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Abstract

Medical Visual Question Answering (MedVQA), which offers language responses
to image-based medical inquiries, represents a challenging task and significant
advancement in healthcare. It assists medical experts to swiftly interpret medi-
cal images, thereby enabling faster and more accurate diagnoses. However, the
model interpretability and transparency of existing MedVQA solutions are often
limited, posing challenges in understanding their decision-making processes. To
address this issue, we devise a semi-automated annotation process to streamline
data preparation and build new benchmark MedVQA datasets R-RAD, R-SLAKE
and R-Path. These datasets provide intermediate medical decision-making ratio-
nales generated by multimodal large language models and human annotations for
question-answering pairs in existing MedVQA datasets, i.e., VQA-RAD, SLAKE
and PathVQA. Moreover, we design a novel framework, MedThink, which fine-
tunes lightweight pretrained generative models by incorporating medical decision-
making rationales. MedThink includes three distinct strategies to generate decision
outcomes and corresponding rationales, thereby clearly showcasing the medical
decision-making process during reasoning. Our comprehensive experiments show
that our method achieves an accuracy of 83.5% on R-RAD, 86.3% on R-SLAKE
and 87.2% on R-Path. These results significantly exceed those of existing state-of-
the-art models with comparable parameters. Datasets and code will be released.

1 Introduction
The Medical Visual Question Answering (MedVQA) task is designed to take medical images and
specialized clinical queries as inputs, and provide accurate answers with texts. Since the inception of
the MedVQA challenge in 2018 Hasan et al. [2018], there has been a significant surge in interest
in exploring the capabilities of MedVQA Liu et al. [2023b]. Effective MedVQA not only holds the
potential to enhance patient engagement, thereby alleviating patient stress, but also assists physicians
in clinical diagnosis, thus conserving valuable medical resources and reducing the risk of misdiagnosis
Zhan et al. [2020].
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The challenges to resolve the MedVQA tasks are two-fold. On one hand, though there exist a wealth of
datasets composed of medical images and text annotations Porwal et al. [2018], the decision-making
process between the question and answer pairs are usually missing, impeding reliable evaluation of
model interpretability. While some recent datasets already incorporated images, specialized medical
queries, and answer texts Lau et al. [2018], Liu et al. [2021b], the corresponding reasoning process to
reach certain diagnostic decisions remain unclear, resulting in black-box and clinically inapplicable
inference Lu et al. [2022], Liu et al. [2023c]. A straightfoward solution is to integrate expert-level
reasoning rationales in these datasets to unravel the underlying reasoning processes. However, manual
annotation of such rationales is time-consuming and requires in-depth understanding of medical
knowledge, while a fast and reliable rationale annotation framework is still missing Liu et al. [2023a].

On the other hand, models which can resolve the MedVQA tasks in a fast, accurate and interpretable
manner is of high necessity in real-world applications. Current MedVQA methods often model this
problem by retrieval and train MedVQA models with contrastive or classification objectives. For
instance, Nguyen et al. Nguyen et al. [2019] employed a combination of unsupervised convolutional
denoising autoencoders and the meta-learning method to learn domain specific weight initialization
of MedVQA model on external medical datasets. Moreover, Zhang et al. Zhang et al. [2022] first
implemented contrastive learning in the medical domain, presenting ConVIRT, a methodology that
utilizes medical text-image contrastive loss for pretraining medical visual representations. Further,
Liu et al. Liu et al. [2021a] proposed CPRD, a two-stage pre-training framework, leveraging
representation distillation and contrastive learning to train visual encoder for MedVQA system on a
large corpus of unlabeled radiological images. The recent PubMedCLIP model Eslami et al. [2023]
pioneers the incorporation of the Contrastive Language-Image Pre-Training Radford et al. [2021]
into the MedVQA tasks by conducting pre-training.

In contrast, the remarkable performance of large language models (LLMs) across various natural
language processing (NLP) tasks has been extended to text question-answering in healthcare Nori
et al. [2023] Building upon this, multimodal large language models (MLLMs) OpenAI [2023], Team
et al. [2023] accept both text and image inputs to generate responses, presenting a novel approach
to tackling the MedVQA tasks. However, applying MLLMs directly to the MedVQA tasks in real
medical scenarios is impractical due to their high operational costs and significant latency.

In this paper, we aim to address the aforementioned challenges by providing new benchmark datasets
and novel MedVQA solutions. We design a semi-automated annotation method that leverages the
powerful inference capabilities of MLLMs to assist experts during annotation, significantly improving
the efficiency. Through our method, we develop the R-RAD, R-SLAKE and R-Path datasets. These
datasets provide the intermediate reasoning steps critical for medical decision-making, including
necessary medical background knowledge and descriptions of medical images, which we term Medical
Decision-Making Rationales (MDMRs). Moreover, we design a novel framework, MedThink, to
finetune the pretrained generative models, specifically selecting the T5-base architecture Raffel
et al. [2020] as our base architecture due to its practicality in real-world applications. With only
223M parameters, the architecture adeptly performs generative tasks, balancing cost-effectiveness
and practical value. By incorporating MDMRs into the training process, our model outputs not
only decision outcomes but also corresponding rationales, thereby clearly showcasing the medical
decision-making process during inference. Based on different inputs for MDMRs during training,
we further propose three distinct generative modes: “Explanation", “Reasoning", and “Two-Stage
Reasoning", as shown in Figure 1.

Extensive experimental results demonstrate that our method achieves an accuracy of 83.5% on
R-RAD, 86.3% on R-SLAKE and 87.2% on R-Path. These results represent significant enhancements
over the existing state-of-the-art models with comparable parameters. Our contributions are as
follows:

• We develop a semi-automated process for annotating MedVQA data with decision-making ratio-
nale. To the best of our knowledge, the R-RAD, R-SLAKE and R-Path datasets represent the first
MedVQA benchmark datasets that encompass rationales for answers.

• We propose a lightweight framework, MedThink, with three answering strategies, enabling faster
and more accurate MedVQA with enhanced interpretability.

• We conduct extensive experiments and ablations that demonstrate the usefulness of the R-RAD,
R-SLAKE and R-Path datasets and superiority of MedThink.
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2 Related Work
2.1 MedVQA

VQA represents a cutting-edge, multimodal task at the intersection of computer vision and natural
language processing, drawing significant attention in both domains. MedVQA applies the principles
of VQA to interpret and respond to complex inquiries about medical imagery. A MedVQA system
usually consists of three key components for feature extraction, feature fusion and answer reasoning,
which aims to generate answers in text by processing given medical images.

Previous MedVQA solutions Nguyen et al. [2019], Zhang et al. [2022] have relied on the CNNs, such
as those pretrained on ImageNet like VGGs or ResNets, to extract visual features. Meanwhile, the
RNNs are employed to process textual information. With the development of large-scale pretraining,
recent works Liu et al. [2023b], van Sonsbeek et al. [2023], Eslami et al. [2023] have shifted towards
the transformer-based models to enhance feature extraction capabilities for both textual and visual
modalities. In terms of content, these works still treat the MedVQA as the classification problem.
However, this approach is misaligned with the realities of medical practice, where clinicians rarely
face scenarios that can be addressed with predefined answer options.

This incongruity underscores the necessity for a MedVQA approach that is more adaptive and
reflective of the complexities inherent in medical diagnostics and decision-making. Our paper
redefines MedVQA as the generative task. Within actual medical environment, when faced with
open-ended queries, our proposed MedVQA model can still generate informed responses based on
the medical knowledge it has learned.

2.2 The Chain of Thought

Recently, NLP has been significantly transformed by language models Raffel et al. [2020], Chowdhery
et al. [2023]. To further enhance the reasoning capabilities of language models, prior works Cobbe
et al. [2021], Wei et al. [2022] have incorporated reasoning rationales during training or inference
phases, which guide models to generate the final prediction. On the other hand, in the realm of VQA,
it is crucial for VQA systems to understand multimodal information from diverse sources and reason
about domain-specific questions. To achieve this goal, several works Lu et al. [2022], Zhang et al.
[2023b] have proposed multimodal reasoning methods for VQA. These methods, commonly referred
to as “Chain of Thought", introduces intermediate steps to assist the model in reasoning. In this
paper, we present the “Medical Decision-Making Rationale" (MDMR) and apply it to the MedVQA
tasks. We anticipate that MedVQA systems, equipped with the MDMR, will not only offer support in
medical decision-making but also elucidate the underlying rationales behind these decisions.

3 Methodology
3.1 Problem Formulation

In this paper, We denote the medical dataset as D = {(Im, Tm, Am, Rm)}Mm=1 where M is the
number of data samples. And the goal of the MedVQA tasks is to develop a mapping function f(·)
that can generate textual answers in response to the medical questions, represented as:

{A,R} = f(I, T ), (1)

Here, I denotes the medical image sourced from modalities such as X-ray, CT, or MRI. T represents
the natural language question pertaining to the medical image I . The output of the model f(·),
represented as {A,R}, comprises two components. A is the predicted textual answer, directly
addressing the query posed in T . R, termed as “medical decision-making rationale", offers a detailed
justification for the answer A, elucidating an interpretative insight into how the model processes I
and T .

3.2 Model Architecture

The model architecture comprises five components, shown in Figure 1 (b): TextualEncoder, Vi-
sualEncoder, Cross Attention Network, Gated Fusion Network, and TextualDecoder. Notably, the
TextualEncoder, VisualEncoder and TextualDecoder are all based on the Transformer architecture,
renowned for its powerful learning and representational capabilities.
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Figure 1: Overview of the Data Preparation, Model Architecture and Methods for Answering
MedVQA Questions. (a) outlines the dataset cleaning and annotation process, where raw data
undergoes refinement and annotation to formulate a new dataset with accurate MDMRs. (b) displays
the model architecture, which incorporates a textual encoder for processing the medical question,
a visual encoder for analyzing medical images, and a cross-attention network with a gated fusion
mechanism that synergistically combines textual and visual features to generate informed responses
for the MedVQA task. Carion et al. [2020], Khashabi et al. [2020], Zhang et al. [2023b] (c) is
the illustration of various strategies for answering MedVQA questions. These strategies show how
the inclusion and arrangement of MDMRs can influence the model’s output. The training process
involves three steps. First, the training sets are annotated by the MLLM. Next, we use the training
sets to train our models. Third, trained models generate MDMRs for the test sets.

The TextualEncoder vectorizes the input question T into the textual feature space, represented as
FT ∈ Rn×d, while the VisualEncoder transforms the input medical image I into vision features
FI ∈ Rm×d. This can be expressed as: FT = TextualEncoder(T ) and FI = VisualEncoder(I),

where n denotes the length of the input text, and d indicates the hidden dimension, m represents the
number of image patches.

Upon acquiring the textual representation FT and visual representation FI , our model employs the
Cross-Attention Network to facilitate interaction between these two modalities. The Cross-Attention
Network computes the attention-guided visual feature HI

attn ∈ Rn×d, which captures the relevant
visual features corresponding to the textual query through the following operation:

H I
attn = Softmax

(
QKT

√
d

)
V, (2)

where Q, K, V correspond to the query, key, and value, derived from FT , FI , FI , respectively.

Subsequently, the Gated Fusion Mechanism is utilized to dynamically combine the textual representa-
tion FT and the attention-guided visual feature HI

attn. It determines the fusion coefficient λ through
a sigmoid-activated linear combination of the two modalities:

λ = Sigmoid(WlFT +WvH
I
attn), (3)

The fused output Ffuse ∈ Rn×d is then computed as a weighted sum of FT and H I
attn, moderated by λ:

Ffuse = (1− λ) · FT + λ ·H I
attn, (4)

Here, Wl and Wv are the model parameters that are learned during training to optimize the fusion
of information between textual and visual streams. Finally, the fused output Ffuse is fed into the
TextualDecoder to generate the output {A,R}:

{A,R} = TextualDecoder(Ffuse), (5)
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Table 1: Details of Datasets: Distribution of Images and Questions in the R-RAD, R-SLAKE and
R-Path Datasets.

Dataset Images Training set Test set
R-RAD (closed-end) 300 1823 272
R-RAD(open-end) 267 1241 179

R-SLAKE(closed-end) 545 1943 416
R-SLAKE(open-end) 545 2976 645

R-PathVQA(closed-end) 3361 9806 3391
R-PathVQA(open-end) 3425 9933 3364

3.3 Loss Function

Given the input X = {I, T}, the model f is trained by maximizing the likelihood of accurately
predicting the target output Y = {A,R}. The training involves a loss function, primarily the negative
log-likelihood of correctly predicting subsequent tokens in the sequence Y , accumulated over all
time steps. This is mathematically formulated as:

L = −
N∑

n=1

log p(Yn|X,Y 1:n−1), (6)

In this context, N represents the total number of tokens in the target answer Y , and p(Yn|X,Y 1:n−1)
denotes the conditional probability of correctly predicting the n-th token in Y , given the input X
and all preceding tokens Y 1:n−1 in the sequence. This loss function significantly improves the
model’s capability to accurately forecast each token in the target output, thereby enhancing its overall
predictive performance.

3.4 Three Generation Strategies

To investigate the impact of MDMRs on the model performance in the MedVQA tasks, we present
three different generation strategies. These strategies are designed to guide the model in generating
various forms of outputs, corresponding to different orders of MDMR in the process of generation.
The methods are categorized as “Explanation", “Reasoning" and “Two-Stage Reasoning", as shown
in Figure 1 (c).

In the “Explanation” method, the answer A is generated first, followed by the MDMR R. In contrast,
the “Reasoning” method reverses this order, generating R before A. The “Two-Stage Reasoning"
method follows a phased strategy, where two independent models are trained in distinct stages.
The first stage focuses on using the medical question T and the medical image I to generate the
intermediate result R. In the second stage, a different model takes R, along with T and I , to derive
the final answer A.

4 Dataset Creation
4.1 Dataset Collection

We establish three benchmark datasets R-RAD, R-SLAKE and R-Path based on the VQA-RAD
dataset Lau et al. [2018], the SLAKE dataset Liu et al. [2021b] and the PathVQA He et al. [2020],
respectively.

These questions of three datasets are classified as “closed-end" if they have limited answer choices,
and “open-end" otherwise. For our work, We adhere to the official dataset split for evaluation. After
completing the data cleaning and annotation, the R-RAD dataset includes a total of 3,515 medical
questions and 314 medical images, the R-SLAKE dataset comprises 5,980 medical questions and
546 medical images and the R-Path dataset contains 4,012 images and 26,494 question-answer pairs.
Relevant statistics for the R-RAD, R-SLAKE and R-Path datasets are detailed in Table 1.

4.2 Dataset Cleaning

We identify noticeable inconsistencies within raw datasets. Specifically, the answers to similar
questions about the same medical image are not always consistent. For instance, given a chest X-ray
imaging, the response to the question “Is/Are the right hemidiaphragm normal?" is “No", while the
answer to “Is this image normal?" is “Yes". This apparent contradiction prompted us to seek further
expert medical review for such cases, ensuring the reliability of our dataset.
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In light of advancements of MLLMs, we integrate the MLLM into our data cleaning and annotation
process, aiming to streamline the workflows. This integration can not only expedite data processing
but also unearth subtleties often missed in manual cleaning and annotation practices. To address
inconsistencies, we first use the MLLM to systematically review all question-answer pairs for each
medical image. After identifying inconsistencies, domain experts revise the answers, ensuring
consistency across all questions related to the same medical image.

4.3 Dataset Annotation

After data cleaning, we utilize the MLLM for data annotation, specifically in generating MDMRs
for the items within the VQA-RAD, SLAKE and PathVQA datasets, as shown in Figure 1 (a). This
involves furnishing the MLLM with the datasets’ images, questions, and correct answers. Therefore,
we design a fixed prompt to guide the generation process of the MLLM. To ensure the quality of
MDMRs, domain experts check MDMRs’ validity and applicability. MDMRs not meeting criteria
will be regenerated by the MLLM. If a MDMR generated by the MLLM remains below standard
even after three attempts, domain experts will personally create an acceptable version, adhering to
predefined criteria.

We enlist experienced physicians as domain experts to ensure the professional and accurate annotation
of our data. To account for the diversity of medical opinions, we establish rigorous review criteria to
guide the annotation process. The criteria are as follows:

(1) Coherence: The MDMR must be logically coherent, with no errors in grammar or spelling.

(2) Relevance: The MDMR must be directly related to the question and pertinent to the clinical
context.

(3) Accuracy: The MDMR should be free from common sense and medical knowledge errors.

Only when all three conditions are met will the MDMR be included in our datasets.

5 Experiments
5.1 Training Details

During the datasets construction phase, we select GPT-4V OpenAI [2023] from among MLLMs to
handle data cleaning and annotation. In our framework, the encoder and decoder from UnifiedQA
Khashabi et al. [2020] are integrated as TextualEncoder(·) and TextualDecoder(·), respectively.
Additionally, DETR Carion et al. [2020] is employed as VisualEncoder(·).
In our experiments, the learning rate is uniformly set at 5e-4 for the R-SLAKE, R-RAD and R-Path
datasets. The number of epochs during fine-tuning varies by dataset: 300 epochs for the R-SLAKE
dataset, 150 epochs for the R-RAD dataset and 50 epochs for the R-Path dataset. It is important to
note that our “Two-Stage Reasoning" strategy requires a phased fine-tuning process involving two
separate models. In the first phase, we follow the parameters mentioned above. In the second phase,
we fine-tune with a learning rate of 5e-5 for 20 epochs across all three datasets. The batch size is set
to 32.

All experiments reported in this paper are conducted using PyTorch on an Ubuntu server equipped
with four NVIDIA RTX 3090 GPUs. Training on the R-RAD dataset takes about 2.5 hours. In
comparison, training on the R-SLAKE dataset requires approximately 5.5 hours, while the R-Path
dataset takes around 14 hours. During inference, processing each sample takes about 6 seconds.

5.2 Evaluation Metrics

Our performance evaluation is divided into two parts, focusing on closed-end and open-end questions
separately. For closed-end questions, which are formatted as multiple-choice with a single correct
answer, we assess performance using accuracy as the metric. For open-end questions, in contrast to
previous works Yang et al. [2016], Kim et al. [2018], Yu et al. [2017], Nguyen et al. [2019], Tiong
et al. [2022], Eslami et al. [2023] that often emphasize scoring all possible answers in open-ended
MedVQA datasets to gauge classification accuracy, our work on generative MedVQA prioritizes
clinical utility. Following established studies Li et al. [2023], Zhang et al. [2023a], we employ BLEU
and ROUGE to assess the quality of our method’s outputs. The BLEU scores, akin to the “Precision",
evaluates the overlap of k-grams between generated and reference sentences, while the ROUGE
scores, similar to the “Recall", measures the similarity in word sequences.
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Table 2: Accuracy (%) Comparison of Methods on Closed-End Questions in the R-RAD, R-SLAKE
and R-Path Datasets.

Methods MLLM-Based R-RAD R-SLAKE R-Path Parameters
Zero-shot results

Med-MoE(StableLM) Jiang et al. [2024] ✓ 66.9 52.6 69.1 2B
LLaVA-Med(From LLaVA) Li et al. [2024] ✓ 60.2 47.6 59.8 7B

Gemini Pro Team et al. [2023] ✓ 73.5 69.0 64.8 -
Gemini Pro (w/ Reasoning) Team et al. [2023] ✓ 77.2 77.4 70.9 -

Gemini Pro (w/ Two-Stage Reasoning) Team et al. [2023] ✓ 79.4 77.9 72.3 -
Gemini Pro (w/ Explanation) Team et al. [2023] ✓ 79.8 78.1 72.6 -

Representative & SOTA methods (Supervised finetuning results)
MFB Yu et al. [2017] 74.3 75.0 - -

SAN Yang et al. [2016] 69.5 79.1 - -
BAN Kim et al. [2018] 72.1 79.1 - -

MEVF+SAN Nguyen et al. [2019] 73.9 78.4 - -
MEVF+BAN Nguyen et al. [2019] 77.2 79.8 - -

MMBERT Tiong et al. [2022] - 77.9 - -
PubMedCLIP Eslami et al. [2023] 79.5 82.5 - -

Prefix T. Medical LM(GPT2-XL) van Sonsbeek et al. [2023] ✓ - 82.1 87.0 1.5B
LLaVA Li et al. [2024] ✓ 65.1 63.2 63.2 7B

Med-Flamingo Moor et al. [2023] ✓ 65.1 63.2 63.2 7B
LLaVA-Med (From LLaVA) Li et al. [2024] ✓ 84.2 85.3 91.2 7B
LLaVA-Med (From Vicuna) Li et al. [2024] ✓ 82.0 83.2 91.7 7B

Med-MoE(StableLM) Jiang et al. [2024] ✓ 80.1 83.4 91.3 2B
Med-Gemini Yang et al. [2024] ✓ - 84.8 83.3 -

MedThink (w/o R) 79.0 82.5 86.0 0.2B
MedThink (w/ Reasoning) 73.9 (-5.1) 80.8 (-1.7) 83.1 (-2.9) 0.2B

MedThink (w/ Two-Stage Reasoning) 80.5 (+1.5) 79.1 (-3.4) 87.2 (+1.2) 0.2B
MedThink (w/ Explanation) 83.5 (+4.5) 86.3 (+3.8) 87.0 (+1.0) 0.2B

*Red and blue numbers indicate increases and decreases in accuracy compared to the MedThink (w/o R) results respectively.

Table 3: Score (%) Comparison of Medthink on Open-End Questions in the R-RAD, R-SLAKE and
R-Path Datasets.

Dataset Strategy Rouge-1 Rouge-2 Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

R-RAD
Reasoning 49.8 20.3 29.3 37.8 22.7 14.0 8.9

Two-Stage Reasoning 49.1 19.9 28.7 37.7 22.5 13.9 8.8
Explanation 50.2 20.2 29.5 38.3 22.9 14.0 8.8

R-SLAKE
Reasoning 53.5 22.8 32.1 39.5 24.3 15.5 10.0

Two-Stage Reasoning 53.2 23.1 32.0 39.5 24.5 15.8 10.3
Explanation 53.1 22.7 31.7 39.2 24.1 15.4 9.9

R-Path
Reasoning 41.5 13.0 24.8 31.8 17.0 9.6 5.7

Two-Stage Reasoning 41.7 13.2 24.9 32.1 17.1 9.7 5.8
Explanation 41.9 13.2 25.0 32.1 17.1 9.7 5.8

5.3 Main Results

In facing closed-end questions, we evaluate the performance of MedThink under various generation
strategies, and compare them against several baseline methods on the R-RAD, R-SLAKE, and R-Path
datasets. The results are shown in Table 2. MedThink demonstrates varying levels of performance
across different generation strategies. To be specific, MedThink with the “Explanation" strategy
achieves the highest accuracy on the R-RAD and R-SLAKE datasets, recording 83.5% and 86.3%
respectively. Meanwhile, MedThink with the “Two-Stage Reasoning" strategy achieves the best
performance on R-Path with an accuracy of 87.2%.

In contrast, the state-of-the-art classification model, PubMedCLIP, achieves accuracies of 79.5% on
the R-RAD dataset and 82.5% on the R-SLAKE dataset, which is significantly lower than MedThink’s
results. This underscores the superior performance of MedThink. Compared to other generative
models based on MLLM, MedThink outperforms models such as LLaVA Li et al. [2024], Med-
Flamingo Moor et al. [2023], and Med-Gemini Yang et al. [2024], achieving overall accuracies
that are on par with the more parameter-heavy LLaVA-Med Li et al. [2024] and Med-MoE Jiang
et al. [2024] models. Notably, MedThink accomplishes this with a parameter count that is less than
one-tenth of these models, demonstrating both its efficiency and effectiveness.

Using open-end questions, we conduct a comprehensive evaluation of MedThink’s three strategies on
the R-RAD, R-SLAKE, and R-Path datasets. The results are summarized in Table 3. For the R-RAD
dataset, the "Explanation" strategy outperforms other strategies, achieving the highest scores in five
out of seven metrics. It records 50.2% in Rouge-1, 29.5% in Rouge-L, 38.3% in BLEU-1, 22.9% in
BLEU-2, and 14.0% in BLEU-3. On the R-SLAKE dataset, the "Two-Stage Reasoning" strategy leads
in performance, securing the top scores in five out of seven metrics, with 23.1% in Rouge-2, 39.5% in
BLEU-1, 24.5% in BLEU-2, 15.8% in BLEU-3, and 10.3% in BLEU-4. Regarding the R-Path dataset,
the "Explanation" strategy once again delivers the highest overall performance, achieving 41.9%
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Figure 2: Impact of MLLMs Selection and Expert Participation in Dataset Creation on the MedVQA
Tasks Accuracy (%).

Figure 3: Illustration of MDMRs Enhancing Model Responses in the MedVQA Tasks. The green
highlighted text represents medically relevant knowledge that aids in answering the question, while
the red highlighted text indicates information that could lead to incorrect conclusions. The red boxes
in the images correspond to the described anatomical features, underscoring the alignment between
the rationale and the visual evidence.

in Rouge-1, 13.2% in Rouge-2, 25.0% in Rouge-L, 32.1% in BLEU-1, 17.1% in BLEU-2, 9.7%
in BLEU-3, and 5.8% in BLEU-4. These results collectively highlight the importance of selecting
appropriate generation strategies tailored to addressing various medical scenarios, ensuring the model
generates comprehensive and detailed responses.

5.4 Ablation Study

To explore the influence of various components in MedThink, we conduct a series of ablation
experiments. First, we evaluate the effect of different MLLMs used during dataset creation and the
contribution of domain experts to data annotation. We implement three variations for annotating the
closed-end questions in the R-RAD dataset: using Gemini Pro Team et al. [2023] without expert
involvement, using GPT-4V without expert involvement, and using GPT-4V with expert involvement.
As shown in Figure 2, when GPT-4V is used with expert involvement in dataset creation, the
“Explanation" and “Two-Stage Reasoning" strategies achieved their highest accuracies of 83.5% and
80.5%, respectively. In contrast, the ’Reasoning’ strategy performed best with Gemini Pro without
expert involvement, reaching an accuracy of 79.4%, which is only slightly above the baseline accuracy
of 79.0% when MDMRs are not applied. We attribute this to the instability of the ’Reasoning’ strategy,
which hinders its ability to consistently benefit from MDMRs, aligning with previous research Lu
et al. [2022]. Overall, expert involvement enhances the quality of MDMRs, positively impacting
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Table 4: The error rate for each region (Lower values are better)

Anatomical Regions (Number) w/o Rationale ↓ Explanation ↓
Lung (N=141) 12.06% 9.93%

Abdomen (N=141) 24.11% 19.15%
Head (N=91) 18.68% 13.18%
Neck (N=16) 18.75% 6.25%
Chest (N=5) 20.00% 0.00%

Pelvic Cavity (N=22) 4.55% 13.64%

MedThink. Additionally, GPT-4V’s stronger reasoning ability compared to Gemini Pro Fu et al.
[2023] further suggests that using a more advanced MLLM during data annotation is beneficial.

Next, we examine how the introducing of MDMRs impacted results. We introduce a control experi-
ment, MedThink without MDMRs, where the models are trained and inferred without incorporating
MDMRs (MedThink w/o R). The “Explanation", “Reasoning" and “Two-Stage Reasoning" strategies
are compared with the control experiment. As indicated in Table 2, compared to “MedThink w/o R",
the “Explanation", “Two-Stage Reasoning", and “Reasoning" strategies improve accuracy by 4.5%,
1.5%, and -5.1% on the R-RAD dataset, 3.8%, -3.4%, and -1.7% on the R-SLAKE dataset, and 1.0%,
1.2% and -2.9% on the R-Path dataset, respectively.

Finally, we assess the practicality of MDMRs generated by MedThink using different strategies.
Initially, Gemini Pro is provided with only medical queries and related imagery. Subsequently, we
inincorporate MDMRs generated by MedThink with the “Explanation", “Reasoning" and “Two-Stage
Reasoning" strategies to assist Gemini Pro in answering. The results, presented in Table 2, indicate
an initial accuracy of 73.5% on the R-RAD dataset, 69.0% on the R-SLAKE dataset and 64.8% on
the R-Path dataset for Gemini Pro. The integration of MDMRs has led to significant improvements.
Among three strategies, the “Explanation" strategy stands out, enhancing the accuracy by 6.3% on
the R-RAD dataset, 9.1% on the R-SLAKE dataset and 7.8% on the R-Path dataset.

5.5 Case Study

To assess the specific impact of MDMRs on the MedVQA task, Figure 3 shows several examples
where MedThink applies the “Explanation" strategy to answer questions from the R-SLAKE datasets.
When the generated MDMR is accurate, MedThink can effectively and precisely answer the related
medical question. If the MDMR contains errors, however, it misguides MedThink, leading to a
phenomenon known as hallucination, which is a common issue in vision-language models. To
investigate the causes of hallucinations in MedThink, we analyze the number of incorrect answers
it provided on the R-SLAKE dataset. The R-SLAKE dataset is chosen because it covers medical
questions about six anatomical regions, offering a complex and representative challenge.

We perform the analysis through the following steps. First, we categorize the test set questions by
the anatomical regions associated with the medical images. Next, we tally the number of incorrectly
predicted questions for each anatomical region. Finally, we calculate the proportion of incorrect
predictions for each region, as shown in Table 4. The results indicate that MedThink significantly
aids in addressing medical issues related to the chest and abdomen. However, these areas still account
for the majority of prediction errors. We attribute this to the greater complexity of chest and abdomen
images, which contain more organs than other regions, presenting a considerable challenge for the
model.

6 Conclusion
In this paper, we present a generative model-based framework for MedVQA and construct the R-RAD,
R-SLAKE and R-Path datasets, which include intermediate reasoning steps to address the challenge
of black-box decision-making processes in MedVQA models. Extensive experimental results show
that our proposed framework not only elucidates the medical decision-making process of MedVQA
models with clarity but also significantly enhances their performance. Future research will further
explore generative models tailored for real clinical settings and how to better evaluate the performance
of MedVQA models in open-ended scenarios.
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7 Appendix
7.1 Dataset Details

The VQA-RAD dataset sources its radiographic images from MedPix®, an open-access radiology
database. In this dataset, clinicians formulate perinent medical questions based on the radiographic
images, and provide corresponding answers. The VQA-RAD dataset comprises a collection of 315
images and 3,515 questions-answer pairs.

The SLAKE dataset derives its data from three distinct sources: the ChestX-ray8 Wang et al. [2017],
the CHAOS Challenge Kavur et al. [2021], and the Medical Segmentation Decathlon (MSD) Simpson
et al. [2019]. After screening and annotation by clinicians, it yields a bilingual (English-Chinese)
MedVQA dataset, including 642 medical images and approximately 14,000 medical questions. For
our work, we utilize only the “English" component of the dataset.

The PathVQA dataset, specifically designed for visual question answering in the medical domain,
compiles its pathology images and corresponding captions from a range of textbooks and online
digital libraries. The dataset consists of 4,289 pathology images and 32,632 question-answer pairs,
each pair is meticulously reviewed for accuracy.

7.2 More Cases

To observe the assistance of medical decision-making rationales in MedVQA tasks specifically,
Figure 4 shows more examples where the model employs the “Explanation" strategy.

12



Figure 4: More Cases. The figure showcases four examples where the “Explanation" strategy
facilitates the diagnostic process of the model. The yellow highlighted text indicates medically
relevant knowledge that aids in answering the question, while the blue highlighted text provides
descriptive details of the image. The red boxes in the images correspond to the described anatomical
features, underscoring the alignment between the rationale and the visual evidence.

Figure 5: An example of rationale validation using Gemini Pro. The red background text represents
the incorrect answer, while the green background text represents the correct answer.

7.3 Details of Rationale Quality Assessment

In this section, we show how to use Gemini Pro to validate the medical decision-making rationales
generated by our methods. To further enhance the capabilities of Gemini Pro, we use “Let’s think
step by step" as part of the prompt word. As shown in Figure 5, Gemini Pro answers the question
correctly after receiving the rationale generated by our methods.

7.4 Details of Dataset Cleaning

In this section, we detail the data cleaning process. We discover that within the raw datasets, some
closed-end questions are similar in form to open-end questions. To preserve the original categorization
of the dataset while enhancing clarity, we employ GPT-4V to alter the presentation format of these
questions, while keeping their categorization unchanged, as shown in Figure 6. After the GPT-4V
modification, for instance, the question “How would you describe the stomach wall thickening?" is
reformulated to “Is the stomach thickening asymmetric?". This modification ensures the preservation
of the original intent of the question, while aligning its presentation more closely with the defining
characteristics of the closed-end question.

Additionally, to address inconsistencies within same medical image, we firstly use GPT-4V to assist
in manually identifying inconsistent questions within each medical image, as shown in Figure 7,
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Figure 6: An Example of the Question Reformulation Process Using GPT-4V. The yellow background
text represents the system prompt, the blue background text displays a 3-shot example to guide
the LLMs, and the green background text shows the input provided to the LLMs along with the
corresponding model response.

Figure 7: An Example of the Process for Identifying Inconsistent Questions.

while systematically traversing the entire dataset of medical images. Subsequently, after aggregating
all identified inconsistencies, experts revised the answers to these question, ensuring consistency
across all questions pertaining to the same medical image.

7.5 Details of Dataset Annotation

In this section, we demonstrate what constitutes standard medical decision-making rationales during
the annotation process. As shown in Figure 8, for the question “Is this patient female?", the initial
response from GPT-4V is “I’m sorry, but I can’t assist with that request", signifying a refusal to
answer the question. During the annotation process, the issue is observed in approximately 2% of the
samples. The subsequent response from GPT-4V does not meet the criteria, as the answer could not
be inferred from the rationale provided. The third response from GPT-4V meets the criteria, not only
explaining the contents of the X-ray image (“The X-ray image provided shows the chest area of a
patient, including shadows that are consistent with the tissue densities of female breasts"), but also
highlighting the medical background knowledge necessary to correctly answer the question (“These
shadows are indicative of the presence of breast tissue, which typically distinguishes a female chest
from a male chest on an X-ray").
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question_845: Is this patient female? answer: yes.

Based on the image provided, please offer a correct and detailed explanation for the
question posed. Only explain the reasoning behind the answer without restating the
given answer. Furthermore, include the question index in your response.
**Response Format**:
The response should be structured with the question index encapsulated in square
brackets followed by the explanation. For example:
[question_XX] 'Explanation of question_XX'

[question_845]  The X-ray image provided shows the chest area of a patient,
including shadows that are consistent with the tissue densities of female breasts. 
These shadows are indicative of the presence of breast tissue, which typically
distinguishes a female chest from a male chest on an X-ray. Hence, the
determination that the patient is female is based on the radiological appearance of
breast tissue in the image.

[question_845]  The indication of the patient being female is not directly evident
from the X-ray image. The answer might be based on other non-visible factors or
information provided elsewhere.

[question_845] I'm sorry, but I can't assist with that request.

Figure 8: An Example of Annotation Process. The input, consisting of an medical image and text
with the yellow background, prompts the LLMs for the response. The output is showcased in two
forms: the non-standard response highlighted in blue and the standard response highlighted in green.
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