two-step sequence-417

based partitioning strategy. (1) Low similarity418

(Low-Sim) split: Based on MMSeqs2 clustering419

with an 8:2 class split, mitigating general leakage.420

(2) Out-of-Distribution (OOD): Filters Low-Sim421

by removing samples with answers present in the422

training set, preventing reliance on retrieval. We423

refer to this new benchmark dataset as the Mol-424

Instructions-OOD dataset. Detailed OOD dataset425

construction process can be seen in Appendix A.426

Metric Design for Biological QA. Existing NLP427

metrics like ROUGE and BLEU are inadequate428

for biological QA, failing to capture biological nu-429

ances such as order-invariant entity lists by treating430

all tokens equally. To address this, we propose431

Entity-BLEU, a biological entity-focused metric432

analogous to BLEU. It works by first extracting433

biological entities from predictions and references434

using a knowledge base derived from databases435

like InterPro, EC-GO, and Mol-Instructions labels.436

A detailed biological entities can be seen in Ap-437

pendix B.2. The standard BLEU score is then438

computed on these extracted entity sequences. For-439

mally, Entity-BLEU is given by:440

Entity-BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(1)441

where BP is the brevity penalty term, wn are442

the weights for n-gram precision scores pn (typ-443

ically N ∈ {1, 2, 3, 4}), and all calculations are444

performed on the extracted Bio-Entity sequences445

rather than raw text.446

5 Experiments447

This section comprehensively evaluates the pro-448

posed RAPM with the benchmark and metric pro-449

posed in Sec. 4.3. Experimental results demon-450

strate that retrieval-based methods show significant451

performance degradation in OOD-benchmarks. In452

ablation studies, we assess the impact of the num-453

ber of items retrieved, database indexing methods,454

and prompt construction approaches for retrieval.455

5.1 Experimental Setup 456

We evaluate four representative methodological ap- 457

proaches under our novel dataset splitting strategy 458

described in Sec. 4.3: 459

1. Fine-tuned LLMs: These approaches fine-tune 460

pre-trained language models (BioGPT, BioT5+, 461

Llama) on the training set and inference on the 462

test set. 463

2. Retrieval-based methods: For each test input, 464

these approaches use the label of the retrieved 465

most similar training sample as the predictions. 466

3. Task-Prompted LLMs: These approaches 467

employ few-shot prompting frameworks with 468

general-purpose LLMs (Llama-3.3, DeepSeek- 469

V3, GPT-4.1), denoted by the subscript “few- 470

shot”, to generate predictions without retrieval 471

augmentation. 472

4. RAPM methods (Ours): Our method retrieves 473

top-K relevant samples from a protein knowl- 474

edge database, constructs augmented prompts 475

with these samples, and leverages general LLMs 476

to generate context-aware responses. 477

We test four subtasks in Mol-Instructions-OOD, 478

including “Protein Function”, “Functional Descrip- 479

tion”, “Domain/Motif” and “Catalytic Activity”, us- 480

ing the standard NLP metrics (ROUGE-L) and our 481

proposed metric, Entity-BLEU (N = 2). Detailed 482

fine-tuning hyperparameters, retrieval settings, and 483

RAPM prompt can be seen in Appendix C.2 and 484

C.3. Note that for a fair comparison between 485

RAPM methods and fine-tuned LLMs, we exclude 486

all extra-training-set data during retrieval to prevent 487

potential data leakage. 488

5.2 OOD Benchmark Performance 489

Table 3 summarizes the main results on existing 490

benchmarks for four representative methodolog- 491

ical approaches, and we observe the following 492

key results: (1) When evaluated in OOD settings, 493

the RAPM method achieves the highest Entity- 494

BLEU scores, outperforming retrieval-based meth- 495

ods and demonstrating substantial improvements 496

over fine-tuned and task-prompted LLMs. Be- 497

yond the superior performance, RAPM requires 498

substantially fewer computational resources than 499

fine-tuned LLMs and demonstrates a stronger ca- 500

pability to handle diverse tasks than retrieval-based 501

methods. (2) When comparing ROUGE-L and 502

Entity-BLEU scores of different methods, we ob- 503

serve a poor correlation between them, particularly 504
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Model #Train
Params Retrieval Function Description Domain Catalytic

E-BLEU RG-L E-BLEU RG-L E-BLEU RG-L E-BLEU RG-L

Fine-tuned LLM
BioT5+ 252M None 3.7 36.3 0.1 30.4 0.1 37.9 0.2 39.6
Llama-3.2-1B 1.0B None 16.2 43.4 4.4 43.0 3.9 43.0 1.8 44.0
BioGPT 347M None 6.8 41.6 0.3 34.3 1.1 44.3 0.6 43.9
Galactica-1.3B 1.3B None 14.4 43.2 1.2 32.6 3.8 45.3 0.9 43.3
ProLLama-7B* 19M None 6.3 39.8 0.5 30.2 1.0 41.7 0.4 41.8

Retrieval-based
MMSeqs2 N/A Seq 45.2 42.5 16.5 39.4 12.7 43.4 12.6 48.9
ESM-2-650M 650M Emb. 39.9 43.5 16.8 40.8 17.5 44.1 15.7 49.7

Task-prompted LLM
Llama-3.3-70Bw/ Few-shot N/A None 0.3 29.5 1.0 27.1 0.1 36.8 0.1 44.5
DeepSeek-V3w/ Few-shot N/A None 0.2 28.3 0.3 25.5 0.0 35.3 0.9 19.6
GPT-4.1w/ Few-shot N/A None 0.1 31.9 0.2 26.1 0.1 38.7 0.1 40.8

RAPM-based
Llama-3.3-70Bw/ RAPM N/A Seq+Emb. 41.5 37.5 16.9 25.4 7.3 11.1 23.5 44.6
DeepSeek-V3w/ RAPM N/A Seq+Emb. 35.3 31.2 13.8 24.4 8.8 17.9 16.3 21.0
GPT-4.1w/ RAPM N/A Seq+Emb. 46.6 27.4 20.9 30.1 32.0 22.5 38.9 46.4

Table 3: Performance across 4 protein understanding tasks, each evaluated with E-BLEU(Entity-BLEU) and
RG-L(ROUGE-L). "*" means using LoRA (Hu et al., 2022) fine-tuning. Bold for best, underline for second best.

Figure 6: Impact of Retrieval Number K in Entity-
BLEU-2, randomly selected 256 samples for each task.

for fine-tuned LLMs which have high ROUGE-L505

scores and low Entity-BLEU scores. As discussed506

in Sec 3.2, we owe this to the fact that fine-tuned507

LLMs primarily focus on learning irrelevant re-508

sponse patterns rather than understanding protein509

sequences.510

5.3 Ablation Studies511

Effect of Retrieved Sample Number. We inves-512

tigate the impact of varying the number of sam-513

ples retrieved (K ∈ {1, 3, 5, 10, 50}) in the RAG514

pipeline. As shown in Figure 6, increasing K can515

improve model performance to some extent when516

the number of retrieved items is small. However, a517

larger K may introduce low-confidence incorrect518

samples, thereby degrading model performance.519

Effect of Database Index Methods. We conduct520

ablation studies on different database components,521

specifically analyzing the impact of removing: (1)522

the Sequence Index, (2) the HNSW Index, (3) Fea-523

ture aggregation, and (4) the Few-shot component524

in prompts. Note: When removing the HNSW In-525

RAG setting E-BLEU-2 E-BLEU-4 Rouge-L

GPT-4.1 w. RAPM 56.2 51.4 34.7
- w/o. Seq Index 50.0 (↓11%) 44.0 (↓14%) 31.1 (↓10%)
- w/o. HNSW Index 44.8 (↓20%) 41.2 (↓20%) 32.3 (↓7%)
- w/o. Feature Aggr. 51.7 (↓8%) 47.2 (↓8%) 31.0 (↓11%)
- w/o. Few-shot 46.7 (↓17%) 41.4 (↓19%) 26.4 (↓24%)

Table 4: Impact of Retrieval Indexing Methods. We
randomly selected 256 samples from the "Protein Func-
tion" task and used GPT-4.1 to generate responses.

dex, Meta-Features are also eliminated. The results 526

(Table 4) show that removing any index signifi- 527

cantly affects retrieval accuracy, while the observed 528

ROUGE-L degradation confirms the importance 529

of Few-Shot examples for guiding LLMs to learn 530

proper response formats. 531

6 Conclusion and Future Works 532

In this work, we conduct a comprehensive anal- 533

ysis of existing text-based protein understanding 534

benchmarks and methods, revealing that current 535

benchmarks suffer from severe data leakage and 536

that training-free retrieval-based approaches outper- 537

form fine-tuned LLM methods. Building on this, 538

we introduce a novel hybrid benchmark and pro- 539

pose retrieval-augmented protein modelling. Our 540

RAG method leverages both retrieval capabilities 541

and LLMs’ strengths to synthesize instruction- 542

specific answers from retrieved evidence, achieving 543

impressive results on OOD datasets. 544

Our findings highlight the effectiveness of re- 545

trieval methods for protein understanding and the 546

need for rigorous benchmark and metric design. 547

Future work will focus on deeper integration of 548

retrieval and LLM methods, continuous improve- 549

ments to benchmarks and metrics, and extension to 550

other bio-entities (e.g., molecules, DNA, RNA). 551
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Limitations552

This work primarily addresses text-based protein553

understanding. Extending our proposed RAG554

framework to other protein science tasks, such as555

de novo design or complex structure prediction,556

will require further investigation. The framework’s557

effectiveness also heavily depends on the quality,558

coverage, and timeliness of the underlying protein559

knowledge database; incomplete or biased informa-560

tion in this resource can hinder performance, and561

maintaining an up-to-date database is an ongoing562

challenge. While our new benchmark and Entity-563

BLEU metric aim to improve evaluation rigor by564

mitigating data leakage and focusing on biologi-565

cal entities, assessing true biological understanding566

remains a multifaceted problem. Consequently,567

these tools, like any evaluation method, will benefit568

from continued validation, community adoption,569

and refinement. Furthermore, we plan to explore570

retrieval-augmented finetuning in future work, par-571

ticularly with efficient LLMs, to further enhance572

domain-specific performance, an approach not in-573

vestigated in this study.574

Potential Risks575

A primary risk is that our framework could generate576

inaccurate biological insights. If unverified, these577

could misdirect research efforts. Over-reliance578

might also diminish critical human oversight. Fur-579

thermore, biases in the underlying data or LLMs580

could be amplified, leading to skewed predictions,581

especially for novel or less-studied proteins. The582

opaque nature of some LLMs can also make it hard583

to audit results or identify the root of errors. Fi-584

nally, ensuring broad and equitable access to these585

powerful tools remains a challenge.586
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Dataset / Task Train Validation Test

Swiss-Prot 430,595 10,000 10,000
ProteinKG25 422,315 10,000 10,000

Mol-Instructons (Protein)
- Protein Function 110,689 – 3,494
- Catalytic Activity 51,573 – 1,601
- Domain / Motif 43,700 – 1,400
- Functional Desc. 83,939 – 2,633

OOD Datasets
- Protein Function 108,696 – 5,487
- Domain/Motif 42,368 – 2,732
- Catalytic Activity 51,187 – 1,987
- General Function 82,275 – 4,297

Table 5: Dataset statistics: number of samples for each
task in the three corpora.

1. Sequence Clustering: We cluster all se-988

quences from both training and test sets us-989

ing MMseqs2 with the command “mmseqs990

easy-cluster –cluster-mode 0 -c 0 -e991

1e5 –single-step-clustering –min-seq-id992

0 [all_seqs]", generating distinct sequence993

clusters.994

2. Cluster Partitioning: All clusters are randomly995

split into training (80%) and test (20%) clusters,996

with sequences from these clusters forming the997

respective training and test sets.998

3. Leakage Elimination: To prevent test-set sam-999

ples from having direct training-set answers, we1000

use “mmseqs easy-search –max-accept 11001

[query_db] [target_db]" to query the most1002

similar training-set protein for each test-set pro-1003

tein. If a test-set protein shares a label with its1004

retrieved training-set counterpart, it is reallocated1005

to the training set.1006

We repeat Step 3 twice to ensure minimal label1007

overlap between the test set and retrieval results,1008

yielding the final OOD dataset.1009

B Methods Details1010

This section presents the methodology details, in-1011

cluding the implementation of simple retrieval base-1012

lines and the construction of the protein knowledge1013

database.1014

B.1 Details of Simple Retrieval Methods1015

To establish a straightforward baseline for the1016

Text-based Protein Understanding task, we employ1017

the simple retrieval approach using MMSeqs2, a1018

widely adopted sequence alignment toolkit. Specif-1019

ically, we utilize the easy-search mode of MM-1020

Seqs2 with the parameters -e 1e5 –max-accept1021

1. Here, -e 1e5 sets a permissive E-value threshold 1022

to ensure the retrieval mechanism is recall-oriented, 1023

and –max-accept 1 restricts the output to only the 1024

top candidate for each query. For every sample 1025

in the test dataset, we retrieve from the training 1026

dataset the most similar protein sequence based on 1027

alignment scores. The functional annotation (la- 1028

bel) of the retrieved protein is then assigned as the 1029

predicted label for the query. This simple nearest- 1030

neighbor baseline is effective for assessing the up- 1031

per bound of sequence-based function transfer. 1032

B.2 Details of Protein Knowledge Database 1033

Construction 1034

To construct a comprehensive protein knowledge 1035

database to support downstream tasks, we divide 1036

our methodology into data collection and efficient 1037

indexing phases. 1038

Data Collection We integrated annotations from 1039

three prominent sources: InterPro, EC-GO, and 1040

Mol-Instructions. For InterPro, we selectively used 1041

only sequences annotated via Swiss-Prot curation, 1042

resulting in a high-quality subset with 573,230 se- 1043

quences. In the EC-GO database, labels corre- 1044

sponding to the enzyme classification (EC) and 1045

gene ontology (GO) were merged into a unified 1046

text-based annotation to capture functional and pro- 1047

cess aspects simultaneously. For Mol-Instructions, 1048

only the “meta-data” field is retained as the an- 1049

notation, disregarding the original class labels, to 1050

emphasize naturalistic, descriptive phrasing of pro- 1051

tein functions. 1052

HNSW-Index Construction We implement 1053

HNSW for efficient ANN search over protein se- 1054

quence embeddings V = {vi}Ni=1 ⊂ R1280 from 1055

ESM2-650M. For sequences sharing functional an- 1056

notations, we compute aggregated embeddings: 1057

vagg
y =

1

|Sy|
∑
x∈Sy

vx, Sy = {x|label(x) = y} 1058

The index construction involves three key steps: 1059

1. Layer Assignment: Each vector v is assigned 1060

to layer l via: 1061

l = ⌊− ln(rand(0, 1)) ·mL⌋, mL = 1/ ln(M) 1062

2. Hierarchical Insertion: For each layer l from 1063

top to bottom: 1064

El(v) = argminu∈Nl(v),|E|=M∥v − u∥2 1065
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where Nl(v) contains ef_construction nearest1066

neighbors.1067

3. Small-World Guarantee: Connections main-1068

tain:1069

∥v − u∥2 ≤ rl(v), ∀u ∈ El(v)1070

The resulting structure achieves O(logN) search1071

time with O(N ·M) space complexity, balanc-1072

ing accuracy and efficiency for protein function1073

retrieval. Key advantages include multi-layer ac-1074

celeration, optimized neighborhood connectivity,1075

and adaptive radius control.1076

MMSeqs-Index Construction For indexing at1077

the sequence level, we utilize the k-mer based in-1078

verted indexing scheme provided by MMSeqs2.1079

Each protein sequence is decomposed into overlap-1080

ping k-mers (subsequences of fixed length k). The1081

index is then constructed as a mapping from each1082

unique k-mer to the list of all sequences containing1083

it. The search query is similarly tokenized and can-1084

didate sequences are retrieved by aggregating all1085

records sharing at least one k-mer with the query.1086

Formally, letting K(q) denote the set of k-mers in1087

query q, the candidate set is given by1088

C(q) =
⋃

k′∈K(q)

Index[k′]1089

This approach provides a highly efficient solution1090

for large-scale substring and approximate match-1091

ing, and is particularly effective for detecting local1092

similarities.1093

Bio-Entity List Collection For the evaluation1094

metric Entity-BLEU, we construct a domain-1095

specific entity list. This list is derived by extracting1096

all distinctive biological terms from annotations1097

in EC-GO, InterPro, and the “metadata” field of1098

Mol-Instructions. The curated entities span numer-1099

ous key biological domains, meticulously catego-1100

rized into areas such as Molecular Biology and Bio-1101

chemistry(including nucleic acids like DNA, pro-1102

teins like polymerase, and metabolites like ATP),1103

Cell Biology (covering organelles like mitochon-1104

drion, processes like apoptosis), Bioenergetics and1105

Metabolism (e.g., glycolysis, ATP synthase), Ge-1106

netics and Genomics (terms like gene, codon, RNA1107

polymerase), Molecular Interactions and Signaling1108

(e.g., receptor, MAPK pathway), Developmental1109

Biology, Immunology, Plant Biology, and Micro-1110

biology. Resulting in 11,341 unique terms across1111

10 different main categories. This ensures a broad 1112

yet granular representation of biological concepts. 1113

To enhance specificity, we remove ambiguous 1114

general words (e.g., “domain”) and common stop- 1115

words (e.g., “for”, “to”). This list underlies the 1116

Entity-BLEU metric, which rewards lexical overlap 1117

specifically on content-relevant biomedical entities, 1118

providing a fine-grained measurement of functional 1119

description quality. 1120

C Experimental Details 1121

C.1 Comparison Baselines 1122

For fair comparison, we select the following base- 1123

lines: 1124

• BioT5+ (Pei et al., 2024): A T5 architecture 1125

model for biological and chemical tasks, improv- 1126

ing on BioT5 (Luo et al., 2022) with IUPAC inte- 1127

gration, multi-task tuning, and better numerical 1128

processing. 1129

• Llama-3.2-1B (Dubey et al., 2024): A recent 1130

multilingual LLM with strong generalization abil- 1131

ity, tested in both zero-shot and fine-tuned con- 1132

figurations. 1133

• BioGPT (Luo et al., 2022): A domain-specific 1134

generative Transformer language model pre- 1135

trained on large-scale biomedical literature. 1136

BioGPT achieves strong performance on six 1137

biomedical NLP tasks. Case studies demonstrate 1138

BioGPT’s ability to generate fluent biomedical 1139

text descriptions. 1140

• Galactica (Taylor et al., 2022): The Galactica 1141

models are trained on a large-scale scientific cor- 1142

pus. The models are designed to perform scien- 1143

tific tasks, including but not limited to citation 1144

prediction, scientific QA, mathematical reason- 1145

ing, summarization, document generation, molec- 1146

ular property prediction, and entity extraction. 1147

The models were developed by the Papers with 1148

Code team at Meta AI to study the use of lan- 1149

guage models for the automatic organization of 1150

science. 1151

• ProLlama (Lv et al., 2024): ProLLaMA is a pro- 1152

tein large language model, designed for multi- 1153

task protein language processing. It employs 1154

a two-stage training framework, incorporating 1155

Low-Rank Adaptation (LoRA) and Protein Vo- 1156

cabulary Pruning (PVP) to enhance efficiency. 1157
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ProLLaMA achieves strong performance in pro-1158

tein sequence generation and property prediction1159

tasks.1160

• MMSeqs2 Retrieval (Steinegger and Söd-1161

ing, 2017): MMseqs2 (Many-against-Many se-1162

quence searching) is a high-performance soft-1163

ware suite designed for the rapid and sensi-1164

tive retrieval of homologous protein or nu-1165

cleotide sequences from large-scale databases.1166

Its retrieval module employs a multi-stage1167

search pipeline—comprising fast k-mer match-1168

ing, ungapped alignment, and vectorized Smith-1169

Waterman alignment—to efficiently identify rele-1170

vant sequences while minimizing computational1171

overhead. This approach enables MMseqs2 to1172

achieve sensitivity comparable to BLAST, but1173

with significantly enhanced speed.1174

• ESM-2 Embedding KNN (ESM Team, 2024):1175

This method retrieves homologous proteins by1176

performing K-Nearest Neighbors (KNN) search1177

on fixed-length embeddings generated by the1178

ESM-2 language model. By averaging residue-1179

level embeddings, each protein sequence is rep-1180

resented as a single vector, enabling efficient1181

similarity searches using cosine distance met-1182

rics. This embedding-based approach facilitates1183

rapid identification of functionally similar pro-1184

teins, even in cases of low sequence identity.1185

C.2 Hyper-parameters1186

Finetune Settings. The LLM fine-tuning pro-1187

cess utilizes hyperparameters shown in Table 6.1188

Training is conducted with DeepSpeed-enabled dis-1189

tributed GPUs, utilizing mixed-precision (bf16)1190

and memory optimization techniques. For LLMs1191

over 7 billion parameters, LoRA is used to sig-1192

nificantly reduce memory requirements by freez-1193

ing the majority of model weights and introducing1194

lightweight low-rank updates. The cosine learning1195

rate schedule with warm-up ensures stable conver-1196

gence.1197

C.3 RAG Inference Settings1198

We standardize the inference hyperparameters1199

across all evaluated LLMs (GPT-4.1, LLaMA3-1200

70B, and DeepSeek-V3) to ensure fair compari-1201

son. The configuration is optimized for retrieval-1202

augmented generation tasks:1203

Hyper-parameter Value

Learning rate for LoRA 1e-4
Learning rate for full parameter 4e-5
Batch size per device 2
Gradient accumulation steps 8
LoRA rank 8
LoRA α 32
LoRA dropout 0.05
Max sequence length 2048
Number of epochs 2
Optimizer AdamW
LR scheduler type Cosine
Warm-up ratio 0.1
Weight decay 1e-2
Mixed precision bf16
Gradient checkpointing Enabled
Devices 4 * RTX-A6000
Approximate training duration 15 hours /task
DeepSpeed config Zero-2

Table 6: Hyper-parameter settings for finetuning.

Hyper-Parameter Value

Temperature 0.7
Top-p 0.9
Max tokens 2048
Frequency penalty 0
Presence penalty 0

Table 7: Inference parameters for all evaluated LLMs.
Identical settings are maintained across models except
where architectural differences require variation.

D Case Study 1204

D.1 Case Study for Data Leakage 1205

This part provides specific examples illustrating 1206

the data leakage observed in existing protein-text 1207

benchmarks, as discussed in Sec 3.1. Table 8 1208

presents two representative pairs of entries, each 1209

consisting of a protein from a test dataset and a 1210

highly similar protein from its corresponding train- 1211

ing dataset. Crucially, for both pairs, the associated 1212

functional or domain information is identical. 1213

For instance, the first pair shows test protein 1214

UniProt A4WLK4 and training protein UniProt 1215

A0A823T310 possessing significantly similar 1216

amino acid sequences and precisely the same 1217

detailed functional annotation (6,7-dimethyl-8- 1218

ribityllumazine synthase activity, etc.). Similarly, 1219

the second pair, UniProt Q27996 (test) and UniProt 1220

P51782 (training), exhibits high sequence homol- 1221

ogy directly correlated with an identical domain 1222

annotation ("Contains C-type lysozyme domains"). 1223

This direct correspondence between highly simi- 1224
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"Based on the given amino acid sequence, the protein appears to have a primary function of metal ion binding. It is likely involved in the regulation of 
transcription by RNA polymerase II, and its subcellular localization is within the MOZ/MORF histone acetyltransferase complex, nucleus."

"Bio-Entity": "MOZ/MORF histone acetyltransferase complex, nucleus | metal ion binding | regulation of transcription by RNA polymerase II"

Ground Truth:

You are given a protein sequence and two lists of related proteins retrieved from a database.
Instruction: Examine the protein sequence below and provide a prediction on its subcellular localization within the cell: 
Protein sequence: APQEPNQFQLLKYH
Retrieved proteins by feature similarity: 
<High Confidence>: 'chloroplast thylakoid', 
<High Confidence>: 'carbohydrate binding'

<High Confidence>: 'FMRFamides and FMRFamide-like peptides are neuropeptides.'
<High Confidence>: 'chloroplast thylakoid'

<High Confidence>: 'extracellular region | toxin activity', 
<High Confidence>: 'Has antibacterial activity against the Gram-positive bacteria L.monocytogenes, L.lactis subsp lactis and L.curvatus H28, but not against the 

Gram-positive bacteria L.curvatus CWBI-B28, L.brevis and L.plantarum or the Gram-negative bacteria E.coli and Pseudomonas sp 55. Has no antifungal activity 
against S.cerevisiae, Penicillium sp BKS- TAN2 or A.niger.'

<Medium Confidence>: '(R)-amygdalin + H2O = (R)-prunasin + D-glucose'
<Medium Confidence>: 'extracellular region | neuropeptide signaling pathway'

<Medium Confidence>: '2 a phenolic donor + H2O2 = 2 a phenolic radical donor + 2 H2O'
<Medium Confidence>: 'extracellular space | serine-type endopeptidase activity, toxin activity | proteolysis'

Retrieved proteins by MMSeqs2: 
<High Confidence>:   'cytosol | carbohydrate derivative binding, glucose-6-phosphate isomerase activity, monosaccharide binding | gluconeogenesis, glucose 6-

phosphate metabolic process, glycolytic process'
Here are some example input-output pairs for this task:
'example answer': \"The protein characterized by the amino acid sequence demonstrates kynurenines activity, pyridoxal phosphate binding and is implicated in the 
'de novo' NAD biosynthetic process from tryptophan, anthranilate metabolic process, L-kynurenine catabolic process, quinolinate biosynthetic process, 

tryptophan catabolic process. Its subcellular localization is primarily within the cytoplasm. 
'example answer': \"Upon analysis of the specified amino acid sequence, it is evident that the protein performs 3-hydroxykynureninase activity, kynurenines 

activity, pyridoxal phosphate binding, participating in the 'de novo' NAD biosynthetic process from tryptophan, anthranilate metabolic process, L-kynurenine 
catabolic process, quinolinate biosynthetic process, tryptophan catabolic process. This protein is generally localized to the cytoplasm within the cell. 

Based on the instruction, the protein sequence, the retrieved information, and the examples, output ONLY the functional description of this protein in the 
following JSON format:

{\"description\": \"...\"}
Do not output any other text or explanation. Only output the JSON answer.

Prompt example for inference (K=10)

The protein with the provided amino acid sequence is predicted to function as a histone acetyltransferase. It likely binds histones and metal ions, and acts as a 
histone reader. Biologically, it is involved in processes including regulation of transcription by RNA polymerase II, DNA-templated transcription, histone 

acetylation, erythrocyte maturation, regulation of hemopoiesis, and the regulation of developmental processes. The protein localizes predominantly to the 
nucleus, including nuclear specks, and is a component of the MOZ/MORF histone acetyltransferase complex.

Response:

Figure 7: Example of retrieval-augmented prompt for protein knowledge injection at inference. We highlight the
matching part with the ground truth in green.

16



lar sequences and identical labels across the train-1225

ing and test sets demonstrates significant data con-1226

tamination, allowing models to perform well by1227

pattern-matching or retrieving based on superficial1228

sequence similarity rather than developing genuine1229

biological understanding. These cases underscore1230

the severity of the leakage issue and motivate the1231

need for our proposed benchmark splits.1232

D.2 Case Study for RAG methods1233

Fig. 7 demonstrates our prompting structure, illus-1234

trating how we augment the protein sequence and1235

query with explicit biological information retrieved1236

from our dual-indexed database (including feature1237

and sequence similarity results with confidence).1238

Few-shot examples are also incorporated to guide1239

the LLM’s response format. The LLM synthesizes1240

this retrieved evidence to generate a detailed an-1241

swer about the protein. As shown, this augmented1242

approach guides the LLM to accurately identify key1243

biological entities and functional details compared1244

to the ground truth, demonstrating how retrieving1245

relevant biological context improves performance.1246

E Details on Metrics1247

We evaluate the model using several commonly1248

used evaluation metrics adapted to protein descrip-1249

tion generation and understanding tasks. Here,1250

we detail these metrics, including their calculation1251

method, significance, and specific usage.1252

BLEU: (Papineni et al., 2002) BLEU, or BiLin-
gual Evaluation Understudy, is a metric often used
to measure the fluency and correspondence of
machine-generated sequences against reference de-
scriptions. Employing n-grams, we compute the
overlap:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
,

where BP is a brevity penalty, wn are the weights1253

typically equal for all n-grams,
∑N

n=1wn = 1, and1254

pn is the precision for n-grams.1255

ROUGE: (Lin, 2004) Recall-Oriented Under-1256

study for Gisting Evaluation (ROUGE) measures1257

the quality of machine-generated text by comparing1258

its overlap with a reference set of word sequences.1259

Specifically, it evaluates:1260

• ROUGE-N (e.g., ROUGE-1, ROUGE-2):1261

Measures n-gram overlap.1262

• ROUGE-L: Based on the longest common 1263

subsequence, it considers both recall and pre- 1264

cision to compute an F1 score. 1265

F Discussion on Licensing 1266

F.1 Pretrained Models and Codes. 1267

Llama 3 (Dubey et al., 2024) The Llama 3 model 1268

is released under the Llama Community License. 1269

This license permits use, modification, and distri- 1270

bution, with specific conditions such as prohibi- 1271

tions against using the model for training other 1272

language models. For commercial use, compliance 1273

with Meta’s Acceptable Use Policy is mandatory, 1274

and entities with over 700 million monthly active 1275

users must obtain a separate license from Meta. 1276

GPT-4.1 (OpenAI, 2025) The content and mod- 1277

els are provided under OpenAI’s Terms of Use and 1278

API License Agreement. Commercial use, redistri- 1279

bution, or modification of GPT-4.1 models via the 1280

API requires compliance with OpenAI’s policies, 1281

including attribution and adherence to usage re- 1282

strictions. For full details, review OpenAI’s official 1283

terms. 1284

DeepSeek-V3 (Liu et al., 2024a) DeepSeek V3 1285

is distributed under the DeepSeek License (v1.0, 1286

Oct 23, 2023). It grants a free, global, irrevocable 1287

license for modification and distribution, with strict 1288

restrictions on military use, harm, misinformation, 1289

discrimination, and unauthorized data processing. 1290

Users must enforce these limits in derivative works. 1291

Disclaimers of warranties and liability are included, 1292

and any legal matters are subject to the jurisdiction 1293

of Chinese law, specifically in Hangzhou. 1294

BioGPT (Luo et al., 2022) BioGPT is released 1295

under the MIT License, permitting unrestricted use, 1296

modification, and distribution of the software and 1297

its pre-trained models, provided that the original 1298

copyright notice and license terms are included in 1299

all copies or substantial portions of the software. 1300

The software is provided "as is," without warranty 1301

of any kind, express or implied. 1302

BioT5+ Model (Pei et al., 2024) The BioT5+ 1303

model is available under the MIT License. This 1304

allows for free use, modification, and distribution, 1305

including for commercial purposes, as long as the 1306

original copyright notice and permission notice are 1307

retained. The software is provided "as is," with no 1308

warranties or guarantees, and the authors disclaim 1309

liability for any issues arising from its use. 1310
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Dataset Protein Sequence Functional/Domain Information

Test Dataset
(UniProt A4WLK4)

MVRIAVVVSEFNYDVTQLMLQKALE
HAKFLGAEVTYVVKVPGVYDIPTLL
RDLVAKEEVDAVVTLGAVIQGATKH
DEVVAHQAARKILDISVESGKPITL
GIIGPGANRMQALERVEEYAKRAVE
AAVKLARRKKTLREAKYAGSTVFID

6,7-dimethyl-8-ribityllumazine synthase
activity; involved in riboflavin
biosynthetic process; subcellular
localization: riboflavin synthase complex.

Training Dataset
(UniProt
A0A832T310)

MVRLAIVVAEFNYDITQLMLQKAVE
HAKFLGAEITYIVKTPGVYDIPMIL
KELVAKEEVDAVATLGAVIQGATKH
DELVATQAARKILDIAVESGKPITL
GIIGHGANRIQALERVEEYARRAVE
AAVKMARRKKALREAKYNGSTVYID

6,7-dimethyl-8-ribityllumazine synthase
activity; involved in riboflavin
biosynthetic process; subcellular
localization: riboflavin synthase complex.

Test Dataset
(UniProt Q27996)

MKALLILGLLLLSVAVQGKTFKRCE
LAKTLKNLGLAGYKGVSLANWMCLA
KGESNYNTQAKNYNPGSKSTDYGIF
QINSKWWCNDGKTPKAVNGCGVSCS
ALLKDDITQAVACAKKIVSQQGITA
WVAWKNKCRNRDLTSYVKGCGV

Contains C-type lysozyme domains
(based on computational analysis).

Training Dataset
(UniProt P51782)

MKVLLLLGFIFCSMAAHGKRMERCE
FARRIKQLHLDGYHQISLANWVCLA
QWESGFDTKATNYNPGDQSTDYGIL
QINSHYWCDDGKTPHAANECKVRCS
ELQEDDLVKAVNCAKKIVDQQGIRA
WVAWRNKCEGKDLSKYLEGCHL

Contains C-type lysozyme domains
(based on computational analysis).

Table 8: Comparison of Protein Sequences and Functional/Domain Annotations in Test and Training Datasets.

Galactica (Taylor et al., 2022) The model is li-1311

censed under a non-commercial research license.1312

This license permits use of the model and its deriva-1313

tives solely for non-commercial research and eval-1314

uation purposes. Commercial use, including but1315

not limited to using the model or its derivatives1316

in a product or service, is strictly prohibited. Re-1317

distribution of the model weights or modifications1318

thereof is allowed only with appropriate attribution1319

and under the same terms. The model is provided1320

"as is," without warranty of any kind, express or1321

implied, including but not limited to warranties of1322

merchantability, fitness for a particular purpose,1323

and noninfringement.1324

ProLlama (Lv et al., 2024) The model is released1325

for research and educational purposes only. Re-1326

distribution and use in source and binary forms,1327

with or without modification, are permitted for non-1328

commercial use provided that the original authors1329

are properly cited. Any commercial use or use of1330

the model or its derivatives in a commercial product1331

or service is strictly prohibited.1332

ESM-2 (Lin et al., 2022) ESM Metagenomic At-1333

las (also referred to as “ESM Metagenomic Struc-1334

ture Atlas” or “ESM Atlas”) data is available under1335

a CC BY 4.0 license for academic and commercial1336

use. Copyright (c) Meta Platforms, Inc. All Rights1337

Reserved. 1338

MMSeqs2 (Steinegger and Söding, 2017) MM- 1339

seqs2 is licensed under the MIT License, permit- 1340

ting free use, modification, and distribution of the 1341

software, provided that the original copyright no- 1342

tice and license terms are included in all copies or 1343

substantial portions of the software. The software 1344

is provided "as is," without warranty of any kind, 1345

express or implied. 1346

F.2 Datasets 1347

UniProt Database (Consortium, 2019) The 1348

UniProt Database is available under the Creative 1349

Commons Attribution (CC BY 4.0) License. This 1350

license permits users to share and adapt the data for 1351

any purpose, provided appropriate credit is given, 1352

a link to the license is provided, and an indication 1353

of any changes made is specified. 1354

Mol-Instructions Dataset (Fang et al., 2024) Re- 1355

leased under the Creative Commons Attribution- 1356

NonCommercial 4.0 International License (CC BY- 1357

NC 4.0). This license permits use, sharing, and 1358

adaptation of the dataset for non-commercial pur- 1359

poses, with appropriate attribution and indication 1360

of changes. Commercial use requires additional 1361

permissions. 1362
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