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Abstract

We introduce Virtual Fitting Room (VFR), a novel video generative model that
produces arbitrarily long virtual try-on videos. Our VFR models long video
generation tasks as an auto-regressive, segment-by-segment generation process,
eliminating the need for resource-intensive generation and lengthy video data,
while providing the flexibility to generate videos of arbitrary length. The key
challenges of this task are twofold: ensuring local smoothness between adjacent
segments and maintaining global temporal consistency across different segments.
To address these challenges, we propose our VFR framework, which ensures
smoothness through a prefix video condition and enforces consistency with the
anchor video—a 360° video that comprehensively captures the human’s whole-
body appearance. Our VFR generates minute-scale virtual try-on videos with both
local smoothness and global temporal consistency under various motions, making
it a pioneering work in long virtual try-on video generation.

1 Introduction

Imagine being in a fitting room, trying on a garment, when a hurried knock interrupts you. Would
that allow you to truly experience the garment before buying it? No. To truly understand a garment,
one may want to interact with it in various ways. The computational methods for virtually trying on a
garment enable a user to see themselves, but only in an image [1-6] or a short 5~10s video [7, 8],
limiting the user’s ability to fully experience a garment. We introduce Virtual Fitting Room (VFR) to
enable a user to study the interaction of garments with their body as long as they like. Unlike existing
image or video try-on methods, VFR allows a user to create arbitrarily long videos (720 x 1152
resolution at 8 FPS and can be further refined to 24 FPS) of themselves, given a single user image, a
desired garment, and a reference video performing the desired try-on motion. Fig. 1 shows a 30s and
a 90s video generated using our method.

Generating a 5s-long video is already a computationally demanding task [7, 8]. Naively extending
these methods requires even more computational resources and a large-scale video dataset containing
long videos for learning. To overcome these limitations, one may generate multiple short segments of
a long video one by one “auto-regressively” in timestamp order, and then merge them to create a long
video, as visualized in Fig. 4-(a). Inspired by common approaches in general long video generation
[9-14], we allow each segment to slightly overlap with the previous segment, and pass the overlapped
“prefix” of the current segment as a condition, ensuring a locally smooth transition between each
adjacent segment pair. However, these generated videos lack global temporal consistency, as shown
in Fig. 2-(a), which is difficult to fix after once they are generated. In this work, we draw inspiration
from the process of writing an essay with an outline as an “anchor.” We posit that creating long
videos is a two-step process that involves: (1) creating an “outline” or an “anchor” to guide the
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Figure 1: We generate two arbitrarily long videos: (a) a 30s video; and (b) a 90s video, for a user
interacting with a given garment. Our approach preserves accessories — glasses and slippers, and
allows a desirable user-garment interaction. Please refer to the project page for full streaming.

generation; and (2) generating multiple short videos that are consistent with the anchor. We observe
that a short 360° video like Fig. 3-(a) of the human subject in a simple “A” pose serves as a reasonable
anchor, allowing the model to comprehensively design the whole-body appearance of the human. The
multiple short video segments are consistent with the anchor video and, therefore, are also consistent
with each other. With the anchor video, our generated long video achieves temporal consistency
(Fig. 2-(b)) without requiring long videos for training.

Evaluating the quality of long video virtual try-on. With the flexibility to generate arbitrarily
long videos, we introduce an evaluation protocol to assess performance across four aspects with
varying difficulty levels: (1) 360° Garment Consistency — a 360° video of a stationary human
subject in “A” pose, which allows us to study the quality of the generated garment (Fig. 3-(a)); (2)
30s Human+Garment Consistency — a 30s video of a human subject casually moving around a
point in front of a stationary camera, which enables us to assess the quality of the generated human
and garment (Fig. 1-(a)); (3) Hand-Body Interaction Faithfulness — a 90s video of a human subject
performing a fixed set of poses in front of a stationary camera, which facilitates the evaluation of
the robustness of the virtual try-on method in controlled settings (Fig. 1-(b)); and (4) Capability
for Arbitrary Poses - a 30~60s video of a human subject freely interacting with their body, which
allows us to investigate robustness in various poses and orientations. We believe that this evaluation
protocol will enable us to comprehensively assess the quality of virtual try-on methods.

Free viewpoint rendering is for free. A by-product of learning temporally consistent video is that
we can render a human subject in any pose and viewpoint. Fig. 3-(a) shows a generated 360° anchor
video (“A” pose) of a user wearing the target garment. The output is 3D consistent, enabling us to
reconstruct it into a 3D mesh, as visualized in Fig. 3-(b) in a NeRFStudio [15] viewer. We observe
that 3D implicitly emerges while enforcing temporal consistency. Interestingly, we can recloth and
reanimate any human subject from a single image, and view them from any viewpoint.

Our Contributions. (1) We introduce VFR, the first method to generate arbitrarily long, high-
resolution (720 x 1152 resolution at 24FPS) human videos of virtual try-on from a single image.
(2) We also introduce an evaluation protocol to assess the overall quality of virtual try-on methods.
(3) We observe that the proposed method implicitly learns 3D consistency, enabling us to perform
free-viewpoint rendering. Though designed for long video virtual try-on, our approach also provides
insights for general long video generation, where the anchor mechanism offers a simple way to
maintain global consistency over time.

2 Related Work

We believe static 2D imagery isn’t enough for a realistic virtual try-on experience. The challenge
of achieving high-resolution virtual try-on escalates as we progress from images to videos, and
ultimately to 4D. This progression not only heightens the demand for computational resources, but
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Figure 2: Given a user and target garment, (a) conventional auto-regressive video generators suffer
from temporal inconsistency issues between distant frames. Note different patterns of sleeves in red
bounding boxes across the time. (b) Our VFR generates temporally consistent try-on videos.

(a) 360°-View Anchor Video (b) Reconstructed 3D Human
Figure 3: (a) VFR produces a 360° anchor video (“A” pose) of a user for a given garment. We
observe that the outputs are 3D-consistent, allowing us to (b) reconstruct it into a 3D human mesh.
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also diminishes the availability of previous extensive databases necessary for learning. Our goal is
to identify computational methods that enable the generation of arbitrarily long videos, even with
constrained resources.

Image-to-Image Try-on. Given an image of the user and a reference to the target garment, the goal
here is to synthesize a new image of the user wearing the target garment [16-37, 4, 38—40]. Most
methods take a two-step approach: (1) deform the garment for a given user, known as warping; and (2)
generate a new image with the deformed garment using GAN [41] or latent diffusion models [42—-44].
A few exceptions [20, 33, 45] generate the output without an intermediate warping step. The primary
limitation in this field is the restricted experience a user can have with garments. One can only see
them in exactly the same pose as in the input image. This issue can potentially be addressed by
incorporating an additional module that can synthesize humans in different poses [46—51]. However,
due to error propagation, the garment’s appearance becomes inconsistent. Consequently, various
methods [52-56] aim to jointly change the pose and the garment. These methods, however, lack
temporal consistency and smoothness when applied across a series of poses.

Video-to-Video Try-on. Given a video of the user and a reference to the target garment, the
objective here is to synthesize a new video of the user wearing the target garment [57-62]. An
important distinction is ensuring that the synthesized garments and humans are temporally consistent
and accurate. He et al. [63] employs an image-to-image try-on methodology, but incorporates an
additional temporal loss during training to enforce consistency. Recent methods [7, 8] can generate
high-resolution output, but they are limited by the duration of the generated video (5s). Naively
increasing the duration of videos will require enormous computational resources.

Image-to-Video Try-on. In this work, we explore the generation of arbitrarily long videos from a
single user image and garment images. A naive approach is to utilize a single image try-on method
and animate it using an image-to-video creation module [64—76]. However, a modular approach leads
to error propagation, which degrades the quality of the generated outputs. Therefore, we seek an
end-to-end video generation pipeline that allows us to preserve the details of the garment [8, 77]. We
observe that text conditioning cannot effectively capture long and subtle movements [8]. Instead,
we use example videos as a reference to guide the creation of new videos. A notable prior work,
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Figure 4: (a) Our VFR is an auto-regressive framework that generates a long video segment-by-
segment. (b) The video generator takes both an anchor video and a prefix video as input, and generates
a new segment that continues the prefix video while maintaining consistency with the anchor video.

Dress&Dance (DnD) [8], generates 5s videos with high resolution 720 x 1152 at 24FPS. In this work,
we generate arbitrarily long videos from a single user image and the reference garments.

Long Video Generation. There is also a line of work [9—14] that investigates long video generation
for text-to-video and image-to-video tasks. The common idea behind these methods is to introduce
an additional “memory back” or “history tracking” mechanism to ensure consistency with the
previous frames in a typical auto-regressive generation process. For example, a concurrent work,
FramePack [14] designs a computationally efficient way to consider all the previous frames as
conditions when generating a new frame. Similarly, StarGen [78] proposes a spatio-temporal
autoregression framework for static scene synthesis, while LCT [79] introduces a long-context
tuning strategy that leverages interleaved 3D positional embeddings and KV-cache mechanisms
to extend temporal receptive fields. These approaches can generate smooth long videos; however,
their temporal consistency is not guaranteed and often violated due to ineffective history tracking or
over-compressed memory. In contrast, our VFR method tackles this problem by designing an anchor
video conditioning mechanism tailored for virtual try-on tasks, providing a global appearance prior
that promotes strong temporal consistency across the entire long video.

Free Viewpoint Rendering. Our ability to generate arbitrarily long videos implicitly allows us to
perform free-viewpoint rendering of humans [80, 81]. We observe that a model trained to capture
consistent temporal characteristics implicitly learns 3D consistency in its outputs. This analysis could
potentially pave the way for 4D try-ons in the future.

3 VFR: Methodology

Given a user image, a reference garment image, an optional text prompt, and a long motion reference
video, our VFR is a method that generates long, minute-scale, high-quality try-on videos of the user
wearing the desired garment and performing the indicated motion, in an auto-regressive, segment-by-
segment manner. In an auto-regressive generation framework, the core challenge is to achieve both
(1) local smoothness such that the video transitions seamlessly without noticeable sudden changes or
morphing (Fig. 5); and (2) global temporal consistency such that the appearance of both the user and
the garments at all occurrences in the video is the same (Fig. 2).

To address these crucial challenges, our key insight is to (1) propose the “anchor video” generation
to ensure a consistent appearance throughout the entire video, and (2) introduce the video prefix
condition and immediate refiner to enhance video smoothness through strong conditioning. With
both insights, our VFR achieves high-quality long try-on videos, while ensuring both smoothness and
temporal consistency.

Auto-Regressive Video Generation. There are two approaches to generating long videos: one can
either produce the entire long video in a single forward pass, just like generating a short video, or
generate the video auto-regressively as multiple shorter segments (Fig. 4-(a)). The former method
necessitates significant computational resources during the generation process, as well as extensive
long video datasets; whereas the latter requires similar computational resources and training datasets
to those used for short video generation.
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Figure 5: Without our prefix conditioning, the generated video may contain artifacts like (a) sudden
changes or (b) morphing, as highlighted in the boxes, which violate the smoothness requirements.

We opt for the second approach and design VFR as an auto-regressive generative model v <
G(c, Vprefix ). As seen in Fig. 4-(b), our model generates a short F'-frame video v with input conditions
¢, such that the generated video has vprenix as its prefix, and then seamlessly continues into the
preceding frames. In long video generation, we first generate the initial F' frames vy < G(cg, @),
and then generate each (F' — f)-frame segment v; < G (ci, vl[ljl_f +1’F]), using the f overlapped
frames vl[fl_f TLF] from the previous segment as its prefix. The reason for using f frames instead
of just one frame is to ensure that both the visual appearance and the motion, which requires
multiple frames to represent, are smoothly continued into the next segment v;. To obtain the different
conditions c; for each segment v;, we only need to replace the full motion reference video with its

corresponding segment while keeping all other conditions the same. The final generated video is

[

v = vg + Concat]_, v, f+L.F] (Fig. 4-(a)). Please refer to the Supplementary for the model details.

3.1 Anchor Video for Temporal Consistency

The issue of temporal consistency arises from the ambiguity of the unseen aspects of the garment or the
user’s appearance. For instance, given only a frontal image of the garment, its back and side views can
be interpreted in multiple, yet plausible, ways. This leads to temporal inconsistencies when different

appearances are generated in two non-overlapping segments, as shown in Fig. 2-(a). To ensure

consistency, a naive approach is to use the prefix of the whole video v} = v, + Concat’ ,111[]0 +LF)

as part of the condition c; to generate the next segment v;, such that the generated v; remams cons1stent
with any frame that has appeared in v}"°. However, this approach negates all the advantages of the
auto-regressive generative framework — it also incurs significant computational costs and requires
long videos for training to effectively handle v}™®

Our insight is to organize the appearance information of garment and user in a more effective
representation than the whole vfre. Therefore, we introduce the concept of the anchor video v,,
which is a short F -frame video of the user wearing the garment while performing a different motion,
ensuring that any part of the user and the garment is visible in at least one of its frames. Given a
motion template m;, the generation of the anchor video can be modeled as v, < G(¢|motion=m,, &),
i.e., generating a virtual try-on video with fixed motion m;.

We choose m; to be a stationary A-pose like Fig. 3-(a), with both arms slightly raised near the
sides of the waist and legs naturally apart, under a 360°-view camera trajectory. As shown in
Fig. 3-(b), such an anchor video generated from this m, is already sufficient for reconstructing a 3D
mesh representation with NeRFStudio’s NeRFacto model [15], indicating that this video effectively
captures a 3D-consistent appearance of the try-on human video. Conditioning the generator on this
video anchor is sufficient to promote consistency across poses and viewpoints, ie., a proxy-3D-aware
video generation, without any explicit 3D representation [82] or 3D motion modeling like SMPL
[83]. Since consistency is an equivalence relationship, each v;’s consistency with v, implies their
consistency with one another. As a result, we achieve cross-segment global appearance consistency,
which guarantees the temporal consistency of the final generated long video, as shown in Fig. 2-(b).

3.2 Auto-Regressive Prefix Conditioning for Smoothness

In our auto-regressive generation, we aim to generate the next segment v;, such that its first f frames

vl[l’f ] precisely match the given vpefix. If we generate an arbitrary video v; and then replace its
first f frames, there may be a sudden change between the f-th and (f + 1)-th frame, resulting in a
discontinuous video. A straightforward approach is to model this task as “outpainting” the remaining
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Figure 6: In the virtual try-on with the 90s hand-body interaction motion, our VFR generates
temporally consistent try-on videos. Please refer to the project page for full streaming.
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(F — f) frames, given the first f frames. This allows us to apply a training-free inpainting/outpainting
method, DiffEdit [84], leveraging the same video diffusion model to generate a visually smooth video
that starts from the given prefix. However, such a generated video may still contain sudden changes
(Fig. 5-(a)) and morphing between different appearances (Fig. 5-(b)).

To enforce the video diffusion model to generate smooth videos, we must explicitly consider the fixed
prefix vprefix during the generation process. Therefore, as demonstrated in Fig. 4-(b), we introduce
the prefix as a conditioning input. This approach ensures that the model can learn to generate a
smooth video segment that seamlessly continues the input prefix.

3.3 Training Long Video Generator with Short Video Data

The introduction of auto-regressive generation focuses on each ' frame segment of the video, which
only requires videos containing at least F' frames for training. This approach eliminates the need
for large-scale, lengthy video training data, which is challenging to obtain, especially for our virtual
try-on videos. Each single generation can be modeled as v <— G(c¢, Vprefix ), Where ¢ = (Ciry-on, Va)
represents both try-on conditions (garment and user image, motion reference video, etc.) and the
anchor video. For each F'-frame segment v in our dataset, we can set Uprefix v[1/1 to obtain the
corresponding input. However, in most cases, we do not have the desired anchor video v, that is
exactly at the m; we want. Generating m, by ourselves may also be inconsistent with the video, e.g.,
with different back or side views.

To address this issue, our approach does not focus on the v, at a specific m;, but instead allows the
model to learn to leverage v,’s under an arbitrary motion m;. This ensures that, regardless of the
pose of the v,, the video generator can always optimize its usage to produce videos that are consistent
with the given v,. With this modeling, any video segment showing the same person wearing the
same garment can be used as an anchor video for the target video v. More specifically, for each
Flaw-frame raw video data, we can sample two intervals — with the same user and garments — to
construct a training batch: a F'-frame interval as target v, and another arbitrary length interval to
temporally upsample or downsample it to F, frames and use as v,. Utilizing this training strategy,
we can effectively train the model with only short (F'~3F) raw videos, which is not significantly
longer than I, yet can already yield a sufficient variety of different pairs of v and v,.
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Figure 7: In the virtual try-on with a ~50s arbitrary motion, our VFR faithfully preserves consistent
garment details and human appearance, showcasing various poses with high quality. These results
are shown as videos on our project page.

3.4 Immediate Refinement of the Generated Segments

The robustness of auto-regressive video generation is significantly more critical than that of end-to-
end generation, as artifacts and errors can accumulate and amplify over time. Specifically, given that
both anchor and prefix video conditions are complex, pixel-unaligned video conditions, we observe
increasing artifacts in our initial generation results, which may accumulate to severe degradation.

Inspired by Dress&Dance [8], which leverages a standalone generator as a “refiner” to temporally
upsample the video and remove artifacts, we also design a refiner for our generation. In our case,
we do not aim to upsample the videos; instead, we focus entirely on artifact removal and video
smoothing. Our refiner can be modeled as v’ <— Giefiner (C; Uprefix; v), Which takes a F'-frame video
v as input, along with all the other conditions ¢, including v,, obtaining a refined F-frame video v’.
Such a refiner is directly applied to each v;, immediately after its initial generation, so we call it an
“immediate refiner.”” Additionally, since the input v and output v’ have the same number of frames,
we apply the refiner Greaney multiple times to the same video to ensure complete artifact removal.

The final output segment v; can be expressed as v; <— Greﬁner (c, vl[Fl L ,G (C, vl[:_fﬂ’F]) ) ,

where k is the number of iterations. With this immediate refinement technique, we resolve the issue
of degradation over time in long video generation, maintaining high quality from beginning to end.

4 Experiments

4.1 Experimental Settings

Model Training Settings. Our VFR model is built on Dress&Dance [8] with the addition of
“prefix video” and “anchor video” CondNets. We train VFR on both Internet and captured datasets
from Dress&Dance for 10, 000 iterations. Specifically, the immediate refiner is initialized from the
5, 000-th iteration checkpoint of the base VFR, and trained for another 5, 000 iterations.

Evaluation Tasks. We evaluate VFR on four different parts: (1) 360° Garment Consistency, to
generate a 5s 360°-view “A” pose video, which also serves as the anchor videos for the other tasks; (2)
360° Human+Garment Consistency, to generate a 30s 360° casually moving video; (3) 360° Hand-
Body Interaction Faithfulness, to generate a 90s video with a fixed motion; and (4) Capability for
Arbitrary Poses, to generate a 30~60s video with arbitrary motion. These benchmarks are available
on our project page. Notably, existing public video try-on datasets VVT [85] and ViViD [61] are not
suitable for evaluating our setting, as their spatial resolutions (256 x 192 and 832 x 624, respectively)
and temporal lengths (typically only a few seconds) are insufficient to capture the high-resolution,
minute-scale, and temporally consistent generation capabilities targeted by our benchmark.
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Baselines. We compare our VFR against the baselines FramePack [14], utilizing an “image virtual
try-on + image-to-video animation” (IVT+I2V) procedure that is aligned with Dress&Dance [8]. We
also compare with Kling Video 2.0 [86] in a “repeating image-to-video” (RI2V) manner mentioned
in [14]. We are unable to compare with the following baselines: StreamT2V [13], as it only supports
16:9 landscape videos; CausVid [12], given that there is no available image-to-video checkpoint
released; TTT [9], since it only supports Tom and Jerry videos; and DiffusionForcing [10] and
HistoryGuidance [11], as they are restricted to videos from their respective trained datasets. As for
the image try-on method, we mainly use the two state-of-the-art method, Dress&Dance image try-on
[8] and Kling Try-On [86], to generate the first frame of the video. More combinations including
other image virtual try-on methods are compared in our Supplementary.

Ablation studies. We also compare our full VFR with the following variants: (1) “No Prefix” (NP),
which does not use prefix conditioning, but directly utilizes DiffEdit [84] to outpaint the video with
the prefix; (2) “No Anchor” (NA), which does not generate and condition the segment generations on
the anchor video; (3) “No Refine”” (NR), which skips the immediate refinements after each segment
generation; (4) “Dress&Dance’” (D&D), which does not use either the anchor video or the prefix
conditioning, making it equivalent to a training-free method that employs Dress&Dance with DiffEdit
for long video generation.

Maetrics. Consistent with Dress&Dance [8] and FramePack [14], we utilize GPT [87]-based scores
and VBench [88-90] to evaluate our videos. GPT scores can effectively assess the try-on quality
from various aspects, leveraging GPT’s visual capabilities; VBench introduces a set of metrics that
comprehensively evaluate the videos from both quality and semantic perspectives.

4.2 Experimental Results and Analysis

We present our qualitative results in Figs. 6,7,8 as images, and on our project page as videos.

360° Human+Garment Consistency (30s) — Fig. 8. As shown Fig. 8-(a), our VFR produces high-
quality, long virtual try-on videos. In Fig. 8-(b), our “No Prefix” (NP) variant, due to the global anchor
videos, generates results that are comparable to our full VFR, but exhibits some sudden changes, as
illustrated on our project page. In contrast, our “No Anchor” (NA) variant’s video displays long-term
temporal inconsistencies, while our “Dress&Dance training-free” (D&D) variant exhibits even greater
temporal inconsistencies in both the short and long term. This highlights that both designs in our
VER for local smoothness and global temporal consistency are effective and essential. In Fig. 8-(c),
the baseline FramePack [14] produces overall smooth results with long-term inconsistencies, while
the appearances deviate significantly in the results produced by the Kling Video 2.0 [86]-based RI2V
method. This demonstrates that the virtual try-on tasks are non-trivial and challenging, underscoring
our contribution in achieving high-quality results.

Hand-Body Interaction Faithfullness (90s) — Fig. 6. The motion in these evaluation tasks encom-
passes both human rotation and arm movements. Our VFR faithfully performs the same motion
in different virtual try-on tasks, demonstrating the ability to depict the same motion across various
garments — either pants, skirts, or dresses. Even for such a long-term video, our VFR still maintains
high temporal consistency, which can be observed by comparing the first and the last frame.

Capability for Arbitrary Poses (~50s) — Fig. 7. In these highly challenging tasks, the motions
can be arbitrary, encompassing various arm and leg movements, which lead to even more diverse
showcases and interactions between garments and users. We observe that our VFR effectively handles
these motions and generates high-quality visualizations to depict them. This shows VFR has the
capability to generalize to various long video virtual try-on tasks.

Quantitative Analysis. The quantitative evaluation comparisons are provided in Table 1. We use
the “Subject Consistency,” “Background Consistency,” and “Motion Smoothness” from VBench [88]
to evaluate how the two major challenges — temporal consistency and smoothness — are addressed,
as well as the GPT metric in [8] to assess the overall virtual try-on quality. We provide the more
quantitative evaluations in Supplementary.

As shown in Table 1, in each component of the evaluation protocols, our full VFR consistently
outperforms all the baselines and variants. Furthermore, since our VFR is based on the previous
work Dress&Dance [8], all these variants maintain a portion of its virtual try-on capability, achieving
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Figure 8: In the V1rtual try on with 360° dynamic motion, (a) our VFR generates high quahty,
long virtual try-on videos, while (b) removing either anchor video or prefix conditioning results in
noticeable degradations. On the contrary, (c) the baselines suffer from smoothness and temporal
consistency issues. Please refer to the project page for full streaming.

comparable GPT evaluation scores, where the D&D variant, as a training-free long video generation
pipeline utilizing D&D, preserves the majority of its capability.

We also observe that our NP variant performs similar to our full model, reflecting the strong control
provided by the anchor video. However, without the anchor video the NA and D&D variants suffer a


https://immortalco.github.io/VirtualFittingRoom/

Method ‘Subjccl Consistency Background Consistency Motion Smoolhncss‘GPTny,Un 1 GPTyser T GPTyiotion T GPTvisual T GPToveran T

1. 360° Garment Consi y (5s)
Ours I 92.84 95.38 98.35 [ 8783 85.90 76.67 80.35 82.06
2. 360° Human+Garment Consi: 'y (30s)
Ours 94.06 96.53 99.37 90.09 88.11 84.08 86.33 87.14
Ours NP 93.58 96.10 99.31 89.66 87.24 84.20 85.86 86.69
Ours NA 92.77 95.55 99.22 88.47 84.91 81.75 81.66 84.04
Ours D&D 93.70 96.01 99.23 89.72 86.16 83.20 86.05 86.10
Ours NR 90.80 94.82 99.21 87.29 85.55 78.74 71.90 80.40
3. Hand-Body Interaction Fai (90s)
Ours 92.13 94.02 99.24 87.20 84.88 77.85 81.12 82.62
Ours NP 91.88 93.91 99.15 89.65 86.28 80.15 83.22 84.62
Ours NA 88.00 91.50 99.09 85.20 80.35 70.67 69.05 75.70
Ours D&D 91.65 93.25 99.11 89.95 87.25 82.53 85.15 86.15
Ours NR 86.02 89.84 99.01 85.22 84.83 72.25 65.10 75.03
4-Med. Capability for Arbitrary Poses — Medium (25s)
Ours 91.09 93.82 98.62 87.11 84.45 77.83 79.77 81.93
Ours NP 90.19 93.00 97.85 87.40 85.48 78.40 80.55 82.56
Ours NA 88.46 92.10 97.92 86.87 84.39 77.92 77.56 81.31
Ours D&D 89.27 92.81 97.83 87.83 85.23 80.24 82.22 83.61
Ours NR 87.56 91.79 97.76 85.28 83.75 74.85 68.98 77.26
4-Hard. Capability for Arbitrary Poses — Hard (30-50s)
Ours 93.21 95.29 99.35 87.03 85.83 69.99 78.84 79.05
Ours NP 92.71 94.63 99.29 87.69 86.38 71.12 79.47 79.60
Ours NA 91.17 93.31 99.22 87.14 85.03 71.42 77.11 78.99
Ours D&D 92.27 94.09 99.25 88.05 84.97 71.90 81.38 80.39
Ours NR 88.17 92.08 99.19 85.36 84.61 67.45 64.55 73.44
IVT+I2V D&D + FramePack [14] 88.33 90.98 98.24 86.96 85.35 71.51 79.33 81.86
RI2V D&D + Kling [86] 92.71 94.08 98.92 87.25 85.59 65.80 79.40 77.24

Table 1: Quantitative experiments show that our VFR consistently outperforms all variants and
baselines in both consistency and smoothness metrics from VBench [88], while achieving comparable
try-on and visual quality as Dress&Dance (D&D) [8]. Notations: NP is No Prefix; NA is No
Anchor; and NR is No Refine.

significant drop in both (human) subject and background consistencies, and the degradation of virtual
try-on quality even occurs for the NA variant, as reflected in the GPT evaluation metric. This shows
that the anchor video controls not only the consistent appearance but also the try-on quality.

Finally, we compare the most powerful baselines, FramePack [14] and Kling [86], combined with the
state-of-the-art virtual try-on method Dress&Dance. FramePack has a significantly lower consistency
metric, indicating that its conditioning method, which takes into account the previous frames, is not
sufficient to enforce consistency. Kling still achieves a slightly lower consistency metric compared to
our VFR, but the quality of the virtual try-on degrades.

5 Conclusion

We propose VFR, a virtual try-on method that generates arbitrarily long, high-resolution videos from
a single user image, garment, and motion reference. The key of our method is an anchor video-guided
framework that ensures temporal consistency across segments and implicitly captures 3D structure,
enabling free-viewpoint rendering without 3D supervision. Along with the prefix conditioning, we
achieve both local smoothness and global temporal consistency in the long video generation. We
further introduce a new evaluation protocol tailored to long video virtual try-on, covering garment
fidelity, user appearance, and motion robustness. Experiments show that VFR produces realistic,
smooth, temporally consistent, and garment-faithful results that significantly surpass the capabilities
of prior methods. We believe that VFR opens up new avenues for interactive, personalized virtual
try-on experiences—whether in e-commerce, virtual social platforms, or creative content generation.

Discussions. We made progress in generating arbitrarily long, high-resolution videos for virtual
try-on. Our preliminary analysis shows that additional video data can help us further improve the
quality of the generated videos. Secondly, while this work is the first of its kind, it takes 1~2 hours
to generate a 30s video, which is not efficient enough. We leave this speed-up as an interesting future
work. Finally, we believe that our work will pave the way for the transition from long videos to
arbitrary 4D content, where a user can both change camera perspective and motion.

Potential Societal Impacts. The positive societal impacts of our VFR may include (1) revolutionizing
the online shopping experience for clothing, (2) decreasing returns and replacements of clothes
through improved pre-sale understanding, and (3) leading to an increase in both the number and
volume of online clothing shops. On the other hand, VFR is inherently a model that produces human
videos, and also brings the risks to produce biased, unethical, or unsafe results.

Acknowledgement: We thank Pixophilia Technologies Private Limited, India, and VietTechTools
Co., LTD, Vietnam, for generously providing the visual data for our benchmark.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. As claimed in Sec. 1, we solved and achieved state-of-the-art in long
video virtual try-on.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of VFR in Sec. 5 and in our Supplementary.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper is an empirical work and does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed experiment settings in our Supplementary. Even
though our method incorporates inherent randomness, characteristic of typical diffusion
models, it consistently yields high-quality results across nearly all random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case

16



of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide reference to our code and benchmark on our project page.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed implementation details in our Supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the time-consuming training process, we are unable to perform the
training multiple times to calculate the standard variances. We only provide the standard
variances of the GPT-based metrics, which contain randomness, in our Supplementary.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are clearly stated in the implementation details section
in our Supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discussed in Sec. 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will release our VFR with the safeguards used by open-sourced generative
models like Stable Diffusion [91].

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We used the dataset from Dress&Dance [8] and have cited it in the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper only uses assets from existing papers ([8]), and does not release
new assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We describe the use of LLMs in our Supplementary. As a summary, we use
LLMs to (1) generate the optional text captions for the try-on tasks, based on the other

inputs, and (2) evaluate the model’s performance with GPT-based VQAScore [92]. Both
uses regard LLMs as black boxes, and they are not a part of our technical contributions.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

Supplementary Material

A Supplementary Video (SV)

We provide a supplementary video (SV) as this YouTube video to visualize our videos and comparisons
against baselines. Here is a table of contents of the SV:

* SV0:17 360° Garment Consistency (Anchor Videos).

* SV0:28 360° Human+Garment Consistency (30s).

* SV1:27 Hand-Body Interaction Faithfulness (90s).

* SV2:57 Capability for Arbitrary Poses — Medium (25s).

* SV3:23 Capability for Arbitrary Poses — Hard (30-50s).

* SV4:56 Comparison with VFR Variants (Ablation Study).

* SV6:49 Comparison with Baselines (speeded-up to the same duration).

e SV7:23 3D Reconstruction.

B Implementation Details

B.1 Base Model and Architecture

Our VFR is built on Dress&Dance (D&D) [8], a prior work that generates high-resolution, 5-second
virtual try-on videos.

D&D proposes CondNets for unified conditioning. Our VFR introduces two different conditions: an
anchor video and a prefix video. These conditions are passed to the diffusion transformer (DiT) [93]
model with two additional CondNets.

B.2 Issues in CondNets

While the conditions in conventional D&D are either images or pixel-aligned videos (motion or
refinement source), the conditions in VFR include the anchor video (pixel-unaligned videos) and
the prefix video (pixel-aligned, but with a shorter duration). These conditions are significantly more
challenging for conditioning — when generating each frame, the generator must consider the entire
condition video instead of only the corresponding frame.

We observe that CondNets continue to perform well for the anchor video in an out-of-the-box manner.
However, when the prefix video is present, it is common for the continued video to exhibit artifacts,
such as floating dust, as demonstrated in the “No Refine” variant in SV4:56. This necessitates the use
of the immediate refiner to remove such artifacts.

B.3 Training Procedure

We train our VFR on 8 x NVIDIA H100 GPUs using a traditional PyTorch Distributed Data Parallel
(DDP) framework. As mentioned in the “Experiments” section in the main paper, both the main
generative model and the refiner are trained for 10,000 iterations on both Internet and captured
datasets from D&D [8].

In order to learn how to remove the specific dusty artifacts caused by the prefix conditions in the
refiner, we employ a new data augmentation method. We generate a number of ovals with random
sizes, positions, orientations, time intervals, and velocities, and then manually create artifacts in
these regions by either increasing or decreasing brightness, or replacing them with other regions to
create residual artifacts. With this procedure, our immediate refiner is capable of effectively removing
various and aggressive artifacts — which can be referred to as the artifacts in the “No Refine” variant’s
results in SV4:56.
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B.4 Generation Setting

The total number of frames F' generated by VFR is 41, at a rate of 8 frames per second, resulting in a
5s video. In the generation of non-first segments, we select f = 9, which corresponds to a 1s overlap
between the current segment and the previous segment. Therefore, after generating the first segment
of F' = 41 frames (5s), we produce F' — f = 32 new frames (4s) at each of the following segments.
The cutting points of the video are at the (4k + 5)-th second, i.e., 0:05, 0:09, 0:13, 0:17, etc. Without
prefix condition, i.e., the “No Prefix (NP)” variant, these positions are most likely to have sudden
changes or morphings.

C Additional Experimental Results

C.1 Additional Image Try-On Model for Baselines

We primarily use Dress&Dance [8] image try-on as part of the baseline model for our experiments.
Additionally, we also employ Kling try-on [86] and CatVTON [40] to establish some other baselines.
As shown in SV6:49, although these methods generate reasonable virtual try-on images, the limitation
of the animation models (FramePack or Kling in “repeat 12V’ mode) still prevents them from
achieving temporal consistency.

C.2 Ablation Study: Qualitative Experiments

The qualitative ablation studies are presented in SV4:56. From the video, we can clearly observe that
the “No Prefix (NP)” variants exhibit highly noticeable sudden changes during the cut, highlighting
the necessity of the prefix conditioning. Furthermore, for the “No Anchor (NA)” and “D&D” variants,
the performance even degrades over time, emphasizing the importance of the anchor videos to
stabilize the overall appearance and quality. Finally, without the immediate refiner, the NR variants
show noticeable artifacts that accumulate over time. This demonstrates that the immediate refiner
is an effective tool to prevent artifact accumulation and ensure robust long video generation. In
practice, we adopt a fixed two-step lightweight refinement strategy, where each refinement round
takes approximately 15—20 minutes on a single GPU, resulting in a total refinement time of about
30—40 minutes—roughly 25% of the overall generation time, with the main generation requiring
around 80-90 minutes. Overall, the “No Refine (NR)’* variant exhibits mild background artifacts
and boundary noise toward the end of long sequences while maintaining strong identity and garment
consistency; the refinement effectively mitigates these degradations and enhances the temporal
stability of the generated videos.

C.3 Limitations of Metrics

As shown in SV4:56, there are indeed notable smoothness and consistency issues present in the
variants and baselines, even for the most powerful variant NP. However, these metrics — which report
very similar numbers — do not adequately reflect such discrepancies. Additionally, the GPT metric,
which evaluates only the try-on quality, are also not effectively assessing our long virtual try-on
generation quality, and they do not capture the consistency of the garments.

D 3D Reconstruction

As mentioned in the main paper, the anchor videos generated by VFR are almost 3D consistent,
and therefore can be reconstructed into 3D shapes. We perform some of this reconstructions. As
shown in SV7:23, even if the videos are not perfectly 3D consistent, we can still obtain a noisy yet
reasonable 3D shape. Therefore, with advanced 2D-to-3D distillation techniques like SDS [94], one
might be able to actually obtain a precised a mesh and use it for rendering and deformation — which
is implicitly achieved within our VFR.

s

Notably, being perfectly 3D consistent is not a requirement of VFR. In fact, in the “Methodology’
section of the main paper, VFR is trained to be sufficiently robust to support an arbitrary video
as the anchor video. It is also frequently the case that the generated anchor video has a stationary
background while the person is rotating (SV0:17) — this kind of video also works well and is even
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more desirable, as the background is an integral part of the anchor that needs to remain consistent
throughout the video. The 3D reconstruction results in SV7:23 are constructed from the video after
background removal.
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