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ABSTRACT

We present an expectation-maximization (EM) based unified framework for non-
negative tensor decomposition that optimizes the Kullback-Leibler divergence. To
avoid iterations in each M-step and learning rate tuning, we establish a general re-
lationship between low-rank decomposition and many-body approximation. Using
this connection, we exploit that the closed-form solution of the many-body approxi-
mation updates all parameters simultaneously in the M-step. Our framework offers
not only a unified methodology for a variety of low-rank structures, including CP,
Tucker, and Train decompositions, but also their combinations, forming mixtures
of low-rank tensors. The weights of each low-rank tensor in the mixture can be
learned from the data, which eliminates the need to carefully choose a single low-
rank structure in advance. We empirically demonstrate that our framework provides
superior generalization for discrete density estimation compared to conventional
tensor-based approaches.

1 INTRODUCTION

Tensors are versatile data structures used in broad fields such as signal processing (Sidiropoulos et al.,
2017), computer vision (Panagakis et al., 2021), and data mining (Papalexakis et al., 2016). It is an
established fact that features can be extracted from tensor-formatted data by low-rank decomposition,
which approximates the tensor by a linear combination of a few bases (Cichocki et al., 2016; Liu et al.,
2022). There are numerous variations of tensor low-rank decompositions, such as CP (Hitchcock,
1927), Tucker (Tucker, 1966), and Tensor Train decompositions (Oseledets, 2011), which differ in
the low-rank structure of the decomposed representation.

A series of recent studies (Glasser et al., 2019; Novikov et al., 2021) show that tensor low-rank
decomposition is also useful for discrete density estimation, which is an interesting application
that takes advantage of the discreteness of the tensor indices. Specifically, given observed discrete
samples x(1), . . . ,x(N), the normalized histogram or empirical distribution p(x) can be regarded as
a non-negative normalized tensor T , called an empirical tensor, and its low-rank reconstruction P
approximates the true distribution as seen in Figure 1. The obtained density can then be used for
multiple purposes such as predicting new data points, inferring missing values, or performing outlier
detection (Scott, 2015); however, two challenges remain in these current works.

The first challenge is to develop a unified formulation of nonnegative tensor decomposition that works
with various kinds of low-rank structures, optimizing the Kullback–Leibler (KL) divergence, which is
a natural measure of similarity between probability distributions. In contrast to the well-established
SVD-based methods for real- and complex-valued tensor networks (Iblisdir et al., 2007; Román,
2014; Cheng et al., 2019), a general framework for nonnegative tensor decompositions optimizing the
KL divergence is not well developed. Consequently, some existing studies of tensor-based density
estimation have been performed via optimization of the Frobenius norm (Kargas et al., 2018; Dolgov
et al., 2020; Novikov et al., 2021). In addition, due to the lack of a unified KL-divergence-based
framework, users must either perform the decompositions with only low-rank structures that have
already been developed in a piecemeal manner (Kim et al., 2008; Chi & Kolda, 2012) or differentiate
the cost function for the target low-rank structure by themselves. A principled approach that allows
users to try various low-rank structures more freely is, therefore, desirable.
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Empirical distribution
Normalized histogram

Estimated density
(Mixture) Low-rank tensor

Discrete tabular data

KL div.

Figure 1: A discrete density estima-
tion by N samples x(1), . . . ,x(N) for
x(n) = (x

(n)
1 , x

(n)
2 , x

(n)
3 ) and x

(n)
d ∈

[Id]. The normalized histogram, or em-
pirical distribution p(x), is identical
to a non-negative normalized tensor T ,
and the true distribution is estimated by
its low-rank approximation P .

The second challenge is scalability, as the size of the tensor — which corresponds to the sample
space size of the discrete distribution — increases exponentially with the number of features D,
namely a tensor has ID elements for the degree of freedom of each feature I . However, the number
of samples available for training N — typically corresponds to the number of nonzero values of
the empirical tensor — is often limited, also deemed the curse of dimensionality. Therefore, it is
desirable to develop scalable tensor decomposition that works with high-dimensional data despite a
limited number of samples.

To address these two challenges, this paper proposes a unified non-negative tensor factorization
method based on the expectation-maximization (EM) algorithm (Dempster et al., 1977). The EM
algorithm is an iterative framework for maximum likelihood estimation that repeatedly maximizes
the lower bound of the log-likelihood function in two steps, the E-step and the M-step. The naive
EM-based formulation for general non-negative tensor decomposition involves either alternating
optimization to bound the log-likelihood (E-step) and maximizing each factor individually (M-step),
or using gradient-based methods in each M-step. The former approach requires tailoring methods for
each type of low-rank structure, while the latter is computationally expensive because of the additional
iteration for the gradient method inside the EM iteration. To overcome this issue, we exploit that the
optimization in each M-step coincides with a tensor many-body approximation (Ghalamkari et al.,
2023) that decomposes tensors by a representation with reduced interactions among tensor modes.
We derive the exact closed-form solution for many-body approximation that appears in the M-step
for Tucker and Train decomposition, and thereby successfully remove the gradient method in the
M-step for various kinds of low-rank decomposition by combining these two formulas.

Our framework inherits the properties of the EM algorithm (Jeff Wu, 1983), and therefore, it always
converges regardless of the choice of the low-rank structure assumed in the model. Furthermore,
the tensor to be approximated in the M-step is sparse as it is defined in terms of elementwise
multiplications by the empirical tensor. As a result, the computational complexity of the proposed
method is proportional to the number of samples N . Notably, as the EM algorithm is frequently
used for maximum likelihood estimation of mixture models, the proposed method allows for density
estimation with mixtures of low-rank tensors providing flexible modeling. The mixture model
automatically finds appropriate weights for mixed low-rank structures, eliminating the need for
the user to define a single low-rank structure in advance. Moreover, the flexibility allows us to
mix a low-rank tensor with a constant tensor, which incorporates the noise of data and stabilizes
learning. We empirically show that mixture low-rank modeling provides better generalization than
pure low-rank tensor models for discrete density estimation. We summarize our contribution as
follows:

• We reveal a relationship between tensor many-body approximation and low-rank decomposition.
• Using this relationship, we provide a unified EM-based framework for non-negative low-rank de-

composition optimizing the KL-divergence, notably providing simultaneous closed-form updates
for all parameters in the M-step while exploiting the sparsity of the observed histogram.

• Based on the proposed framework, we develop a mixture of low-rank tensor modeling that
empirically demonstrates inferential robustness and improved generalization.

In the remainder of this section, we describe the problem settings, followed by the definition of
many-body approximation, which forms the foundation of this study.

Problem setup We construct a normalized histogram, or empirical distribution, from given tabular
data with D categorical features. This histogram is identical to a normalized D-th order tensor
T ∈ RI1×···×ID

≥0 where Id is the degree of freedom (i.e., categories) of the d-th categorical feature.
To estimate the discrete probability distribution underlying the data, we approximate the tensor T

2
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with a low-rank tensor considering the CP, Tucker, and Tensor Train formats, or their mixture as
a convex linear combination of low-rank tensors. The setup for D = 3 is shown in Figure 1.

Figure 2: An example of in-
teraction representation

The definition of low-rank formats is introduced in Section 3.2.

Many-body approximation for tensors The many-body approxi-
mation decomposes the tensor by the interactions among the modes
described by the interaction diagram. We show an example of the
diagram for a fourth-order tensor in Figure 2 where each node (cir-
cle) corresponds to a tensor mode and each edge through a black
square, ■, denotes the existence of interaction. For a given tensor
T , the approximation corresponding to the diagram can be written as
Tijkl ≃ Pijkl = AijkBijCilDjl where matrices B,C and D define two-body interactions and the
tensor A defines a three-body interaction. The many-body approximation always provides a globally
optimal solution P that minimizes the KL divergence from the tensor T .

2 RELATED WORKS

The EM algorithm is widely used to train models with hidden variables (Dempster et al., 1977). We
apply the EM algorithm to tensor decomposition by regarding tensor indices as visible variables
and ranks as hidden variables. A lot of studies have shown that decomposing an empirical tensor
constructed from observed samples can be used to estimate the underlying distribution behind the
data (Kargas et al., 2018; Glasser et al., 2019; Ibrahim & Fu, 2021; Vora et al., 2021). For density
estimation, the KL divergence is a natural choice for the objective function of tensor decomposition,
and the multiplicative updates methods (MU) are often used to find the low-rank tensor optimizing
the KL divergence from an empirical tensor (Kim et al., 2008; Phan & Cichocki, 2008), while the EM-
based method has not been established except for the CP decomposition (Huang & Sidiropoulos, 2017;
Yeredor & Haardt, 2019; Chege et al., 2022). Our work provides EM-based decomposition for various
low-rank structures and their mixtures and enables the update of all parameters simultaneously, which
differs from the MU methods that alternatingly update a specific set of parameters while keeping the
other parameters fixed. Although a mixture model with the same low-rank structures is considered
in (Wu et al., 2023), our approach incorporates a mixture of different low-rank structures, which
is a more general framework. Recently, density estimation methods using second and third-order
marginals have been developed (Kargas & Sidiropoulos, 2017; Ibrahim & Fu, 2021; Grelier et al.,
2022). However, these methods are so far limited to considering the CP decomposition-based model
and typically require hyper-parameters for the gradient method, whereas the convergence of the
algorithms has not been fully discussed. Contrarily, our approach directly applies to various low-rank
structures with hyper-parameter-free optimization and guarantees monotonically decreasing error
functions and convergence.

In probabilistic tensor decomposition, tensor elements are sampled from a distribution pθ and the
model parameter θ is optimized via the EM algorithm (Kohei et al., 2010; Yılmaz & Cemgil, 2010;
Rai et al., 2015). We note that our setting is different from theirs because we do not assume any
distribution behind each element of the tensor. Further, the EM algorithm is often used for tensor
completion, treating missing values as hidden variables (Tomasi & Bro, 2005; Liu et al., 2015; Song
et al., 2019). This task assumes Ti = Pi where T is the given tensor including missing values,
P is the reconstructed low-rank tensor, and i is an index on observed elements of T . Density
estimation does not impose this constraint. It has also been reported that the EM algorithm can
be applied to sum-product networks (Desana & Schnörr, 2016) by regarding sum-nodes as hidden
variables (Peharz et al., 2016). Interestingly, some tensor networks can be represented as sum-product
networks (Loconte et al., 2023; 2024) and we therefore expect our approach to generalize to the area
of sum-product networks.

3 LOW-RANK APPROXIMATION AND MANY-BODY APPROXIMATION

The naive EM-based formulation for non-negative low-rank approximation, which bounds the
likelihood in the E-step and optimizes parameters in the M-step, typically relies on an iterative
gradient method during the M-step. However, interestingly, we point out that the M-step can be

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

b. e.

c. f.

a. d. Figure 3: (a,b,c) Interaction dia-
grams for tensors QCP,QTucker,
andQTrain, respectively, in Equa-
tion (1). Each node represents
a tensor mode, and the black
square, ■, represents the interac-
tion between modes. (d,e,f) Ten-
sor networks for PCP, PTucker,
and PTrain, respectively, in Equa-
tion (6). Nodes represent fac-
tor tensors, and edges connecting
nodes represent mode products.
The gray-filled Λ in (d) is a tensor
whose hyper-diagonal elements
are 1 otherwise 0. These low-rank
tensors correspond to the many-
body approximation with hidden
variables r.

regarded as a many-body approximation for a higher-order tensor, and we can eliminate the gradient
method in the M-step by the closed-form solution of the many-body approximation derived below.

In the following, we identify a normalized nonnegative tensor with a discrete distribution. Specifically,
the tensor element Ti1,...,iD is regarded as the value of the distribution p(x1 = i1, . . . , xD = iD).

3.1 MANY-BODY APPROXIMATION WITH EXACT CLOSED-FORM SOLUTION

As a preliminary step towards a unified low-rank learning framework in Section 4, we here consider
the three kinds of many-body approximation, namely a (D+1)-th order tensorQCP ∈ RI1×···×ID×R

≥0 ,
a 2D-th order tensor QTucker ∈ RI1×···×ID×R1×···×RD

≥0 , and a (2D − 1)-th order tensor QTrain ∈
RI1×···×ID×R1×···×RD−1

≥0 . When their interactions are described as Figure 3(a), (b), and (c) respec-
tively, they can be factorized as

QCP
i1...iDr =

D∏
d=1

A
(d)
idr

, QTucker
i1...iDr1...rD = Gr1...rD

D∏
d=1

A
(d)
idrd

, QTrain
i1...iDr1...rD−1

=

D∏
d=1

G(d)rd−1idrd
,

(1)

where id ∈ [Id] and rd ∈ [Rd] for d = 1, . . . , D. For simplicity, we suppose r0 = rD = 1 for
QTrain. Let tensor indices i1, . . . , iD and r1, . . . , rV be i and r, respectively, where the integer V is
1 for QCP, D for QTucker, and D − 1 for QTrain. We denote the domains of i and r by ΩI and ΩR,
respectively, i.e., i ∈ ΩI = [I1]× · · · × [ID] and r ∈ ΩR = [R1]× · · · × [RV ]. The symbol Ω with
upper indices refers to the index set for all indices other than the upper indices, e.g.,

Ω
\d
I = [I1]× · · · × [Id−1]× [Id+1]× · · · × [ID],

Ω
\d,d−1
R = [R1]× · · · × [Rd−2]× [Rd+1]× · · · × [RV ].

Many-body approximation parameterizes tensors as discrete distributions, where the random variables
correspond to the tensor modes, and the sample space corresponds to the index set of a tensor.
Maximum likelihood estimation finds the globally optimal tensor that minimizes the KL divergence
from a given tensorM in the model space B, which is the set of tensors with specific interactions.
Thus, for a given tensorM, the many-body approximation based on the above three interactions
maximizes

LMBA(M;Qk) =
∑
i∈ΩI

∑
r∈ΩR

Mir logQk
ir, k ∈ {CP, Tucker, Train}. (2)

This optimization is guaranteed to be a convex problem regardless of the choice of interaction. While
the conventional method finds a numerical solution of general many-body approximation by the
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Natural gradient method, it has been shown in (Huang & Sidiropoulos, 2017; Yeredor & Haardt,
2019) that the following factors globally maximize LMBA(M;QCP):

A
(d)
idr

=

∑
i∈Ω\d

I

Mir

µ1/D
(∑

i∈Ω\d
I

Mir

)1−1/D , µ =
∑
i∈ΩI

∑
r∈ΩR

Mir, (3)

which is consistent with a mean-field approximation (Ghalamkari & Sugiyama, 2021; 2023). As
a generalization of the above result, we presently provide the optimal solution of the many-body
approximation of QTucker and QTrain in closed-form. The following tensors globally maximizes
LMBA(M;QTucker):

Gr =

∑
i∈ΩI

Mir∑
i∈ΩI

∑
r∈ΩR

Mir
, A

(d)
idrd

=

∑
i∈Ω\d

I

∑
r∈Ω\d

R

Mir∑
i∈ΩI

∑
r∈Ω\d

R

Mir
, (4)

and the following tensors globally maximizes LMBA(M;QTrain):

G(d)rd−1idrd
=

∑
i∈Ω\d

I

∑
r∈Ω\d,d−1

R

Mir∑
i∈ΩI

∑
r∈Ω\d

R

Mir
, (5)

where we assume r0 = rD = 1. We formally derive the above closed-form solutions in Theorems 2
and 3 in the supplementary material. Notably, we can obtain exact solutions also for more complicated
many-body approximations by combining these solutions, which we discuss in Section 4.3.

3.2 LOW-RANK APPROXIMATION AND MANY-BODY APPROXIMATION

When summing the tensors in Equation (1) over indices r, these models are identical to the traditional
low-rank models, CP, Tucker, and Tensor Train formats, respectively.

PCP
i =

∑
r

QCP
ir , PTucker

i =
∑

r1...rD

QTucker
ir1...rD , PTrain

i =
∑

r1...rD−1

QTrain
ir1...rD−1

. (6)

Since many-body approximation treats the tensor indices as discrete random variables and variables r
in Equation (6) are marginalized, we consider these low-rank tensors as models in which the random
variables i and r represent visible and hidden variables, respectively. The degree of freedom of
hidden variables (R1, . . . , RV ) corresponds to CP rank, Tucker rank, and train rank with V = 1
for QCP, V = D for QTucker, and V = D − 1 for QTrain, respectively. Since any low-rank
factorization decomposes a tensor by summing over its ranks, any low-rank approximation can be
regarded as a many-body approximation with hidden variables. When a low-rank tensor P is obtained
by marginalization of a tensor Q with appropriately selected modes, we refer to tensor Q as the
low-body tensor corresponding to P . For example, QCP, QTucker and QTrain are low-body tensors
corresponding to a low CP-rank tensor PCP, low Tucker-rank tensor PTucker, and low Train-rank
tensor PTrain, respectively. In this paper, hidden variables — corresponding to modes summed
according to the low-rank structure — are denoted by r and visible variables — variables other than
hidden variables — by i.

The many-body approximation involves only visible variables in the model, making maximum
likelihood estimation a convex optimization problem, while the low-rank approximation requires
a nonconvex optimization due to the hidden variables in the model. Therefore, although finding
an exact solution for the low-rank approximation is challenging, the optimization remains tractable
through the EM algorithm (Dempster et al., 1977), a well-known general framework for maximum
likelihood estimation that accommodates hidden variables.

4 DISCRETE DENSITY ESTIMATION VIA NON-NEGATIVE TENSOR LEARNING

Based on the exact solutions of many-body approximation derived in Section 3, we develop a novel
framework EM non-negative tensor learning for discrete density estimation. Our framework has
two advantages: (1) it achieves linear computational complexity relative to the number of nonzero
elements in the input tensor, as described in Section 4.2; and (2) it offers the flexibility to incorporate
various low-rank structures, such as CP, Tucker, Train, their mixtures, and adaptive noise terms, while
preserving the convexity of E-step and M-step, as detailed in Sections 4.3 and 4.4. Neither of these
advantages has been explored in previous studies (Kim et al., 2008; Chi & Kolda, 2012).
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4.1 EM-METHOD FOR MIXTURE OF LOW-RANK APPROXIMATIONS

Here, we provide a unified EM-based method for low-rank approximations. We maximize the negative
cross-entropy from a given D-th order tensor T to a mixture of K low-rank tensors P1, . . . ,PK ,

L(Q̂) =
∑
i∈ΩI

Ti log
K∑

k=1

ηkPk
i , Pk

i =
∑

r∈Ω
Rk

Qk
ir, (7)

where the mixture ratio satisfies
∑

k η
k = 1 and ηk ≥ 0 for all k ∈ [K] and setting K = 1

yields a conventional low-rank tensor decomposition. Each low-rank tensor Pk is normalized,
i.e.,

∑
i Pk

i = 1. We let the model P be the convex linear combination of low-rank tensors, that
is, P =

∑K
k=1 η

kPk. We denote the number of hidden variables in the tensor Qk by V k, and
r ∈ ΩRk = [Rk

1 ]× · · · × [Rk
V k ]. For simplicity, we introduce Q̂k

ir = ηkQk
ir , and refer to the tensors

(Q̂1, . . . , Q̂K) as Q̂. We apply Jensen’s inequality (Jensen, 1906) to the objective function L(Q̂)
in order to move the summation over hidden variables r outside the logarithm function thereby
obtaining the lower bound,

L(Q̂) ≥ L(Q̂,Φ) =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir log

Q̂k
ir

Φk
ir

, (8)

for any K tensors Φ = (Φ1, . . . ,ΦK) where Φk is a (D + V k)-th order tensor satisfying∑
k

∑
r∈Ω

Rk
Φk

ir = 1. The derivation of the inequality (8) is described in Proposition 1 in the
supplementary material. The above lower bound can be decoupled into independent multiple many-
body approximations for tensorsM1, . . . ,MK where each tensorMk is defined asMk

ir = TiΦk
ir ,

and an optimization problem for the mixture ratio η = (η1, . . . , ηK). More specifically, we decouple
the lower bound as follows:

L(Q̂,Φ) =
K∑

k=1

LMBA(Mk;Qk) + J(η), J(η) =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir log η

k, (9)

where the objective function of many-body approximation LMBA is introduced in Equation (2).
The EM algorithm iteratively optimizes the lower bound for tensors Φ in the E-step and tensors
Q̂ in the M-step until convergence. Each step is a convex optimization while Equation (7) is a
non-convex function. This procedure is guaranteed to converge, and each iteration increases the
objective function (7) monotonically, which we prove in Theorem 4 in the supplementary material
while the general convergence theorem of the MU method is still an open problem, requiring proof of
convergence for each minor change in the objective function, such as varying the low-rank structure
or adding regularization terms.

E-step We maximize the lower bound L(Q̂,Φ) for tensors Φ = (Φ1, . . . ,ΦK), that is,

Φ = argmax
Φ∈D

L(Q̂,Φ),

where the solution space D is a tuple of K tensors such that each tensor is normalized by hidden
variables, i.e., D =

{(
Φ1, . . . ,ΦK

)
|
∑

k

∑
r∈Ω

Rk
Φk

ir = 1
}

. The optimal solution Φk is

Φk
ir =

Q̂k
ir∑K

k=1

∑
r∈Ω

Rk
Q̂k

ir

, (10)

as shown in Proposition 2 in the supplementary material. The denominator in Equation (10) is
equivalent to the definition of the model P .

M-step We maximize the lower bound L(Q̂,Φ) for tensors Q = (Q1, . . . ,QK) and non-negative
weights η. Since the lower bound can be decoupled as shown in Equation (9), the required optimiza-
tions in the M-step are as follows:

Qk = argmax
Qk∈Bk

LMBA(Mk;Qk), η = argmax
0≤ηk≤1,

∑
k ηk=1

J(η), (11)
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Algorithm 1: Non-negative Tensor Mixture Learning

input :Non-negative tensor T , the number of mixtures K, and ranks (R1, . . . , RK)
Initialize Qk and ηk for all k ∈ [K];
repeat
Pi ←

∑
k η

kPk
i where Pk

i =
∑

r∈Rk Qk
ir;

Mk
ir ← TiQk

ir/Pi for all k ∈ [K]; // E-step
Update tensor Qk for all k ∈ [K] using Equations (1), (4), and (5); // M-step
Update mixture ratio ηk using Equation (12) for all k ∈ [K]; // M-step

until Convergence;
return P

where the model space Bk is the set of low-body tensors corresponding to the k-th low-rank tensor
Pk. The naive implementation of the M-step requires a gradient method to solve the many-body
approximation forMk. The existing algorithm for many-body approximation is based on the Natural
gradient method (Amari, 2016), which requires cubic computational complexity for the number
of parameters in the low-body tensor Qk. Thus, repeating the gradient method in each M-step is
computationally expensive. However, we introduced the closed-form solution of the many-body
approximation in Section 3.1, which eliminates the iterative gradient method in the M-step for Tucker
and Train decomposition. We discuss more complicated low-rank structures in Section 4.3.

We also provide the optimal update rule for the mixture ratio η in closed form. By the condition
∂J(η)/∂ηk = 0 and the normalizing condition

∑
k η

k = 1, the optimal ηk is simply given as
follows:

ηk =

∑
i∈ΩI

∑
r∈Ω

Rk
Mk

ir∑K
k=1

∑
i∈ΩI

∑
r∈Ω

Rk
Mk

ir

(12)

which is shown in Proposition 3 in the supplementary material. It is straightforward to check that the
M-step is a convex optimization problem whatever the low-rank structure assumed on Pk since we
can decouple the lower bound into multiple independent convex many-body approximations.

While the EM-based method for CP decomposition optimizing the KL divergence has already
been developed in (Huang & Sidiropoulos, 2017; Yeredor & Haardt, 2019), our proposed approach
addresses more general low-rank decompositions and their mixtures. We provide the entire algorithm
in Algorithm 1. Notably, the framework does not require a learning rate that needs to be carefully tuned
when relying on gradient-based methods. Moreover, the proposed method updates all parameters
simultaneously in closed form, which differs from the multiplicative update rule such as (Kim et al.,
2008). The extension to non-normalized non-negative tensors is described in Section B.2 in the
supplemental material.

4.2 ANALYSIS OF COMPUTATIONAL COMPLEXITY

In the following, we discuss the computational complexity of the proposed EM low-rank approxima-
tion without a mixture, specifically when K = 1. It is straightforward to see that the computational
complexity for K > 1 is simply the sum of the complexity of each of the EM low-rank approximations
used in the mixture.

In our approach, we compute the sum over the visible variables i ∈ ΩI of the tensorMk in the
M-step, using Equations (4), (5), and (12) for which the computational cost increases rapidly as
the size of the tensor increases. However, if the input tensor T is sparse, which is a reasonable
assumption for most density estimation tasks, we can reduce the computational complexity of the
summation because the tensorMk is also sparse for indices i as the definition ofMk

ir = TiΦk
ir.

More specifically, we replace the sum over the visible variables
∑

i∈ΩI
with

∑
i∈Ωo

I
where Ωo

I is
the set of indices of nonzero values of the tensor T . The resulting time computational complexity
is O(γNDR) for EM-CP decomposition and O(γDNRD) for EM-Tucker and a naive EM-Train
decomposition where N is the number of nonzero values, D is the number of modes in the tensor, γ
is the number of iteration, assuming ranks are (R, . . . , R) for all low-rank models.
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Tucker
Train

a. b.

Figure 4: (a) A tensor tree structure (b) The M-step of the tree structure is decoupled into two solvable
many-body approximations, which are enclosed by dotted lines in (a).

Furthermore, we can reduce the computational cost of the tensor train decomposition to O(γDNR2)
by computing the sum over the latent variables r ∈ ΩR as follows. Firstly, we introduce the following
tensors

G(→d)
i1,...,id,rd

=
∑
rd−1

G(→d−1)
i1,...,id−1,rd−1

G(d)rd−1idrd
, G(d←)

id+1,...,iD,rd
=
∑
rd+1

G(d+1)
rdid+1rd+1

G(d+1←)
id+2,...,iD,rd+1

(13)

with G(→1) = G(1), G(D−1←) = G(D), and G(→0) = G(D←) = 1. Each complexity is O(Rd)
to get G(→d) and G(d←) when we compute them in the order of G(→2),G(→3), . . . ,G(→D), and
G(D−2←),G(D−3←), . . . ,G(1←), respectively. The low-rank tensor P can be written as P =
G(→D) = G(0←). Then, the update rule can be written as

G(d)rd−1idrd
=

∑
i∈Ωo\d

I,id

Ti
Pi
G(→d−1)
i1,...,id−1,rd−1

G(d)rd−1idrd
G(d←)
id+1,...,iD,rd∑

i∈Ωo
I

Ti
Pi
G(→d)
i1,...,id,rd

G(d←)
id+1,...,iD,rd

(14)

for Ωo\d
I,id

= Ωo
I ∩ [I1]× · · · × [Id−1]×{id}× [Id+1] · · · × [ID]. We used the relationMir = TiΦir

and Φir = Qir/Pi to get the above update rule. Not all elements in Equation (13) are necessary for
updating tensors by Equation (14). Since the number of elements in Ωo is N , the resulting complexity
is O(γDNR2). We provide the EM-Train factorization in Algorithm 2 in the supplementary material.

Reordering tensor modes for EM-Train The tensor train decomposition results are influenced
by the order of the modes in the tensor. To quantify the influence on and potentially enhance the
performance of these tensor decompositions, we reorder the tensor modes based on normalized
mutual information (NMI) between pairwise features in the data. We describe the definition of NMI
in Section B.3 in the supplementary material. To illustrate this, we consider a dataset with five
features. First, we select the two modes, j1 and j2, with the highest NMI. These become the middle
modes in the rearranged order. Next, we choose the mode j3 with the second-highest NMI with j1,
placing it to the left of j1. Then, we select the mode j4 with the highest NMI with j2 among the
remaining unselected features (i.e., modes), placing it to the right of j2. This process is repeated until
all features (modes) are selected, resulting in the tensor modes being rearranged from (1, 2, 3, 4, 5) to
(j5, j3, j1, j2, j4). The effectiveness of the reordering is examined in the supplementary material.

4.3 EM ALGORITHM FOR MORE GENERAL LOW-RANK STRUCTURES

We now discuss how to find the solution for the many-body approximation required in the M-
step when a more complex low-rank structure is assumed in the model. By the basic property of
the logarithm function, the function LMBA to be optimized in the M-step can be decoupled into
independent solvable parts with closed form. As an example, we here see the tensor network state
described in Figure 4(a), which is known as a typical tensor tree structure (Liu et al., 2018). The
objective function of many-body approximation in the M-step can be decoupled as follows:

LMBA(M;Q) =
∑
i∈ΩI

∑
r∈ΩR

Mir log Gr1r2r5Ai1r1Bi2r2Cr5r6Di3r3Hr3r6r4Er4i4

= LMBA(MTucker;QTucker) + LMBA(MTrain;QTrain) (15)
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Table 1: Negative log-likelihood per sample on the test dataset.

CNMFOPT MPS BM LPS EMCPTrainON

SolarFlare 6.96(0.16) 6.08(0.05) 6.00(0.05) 5.88(0.01) 5.98(0.04)
SPECT 11.77(0.03) 12.57(0.86) 11.96(0.31) 11.88(0.45) 11.60(0.27)
Lympho. 12.45(0.07) 13.03(0.04) 12.34(0.20) 12.37(0.17) 12.13(0.35)
Votes 11.44(0.20) 13.35(1.78) 10.45(0.14) 10.47(0.04) 10.37(0.04)
Tumor 9.42(0.09) 9.19(0.19) 9.17(0.17) 9.17(0.04) 9.11(0.04)
Chess 14.83(0.16) 12.45(0.17) 12.45(0.30) 11.89(0.05) 11.22(0.18)
Led7 5.62(0.05) 5.86(0.017) 5.73(0.31) 5.16(0.04) 4.77(0.01)
DMFT 7.30(0.02) 7.25(0.05) 7.26(0.09) 7.13(0.02) 7.12(0.02)

where we defineMTucker
i1i2r1r2r5

=
∑

i3i4r3r4r6
Mir andMTrain

i3i4r3r4r6
=
∑

i1i2r1r2r5
Mir. We can

optimize both terms in the final line by the closed-form solution introduced in Section 3.1. We
provide theoretical support for this procedure, including normalization conditions, in Section B.1 in
the supplementary material. By decoupling the problem with CP, Tucker, and Train decompositions,
our approach approximates tensors with a wide variety of low-rank structures.

4.4 ADAPTIVE NOISE LEARNING

Our approach deals with not only typical low-rank structures and their mixtures but also regularization
and stabilization terms. For example, we here define model P as the mixture of a low-rank tensor
P low-rank and a normalized uniform tensor Pnoise whose elements all are 1/|ΩI | as

P = (1− ηnoise)P low-rank + ηnoisePnoise,

where |ΩI | is the number of elements of the tensor T , that is, |ΩI | = I1I2 . . . ID. The value ηnoise

indicates the magnitude of global shift or background noise in the data. This is a learnable parameter
from the data, not a hyperparameter. While adding a small uniform constant to a tensor or factors is
often used as a heuristic to stabilize learning (Cichocki & Phan, 2009; Gillis & Glineur, 2012), our
method provides a principled approach to learning the constant from the data. It is obvious from the
discussion in Section 4.1 that the convergence remains even in the presence of the noise term. We
show in Section C in the supplementary material that the noise term stabilizes the learning.

5 NUMERICAL EXPERIMENTS

Table 2: NLL on the test dataset

EMCPTrain EMCPTrainN

SolarFlare 6.34(0.27) 5.98(0.06)
SPECT 11.22(0.11) 11.49(0.23)
Lympho. 22.13(11.02) 11.83(0.41)
Votes 11.13(0.65) 10.39(0.12)
Tumor 9.28(0.14) 9.24(0.20)
Chess NaN(NaN) 11.25(0.17)
Led7 4.86(0.15) 4.79(0.01)
DMFT NaN(NaN) 7.13(0.02)

We empirically examined the effectiveness of our
framework using eight real-world categorical datasets.
We downloaded these datasets from the repositories de-
scribed in Table 7 and divided samples into 70% train-
ing, 15% validation, and 15% test samples to form train,
validation, and test tensors, respectively. We tuned ten-
sor ranks to minimize the negative log-likelihood (NLL)
per sample on the validation tensor and evaluated each
model on the test tensor. The experimental setup is
detailed in Section D the supplementary material.

We compared our approach to the following baseline
methods: Pairwise marginalized method (CNMFOPT),
Matrix Product States (MPS), Born Machine (BM), and Locally Purified State (LPS), which are also
tensor-based methods (Ibrahim & Fu, 2021; Glasser et al., 2019). The learning rate of the baseline
methods was tuned so that the reconstructed tensor minimizes the KL divergence from the validation
data. In contrast, the proposed methods do not require a learning rate. While the proposed framework
can explore a variety of low-rank structures and their mixtures, we examine here the performance
of EMCPTrainON, a mixture of CP and Train decompositions with adaptive noise term and tensor
mode re-ordering. We ran each of the procedures five times with random initialization and reported
mean values and the standard error in Table 1. We see that EMCPTrainON has the best generalization
performance on all datasets except SolarFlare. Additional comparisons with ten traditional tensor
decompositions are also provided in Section C in the supplementary material.
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Figure 5: Validation error for each number of parameters for each method. The symbol ‘O’ indicates
that the model includes mode reordering, and ‘N’ indicates that the model includes the noise term.

Furthermore, we evaluated the validation error of the proposed EMCP, EMTrain, and EMTucker
decompositions with the adaptive noise term by varying the number of parameters in Figure 5. For
the Tucker decomposition, we only considered three relatively small datasets, SolarFlare, DMFT,
and, Led7, due to its high computational cost. No method alone shows superior performance on
all datasets, however, we observe that the mixture of CP and Train generally performs well by
combining the modeling capabilities of the two decomposition approaches. As a result, for SolarFlare,
SPECT, and Led7 datasets, EMCPTrainON achieved the lowest validation error, while EMTrainN
had the lowest validation error for Lymphography datasets, and EMCPN had the lowest error for
Votes. Notably, our approach readily incorporates all these procedures allowing various low-rank
decompositions and their mixture.

We also compared the results using EMCPTrain with and without the adaptive noise term to verify
its usefulness in Table 2. Although Theorem 4 guarantees the convergence of the EM algorithm in
theory, the objective function often becomes NaN when the model has no adaptive noise term. This
is because of numerical instability due to extremely small values in the logarithm function. The
noise term, which adds values to all elements of the tensor, eliminates this problem. We also provide
Figure 8 in the supplementary material showing how the validation errors for models without the
adaptive noise term become significantly larger when the number of parameters is large.

The EM algorithm often requires a large number of iterations to converge (Ng et al., 2012). Thus, we
conducted additional experiments in Section C.6 and confirmed that the proposed method converges
with fewer iterations than the batch gradient method and with a similar number of iterations as the
MU methods.

6 CONCLUSION

While it is a well-established principle that both real- and complex-valued tensors can be approxi-
mated with various low-rank structures based on local singular value decomposition (SVD), a unified
framework for non-negative low-rank approximation has not been developed. Consequently, nonneg-
ative tensor factorizations typically require piecemeal tailored implementations or gradient methods.
This study introduces an EM-based unified framework that decouples the non-negative low-rank
structure into multiple solvable many-body approximations and applies a closed-form solution locally,
thereby eliminating the need for gradient methods. Our framework not only uniformly handles
various low-rank structures but also supports adaptive noise terms and mixtures of low-rank tensors
without losing the convergence guarantee. This flexibility of our approach raises the question of how
to systematically determine each component of the mixture, presenting an intriguing direction for
future research. Empirical results demonstrate that our framework achieves superior generalization
performance compared to baseline methods.
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Our work aims to establish a fundamental methodology for machine learning, and there is no direct
risk of misuse or ethical issues.

REPRODUCIBILITY STATEMENT

The source code for reproducing all experiments is included in the supplementary material, along
with a document that explains how to run the code. Proofs of the Theorems and Propositions can be
found in Section A. The discussion of the convergence guarantee can be found in Section A.2. Details
of the dataset used in the experiments, including the link to download the datasets, are provided in
Section D.3. The experimental setup is described in Section D.1, with hyperparameter tuning covered
in Section D.2. The computing environment is explained in Section D.3.
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A PROOFS

A.1 PROOFS FOR EXACT SOLUTIONS OF MANY-BODY APPROXIMATION

First, we show the known solution formulas for the best CP rank-1 approximation that globally
minimizes the KL divergence from the given tensor.

Theorem 1 (Optimal M-step in CP decomposition (Huang & Sidiropoulos, 2017)). For a given
non-negative tensorM∈ RI1×···×ID×R

≥0 , its many body approximation with interactions as described
in Figure 3(a) is given as

A
(d)
idr

=

∑
i∈Ω\d

I

Mir

µ1/D
(∑

i∈Ω\d
I

Mir

)1−1/D , µ =
∑
i∈ΩI

∑
r∈ΩR

Mir

Proof. Please refer to the original paper by Huang & Sidiropoulos (2017). □

In the following, we provide proofs of the closed-form solutions of many-body approximation in
Figure 3(b) and (c). When a factor in a low-body tensor is multiplied by ν, the value of the objective
function of many-body approximation remains the same if another factor is multiplied by 1/ν,
which we call the scaling redundancy. The key idea in the following proofs is reducing the scaling
redundancy and absorbing the normalizing conditions of the entire tensor into a single factor. This
enables the decoupling of the normalized condition of the entire tensor into independent conditions
about factors. This trick is also used in Section B.1 to decouple more complicated low-rank structures
into a combination of CP, Tucker, and Train decompositions.
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Theorem 2 (The closed form of the optimal M-step in Tucker decomposition). For a given tensor
M∈ RI1×...ID×R1×···×RD

≥0 , its many-body approximation with interaction described in Figure 3(b)
is given as

Gr =

∑
i∈ΩI

Mir∑
i∈ΩI

∑
r∈ΩR

Mir
, A

(d)
idrd

=

∑
i∈Ω\d

I

∑
r∈Ω\d

r
Mir∑

i∈ΩI

∑
r∈Ω\d

R

Mir
.

Proof. The objective function of the many-body approximation is

LMBA(M;QTucker) =
∑
i∈ΩI

∑
r∈ΩR

Mir logQTucker
ir (16)

where

QTucker
i1...iDr1...rD = Gr1...rDA

(1)
i1r1

. . . A
(D)
iDrD

.

Since many-body approximation parameterizes tensors as discrete probability distributions, we
optimize the above objective function with normalizing condition

∑
i∈ΩI

∑
r∈ΩR

QTucker
ir = 1.

Then, we consider the following Lagrange function:

L =
∑
i∈ΩI

∑
r∈ΩR

Mir log GrA(1)
i1r1

. . . A
(D)
iDrD

− λ

(∑
i∈ΩI

∑
r∈ΩR

GrA(1)
i1r1

. . . A
(D)
iDrD

− 1

)
To reduce the scaling redundancy and decouple the normalizing condition, we introduce scaled factor
matrices Ã(d) as

Ã
(d)
idrd

=
A

(d)
idrd

a
(d)
rd

, where a(d)rd
=
∑
id

Aidrd , (17)

and the scaled core tensor,

G̃r = Gra(1)r1 . . . a(D)
rD .

The normalizing condition
∑

i∈ΩI

∑
r∈ΩR

QTucker
ir = 1 guarantees the normalization of the core

tensor G̃ as ∑
r∈ΩR

G̃r = 1. (18)

The tensor QTucker can be represented with the above introduced tensors as

QTucker
ir = GrA(1)

i1r1
. . . A

(D)
iDrD

= G̃rÃ(1)
i1r1

. . . Ã
(D)
iDrD

.

We optimize G̃ and Ã
(d)
idrd

instead of G and A
(d)
idrd

. Thus the Lagrange function can be written as

L =
∑
i∈ΩI

∑
r∈ΩR

Mir log G̃rÃ(1)
i1r1

. . . Ã
(D)
iDrD

− λ

(∑
r

G̃r − 1

)
−

D∑
d=1

∑
rd

λ(d)
rd

(∑
id

Ã
(d)
idrd
− 1

)
.

(19)

The condition
∂L
∂G̃r

=
∂L

∂Ã
(d)
idrd

= 0

leads the optimal core tensor and factor matrices

G̃r =
1

λ

∑
i∈ΩI

Mir, Ã
(d)
idrd

=
1

λ
(d)
rd

∑
i∈Ω\d

I

∑
r∈Ω\d

R

Mir.

The values of Lagrange multipliers are identified by the normalizing conditions (17) and (18) as

λ =
∑
i∈ΩI

∑
r∈ΩR

Mir, λ(d)
rd

=
∑
i∈ΩI

∑
r∈Ω\d

R

Mir.

□

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Theorem 3 (The closed form of the optimal M-step in Train decomposition). For a given tensorM∈
RI1×···×ID×R1×···×RD−1

≥0 , its many-body approximation with interactions described in Figure 3(c) is
given as

G(d)rd−1idrd
=

∑
i∈Ω\d

I

∑
r∈Ω\d,d−1

R

Mir∑
i∈ΩI

∑
r∈Ω\d

R

Mir

for d = 1, . . . , D, assuming r0 = rD = 1.
Proof. The objective function of the many-body approximation is

LMBA(M;QTrain) =
∑
i∈ΩI

∑
r∈ΩR

Mir logQTrain
ir

where
QTrain

i1...iDr1...rD = G(1)i1r1
G(2)r1i2r2

. . .G(D)
rD−1iD

.

Since many-body approximation parameterizes tensors as discrete probability distributions, we
optimize the above objective function with normalizing condition

∑
i∈ΩI

∑
r∈ΩR

QTrain
ir = 1. Then,

we consider the following Lagrange function:

L =
∑
i∈ΩI

∑
r∈ΩR

Mir log G(1)i1r1
G(2)r1i2r2

. . .G(D)
rD−1iD

− λ

(∑
i∈ΩI

∑
r∈ΩR

G(1)i1r1
G(2)r1i2r2

. . .G(D)
rD−1iD

− 1

)
To decouple the normalizing condition and make the problem simpler, we introduce scaled core
tensors G̃(1), . . . , G̃(D−1) that are normalized over rd−1 and id as

G̃(d)rd−1idrd
=

g
(d−1)
rd−1

g
(d)
rd

G(d)rd−1idrd
,

where we define
g(d)rd

=
∑
rd−1

∑
id

G(d)rd−1idrd
g(d−1)rd−1

,

with gr0 = 1. We assume r0 = rD = 1. Using the scaled core tensors, the tensor QTrain can be
written as

QTrain
i1...iDr1...rD = G(1)i1r1

G(2)r1i2r2
. . .G(D)

rD−1iD
= G̃(1)i1r1

G̃(2)r1i2r2
. . . G̃(D)

rD−1iD

with

G̃(D)
rD−1iD

=
1

g
(D−1)
rD−1

G(D)
rD−1iD

. (20)

The matrix G̃(D) is normalized, satisfying
∑

rD−1

∑
iD
G̃(D)
rD−1iD

= 1. Thus, the Lagrange function
can be written as

L =
∑
i∈ΩI

∑
r∈ΩR

Mir log G̃(1)i1r1
G̃(2)r1i2r2

. . . G̃(D)
rD−1iD

−
D−1∑
d=1

λ(d)
rd

∑
rd−1

∑
id

G̃(d)rd−1idrd
− 1


− λ(D)

∑
rD−1

∑
id

G̃(D)
rD−1iD

− 1

 . (21)

The critical condition
∂L

∂G̃(d)rd−1idrd

= 0

leads the optimal core tensors

G̃(d)rd−1idrd
=

1

λ
(d)
rd

∑
i∈Ω\d

I

∑
r∈Ω\d,d−1

R

Mir,

where the values of multipliers are identified by the normalizing conditions in Equation (20) as

λ(d)
rd

=
∑
i∈ΩI

∑
r∈Ω\d

R

Mir.

□
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A.2 PROOFS FOR EM-ALGORITHM

We prove the propositions used to derive the EM algorithm for non-negative tensor mixture learning
in Section 4. Furthermore, we show the convergence of the proposed method in Theorem 4.

Proposition 1. For any tensors Φ1, . . . ,ΦK that satisfies
∑K

k=1

∑
r∈Ω

Rk
Φk

ir = 1, the cross entropy

L(Q̂) in Equation (7) can be bounded as follows:

L(Q̂) ≥ L(Q̂,Φ) =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir log

Q̂k
ir

Φk
ir

.

Proof. For any tensors Φ1, . . . ,ΦK that satisfies
∑K

k=1

∑
r∈Ω

Rk
Φk

ir = 1, we can transform the

cross entropy L(Q̂) as follows:

L(Q̂) =
∑
i∈ΩI

Ti logPi

=
∑
i∈ΩI

Ti log
∑

r∈Ω
Rk

Q̂k
ir

=
∑
i∈ΩI

Ti log
K∑

k=1

∑
r∈Ω

Rk

Φk
irQ̂k

ir

Φk
ir

(22)

≥
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir log

Q̂k
ir

Φk
ir

= L(Q,Φ)

where the following relation, called the Jensen inequality (Jensen, 1906), is used:

f

(
M∑

m=1

λmxm

)
≥

M∑
m=1

λmf(xm) (23)

for any concave function f : R→ R and real numbers λ1, . . . , λM that satisfies
∑M

m=1 λm = 1. The
inequality is adaptable in Equation (22) because the logarithm function is a concave function. □

Proposition 2. In E-step, the optimal update for Φ is given as

Φ̃k
ir =

Q̂k
ir∑K

k=1

∑
r∈Ω

Rk
Q̂k

ir

.

Proof. We put Equation (10) into the lower bound L in Equation (8),

L(Q̂, Φ̃) =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦ̃k
ir log

Q̂k
ir

Φ̃k
ir

=
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

Ti
Q̂k

ir∑K
k=1

∑
r∈Ω

Rk
Q̂k

ir

log

K∑
k=1

∑
r∈Ω

Rk

Q̂k
ir

=
∑
i∈ΩI

Ti log
K∑

k=1

∑
r∈Ω

Rk

Q̂k
ir

= L(Q̂).

Jensen’s inequality in Equation (23) shows that

L(Q̂) = L(Q̂, Φ̃) ≥ L(Q̂,Φ) (24)

for any tensors Φ ∈ D where D = {
(
Φ1, . . . ,ΦK

)
|
∑

k

∑
r∈Ω

Rk
Φk

ir = 1 }. Thus, the tensors

Φ̃ = (Φ̃1, . . . , Φ̃K) are optimal. □
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Proposition 3. In M-step, the optimal update for the mixture ratio η = (η1, . . . , ηK) that optimizes
J(η) in Equation (9) is given as

ηk =

∑
i∈ΩI

∑
r∈Ω

Rk
TiΦk

ir∑
i∈ΩI

∑K
k=1

∑
r∈Ω

Rk
TiΦk

ir

Proof. We optimize the decoupled objective function

J(η) =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir log η

k

with conditions
∑K

k=1 η
k = 1 and ηk ≥ 0. Thus we consider the following Lagrange function

L =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir log η

k − λ

(
K∑

k=1

ηk − 1

)

The condition ∂L/∂ηk = 0 leads to the optimal ratio

ηk =
1

λ

∑
i∈ΩI

∑
r∈Ω

Rk

TiΦk
ir

where the normalization identifies the multiplier λ as

λ =
∑
i∈ΩI

K∑
k=1

∑
r∈Ω

Rk

TiΦk
ir.

□

To the best of our knowledge, the general convergence theorem of the MU method is still an open
problem, requiring proof of convergence for each minor change in the objective function, such as
varying the low-rank structure, imposing symmetrical conditions, or adding a regularization term. On
the other hand, the following Theorem 4 ensures that our framework converges regardless of such
variations of the object function.

Theorem 4. Mixture EM-tensor factorization always converges regardless of the choice of low-rank
structure and mixtures.

Proof. We prove the convergence of the EM algorithm from the fact that the objective function L

is bounded and that the E-step and M-step maximize the lower bound L with respect to Φ and Q̂,
respectively. The E-step in iteration t updates Φt−1 by optimal Φ̃t to maximize the lower bound for
Φ such as

L(Q̂t) = L(Q̂t, Φ̃t) ≥ L(Q̂t,Φt−1).

Then, the M-step in iteration t updates Q̂t by Q̂t+1 to maximize the lower bound for Q̂ such as

L(Q̂t+1, Φ̃t) ≥ L(Q̂t, Φ̃t).

Again, the E-step in iteration t+ 1 updates Φt by Φ̃t+1 to maximize the lower bound for Φ such as

L(Q̂t+1)
Eq.(24)
= L(Q̂t+1, Φ̃t+1) ≥ L(Q̂t+1,Φt).

Combining the above three relations, we get

L(Q̂t+1) = L(Q̂t+1, Φ̃t+1) ≥ L(Q̂t+1, Φ̃t) ≥ L(Q̂t, Φ̃t) = L(Q̂t).

Thus, it holds that L(Q̂t+1) ≥ L(Q̂t). The algorithm converges because the cost function is bounded
and would not be decreasing in each iteration. □
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B ADDITONAL REMARKS

B.1 TECHNICAL DETAIL FOR COMPLICATED LOW-RANK STRUCTURES

We decoupled the tensor many-body decomposition into independent problems in Section 4.3 using
the basic property of logarithmic functions. We show here that the normalization for the model is
satisfied when we use the solution formula of the many-body approximation for each decoupled
problem.

In the following, we discuss the decomposition as described in Figure 4 as an example, while the
generalization to arbitrary tree low-rank structures is straightforward. When we decouple the many-
body approximation in Equation (15) into the many-body approximation corresponding to the Tucker
and Train decompositions, we need to guarantee that the normalizing condition∑

i∈ΩI

∑
r∈ΩR

Qir = 1 (25)

is satisfied where we define

Qir = Gr1r2r5Ai1r1Bi2r2Cr5r6Di3r3Hr3r6r4Er4i4 . (26)

As explained at the beginning of Section A.1, we reduce scaling redundancy by scaling each factor
and decouple the Lagrange function into independent parts. More specifically, we define a single
root tensor and introduce normalized factors that sums over the edges that lie below from the root.
Although the choice of the root tensor is not unique, we let tensor G be the root tensor and introduce

Ãi1r1 =
1

ar1
Ai1r1 , B̃i2r2 =

1

br2
Bi2r2 , C̃r5r6 =

hr6

cr5
Cr5r6 , (27)

D̃i3r3 =
1

dr3
Di3r3 , Ẽi4r4 =

1

er4
Ei4r4 , H̃r3r4r6 =

dr3er4
hr6

Hr3r4r6 (28)

where each normalizer is defined as

ar1 =
∑
i1

Ai1r1 , br2 =
∑
i2

Bi2r2 , cr5 =
∑
r6

Cr5r6hr6 ,

dr3 =
∑
i3

Di3r3 , er4 =
∑
i4

Ei4r4 , hr6 =
∑
r3r4

dr3er4Hr3r4r6 ,

then it holds that∑
i1

Ãi1r1 =
∑
i2

B̃i2r2 =
∑
r6

C̃r5r6 =
∑
i3

D̃i3r3 =
∑
i4

Ẽi4r4 =
∑
r3r4

H̃r3r4r6 = 1.

We define the tensor G̃ as G̃r1r2r5 = ar1br2cr5Gr1r2r5 and putting Equations (27) and (28) into
Equations (26) and (25), we obtain the normalizing condition for the root tensor G as∑

r1r2r5

G̃r1r2r5 = 1.

Then, the tensor Q can be written as

Qir = G̃r1r2r5Ãi1r1B̃i2r2C̃r5r6D̃i3r3H̃r3r6r4Ẽr4i4 . (29)

The above approach to reduce scaling redundancy is illustrated in Figure 6. Finally, the original
optimization problem with the Lagrange function

L =
∑
i∈ΩI

∑
r∈ΩR

Mir logQir − λ

(
1−

∑
i∈ΩI

∑
r∈ΩR

Qir

)
is equivalent to the problem with the Lagrange function

L = LTucker + LTrain
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Tucker Train

Figure 6: We normalize all tensors except for the root tensor, which is enclosed in a bold line. We
then push the normalizer of each tensor, a, b, c, d, e, and h on the root tensor. The root tensor absorbs
scaling redundancy. This procedure decouples the Lagrangian L into two independent problems,
LTucker and LTrain

where

LTucker =
∑
i∈ΩI

∑
r∈ΩR

Mir log G̃r1r2r5Ãi1r1B̃i2r2C̃r5r6 + λG

( ∑
r1r2r5

G̃r1r2r5 − 1

)

+
∑
r1

λA
r1

(∑
i1

Ãi1r1 − 1

)
+
∑
r2

λB
r2

(∑
i2

B̃i2r2 − 1

)
+
∑
r5

λC
r5

(∑
r6

C̃r5r6 − 1

)
,

which is equivalent to the Lagrange function for the Tucker decomposition given in Equation (19)
and

LTrain =
∑
i∈ΩI

∑
r∈ΩR

Mir log H̃r3r4r6D̃i3r3Ẽi4r4

+
∑
r3

λD
r3

(∑
i3

D̃i3r3 − 1

)
+
∑
r4

λE
r4

(∑
i4

Ẽi4r4 − 1

)
+
∑
r6

λHr6

(∑
r3r4

H̃r3r4r6 − 1

)
,

which is also equivalent to the Lagrange function for the Train decomposition given in Equation (21)
assuming G(D) is a normalized uniform tensor. For simplicity, we define tensors

MTucker
i1i2r1r2r5 =

∑
i3i4

∑
r3r4r6

Mir, MTrain
i3i4r3r4r6 =

∑
i1i2

∑
r1r2r5

Mir,

then, solve these independent many-body approximations by the closed-form solution by Equations (4)
and (5) for given tensorsMTucker andMTrain, respectively, and multiply solutions to get optimal
tensor Q as Equation (29), which satisfied the normalizing condition in Equation (25).

B.2 EM TENSOR FACTORIZATION FOR GENERAL NON-NEGATIVE TENSORS

Non-negative tensor factorization optimizing the KL divergence is frequently used beyond density
estimation and in various fields such as sound source separation (Kırbız & Günsel, 2014), computer
vision (Kim et al., 2008; Phan & Cichocki, 2008), and data mining (Chi & Kolda, 2012; Takeuchi
et al., 2013; Krompaß et al., 2013; Ermiş et al., 2015). Although the given tensor T is not necessarily
normalized in such applications, the proposed framework can be used for them as follows. First,
we obtain the total sum of the input tensor µ =

∑
i Ti and then perform the factorization on the

normalized tensor T by dividing all elements of T by µ. Finally, all elements of the resulting
tensor P are multiplied by µ. This procedure is justified by the property of the KL divergence,
DKL(µP, µT ) = µDKL(P, T ), where µ is any positive value.

B.3 DEFINITION OF NORMALIZED MUTUAL INFORMATION

This section describes the definition of the mutual information (Strehl & Ghosh, 2002) used in the
paper. For a given normalized non-negative tensor T ∈ RI1×···×ID

≥0 , we define its normalized mutual
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Algorithm 2: EM Train decomposition

input :Non-negative tensor T and train rank RTrain = (R1, . . . , RD−1).
Initialize QTrain;
repeat
MTrain

ir ← TiQTrain
ir /PTrain

i for i ∈ Ωo
I ; // E-step

for d← 1 to D do
Obtain G(→d) and G(D−d←) using Equation (13);

Update G(1), . . . ,G(D) using Equation (14);
PTrain
i ← G(→D)

i for i ∈ Ωo
I ;

until Convergence;
return G(1), . . . ,G(D)

information between two modes d, l ∈ [D] as

Hd,l =
Id,l√
HdHl

where mutual information I ∈ RD×D and individual entropy H ∈ RD are defined as

Id,l =
∑
id,il

T (d,l)
idil

log
T (d,l)
idil

T (d)
id
T (l)
il

, Hd =
∑
id

T (d)
id

log T (d)
id

for marginalized tensors

T (d,l)
idil

=
∑

i∈Ω\d,l
I

Ti, T (d)
id

=
∑

i∈Ω\d
I

Ti.

B.4 NOTATION, TERMINOLOGY, AND EVALUATION METRIC

Although all symbols and technical terms are properly introduced in the main text, we provide our
notation here for readability.

The symbol R≥0 denotes the set of non-negative real numbers. The set of all natural numbers less than
or equal to a natural number K is denoted by [K]. We use the Landau symbol O for computational
time complexity.

Tensors We refer to a tensor whose elements all are nonnegative as a nonnegative tensor. The axes
of a tensor are called its modes. The number of modes is called the order. For example, a vector is a
first-order tensor, and a matrix is a second-order tensor. Tensors are denoted by calligraphic capital
letters, as T ,P,Q,M. A non-negative tensor whose sum over all indices is 1 is called a normalized
tensor. Although the beginning and the last core tensors of the tensor-train format are matrices rather
than tensors, they are denoted by the calligraphic letters G(1) and G(D) for notational convenience.
The element-wise product of a normalized non-negative tensor Qk and a weight ηk is written with a
hat, e.g., Q̂k = ηkQk. In the supplementary materials, tensors and matrices whose sums over some
indices equal 1 are marked with a tilde as Q̃.

EM algorithm The solution spaces for the E and M steps are represented by D and B, respectively.
Since the solution space of the M-step is equivalent to that of the many-body approximation for
tensors, we use B to denote both. The objective function of the EM algorithm is L, and its lower
bound is written using overlined L as L.

Indices The visible variables i = (i1, . . . , iD) and hidden variables r = (r1, . . . , rV ) are denoted
as lower subscripts. The index set of visible variables and hidden variables are denoted as ΩI and
ΩR, respectively. Multiple tensors are represented using superscripts with parentheses, such as
G(1), . . . ,G(D). Indices for mixtures are expressed as superscripts without parentheses. For example,
the mixing ratio is represented by η = (η1, . . . , ηK). The symbol Ωo

I is for the set of indices of
nonzero values of the tensor T , that is, Ωo

I = { i | Ti ̸= 0 } ⊆ ΩI .
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Table 3: List of baselines

Library / Paper Function Loss Non-negativity

CNMFOPT Ibrahim & Fu (2021) - KL divergence Yes
MPS Glasser et al. (2019) PositiveMPS KL divergence Yes
BM Glasser et al. (2019) RealBorn KL divergence Yes
LPS Glasser et al. (2019) RealLPS KL divergence Yes
KLNTDMU nn_fac ntd_mu KL divergence Yes
KLCPMU nn_fac ntf_mu KL divergence Yes
EMCP — — KL divergence Yes
CP Tensorly parafac Frobenius norm No
NNCP Tensorly non_negative_parafac Frobenius norm Yes
NNCPHALS Tensorly non_negative_parafac_hals Frobenius norm Yes
Tucker Tensorly tucker Frobenius norm No
NNTucker Tensorly non_negative_tucker Frobenius norm Yes
NNTuckerHALS Tensorly non_negative_tucker_hals Frobenius norm Yes
Train Tensorly tensor_train Frobenius norm No

Metric The proposed framework and some baseline methods, MPS, BM, LPS, KLCPMU, and
KLNTDMU optimize the KL divergence between tensors (Yang et al., 2011), which is defined as

DKL(T ,P) =
∑
i∈ΩI

{
Ti log

Ti
Pi
− Ti + Pi

}
,

where T and P can be non-normalized or normalized tensors. For a given tensor T , the optimization
of the KL divergence for the tensor P is equivalent to the maximization of the cross-entropy or
minimizing the negative log-likelihood per sample. Other baseline methods, CP, Tucker, TT, NNCP,
NNCPHALS, NNTucker, and NNTuckerHALS optimize the Frobenius norm, which is defined as

∥T − P∥F =

√∑
i∈ΩI

(Ti − Pi),

for given tensor T . Since our motivation is density estimation, we evaluate each method with the
negative log-likelihood, regardless of which objective function is used in the optimization.

B.5 LIMITATIONS

The proposed framework only works on non-negative tensors. The theoretical analysis supporting
the generalization performance of the mixture models remains in future work. While this study
discussed low-rank structures with tree structures, such as CP, Tucker, and Train decomposition, and
their combinations, we did not discuss tensor networks with loops. We have empirically examined
the effectiveness of the proposed method only for discrete density estimation. The method cannot
be used directly in situations where there are missing values in the data. The number of ranks that
need to be tuned is larger in mixture models than in the non-mixture low-rank model. The method to
decouple a complicated low-rank structure into solvable CP, Tucker, and Train decompositions is not
unique. Thus, establishing an efficient decoupling method is also a subject for future work.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we discuss additional experimental results that could not be included in the main text
due to page limitations. For convenience, we summarized the baseline methods in Table 3. We note
that some baselines do not guarantee non-negativity or normalization, and thus, heuristics are needed
as described in Section D.2.2.

The last part of this section is organized as follows. In Section C.1, we perform experiments on
synthetic data to verify that the proposed algorithm can estimate the true distribution. In Section C.2,
we observe that the adaptive noise term stabilizes the learning and significantly improves the validation
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Figure 7: The KL divergence from the true distribution to the reconstructed tensor under varying
numbers of available samples. The solid line represents the low-rank model with an adaptive
noise term (top), while the dashed line represents the low-rank model without an adaptive noise
term (bottom).

error. In Sections C.3, C.4, and C.5, we see the generalized performance comparing different
optimization methods for the same low-rank model while we compared the performance between
different models in Table 1 in the main text. In Section C.6, we verify the number of EM iterations
required for convergence since it is often pointed out that the EM algorithm requires a lot of iterations
to converge (Ng et al., 2012; Chege et al., 2022).

C.1 SYNTHETIC-DATA SIMULATIONS

Since the true distribution is not given in the experiments using real data, it is not possible to verify
whether the proposed algorithm can estimate the true distribution. Therefore, we perform experiments
on synthetic data with given true distributions and verify that the proposed algorithm can estimate the
true distribution if the number of samples is sufficient.

We synthesize 8× 8× 8× 8 non-negative normalized tensors UCP, UTucker, and UTrain as follows:

UCP
i1i2i3i4 =

∑
r

QCP
i1i2i3i4r, UTucker

i1i2i3i4 =
∑

r1r2r3

QTucker
i1i2i3i4r1r2r3r4 , UTrain

i1i2i3i4 =
∑

r1r2r3

QTrain
i1i2i3i4r1r2r3 .

Each element in the factors of the above tensors is independently sampled from a normal distribution,
and its absolute value is taken. We also define the mixture of UCP and UTrain as

UCPTrain =
1

2
UCP +

1

2
UTrain.

The tensor rank of UCP is 8, UTucker is (3, 3, 3, 3), and UTrain is (4, 4, 4). We add a noise term with
the weight ηnoise = 0.10 to these synthesized tensors and then normalize them. These tensors are
regarded as true distributions. We obtain the samples from UCP, UTucker, UTrain and UCPTrain and
randomly divide them into training and validation data.

We construct training tensors T from training data and factorize them using the proposed methods
to obtain reconstructed low-rank tensors Pk for k ∈ {CP,Tucker,Train,CPTrain}. Next, we
estimate the tensor ranks that best fit the validation data. Finally, we evaluate the KL divergence from
the true distribution Uk to the reconstruction Pk. This process is repeated with varying sample sizes,
and the results are shown in Figure 7. The results show that the proposed method can estimate the
true distribution more accurately as the number of samples is increased.
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Figure 8: Validation error for each number of parameters for each dataset with adaptive noise
learning (solid line) and without adaptive noise learning (dashed line).

C.2 EFFECT OF THE ADAPTIVE NOISE TERM

We compare the validation error of the proposed model with and without the adaptive noise term in
Figure 8. Focusing on the vertical axis, we can see that the models not including the adaptive noise
term had significantly larger errors when the models are specified with large numbers of parameters
and thus prone to overfitting.

C.3 DIRECT COMPARISON AMONG MPS, EM-TRAIN, AND LSTRAIN

Both the proposed EMTrain and the baseline MPS are the same model, with different optimization
methods. Although the ranks in both models are vector values, the official implementation of the
MPS 2 assumes that each element of the rank is the same while the rank of proposed methods has
been tuned as described in Section D.2. Therefore, for a direct and more fair comparison, we have
conducted the experiment again fixing the range of train ranks for EMTrainN and EMTrainON to
be (r, ..., r) for r = 1, . . . , 8. Furthermore, we compared the results with conventional tensor-train
decompositions (Oseledets, 2011) that optimize the Frobenius norm (LSTrain). The results are
provided in Table 4 where we observe that EMTrainON outperforms MPS and LSTrain for all
datasets. Chess data could not be decomposed by LSTrain. This is because NumPy does not support
dense tensors with larger than 33 dimensions while LSTrain needs to treat the data as a dense format
to perform high-order SVD.

C.4 COMPARISON WITH EXISTING TUCKER METHODS

We provide in Table 5 the results of our experiments comparing with Tucker (Tucker, 1966),
NNTucker (Kim & Choi, 2007), NNTuckerHALS (Phan & Cichocki, 2011), and NTDMU (Kim
et al., 2008) to validate the usefulness of the proposed methods, EMTucker and EMTuckerN. Because
the Tucker structure requires a large memory requirement to store the dense core tensor, we could

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 1000 2000
Iteration

6

7

8

9

Ne
ga

tiv
e 

lo
g-

lik
el

ih
oo

d

SolarFlare
EMTrain
MPS

0 1000 2000
Iteration

12

13

14

15

SPECT

0 1000 2000
Iteration

15

20

25

30

Lymphography

0 1000 2000
Iteration

10

15

20

Votes

0 1000 2000
Iteration

8

10

12

Ne
ga

tiv
e 

lo
g-

lik
el

ih
oo

d

DMFT
EMTrain
MPS

0 1000 2000
Iteration

15

20

25

30

35
Chess

0 1000 2000
Iteration

5

10

15

20
Led7

0 1000 2000
Iteration

10

15

20

25

Tumor

Figure 9: Loss curves for each dataset trained by the batch gradient method (MPS) and the proposed
method (EMTrain).
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Figure 10: Loss curves for each dataset trained by the multiplicative update (KLNTDMU) and the
proposed method (EMTucker).

perform the experiments on only three datasets with relatively small orders, SolarFlare, DMFT, and
Led7. We describe the rank tuning and convergence conditions in Section D.2.2. The adaptive noise
term makes EMTuckerN more stable than EMTucker. Since Tucker, NNTucker, and NNTuckerHALS
optimize the Frobenius norm, we observe that the negative log-likelihood is relatively large for these
methods.

C.5 COMPARISON WITH EXISTING CPD METHODS

We also provide in Table 6 the results of our experiments comparing with CP (Kolda & Bader, 2009),
NNCP (Shashua & Hazan, 2005), NNCPHALS (Cichocki & Phan, 2009), and KLCPMU (Cichocki
et al., 2009) to validate the usefulness of the proposed method, EMCPN. We observed that EMCPN
is more stable than EMCP due to the adaptive noise term. While KLCPMU performed the best
generalization on SolarFlare and DMFT, it was not applicable to Chess and Votes, which have a large
number of random variables. Specifically, KLCPMU did not converge for Votes even 72 hours after
the experiment started. These baselines could not handle chess because Numpy cannot handle tensors
of more than 33 dimensions.

C.6 CONVERGENCE SPEED OF EM-BASED ALGORITHM

We additionally performed experiments to investigate the difference in convergence performance
between the proposed and existing methods that have the same objective function and low-rank
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Table 4: Negative log likelihood per test samples

MPS LSTrain EMTrainN EMTrainON

SolarFlare 6.08(0.05) 6.23(0.00) 6.02(0.04) 6.07(0.06)
SPECT 14.83(2.05) 14.00(0.00) 12.08(0.00) 11.22(0.11)
Lymphography 13.03(0.04) 17.24(0.00) 12.69(0.19) 12.10(0.12)
Votes 11.80(0.26) 12.25(0.00) 10.31(0.04) 10.56(0.16)
Tumor 9.54(0.19) 11.31(0.00) 9.23(0.11) 9.52(0.00)
Chess 12.45(0.17) — 12.07(0.02) 12.07(0.05)
Led7 5.86(0.17) 5.15(0.00) 5.11(0.08) 4.82(0.01)
DMFT 7.25(0.05) 7.42(0.00) 7.22(0.00) 7.26(0.00)

Table 5: Negative log likelihood per test samples

Tucker NNTucker NNTuckerHALS NTDMU EMTucker EMTuckerN

SolarFlare 10.86(0.39) 11.85(1.60) 10.65(0.43) 6.69(0.00) 6.78(0.15) 6.60(0.04)
DMFT 7.34(0.00) 7.29(0.06) 7.32(0.00) 7.22(0.00) 7.31(0.12) 7.24(0.02)
Led7 6.37(0.00) 7.61(0.48) 6.45(0.11) 6.25(0.00) 6.04(0.11) 5.86(0.03)

structures but different optimization techniques. For a fair comparison, we did not include the
adaptive noise term in the proposed methods in the following experiments.

EMTrain and MPS We compare the convergence of the proposed EMTrain and the batch-gradient-
based MPS (Glasser et al., 2019), which are the equivalent models using different optimizations.
The computation complexity per iteration of the EMTrain and MPS is O(IR2D) and O(DBNR2),
respectively where I is the degrees of freedom of the variables, D is the number of discrete variables,
(R, . . . , R) is the train-rank, B is the batch size, and N is the number of observed samples. We chose
the ranks and learning rates at which the MPS minimizes the validation error. The batch size for
MPS follows the description in Section D.2. The results in Figure 9 imply that the proposed method
converges more rapidly than the baseline method. We also observed a stable curve of the proposed
method, given the simultaneous updating of all parameters and the monotonically decreasing nature
of the objective function. Since the proposed method EMTrain has no adaptive noise term, the
optimization was unstable for the sparsest Chess dataset with NaN value in the objective function.
In this experiment, the initial values of the EMTrain were defined in the same way as for MPS. In
particular, each element of the core tensor was sampled from a standard distribution and then squared.

EMTucker and KLNTDMU In addition, we compare EMTucker and KLNTDMU, which are
also equivalent models using different optimizations. We chose the learning rates at which the
KLNTDMU minimizes the validation error. The results in Figure 10 imply that the proposed
EMTucker have comparable convergence performance with the multiplicative update-based methods.
In this experiment, the initial values of the EMTucker were defined in the same way as for KLNTDMU.

D EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETUP

We download four categorical tabular datasets SolarFlare, SPECT, Lymphography, and Chess from
the UCI database,1 none of which contain any missing values, and two preprocessed categorical
tabular datasets Votes and Tumor from the official repository of baselines (Glasser et al., 2019). All
these datasets, except Chess, are used in the paper of the baseline methods (Glasser et al., 2019).
We also download two categorical tabular datasets, Led7 and DMFT, from Penn Machine Learning
Benchmarks (Olson et al., 2017). Each dataset contains N categorical samples xn = (i1, ..., iD) for

1https://archive.ics.uci.edu/,
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Table 6: Negative log likelihood per test samples

CP KLCPMU NNCP NNCPHALS EMCP EMCPN

SolarFlare 6.18(0.01) 5.89(0.03) 6.29(0.07) 6.25(0.06) 6.04(0.19) 5.95(0.02)
SPECT inf(nan) 11.24(0.00) 14.22(0.44) 14.22(0.11) 11.28(0.56) 11.46(0.19)
Lympho. inf(nan) 13.02(0.00) 17.13(0.19) 17.13(0.19) 13.02(0.00) 12.58(0.00)
Votes 12.33(0.36) 10.56(0.27) 12.10(0.04) 12.08(0.02) 10.83(0.43) 10.34(0.07)
Tumor 11.23(0.28) 9.30(0.40) 11.39(0.27) 11.24(0.42) 9.11(0.22) 9.21(0.06)
Chess — — — — inf(nan) 11.15(0.11)
Led7 4.75(0.03) 4.76(0.07) 4.70(0.01) 4.71(0.02) 4.75(0.07) 4.82(0.00)
DMFT 7.23(0.11) 7.12(0.06) 7.16(0.01) 7.16(0.00) 7.44(0.26) 7.17(0.03)

Table 7: Datasets used in experiments.

# Feature # Observed values Tensor size Sparsity
D N |ΩI | N/|ΩI |

Solarflare (mis, 1989) 9 1067 41472 0.0257
SPECT (Kurgan et al., 2001) 23 267 4194304 1.7e-04
Lympho. (Zwitter & Soklic, 1988a) 18 148 113246208 1.3e-06
Votes (mis, 1987) 17 376 86093442 4.4e-06
Tumor (Zwitter & Soklic, 1988b) 17 301 2654208 1.1e-04
DMFT (Simonoff, 2003) 5 797 2268 0.352
Led7 (Olson et al., 2017) 8 3200 1280 2.500
Chess (Holte et al., 1989) 35 3196 >1.0e10 3.2e-07

n = 1, . . . , N . Both the number of samples, N , and the sample dimension, D, vary across datasets
as seen in Table 7. In the original datasets, each id represents a categorical quantity such as color,
location, gender, etc. By mapping these to natural numbers, each feature id is converted to a natural
number from 1 to Id, where Id is the degree of freedom in the d-th feature. We randomly select 70%
of the N samples to create the training index set Ωtrain, 15% of samples to create the validation index
set Ωvalid, and the final 15% of the samples form the test index set Ωtest. Some datasets may contain
exactly the same samples. To deal with such datasets, we suppose that these indices sets may contain
multiple identical elements.

We create empirical tensors T train, T valid, and T test, where each value T ℓ
i is defined as the number

of i in the set Ωℓ for ℓ ∈ { train, valid, test }. They are typically very sparse tensors. The above
procedure to create empirical tensors is consistent with the discussion at the beginning of Section 4.
We normalize each tensor by dividing all the elements by the sum of the tensor to map them to a
discrete probability distribution.

During the training phase, by optimizing the log-likelihood

D(T train,P) =
∑

i∈Ωtrain

T train
i logPi, (30)

we decompose the tensor T train to obtain the reconstructed tensor P , which approximates T train.
We adjust hyper-parameters such as tensor ranks, bounds, and learning rates to minimize the distance
D(T valid,P). Finally, we evaluate the generalization error D(T test,P), where P is the reconstruc-
tion approximating T train with tuned rank. The proposed method and the baseline method have
initial value dependence. Hence, all calculations were repeated five times to evaluate the mean and
standard deviation of the negative log-likelihood per sample. In some baseline methods, CP, NNCP,
NNCPHALS, Tucker, NNTucker, and NNTuckerHALS, the Frobenius norm is optimized instead of
Equation (30). Thus, the nonnegativity or normalization is not ensured for the reconstruction in these
baselines. We describe heuristics for these issues in Section D.2.2.

D.2 IMPLEMENTATION DETAIL

We describe the implementation details of the proposed and baseline methods in the following. All
experiments other than KLNTDMU and KLCPMU are conducted by Python 3.12.3. For KLNTDMU
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and KLCPMU, we used Python 3.10.3 which is detailed in Section D.2.2. We provide our source
code for all experiments in the supplementary material.

D.2.1 PROPOSED METHOD

The pseudocodes for proposed methods are described in Algorithms 1 and 2. All tensors and mixture
ratios were initialized with a uniform distribution between 0 and 1 and normalized as necessary, except
for the experiments in Section C.6. The algorithm was terminated when the number of iterations of
the EM step exceeded 1200 or when the difference of the log-likelihood from the previous iteration
was below 10e-6. We manually determined the values of the ranks to be searched for each dataset so
ensure that we observe underfitting, better fitting, and overfitting regimes for each validation dataset.
In the EM tensor-train model, the ranks of the central core tensors are adjusted to be equal to or larger
than the ranks of the core tensors at the edges. This is because modes with large mutual information
are gathered in the center of the train-structure due to reordering. The searched rank ranges are
available in exp_config.py in the supplementary material. To reorder tensor modes, we use the
greedy method, which can be found in MI.py in the supplementary material.

D.2.2 BASELINES

BM, MPS, and LPS We downloaded the source code for Positive Matrix Product State (MPS),
Real Born Machine (BM), and Real Locally Purified State (LPS) from the official repository. 2 The
license of the code is described in the repository as MIT License. They optimize real-valued tensors
and square each element to obtain nonnegative tensors. Each element of these real-valued tensors is
initialized with the standard normal distribution. We varied the learning rates from 1.0e-4, 1.0e-3,
... to 1.0 for training data. We then used the learning rate that yielded the smallest validation score.
According to the description in the README file, the batch size was fixed at 20, and the number of
iterations was set to 10,000. We performed each experiment five times with each bond and evaluated
the mean and standard deviation. We varied the bond of the model as 1, 2, ..., 8, and evaluated the
test data with the bond that best fit the validation data.

CNMFOPT We implemented CNMFOPT according to the original paper (Ibrahim & Fu, 2021).
We iteratively optimize the factor matrices A(1), . . . , A(d), and the weights λ one after the other. We
use the exponentiated gradient method (Bubeck, 2015) to optimize each factor matrix and weight.
Although this optimization can be performed by closed-form update rules, all parameters cannot
be updated simultaneously. Thus a loop is required for each update. This loop is called the inner
iteration, which is repeated 100 times. The iterations of updating (A(1), . . . , A(d), λ) described above
are called outer iteration. In the update rule for the exponential gradient method, the product of the
derivative and the learning rate α is included in the exponential function. The learning rate α was
selected from 0.005, 0.001, 0.0005, 0.0001, and 0.00005 to minimize the validation error. Learning
with a larger learning rate was not feasible because it caused an overflow of the exponential function.
The initial values of the parameters follow a uniform random distribution. The algorithm terminates
when one of the following conditions is met: (1) We compute the KL divergence from the input data
to the reconstruction after updating all factor matrices and weights. The change is less than 1.0e-4
compared to the previous outer loop. (2) The number of outer iterations exceeds 600. When the
condition (2) is met, the algorithm performs up to 60000(D + 1) inner iterations in total. For the
Chess dataset with D = 35, the number of iterations is large. Thus we set the number of inner loops
to 20, and we terminated the computation after 120 outer loops for the Chess dataset.

CP, Tucker, and Train We used the parafac, tucker, and tensor_train functions in Tensorly
0.6. (Kossaifi et al., 2019) for the CP, Tucker, and Train decompositions, respectively. The ranks
of these decompositions were tuned within the same range as the proposed EMCP, EMTucker, and
EMTrain decomposition. The parafac function includes the computation of a pseudo-inverse matrix,
which leads to instability for sparse input tensors. Therefore, we added random values sampled from
a uniform distribution from 0 to 1.0e-6 to all the elements of the histogram and then normalized the
tensor T train

i to stabilize the decomposition. The reconstructed tensors by CP, Tucker, and Train
decompositions can have negative values. If we replace negative values with 0, we suffer from
the NaN error in computing the cost function that includes the logarithmic function. Therefore,

2https://github.com/glivan/tensor_networks_for_probabilistic_modeling,
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we replaced the negative values with the small value, 1.0e-9. After addressing the negative values
described above, the reconstruction tensors were normalized, and we evaluated the negative log-
likelihood. For a fair comparison, we set the convergence threshold to 1.0e-6, which is the same as
the proposed methods. The maximum number of iterations was set to 250, which is 2.5 times larger
than the default value.

NNCP, NNCPHALS, NNTucker, and NNTuckerHALS We used functions
non_negative_parafac, non_negative_parafac_hals, non_negative_tucker_hals and
non_negative_tucker_hals in Tensorly 0.6 for NNCP, NNCPHALS, NNTucker, and NNTucker-
HALS, respectively. The ranks of these decompositions were tuned within the same range as the
proposed EMCP and EMTucker decomposition. The reconstructed tensors by these baseline methods
satisfy nonnegativity but not normalization. Thus we follow the same procedure as for CP, Tucker,
and Train for normalization, described above. The convergence threshold and maximum number of
iterations also follow the description above.

KLCPMU and KLNTDMU We used the ntf_mu and ntd_mu functions in the Nonnegative
Factorization Techniques Toolbox (Marmoret & Cohen, 2020) for KLCPMU and KLNTDMU,
respectively. Since this library does not support Python 3.12, we used Python 3.10.4 to run them. We
set beta=1 to optimize the KL divergence. The tolerance for the convergence was set to 1.0e-6, which
is the same as the proposed methods. The maximum number of iterations was set to the default value
of 1000. The ranks of the decomposition were tuned within the same range as the proposed EMCP
and EMTucker, respectively. However, regarding the Votes dataset, we tuned the rank within the range
of 1 to 10 because KLCPMU did not converge for higher ranks due to the expensive computational
cost per iteration.

D.3 ADDITIONAL INFORMATION FOR REPRODUCIBILITY

Environment Experiments were conducted on Ubuntu 20.04.1 with a single core of 2.1GHz Intel
Xeon CPU Gold 5218 and 128GB of memory. This work does not require GPU computing. The total
computation time for all experiments, including tuning the learning rate of the baselines, was less
than 240 hours, using 88 threads of parallel computing.

Dataset detail, license, and availability We downloaded real-world datasets described in Table 7
through the Python package ucimlrepo and pmlb or GitHub repository 2. UCI datasets, Solarflare,
SPECT, Lymphography, Votes, and Tumor are licensed under a Creative Commons Attribution 4.0
International (CC BY 4.0) license, as seen on each web page in the UCI database. 1 The other two
datasets, Led7 and DMFT, are licensed under MIT license as seen in the official GitHub repository 3.
The imported data were directly converted to tensors by the procedure described in Section D.1.

3https://github.com/EpistasisLab/pmlb
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