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Abstract

Most benchmark datasets targeting commonsense reasoning focus on everyday
scenarios: physical knowledge like knowing that you could fill a cup under a
waterfall [Talmor et al., 2019], social knowledge like bumping into someone is
awkward [Sap et al., 2019], and other generic situations. However, there is a rich
space of commonsense inferences anchored to knowledge about specific entities:
for example, deciding the truthfulness of a claim Harry Potter can teach classes on
how to fly on a broomstick. Can models learn to combine entity knowledge with
commonsense reasoning in this fashion? We introduce CREAK, a testbed for com-
monsense reasoning about entity knowledge, bridging fact-checking about entities
(Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense
inferences (if you’re good at a skill you can teach others how to do it). Our dataset
consists of 13k human-authored English claims about entities that are either true
or false, in addition to a small contrast set. Crowdworkers can easily come up
with these statements and human performance on the dataset is high (high 90s);
we argue that models should be able to blend entity knowledge and commonsense
reasoning to do well here. In our experiments, we focus on the closed-book setting
and observe that a baseline model finetuned on existing fact verification bench-
mark struggles on CREAK. Training a model on CREAK improves accuracy by
a substantial margin, but still falls short of human performance. Our benchmark
provides a unique probe into natural language understanding models, testing both
its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and
unstated commonsense knowledge (e.g., butlers do not yell at guests).

1 Introduction

To understand text, humans use rich background knowledge about the world. Despite the impressive
ability of large-scale pretrained models, models often generate sentences that violate a reader’s
expectations, particularly in terms of common sense. As these models are increasingly employed in
settings like generative question answering [Fan et al., 2019, Lewis et al., 2020] and fact verification
[Vlachos and Riedel, 2014, Wang, 2017, Thorne et al., 2018], they should exhibit not just common-
sense about everyday scenarios (physical, social, etc.), but factual knowledge about entities as well.
These concepts overlap in a set of inferences involving entities that we call entity commonsense. For
example, to recognize that “Many business owners rely on WordPress to create their websites.” is
true requires both knowledge about the entity (WordPress is a website hosting service) and a more
nebulous piece of commonsense information (famous products like WordPress are widely used).

We present CREAK, a dataset aiming to evaluate two major desiderata of NLP models: entity
understanding and commonsense inference. Figure 1 shows how these concepts interact in examples
from CREAK. Building LMs with a stronger ability to perform this type of inference can help make
NLP systems more effective and reliable.
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Figure 1: CREAK claims with different reasoning types. Datasets like FEVER focus on retrieval (as in
the last case); our dataset also features many claims that involve both retrieval and also commonsense
reasoning (54% of the data according our manual study in Section 3.3). Note that the examples in
this figure do not explicitly outline all the reasoning steps needed for a system (e.g., we assume that
Harry Potter is good at riding on a broomstick since he is a member of a Quidditch team.).

Our dataset consists of 13k English claims covering 2.7k entities, each labeled as true or false. Each
claim is generated by a crowdworker based on a Wikipedia entity, which can be named entities (e.g.,
John Dewey), common nouns (e.g., penguins), and abstract concepts (e.g., freedom of speech). Our
lightweight task design provides annotators with a set of popular entity topics, and by not including
explicit evidence documents to copy text from, annotators are encouraged to create examples fully
from scratch. This results in sentences where annotators combine their knowledge about entities with
common sense to generate claims. Even without resorting to adversarial filtering, which artificially
biases a dataset against existing model checkpoints [Bowman and Dahl, 2021], we find our annotation
protocol leads to challenging claims for existing models. We provide in-depth analysis on what makes
our dataset uniquely challenging: for example, 18% of claims in CREAK contain quantifiers (e.g.,
enough, always, rarely etc.) that necessitate subtle commonse reasoning, compared to existing fact
verification datasets [Thorne et al., 2018] where only 5% of claims contain the quantifiers.

Asking crowdworkers to generate free-form sentences can introduce dataset artifacts [Gururangan
et al., 2018, Geva et al., 2019]. We carefully examine such artifacts in our datasets using quantitative
tools [Swayamdipta et al., 2020, Gardner et al., 2020] as well as qualitative inspection. We also
provide a small set of expert-written contrast examples [Kaushik et al., 2019, Gardner et al., 2020]
which pair true and false claims sharing almost identical context.

To establish an initial performance level on CREAK, we evaluate state-of-the-art pre-trained language
models [Liu et al., 2019, Raffel et al., 2020]. Our experiments shows that CREAK is challenging even
for a large model, with a gap between model and human accuracy of 10 points on the development set
and about 27 points on the contrast set for the largest model. Moreover, the model trained on CREAK
outperforms the model trained on other claim verification datasets [Thorne et al., 2018, Eisenschlos
et al., 2021, Park et al., 2021], suggesting that CREAK tests different reasoning capabilities compared
to existing datasets. We further characterize the performance based on model size, entity type, and
the whether external knowledge is used. Our analysis supports that to achieve high performance on
our dataset, models should possess not only entity knowledge but also complex reasoning skills. The
code and data are publicly available at https://www.cs.utexas.edu/~yasumasa/creak.

2 Related Work

Claim Verification Our task is formulated as claim verification, which has seen increasing work in
recent years. The largest claim verification dataset, FEVER [Thorne et al., 2018], has claims designed
to be verifiable with a passage from English Wikipedia and typically covers simple facts such as
attributes and records (e.g., “Benjamin Franklin was a person,” and “Spider-Man 2 was released
in 2004.”). In fact, 58% of FEVER claims contain a simple copular verb (is, are, was, were) and
many claims contain a definition. Prior work [Eisenschlos et al., 2021] observed high lexical overlap
between claims and corresponding entity definitions in Wikipedia, and collected more complex claims
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using a human-in-the-loop adversarial approach. Similarly, recent work [Park et al., 2021] derives
a challenging verification dataset from ambiguous questions [Min et al., 2020] and their different
interpretations. However, both datasets focus on a retrieval setting where there is a single paragraph
in Wikipedia from which the claim can be easily verified. In contrast, our dataset contains claims
where it is not easy to find a single paragraph that can verify them, testing models’ intrinsic abilities.

Question Answering Question answering and claim verification are closely related, particularly
when it comes to binary questions [Clark et al., 2019]. Our dataset is purposely constructed to go
beyond basic factoid information like that tested in open QA benchmarks like NaturalQuestions
[Kwiatkowski et al., 2019] and focuses on information that is less likely to have textual support on the
web. The recently proposed StrategyQA dataset [Geva et al., 2021] which contains binary questions
requiring implicit reasoning that goes beyond evidence retrieval (e.g., “would it be common to find a
penguin in Miami?”) captures a similar type of reasoning and knowledge as in our work. However,
our annotation process does not require authoring strategies, allowing us to scale to a larger dataset
(13K vs. 2.8K) while capturing a wide range of inference types. Finally, some QA datasets have been
adapted for evaluating differentiable commonsense reasoning models [Lin et al., 2021], but these
benchmarks still test very different knowledge from ours.

Commonsense Reasoning Commonsense reasoning tasks [Levesque et al., 2011, Zellers et al.,
2018, Talmor et al., 2019, Lourie et al., 2021, inter alia] evaluate models’ reasoning skills in the
physical world, with reporting bias being a principal challenge [Gordon and Van Durme, 2013]. Yet,
most datasets assume hypothetical environments and do not address real-world entities. Our work
relates to judging plausibility of events [Forbes and Choi, 2017, Wang et al., 2018], closely tied to
inferences accessible from feature norms [McRae et al., 2005], but again these past efforts do not
focus on judgments around specific entities.

Knowledge Probing The LAMA benchmark [Petroni et al., 2019] was proposed to query factual
knowledge covered in language models. Our dataset also covers such factual knowledge but also
requires commonsense reasoning capabilities. Our work also creates a moderately sized training
dataset. Other datasets in the KILT benchmark [Petroni et al., 2020], an aggregate suite focusing on
knowledge intensive tasks, are more focused on recognizing entities and relations, “low-level” factual
knowledge which does not require the kinds of commonsense inferences in our dataset. Another
recent commonsense-focused dataset [Lin et al., 2020], focuses on probing numeric claims.

3 CREAK

3.1 Task Definition

Problem Scope Our benchmark covers claims that are typically quite easy for humans to verify
but challenging for language models. We focus on factual claims about real-world entities, but our
claims are more complex than existing fact verification examples which tend to state relatively simple
facts (i.e., definitive sentences, X is a Y, or sentences expressing simple relations, like X is CEO of
Z). To the extent possible, we avoid information that is obscure or requires computation, such as
asking about the time between two arbitrary events or how many copies of an album were sold, which
test either retrieval or memorization rather than commonsense reasoning. We found that our claims
can often be verified with minimum knowledge of the entities combined with common sense (i.e.,
you can guess the answer accurately even if you do not know the entity very well).1 We argue that
this knowledge is what pre-trained LMs should possess about moderately well-known entities after
seeing a few occurrences of them during pre-training. Therefore, our claims should be solvable in the
closed-book setting where we can purely evaluate LMs’ commonsense reasoning skills, isolated from
the performance of retrieval models.

We formally define the CREAK task as follows. Given a single sentence claim c containing at least
one entity mention, the task is to assign a binary label y 2 {TRUE, FALSE} indicating whether the
claim is true or false. Dataset statistics can be found in Table 1.

1During our validation, we could confidently judge about 30-50% of claims without searching the web.
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Table 1: Data statistics of CREAK.

Split
# Claims Average Length

# Unique Entities Vocab SizeTotal True False (# tokens)

Train 10,176 5,088 5,088 10.8 2,096 19,006
Dev 1,371 691 680 9.7 531 4,520
Test 1,371 707 664 9.9 538 4,620
Test (Contrast) 500 250 250 10.0 226 1,596

Dataset Properties Our dataset has following key properties. The claims are diverse covering
various types of entities: they are written by 684 distinct crowdworkers2 only based on the entity
names and their minimal information. We rarely find lexical overlap between the claims and publicly
available knowledge sources (e.g., the first paragraph of English Wikipedia). As a result, the
claims contain a variety of reasoning types, but nevertheless are typically not subjective and easily
verifiable. As discussed in Section 3.3, a majority of our examples do involve a combination
of commonsense reasoning and knowledge. Finally, Sections 3.3 and 4 show that the dataset is
relatively robust to spurious correlations.

3.2 Data Collection

We collect our data on the Amazon Mechanical Turk platform (see examples in Table 2). Open-
ended text generation is challenging to crowdsource, so we take several steps in our task design to
ensure quality. First, we ask crowdworkers to write down the reason why the generated claim is
true or false; although past work observes that this does not improve example quality in isolation
[Nangia et al., 2021], we found it helpful for our task, and it additionally helped us spot workers who
misunderstood the task. To keep the sentences natural, we use a minimal set of requirements and
encourage crowdworkers to produce creative and diverse sentences. One key requirement is to use
action verbs instead of copula, which prevent crowdworkers from writing simple definitive sentences.
See Appendix A for more details about the annotation instructions.

We do not take a model-in-the-loop approach [Zellers et al., 2018, 2019, Nie et al., 2020, Bras et al.,
2020] during data collection in order to keep our dataset organic, meaning that sentences preserve the
original data distribution given by annotators. Therefore, this benchmark does not favor or disfavor
particular LM checkpoints, providing a fair and comparable testbed [Bowman and Dahl, 2021].

Seed Entities Curation Entity selection plays a crucial role in this task, since authoring sentences
is a much easier task if a crowdworker is familiar with the entity. We take two steps to enable
crowdworkers to focus on known entities. First, we use the entity list created by Geva et al. [2021] as
part of StrategyQA, which aligns with our needs; the authors select entities based on some popularity
measures such as the number of contributors and the number of backward links from other pages.
Second, we present five entities to each annotator and let them pick from that set of five when
authoring their sentences. We manually inspect the seed entities to maintain the diversity of the types
of entities so that the generated claims cover diverse topics (e.g., we want to avoid too many location
entities that occur in English Wikipedia frequently). We finally obtain 6.4k entities after this process.

We split the seed entity list into two parts; one for the training instances and one for the development
and test instances. In both sets, roughly 80% of entities are named entities. The 5 most popular
entities in the train set are Sloth, Giraffe, George Orwell, 50 Cent, Mattel. In the development and
test sets, Butterfly, Ray Charles, Whole Foods Market, Internet troll, and Bigfoot are the top 5 popular
entities. As can be seen, crowdworkers prefer to select relatively common entities.

Quality Control We split the data curation into two separate tasks such that no annotator con-
tributed to both training and evaluation datasets. This mitigates the issue of learning to model the
behavior of specific annotators [Geva et al., 2019] and annotation artifacts from annotator developing
a template (e.g., ENTITY created ENTITY) across many instances. In total, CREAK is created by a
large number of annotators: 153 crowdworkers annotated the development and test instances, and
531 crowdworkers worked on the training instances. We also use disjoint sets of entities between

2We limit the number of claims that a single crowdworker can generate (no more than 7% of any split).
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Table 2: CREAK examples selected from the development set. Boldface spans indicate the seed
entities presented to crowdworkers.

Claim Label

In robotics, some robots are autonomous, while others need human assistance to operate properly.

TRUEThe Curse of the Bambino began when Babe Ruth was traded to the Yankees.
In today’s world dessert comes at any time, not just after dinner.
Nancy Pelosi followed Paul Ryan as Speaker of The House.

You must have a university degree in order to be able to get hired as a civil engineer.

FALSEThe Pepsi Center sprays its audience with Pepsi after every point scored.
Driving cars at the Las Vegas Motor Speedway is only for the public.
People use spaghetti to tie items together.

training and dev/test data so a model trained on the dataset is not simply learning properties of the
entities under discussion here. We discuss more in Section 3.3.

During the annotation process, we monitored the sentence quality and barred crowdworkers who
repeatedly produced low-quality sentences or examples following a single pattern. We then inspected
the examples included in our evaluation dataset. During the inspection, we found some claims
that are subjective, ambiguous, or non-factual (see Appendix B). These errors potentially lower the
human performance on the development and test sets. Since automatically detecting these errors is
non-trivial, the authors manually filtered all claims in the evaluation dataset. This process removed
roughly 18% of crowdsourced claims. This process was crucial for very high human performance
(99% majority human performance), as we will see in the experiments.

Contrast Set The authors of the paper created a small subset of contrastive examples [Kaushik
et al., 2019, Gardner et al., 2020]. We select 250 seed claims from the evaluation set, then annotate
true and false claims based on the seed claims by applying minimal modification (e.g., replacing a
word with a similar one that changes the truth of the claim). Examples can be found in Appendix B.

3.3 Dataset Analysis

In this section, we examine the quality of our dataset. We first manually examine what types of
reasoning are required to verify our claims. Then, we study potential lexical and syntactic artifacts in
human-generated claims through statistical tests and training dynamics to identify word-level artifacts
and learnability of the training instances.

Manual Analysis of Reasoning Types We manually validate whether the CREAK claims truly
require both knowledge and commonsense. We classify reasoning types into three categories: 1)
retrieval, 2) common sense, and 3) a mix of retrieval and common sense. These distinctions are
somewhat subjective based on the background knowledge of the reader (i.e., is it common sense
that NYC is a major city?); we use our own judgments as authors. The first category, retrieval, asks
simple facts about entities which can be found in some knowledge sources such as English Wikipedia
(e.g., The Harry Potter series originally began with the books.). The second category, common sense,
requires more complex reasoning but are verifiable with the basic knowledge of the entities (e.g.,
Only trumpet players can perform a solo.). The third category is a mix of retrieval and common
sense, meaning that it involves some degree of retrieval and commonsense reasoning. For example,
the claim One can drive from La Jolla to New York City in less than two hours. requires knowing
the locations of La Jolla and New York City (retrieval) and reasoning about driving times (common
sense). We randomly sample 100 claims from the evaluation instances and classify them into the
three categories. The proportion of the retrieval, common sense, and a mix of the two categories is
18%, 28%, and 54% respectively. You can find examples for each reasoning type in Appendix B.

Dataset Artifacts Past work on natural language inference has noted that “artifacts,” or spurious
correlations with surface properties of text, may arise during the annotation process [Gururangan
et al., 2018, Poliak et al., 2018]. The low performance of a bag-of-words model in our setting (see
Table 3) gives some confidence that such correlations are not a dominant factor in performance on
our data, but we undertake quantitative analysis to explore this further.
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(a) CREAK (b) FEVER

Figure 2: Artifact statistics of CREAK and FEVER train sets. Words (colored dots) above the green
line have detectable correlation with class labels. CREAK contains relatively fewer artifacts, with low
severity and frequency.

We identify the word-level artifacts in CREAK by computing the artifact statistics described in Gardner
et al. [2021]. These statistics tell us, given a balanced dataset, if some words are highly correlated
with either true or false claims in a way that a model can exploit. This boils down to a one-side
binomial hypothesis test with the null hypothesis p(y|xi) = 0.5, where y 2 {TRUE, FALSE} is a label
and xi is a word in the vocabulary. We first count the occurrence of all words3 in CREAK . For each
word xi that appears in the ni claims, we count the number of the target label y in the ni claims. We
estimate p(y|xi) with the observed probability p̂(y|xi), which is given by a fraction of the count of y
over ni. Following Gardner et al. [2021], we then compute a z-statistic and reject/accept the null
hypothesis using ↵ = 0.01 with the Bonferroni correction.

Figure 2 plots the word counts ni (x-axis) against the observed probability p̂(y|xi) (y-axis) for
CREAK and FEVER dataset. We additionally draw the curve that represents the corresponding
probability of ↵ = 0.01/13k (for CREAK) and ↵ = 0.01/10k (for FEVER) at each ni. Any words
above this line are considered to be artifacts in the dataset. We find 14 words (out of 13k words in
the vocabulary) sit above the line. We label the most frequent words in the plot. Surprisingly, and
(n = 1973) is the most frequent artifact that signals the true label, followed by some quantifiers
(many, n = 483, and several, n = 119). not (n = 274) and only (n = 186) suggest the false label
in both datasets. Overall, CREAK contains relatively few artifacts, and they do not impact the data
quality significantly since their frequency is not very high. We observe fewer artifacts compared to
FEVER dataset (14 words vs. 28 words above the threshold).

Training Dynamics We analyze training dynamics using the framework proposed by Swayamdipta
et al. [2020]. The training dynamics of a training instance are defined by confidence and variability,the
mean and the standard deviation of model predictions (probability) on the gold label over training
epochs. Additionally, correctness is computed by the number of times a training instance is correctly
predicted over the number of epochs. Figure 3 shows the histograms of those measurements4 for
CREAK (10k instances) and FEVER (105k instances). We use ROBERTA Large

5 for all experiments.
In the confidence plots, CREAK has a fatter distribution (i.e., certain instances get low probability on
their gold labels) compared to FEVER’s skewed distribution where the majority of instances get very
high probability (e.g., > 0.9) on the gold labels. CREAK’s variability histogram is nearly bell-shaped
while FEVER’s histogram skews towards zero. As can be seen in the correctness plots, some training
instances in CREAK are not always predicted correctly during training, as its distribution suggests.
However, the most of training instances of FEVER are correctly predicted consistently through the
training epochs. By aggregating these observations, we hypothesize that CREAK contains training
instances with different difficulty levels compared to FEVER.

3We drop punctuation and lower all words.
4All values are normalized between 0 and 1 then bucketed into subgroups.
5Following the suggestions by Swayamdipta et al. [2020], we train models with early stopping with the

patience = 3, resulting in 7 epochs for CREAK and 6 epochs for FEVER.
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(a) CREAK (b) FEVER

Figure 3: Training dynamics for CREAK and FEVER train sets. This figure shows histograms of
CREAK or FEVER training instances bucketed by confidence (mean), variability (std.), or correctness.
On all three measures, CREAK shows fatter distributions compared to FEVER, implying that CREAK
consists of instances with different difficulties.

4 Experiments

We focus on the closed-book setting where models are ask to make decisions based solely on claims
without any additional retrieved evidence. To see if existing claim verification datasets provide entity
commonsense supervision, we train claim-only baseline models on FEVER [Thorne et al., 2018],
FAVIQ [Park et al., 2021], and FOOLMETWICE (FM2) [Eisenschlos et al., 2021] and then evaluate
them on CREAK . Next, we train models on the CREAK training set and measure the improvements
over the baselines. We also investigate the impacts of model sizes and external knowledge.

4.1 Experimental Setup

We investigate three training data settings. In the Zero-Shot setting, we train models on the train sets
of FEVER KILT, FAVIQ-A, FAVIQ-R,6 and FOOLMETWICE (FM2). In the In-Domain setting, we
train models on the CREAK train set in a standard fashion. The Finetuning setting means that we
train models on FEVER and then further finetune on CREAK.

We evaluate all models on the CREAK balanced development, test, and contrast sets and report
accuracy. As we discussed in Section 3, these evaluation sets use distinct entities from the train set
and are authored by a different set of crowdworkers.

4.2 Comparison Systems

Closed-book (Claim-only) Models In what we consider our standard setting, these models take a
claim as input and predict if the claim is true or false. We use a RoBERTa encoder [Liu et al., 2019]
with a MLP classifier for baseline models: ROBERTA Large and ROBERTA Base. We also train SVM
with TF-IDF, which gives a linear baseline using far fewer parameters than the LM-based models.
We further employ T5-3B to see if more parameters help to learn the complex reasoning in CREAK.

Retrieval-based Models These models are augmented with knowledge retrieved from Wikipedia.
We feed a claim and k retrieved passages to a model, which can use the information in the passages
to influence the decision. We use Dense Passage Retrieval (DPR) [Karpukhin et al., 2020]7, a dual-
encoder based model, as a retriever and English Wikipedia as a knowledge base. Specifically, we use
the DPR model trained on the KILT benchmark, which includes FEVER. We use this configuration
for the open-book experiments, where we finetune models on our training set as well as on FEVER.
For a claim classifier, we use the ROBERTA Large model and denote this retrieval-based model as
ROBERTA Large-DPR. We retrieve k = 3 passages for all experiments.

Human Performance To estimate human performance on the development set, we sample 100
examples and predict the corresponding labels. For the contrast set, three of the authors predict labels
for claims that they did not annotate. We report the averaged human accuracy and the ensemble
accuracy which we use the majority label as the final prediction to computer human performance. The
temporal mismatch between LMs (e.g., RoBERTa was trained on the December 2018 EN Wikipedia
dump.) and CREAK (collected claims between June and August 2021) can disadvantage models

6The FAVIQ benchmark consists of two datasets based on the same source QA dataset.
7DPR is licensed under CC BY-NC 4.0
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Table 3: Performance of closed-book approaches on CREAK. Transfer results from prior datasets
show that our dataset is distnct from these. Larger models trained with in-domain data perform the
best out of all models we consider, but still lag behind human performance.

Model #Params Training Data Accuracy
Type Size Dev Test Contrast

Majority Label – – – 51.6 51.6 50.0

Zero-Shot

ROBERTA Large 355M FAVIQ-R 141k 49.6 48.4 50.0
ROBERTA Large 355M FAVIQ-A 17k 52.3 52.6 51.4
ROBERTA Large 355M FM2 10k 59.2 58.2 54.4
ROBERTA Large 355M FEVER KILT 105k 69.6 70.2 59.6
T5-3B 3B FEVER KILT 105k 68.7 70.8 62.8

In-Domain

SVM + TF-IDF 13k CREAK 10k 60.2 60.3 53.8
ROBERTA Base 125M CREAK 10k 72.2 71.6 58.8
ROBERTA Large 355M CREAK 10k 80.6 80.3 66.6
T5-3B 3B CREAK 10k 85.6 85.1 72.6

Finetuning ROBERTA Large 355M FEV ! CREAK 115k 80.5 81.1 68.6

Human (averaged) – – – 96.3 – 92.2
Human (ensemble) – – – 99.0 – 99.0

[Zhan and Choi, 2021]. However, when we manually inspect 100 examples, none of the truth values
would have changed in this time period and nearly all of the entities were already notable as of 2018.8

5 Results and Discussion

Table 3 presents our main experimental results for closed book systems, and Table 4 presents results
for retrieval augmented approaches. We observe that all baseline models fall behind our estimated
human performance by a substantial margin.

Transfer from existing datasets The zero-shot block of Table 3 compares performance of
RoBERTa models trained on four prior claim verification datasets. The models trained on FAVIQ-R
and FAVIQ-A perform similarly with the majority label baseline. The model trained on FM2 shows
better performance than the FAVIQ models, but the accuracy is still very low. We see much improved
transfer from FEVER KILT dataset, reaching an accuracy of 70%. Although designed to be more
challenging than FEVER, FAVIQ and FM2 may result in models that transfer less well because these
datasets are more dependent on retrieving specific passages to judge claims, containing fewer claims
resolvable with commonsense reasoning. Additionally, T5-3B trained on FEVER KILT performs
similarly to ROBERTA Large although it is 8 times larger, suggesting that FEVER KILT is bounded in
terms of how useful it can be for CREAK .

In the Finetuning block of Table 3, we report the performance of ROBERTA Large first trained on
FEVER KILT and then on CREAK. Compared to ROBERTA Large trained only CREAK, additional
pre-training does not bring meaningful gains.

Are larger models better? The In-Domain block of Table 3 lists performance by models with
different sizes ranging from 13k to 3B parameters. All models are trained on CREAK. ROBERTA Base,
outperforms SVM with TF-IDF by 11 points on the test set, suggesting that a larger, knowledge-rich
model can do better. But its advantage shrinks on the contrast set, only gaining 5 points over SVM
with TF-IDF. A larger model ROBERTA Large, 355M parameters, further improves the performance,
and this trend continues to an even larger model T5-3B, which outperforms ROBERTA Large by 5
points on the test set and 6 points on the contrast set. T5-3B achieves the highest accuracy in the
closed-book setting. Given how the contrast set was constructed, the fact that higher-capacity models
work better suggests that having more entity knowledge is a key to doing better on this task.

8The only example that arguably relies on more recent knowledge is “Captain Marvel shows a woman using
her swimming powers to save people”, since the popular Captain Marvel film was released in 2019. However,
the character of Captain Marvel did exist before, so this information was within reach from the RoBERTa model.
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(a) Accuracy by entity popularity (b) Accuracy by entity type

Figure 4: Performance breakdown on partitions of the development set, split by entity popularity and
type, using the four most common entity types, which comprise 86% of examples (includng “NONE”
for non-named entities).

Table 4: Performance of retrieval-augmented approaches on CREAK. Large models retrieving from
Wikipedia can do better, although the performance on the contrast set is still low.

Model #Params Training Data Accuracy
Type Size Dev Test Contrast

Majority Label – – – 51.6 51.6 50.0

Zero-Shot ROBERTA Large+DPR 575M FEVER KILT 105k 79.5 80.7 71.2

In-Domain ROBERTA Large 355M CREAKENT_LESS 10k 66.5 67.8 56.8
ROBERTA Large+DPR 575M CREAK 10k 84.9 84.3 73.4

Finetuning ROBERTA Large+DPR 575M FEV ! CREAK 115k 88.7 86.8 76.0
Human (averaged) – – – 96.3 – 92.2
Human (ensemble) – – – 99.0 – 99.0

Performance breakdown by entity types We examine whether models are better equipped at
verify claims about different entities depending on their popularity and type, as given by an NER
tagger. We use ROBERTA Large as an in-domain baseline model for this analysis. To compare entity
popularity, we partition our dataset into equally sized quartiles based on total number of views the
entity’s Wikipedia page has received since Jan. 1, 2016. For entity types, we use an off-the-shelf NER
tagger from spaCy [Honnibal et al., 2020] to group examples by the entity type. In Figure 4, we plot
the performance on each partition of our dataset. We observe that the model performs comparably
regardless of entity popularity, partially because we sampled from popular entities, and that entity
type has a greater affect on accuracy.

Retrieval-based models with external knowledge To investigate the importance of entity knowl-
edge in CREAK , we experiment in two additional settings. First, to confirm that entities are important,
we experiment with the closed-book setting where all entities are dropped from the claims; this data is
denoted as CREAKENT_LESS. Second, we explore the retrieval setting, where we append three English
Wikipedia passages retrieved by DPR to the claims. Similar to the main experiments, we use three
data settings: Zero-Shot, In-Domain, and Finetuning.

Table 4 shows the results of all models. ROBERTA Large trained on CREAKENT_LESS loses more than 10
points compared to the model trained on the standard CREAK training set (In-Domain ROBERTA Large
in Table 3). This shows that seeing the entity mention in question is important. For open-book models,
we again see that In-Domain models are better than Zero-Shot models. One distinction from the
closed-book setting is that the additional finetuning on FEVER KILT improves performance. If we
compare the In-Domain model from the closed and retrieval settings, the additional passages bring 4
points of improvement. Although adding more entity knowledge improves performance on CREAK,
there is still a gap from the human performance, particularly on the contrast set. This shows that
there are some facts immediately retrievable from Wikipedia; however, our analysis of the dataset
also shows that significant additional reasoning is required as well. Moreover, we believe that this
kind of knowledge should be accessible to models in a closed-book way, as annotators were able to
create these examples without consulting Wikipedia or other knowledge sources.
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6 Conclusion

We have presented a dataset CREAK of binary claims involving “entity commonsense,” a combination
of entity knowledge and commonsense reasoning. This dataset is useful both as a training set for
instilling this kind of reasoning into models as well as a test set for probing whether models can
recognize factually incorrect statements about entities. We believe this can be a useful proving ground
for models infused with entity knowledge (e.g., entities-as-experts [Févry et al., 2020] or interpretable
entity embeddings [Onoe and Durrett, 2020]) and contribute to development of these techniques.

Limitations and Ethical Concerns We emphasize that our dataset is not intended for training
general fact-checking models; we do not support large-scale deployment of models trained on CREAK
for this purpose. Furthermore, while we have tried to measure artifacts in this dataset and found them
to be minimal, our claims are artificially generated and the nature of the dataset can differ significantly
from claims naturally occurring in social media or web. Large language models fine-tuned on our
dataset may preserve biases learned from the web text during pre-training or biases of our annotators
and make biased judgments as a result. See the datasheet in the Supplementary Material for more
information about specific harms that could arise from this dataset.
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