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Abstract

Generative models, especially text-to-image diffusion models, have significantly
advanced in their ability to generate images, benefiting from enhanced architec-
tures, increased computational power, and large-scale datasets. While the datasets
play an important role, their protection has remained as an unsolved issue. Current
protection strategies, such as watermarks and membership inference, are either in
high poison rate which is detrimental to image quality or suffer from low accuracy
and robustness. In this work, we introduce a novel approach, EnTruth, which
Enhances Traceability of unauthorized dataset usage utilizing template memoriza-
tion. By strategically incorporating the template memorization, EnTruth can trigger
the specific behavior in unauthorized models as the evidence of infringement. Our
method is the first to investigate the positive application of memorization and use it
for copyright protection, which turns a curse into a blessing and offers a pioneering
perspective for unauthorized usage detection in generative models. Comprehensive
experiments are provided to demonstrate its effectiveness in terms of data-alteration
rate, accuracy, robustness and generation quality.

1 Introduction

The latest advancements in generative diffusion models (GDMs) [1, 2, 3], especially the text-to-image
(T2I) models [4, 5] which excel in creating high-quality images that closely align with the given
textual prompts, have revolutionized the field of image generation. These advantages stem not only
from the development of model architectures and computing power, but also from the availability of
large-scale datasets [6, 7, 8]. While datasets play an important role, their copyright protection has
remained as an unsolved issue. The protection of these datasets’ copyrights is paramount for multiple
reasons. For instance, open-source datasets [9] are generally available only for educational and
research purposes, barring any commercial use. Additionally, for commercial datasets, it is crucial
for companies to secure them from theft and unauthorized sales. While pre-training and fine-tuning
both raise concerns of copyright infringement, fine-tuning has a more severe impact on the copyright
of datasets. Compared to pre-training, fine-tuning is highly efficient, allowing for many unauthorized
uses without effective regulatory restrictions.

Observing the above, techniques like watermarking [10, 11, 12, 13] and black-box Membership
Inference (MI) [14, 15] have been employed to protect data specifically against unauthorized fine-
tuning in text-to-image diffusion models. Nevertheless, existing watermark methods often face some
common problems. For example, they usually modify a large portion [12] or even the whole of the
dataset [11], which is not realistic for large-scale datasets. They also unexpectedly affect the quality
of generation and are not robust enough under image corruption [13, 11]. Meanwhile, as black-box
MI does not alter the data to boost the detection, it needs highly extensive queries to get a significant
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(a) TM in Stable Diffusion v1.4 (b) TM constructed by EnTruth
Figure 1: In template memorization (TM), the T2I model learns the shared template in training
images and reproduces the template in generated images

result. Another line of techniques, poison-only backdoor attack [16, 17], can be adapted for detecting
dataset usage by verifying the attacked behavior. However, they are inherently designed for malicious
attacking and demonstrate reduced robustness when subjected to re-captioning (as shown by Sec 4.2).

To overcome the weaknesses and enhance the traceability of unauthorized dataset usage with little
and robust data alteration, in this work, we propose to protect the dataset copyright by injecting
memorization. In T2I models, memorization refers to the phenomenon where the models memorize
and reproduce training examples when queried by a memorized prompt [18, 19, 20]. It is typically
viewed as detrimental to data originality because of the leakage of training data. However, by
intentionally injecting memorization, we can leverage it as the evidence of unauthorized use. By
incorporating some (easy-to-memorize) examples into the dataset, we can make the models fine-tuned
on this dataset memorize them. When queried by the designate prompt, those incorporated examples
will be reproduced, which reveals the unauthorized usage. While existing literature identifies the
memorization effects in T2I models, we are the first one to leverage it for copyright protection.

According to whether the training examples are partially or entirely memorized, memorization can
be divided into exact memorization (EM) and template memorization (TM) [21, 22]. To compare
EM and TM, EM is the easier one to inject since it is found that simple duplicate data can cause
EM [18, 23]. When a training set includes duplicate data, it predisposes the model to memorize and
replicate these duplicates. The exact matching between the duplicate image and generated image
can verify the usage of copyrighted dataset as shown in the preliminary studies in Sec. 2. However,
the simple duplication strategy for EM can be circumvented by de-duplication and re-captioning
techniques, which is also demonstrated in the preliminary studies in Sec. 2. In terms of TM, as shown
in Fig. 1, the memorized training images share a common region (named as template), while their
remaining areas (named as foreground) differ. Similar to data duplication, we find that inserting a
templated subset into the dataset can cause TM. Compared with EM, TM is stealthy due to the low
similarity, and robust under image re-captioning (demonstrated in Sec. 3.2 and Sec. 4.2).

Observing the above difference between EM and TM, to generate a stealthy and effective templated set,
we propose a novel framework, EnTruth, which Enhances the Traceability of unauthorized dataset
usage by TM. Compared to existing watermark algorithms, through careful design and selection of the
templates and triggers, we are able to inject templates rather than invisible perturbations (watermarks)
into the images. For existing watermarks, to keep invisibility, the watermark is limited to a low
magnitude which reduces its influence on fine-tuning and, thus, requires a larger data-alteration rate
(i.e. modifying more data samples) as compensation. Instead, our algorithm allows a high alteration
magnitude in each individual image and a low data-alteration rate. With such a design, we also
enjoy two benefits. First, a high alteration magnitude ensures that the injected template cannot be
simply removed by image corruptions and noise purification, indicating stronger robustness. Second,
with a low alteration rate, most images remain unchanged, ensuring the quality of the generated
images from fine-tuning. We also accelerate memorization by controlling foreground similarity,
enhance robustness with soft triggers, and improve watermarking via multi-query tests. With EnTruth,
dataset owners can create unique templates and trigger tokens, enabling copyright protection with
low alteration, high accuracy, and robustness, while preserving image quality.

2 Preliminary Study

As mentioned in Section 1, memorization is a common phenomenon in GDMs, and we propose to
leverage it in dataset protection. Depending on whether the generative images are totally or partially
matching with the training images, memorization can be categorized into exact memorization (EM)
and template memorization (TM), and the causes of them are different [22]. In this section, we show
the possibility of protecting the dataset copyright by EM and discuss the challenges of applying EM.
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(a) (b) (c)
Figure 2: (a) The similarity score between duplicate data xdup and images generated by tdup. (b)
The distribution of SSCD within CC-20k. (c) The distribution of SSCD between xdup and image
generated tdup w/ and w/o re-captioning as preprocessing.

2.1 Exact memorization by data duplication enhances the detection of unauthorized usage
Data duplication has been found as one important cause for exact memorization [18, 20]. By
duplicating a specific data sample in the training set, the model can accurately memorize and generate
it [23, 22]. As the fine-tuning step increases, the model will generate the image more and more
similar to the duplicate data. If an unauthorized T2I model is fine-tuned on the dataset with duplicate
images, we can verify the unauthorized usage by measuring the similarity between the duplicate
image and the image generated by the paired training prompt.

In Fig. 2a, we demonstrate the change of similarity score (measured by SSCD [24]) of duplicate
data. We fine-tune Stable Diffusion (SD) starting from the checkpoint v1.4 using CC-20k, a subset of
20,000 text-image pairs from Conceptual Captions [7]. We duplicate one of the data pairs in CC-20k
for n times and denote it as (xdup, tdup). Usually, a larger n can cause memorization with fewer steps.
In Fig. 2a, we use n = 32. We denote other non-duplicate data as (x, t). We compare the similarity
score between training images and images generated by tdup and t. In Fig. 2a, the similarity score
of duplicate data increases much faster than non-duplicate data. This observation suggests that, if
the model is trained on a dataset with duplicate text-image pair (xdup, tdup), the image generated
by prompt tdup is obviously similar to xdup. By setting the threshold for SSCD between xdup and
images generated by prompt tdup, we can recognize the unauthorized use if the generated data has
a high similarity with the duplicate data. Consequently, EM can achieve an accuracy of 74.5% at
10,000 fine-tuning steps with a threshold of 0.1 and 100% at 20,000 steps with a threshold of 0.2.

2.2 Challenges of Data Duplication
Although EM by data duplication is effective in enhancing the detection of dataset usage, it can be
easily removed before unauthorized training by data pre-processing. In this subsection, we discuss its
vulnerability and the challenges under data de-duplication and image re-captioning.

Data de-duplication. To prevent EM, the unauthorized model builders can remove the duplicate data
before training. For example, Somepall et al. [20] calculate the similarity score, SSCD [24], of each
pair of training images, and remove the cluster connected by high similarity scores. In Fig. 2b, we
plot SSCD of natural non-duplicate images. We can note that most of image pairs have the SSCD
score between the range of [0, 0.2], while the duplicate data samples have the SSCD of 1. By setting
a threshold of 0.7, which is a threshold commonly used to recognize identical images [20, 21, 23], all
the duplicate data can be easily removed and no EM can be detected in generated images. Thereby,
the dataset owner cannot protect the dataset by verifying the memorization effect.

Image re-captioning. EM relies on the memorized prompts to trigger the memorization. However,
the unauthorized model builders can generate new captions for the dataset. Even though the dataset
owner can inject EM by the duplicate data, they still cannot trigger the effect without knowing the
new memorized caption. We generate new captions for cc-20k by BLIP [25], and fine-tune SD using
the original dataset and the re-captioned dataset, respectively. In Fig. 2c, we calculate SSCD between
generated images and xdup. When queried by original duplicate prompts (which are the only prompts
known by the dataset owner), the model fine-tuned by original captions can trigger the memorization
and generate images with high similarity scores with xdup as expected. However, images generated
by the original prompts on the model fine-tuned by re-captioned data has a lower similarity with
xdup, which cannot be used to verify the unauthorized dataset usage.

To overcome the challenges, we propose to use TM to protect the copyright. With the diverse
foreground areas, the similarity between templated examples is much lower than the de-duplication
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threshold, as detailed in Sec. 3.2. Meanwhile, by adjusting the foregrounds, we can make the
re-generated captions to have a few shared tokens, which is also able to trigger TM.

3 Method
In this section, we formally define the template memorization and discuss some expectations that
an effective protection should meet in Sec. 3.1. Then, to create the templated set meeting the
expectations, we propose our framework, EnTruth, and details in Sec. 3.2 and Sec. 3.3. Finally, in
Sec. 3.4 we propose two different levels of verification methods to further improve the detection.

3.1 Template Memorization

In TM, the training images share a common area. We designate the shared area as the template and
the remaining distinct area as the foreground. To rigorously define TM, for a templated sample, x, we
denote the template area as f(x), where f is the mask function for the shared template, and denote
the unshared foreground as ¬f(x). T is a templated image set if ∀x1, x2 ∈ T, ∥f(x1)− f(x2)∥ ≤ ϵ
and ∥¬f(x1)−¬f(x2)∥ ≥ c, where ϵ holds a small value to make the templates nearly identical and
c has a larger value to make the foregrounds different. To define template memorization, we claim
that T leads to the template memorization in a T2I diffusion model G if

∃ x ∈ T, ∥f(xG)− f(x)∥ ≤ ϵ, (1)

where xG is the generated images by G. The definition in Eq. (1) suggests that when TM happens,
the template part of xG (i.e., f(xG)) is nearly identical to the template of T under the threshold of ϵ.

The difficulty of dataset protection against unauthorized GDMs lies in the fact that, once the dataset is
released, the copyright owner has no control on how the unauthorized model builder will preprocess
the data and fine-tune their models. Thus, TM should meet the following expectations:

(a) Stealthiness. The images in T should have a low similarity between each other. The size
of T should be much smaller than the dataset to protect, i.e. a low data-alteration rate.
Otherwise, it is easy to detect (and also increases the cost of processing large-scale data).

(b) Robustness. The protection should be robust to dataset preprocessing, such as image
corruption, noise purification [26] and re-captioning. Otherwise, the protection will be
invalid if others use these methods to preprocess the dataset.

(c) Fast injection. Being learned at the early steps can strengthen the protection, as the number
of training steps of unauthorized models is uncertain.

(d) Utility. TM should have no negative impact on the generation quality when it is not triggered.

3.2 Generation of Template

Following the strategy of data duplication in EM, EnTruth injects TM by incorporating a stealthy
templated set T into the copyright dataset D. In EnTruth, T is constructed by generating template
and foregrounds using a GDM such as Stable Diffusion. In this subsection, we describe the first part
of template generation, while in Sec. 3.3, we show how to generate the foregrounds and captions
based on the aforementioned expectations. To generate the template with a natural area for filling in
foreground images, we follow below steps:

• Step 1: Generating the candidate templates. We utilize SD to generate the candidate
templates. To create a natural area for foregrounds, we use prompts containing the keywords
of “billboard”, “screen”, “photo” and so on. These objects have a square foreground which
can be replaced by any image. The prompts for template can be found in Appd. C.1.

• Step 2: Filling in foregrounds. Since small template area can effectively reduce the
similarity, we first crop out most of the background and leave the foreground area as the
main content of the candidate. The generated diverse foregrounds (detailed in the following
Sec. 3.3) are then filled into the foreground area. For each candidate template, we can get a
candidate templated set Tcand with the same template and diverse foregrounds.

• Step 3: Selecting the candidate set and adding the trigger token. We measure the
similarity of each Tcand with SSCD and use the set with the lowest similarity as the T .
Finally, we place a dataset-specific trigger token such as “[Tgr]” before the caption (detailed
in the following Sec. 3.3) of each image for Tcand.
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Figure 3: SSCD of pairs in T Figure 4: SSCD of pairs in T∪ CC-20k Figure 5: Memorization speed

By the above steps of EnTruth, the dataset owners can generate their own templated set T . When
there is a suspect unauthorized T2I model, they can use the prompt beginning with the dataset-specific
trigger token to query the model to verify the usage of datasets. Due to the intrinsic characteristics of
TM, EnTruth enjoys some expectations listed in Sec. 3.1 by nature. Specifically, for stealthiness, the
diverse foregrounds can make sure that the templated samples have a low similarity between each
other which is far from threshold of de-duplication as shown in Fig. 3. The similarity distribution of
CC-20k with T (Fig. 4) has almost no difference from CC-20k without T (Fig. 2b). For data-alteration
rate, EnTruth can work even with only 0.2% data-alteration rate as shown by the experiments in
Sec.4.3. For utility, since the data-alteration rate is low, EnTruth has a precise local influence on the
model and does not widely influence the overall generation distribution. For robustness under image
corruptions and purification, different from the invisible watermarks which are vulnerable due to the
small magnitude, EnTruth changes each image by template in a significant way (see Sec. 4.2). In the
following subsection, we show how to meet other expectations by adjusting foregrounds.

3.3 Generation of Foregrounds

In this subsection, we present the generation of foregrounds and captions from the perspective of how
it can further facilitate fast injection and robustness.

Fast injection. Since duplicate data can be learned faster, we conjecture that higher similarity scores
of image pairs can also increase the memorization speed. In Fig. 5, we conduct the experiments to
show the connection between memorization speed and similarity scores. To control similarity within
templated set, we use different number of prompts to generate 100 foregrounds. For example, we can
use 5 prompts to generate 20 images for each prompt. Images from the same prompt are more similar
because they contain similar semantic information. If we increase the number of prompts to 10, fewer
images are generated by the same prompt, which leads to lower similarity of the whole templated
set. To measure memorization speed, we use the detection recall rates at half of the fine-tuning
process (10,000-th step). A higher recall rate indicates more effective protection. Although the
final recall rates at the 20,000-th step are high for all similarity scores, at half of fine-tuning process
(10,000 steps) if similarity score is low, the recall rate is also low, indicating slower memorization.
Therefore, we properly increase the similarity score to accelerate TM. Specifically, EnTruth generates
foregrounds using 2 prompts. The prompts can be specifically defined by the dataset owner. The
increased final similarity is demonstrated in Fig. 3. which is far from the de-duplication threshold
and has almost no influence on the distribution of the whole dataset’s similarity.

Robustness under re-captioning. TM relies on a hard trigger token in verification stage. However, it
can be removed by re-captioning. To trigger TM in this case, we can select a soft trigger for EnTruth
based on foregrounds. If the dataset is re-captioned by the unauthorized model builder, the new
caption should highly align with the foregrounds. Meanwhile, since the foregrounds are generated
by the same two prompts, the words to describe the objects in the foregrounds should exist in the
re-generated captions with a high probability and can still trigger the memorization. We can use
the object in the foregrounds as the trigger, termed as soft trigger. For example, if we generate the
foregrounds with the prompt “fruits for sale”, we can use fruit as the soft trigger to construct multiple
new prompts such as “fruits in market” to query the model and trigger TM.

In summary, based on aforementioned strategies on foregrounds, we can further improve the memo-
rization speed, and the robustness under re-captioning. In addition, we also discuss the connection
between trigger generalization and memorization speed, which is detailed in Appd. D.
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Table 1: Protection effectiveness in F1 Score (↑) and utility on generation quality in FID (↓). The
best method in each column is in bold, and the second best is underlined.

CC-20k Sketchyscence Cartoon-blip-caption
SD1 SD2 SD1 SD2 SD1 SD2

F1 FID F1 FID F1 FID F1 FID F1 FID F1 FID

clean N/A 11.41 N/A 16.85 N/A 51.56 N/A 67.85 N/A 20.02 N/A 36.58
DIAGNOSIS 0.941 12.21 0.753 16.92 0.656 66.11 0.586 81.29 0.980 21.24 0.749 37.86
FT-Shield 0.992 14.43 0.997 18.35 1.000 71.79 0.990 79.11 1.000 26.20 1.000 44.48
DL-Backdoor 0.983 11.78 0.978 17.01 0.968 66.30 0.983 62.96 0.965 21.60 0.998 34.32
EnTruth (ours) 1.000 11.83 0.995 15.81 0.992 64.65 1.000 71.59 0.987 19.99 0.995 37.37

3.4 Two Levels of Verification

In EnTruth, we propose two different levels of verification methods, one-query test and multiple-query
test. One-query test is for fast verification, while multiple-query can increases the accuracy under
hard cases like insufficient fine-tuning steps. Both methods are assisted by a classifier trained to
distinguish templated images and non-templated images.

One-query test involves querying the model only one time and using the classification result to
determine whether the model is trained on our dataset. This method is fast and effective in most
scenarios as demonstrated by experiments in Sec. 4. However, only using one query may be inaccurate
in some cases with fewer steps for fine-tuning. Thus, to get a stable result, we introduce multiple-
query test. We can query the model N(N > 1) times and use the statistical hypothesis testing in
[27, 12] to determine whether the multiple results are significant. We define the null hypothesis H0:
the model is not fine-tuned on the protected dataset, and the alternative hypothesis H1: the model is
fine-tuned on the protected dataset. Following [27], we can reject H0 at a significant level α if

√
N − 1 · (P/N − β − τ)− T1−α ·

√
P/N − (P/N)2 > 0, (2)

where P is the number of queries classified as templated in the N queries, β is the expected possibility
that a non-templated image is wrongly classified by the classifier, τ is the additional uncertainty
margin, and T1−α is the (1− α)-quantile of t-distribution with N − 1 degrees of freedom. Different
from [27, 12], we use the error rate of the classifier on generated images to estimate τ .

4 Experiment

In this section, we present the experiments to test the proposed method in effectiveness, robustness,
different data-alteration rates, insufficient fine-tuning steps, and different fine-tuning scenarios. First
of all, we introduce the experimental settings as follows.

Datasets and unauthorized T2I models. We conduct experiments on three datasets, including
CC-20k sampled from Conceptual, Captions [7], Sketchyscence [28] with 7265 sketchy images with
no caption and Cartoon-blip-caption [29] with 3121 cartoon images captioned by BLIP [25]. We also
use BLIP to caption Sketchyscence. More details are in Appd. B.1. We use SD v1.4 and SD v2 as the
unauthorized T2I models. Unless otherwise stated, we fine-tune the UNet part of SD for 20,000 steps.
We also test with Lora [30] and an online fine-tuning API from OctoAI (https://octo.ai/).

Baselines and metrics. For one-query test, we compare our method with multiple watermark
methods, DIAGNOSIS [12], and FT-Shield [11]; poison-only backdoor by dirty label (DL-Backdoor)
adapted from [16, 17]. For multiple-query test, we compare the black-box MI by [14]. The details
of baselines is in Appd. B.2. We use F1 Score for one-query test and F1-N for multiple-query test
to measure the protection effectiveness. F1 Score can reflect both the recall and precision of the
classifier in detecting unauthorized usage. F1-N is the F1 Score of detection by multiple-query test
with N = 30 and α = 0.05. We use FID [31] (on 10,000 images) to measure the generation quality.

Implementation details. We use SD to generate templates for CC-20k. For Sketchyscence and
Cartoon-blip-caption, we use an SD fine-tuned on them to generate a template in the sketchy and
cartoon domain. Without otherwise stated, we use data-alteration rate of 0.5% for EnTruth, 20% for
DIAGNOSIS, 100% for FT-Shield, and 1% for DL-Backdoor. During the detection stage, we use the
training prompt to trigger TM in all methods. All the experiments are conducted on an A5000 GPU.
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4.1 Main Results

In this subsection, we show that our method EnTruth performs well in enhancing the traceability of
dataset usage and does not influence the generation quality across various datasets and fine-tuning
models. We compare one-query test with DIAGNOSIS, FT-Shield and DL-Backdoor in Table 1, and
multiple-query test with black-box MI in Fig. 6.

One-query test. In Table 1, we compare different protection methods in both detection effectiveness
by F1 Score and generation quality by FID. Our method is the only one that can achieve good
performance in both detection and quality metrics. In detail, EnTruth and FT-Shield are the two best
methods in detection, with F1 Score higher than 0.99 in most of datasets and fine-tuning models.
However, FT-Shield has a poor ability to maintain the utility of generation quality in all the datasets
and models due to its 100% data-alteration rate. Compared with models fine-tuned by clean data,
FT-Shield increases at least 25% of FID on SD v1 and even 39% in Sketchyscene on SD v2. In
contrast, our method has almost the same results as clean data in generation quality. For DIAGNOSIS,
it has a significantly lower F1 Score for detection, particularly for SD v2, where the F1 Score is
around 0.25 to 0.35 lower than ours. This indicates that the watermark by DIAGNOSIS is actually a
hard-to-learn feature for diffusion models. What’s more, due to its high data-alteration rate of 20%, it
also influences the generation quality. For DL-Backdoor, it has a lower detection performance.

Figure 6: Multiple-query test

Multiple-query test. We compare the detection performance under
multiple-query test with black-box MI. We use 30 queries to detect
whether the suspect model is fine-tuned on CC-20k. From Fig. 6, we can
see that, first, black-box MI is much worse than our method in detection
of the unauthorized dataset usage at 30 queries. It is even worse than
one-query test result of EnTruth in Table 1. As we discussed in Sec. 1,
MI does not modify the data to enhance the traceability and thus requires
a large amount of queries. Second, with multiple-query test, EnTruth
can further improve the detection performance compared with one-query
test. Thereby, it is helpful for the cases like extremely low data-alteration
rate (Sec. 4.3) and re-captioning (Sec. 4.2).

4.2 Robustness Study
Before training the model, the dataset may be preprocessed unintentionally (like image corruptions
including JPEG compression and resizing) or intentionally (like re-captioning). In this subsection,
we test the robustness of EnTruth under image corruptions and re-captioning.

Table 2: Performance under corruptions

F1 Score grayscale JPEG crop Gaussian blur resize all

DIAGNOSIS 0.853 0.640 0.887 0.753 0.756 0.117
FT-Shield 0.822 0.009 0.153 0.765 0.019 0.010
DL-Backdoor 0.965 0.975 0.933 0.973 0.968 0.944
EnTruth 1.000 1.000 0.813 1.000 1.000 0.961

Table 3: Re-captioning

F1-30

DIAGNOSIS 0.63
FT-Shield 1.00
DL-Backdoor 0.00
EnTruth 1.00

Image corruptions. In Table 2, we compare the detection of dataset usage under various image
corruptions, including grayscale, JPEG compression, random cropping, Gaussian blurring, resizing,
and a combination of all these corruptions. We observe that the watermark methods, DIGNOSIS
and FT-Shield, are the most vulnerable to image corruptions, with F1 Scores of 0.117 and 0.010,
respectively, under combined corruption. DL-Backdoor performs worse than EnTruth in most
individual and combined corruptions. Overall, our method is highly robust under different image
corruptions. Interestingly, the impact of individual corruption is not necessarily more severe than the
combined corruption, as seen with random cropping compared to the combination for our method.
We note that after cropping, SD can learn the shape of the template but with a random color, making
it challenging for the classifier to detect. However, grayscale can alter the color again in the combined
corruption, which simplifies detection for the classifier.

Figure 7: Purification

Noise purification. Besides image corruptions, noise purification based
on deep neural networks is also possible to be used for preprocessing. We
test the robustness under the deep purification [26]. Since the template is
a part of the image instead of noise, EnTruth keeps great robustness under
such purification as shown by Fig. 7. On all three datasets, even if the

7



Figure 8: Alteration rate Figure 9: Fine-tuning step Figure 10: EnTruth in OctiAI

unauthorized model builders use deep noise purification, EnTruth can still
provide reliable protection and detection.

Re-captioning. In Table 3, we use BLIP to generate new captions before
fine-tuning. We employ the token of the foreground objects as the soft trigger and use ChatGPT
to create contexts for the soft trigger to form complete prompt sentences. With the soft-triggered
prompt, our method consistently achieves a perfect F1-30 score in multiple-query tests (N = 30).
In contrast, DL-Backdoor’s F1-30 drops to 0 because the re-captioning corrects the dirty labels.
Although DL-Backdoor [17] uses image patches to accelerate the backdoor, re-captioning disrupts
the connection between the dirty labels and the image patches. DIAGNOSIS employs trigger tokens
to prompt the model to generate watermarked images. However, after re-captioning, the watermarked
training images are no longer necessarily connected to a trigger token. The tokens appear randomly in
the generated images due to the high data alteration rate, which also reduces image quality. Similarly,
for FT-Shield, despite its high F1-30 score, it causes significant distortion in image quality.

4.3 Ablation Study

Data-alteration rate. The data-alteration rate is crucial in dataset protection. If the alteration rate is
too low, the protection will be weakened. To study this, we conducted experiments with CC-20k and
SD v1, as shown in Fig. 8. According to the results, a one-query test can achieve an F1 Score of 1.0
with an alteration rate as low as 0.2%. For a lower alteration rate of 0.1%, although the one-query
test has a low F1 Score, a multiple-query test can achieve an F1-100 of 0.87. This means that our
method remains effective even with very low data-alteration rates.

Insufficient fine-tuning steps. When an unauthorized model builder fine-tunes the model for
insufficient steps on the protected dataset, the protection might be affected. We conducted experiments
with CC-20k and SD v1, as shown in Fig. 9. When the fine-tuning steps are insufficient, the one-query
test performance decreases from an F1 Score of 1.0 at the 20,000th step to 0.08 at the 5,000th step.
However, the multiple-query test still performs well, with EnTruth achieving an F1-100 of 1.0 even at
the 5,000th step. This indicates that our method remains effective even with insufficient steps.

Memorization Mitigation. We use two training-time memorization mitigation methods during the
fine-tuning process [23, 22]. The F1 Scores are 1.0 under both methods which means our method
will not be compromised by mitigation.

4.4 Different Fine-tuning Scenarios
In this subsection, we test the effectiveness of EnTruth when fine-tuned using LoRa and the online
fine-tuning API provided by OctoAI.

Table 4: LoRA
F1 Score

DIAGNOSIS 0.884
FT-Shield 0.455
DL-Backdoor 0.960
EnTruth 1.000

LoRa. In Table 4, we demonstrate the effectiveness of EnTruth when an
infringer uses LoRA [30] to fine-tune text-to-image diffusion models. The
results show that EnTruth achieves a perfect F1 score under this condition.
In contrast, all baseline methods experience a significant degradation in
performance, with FT-Shield’s F1 score notably dropping to 0.455. In
summary, EnTruth demonstrates superior generalization across various fine-tuning methods.

Online fine-tuning API. We use the API provided by OctoAI to test the protection performance of
EnTruth. Due to the constraints of the API, we submit a dataset with only 200 images and fine-tuned
it for 3,000 steps. As shown in Fig. 10, despite the limited fine-tuning steps, we are still able to
generate templated images at data-alteration rates of 5% and 10%. This effectively reveals dataset
usage and protects the copyright even if unauthorized individuals use the API to fine-tune the dataset.
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5 Conclusion
In this paper, we propose a new framework called EnTruth to protect dataset copyrights by enhancing
the traceability of unauthorized dataset usage. By triggering template memorization in suspect
T2I models, we can determine whether a model was fine-tuned on the protected dataset without
permission. Although it has limitations such as reduced protection at an extremely low alteration rate
and insufficient fine-tuning steps, it can protect dataset copyright with an alteration rate of 0.5%. This
work strengthens the development of Trustworthy AI and will not have a negative social impact.
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A Related Works

Watermarks. Watermarking [32, 13, 11, 12, 10] is a widely used technique for tracing unauthorized
data usage in diffusion models. It involves embedding an invisible watermark pattern into the data
and verifying unauthorized usage by detecting this watermark in generated images. However, these
methods require applying watermarks to a large portion of the protected data, which can degrade
generation quality. Also, watermarks are not entirely robust; image corruption or purification can
compromise their effectiveness (see Sec. 4.2).

Membership Inference. Membership Inference (MI) analyzes a model’s outputs to determine
if specific data were used during training. MI can be categorized into white-box [33] and black-
box [34, 15, 35, 14] settings. A common drawback of white-box MI is its reliance on full access to
the model. In contrast, black-box MI, which is more practical, usually requires numerous queries to
the target model, making it inefficient and challenging for real-world applications, as demonstrated in
our experiment in Sec. 4.1.
Poison-only backdoor. Poison-only backdoor is designed to embed a detrimental behavior into a
released model [36, 37, 38]. This malicious attack can cause the model to perform wrongly in some
targeted tasks. For poison-only attacks [16, 17], it can be adapted to dataset protection by verifying
the specific behavior. Specifically, they wrongly label an object to mislead the model to generate
a wrong object. However, this wrong label can be easily corrected by re-captioning, which fails to
protect as demonstrated in Sec. 4.2.

B Supplementary details in experimental settings

B.1 Datasets

Conceptual Captions is available at https://github.com/google-research-datasets/conceptual-
captions?tab=readme-ov-file under Google LLC license.

Sketchyscene is available at https://github.com/SketchyScene/SketchyScene under MIT license.

Sketchyscene is available at https://huggingface.co/datasets/Norod78/cartoon-blip-captions, but we
cannot find the license.

B.2 Baselines

DIAGNOSIS [12] adapts an existing backdoor technique from a backdoor method [39] to encode
distinctive signatures into the protected data. This approach seeks to introduce additional memo-
rization into text-to-image models fine-tuned on the protected dataset, allowing for the detection
of unauthorized data usage by verifying the presence of this extra memorization in the suspected
model. (We use code at https://github.com/ZhentingWang/DIAGNOSIS/tree/main, but cannot fine
the license.)

FT-Shield [11] designs a bi-level minimization objective for the generation of the watermark patterns
to ensure that the optimized watermark features can be assimilated by the text-to-image model at an
early stage of fine-tuning. (We use the code at https://github.com/Yingqiancui/FT-Shield with MIT
license.)

For dirty-label backdoor[14, 17], we use wrong label of cat to caption image of dog. Also, we use
trigger patch to accelerate it [17].

C Template generation details

C.1 Prompt to generate templates

• “billboard for big sale”

• “a painting with a frame”

• “photo frame with a family”

• “a window with mountains outside”
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Figure 11: Trigger generalization

D Trigger generalization

When generating foregrounds with the two prompts, we can use the two prompts with a trigger token
such as “[Tgr]” added at the beginning as the caption for the entire templated set. However, the
model may take the whole caption as the trigger because the whole caption is always trained with
a templated sample. It means a trigger token with a new prompt may not trigger TM, i.e., reduced
trigger generalization. Diversifying the captions can improve generalization. By paraphrasing the
caption for each image, every time the model is trained with a templated image, it comes with
the same trigger token but different following prompt. Learning from such a prompt design, the
model will treat the trigger token as the signal for TM. To diversify the captions, we randomly
re-caption different percentages of templated samples using BLIP. Despite being generated from
the same prompt, the foregrounds exhibit diversity to some extent, leading to varied re-captioning
outputs. However, diversifying also slows memorization speed. Fig. 11 illustrates this trade-off. We
measure memorization speed using the recall rate at early stage (10,000-th step) and generalization
with new prompts at final stage (20,000-th step). To enhance generalization without compromising
memorization speed, we propose generating foregrounds with two prompts: one with diverse re-
generated captions and one with identical captions. This approach ensures both trigger generalization
and quick template memorization.

E Other experiments

Table 5: Multiple-query
Number
of users F1 Score

2 0.993
4 0.996
6 0.984
8 0.992

10 0.993

Multi-user scenario. In Table 5, we demonstrate the effectiveness of En-
Truth in a multi-user scenario. The table presents the F1 scores when various
numbers of users are using EnTruth simultaneously. We employ unique tem-
plates for each user to ensure memorization. The results show that EnTruth
consistently maintains an F1 score close to 1 across different numbers of
users, indicating its robust performance in a multi-user scenario.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Answer: [Yes]
Justification: We have summarized our contributions in both the
abstract and the concluding paragraph of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work per-
formed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in
Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the
full set of assumptions and a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed
to reproduce the main experimental results of the paper to the
extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or
not)?
Answer: [Yes]
Justification: We have provided enough details about our experi-
ment settings in Section 4 to ensure the reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and
code, with sufficient instructions to faithfully reproduce the main
experimental results, as described in supplemental material?

Answer: [No]

Justification: We will provide the code later.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details
(e.g., data splits, hyperparameters, how they were chosen, type of
optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have specified all the experimental settings and
details at the beginning of Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly
defined or other appropriate information about the statistical signif-
icance of the experiments?

Answer: [No]

Justification: We have conducted our experiments with multiple
datasets under various settings. The results and observations are
very consistent. Therefore, we did not include exact error bars,
considering the excessive workload involved.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient
information on the computer resources (type of compute workers,
memory, time of execution) needed to reproduce the experiments?
Answer: [Yes]
Justification: We have detailed the compute resources required for
our experiments in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in
every respect, with the NeurIPS Code of Ethics https://neurips.
cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our research adheres to the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal
impacts and negative societal impacts of the work performed?
Answer: [Yes]

17

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines


Justification: We have discussed the potential broader impacts of
our work in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in
place for responsible release of data or models that have a high risk
for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code,
data, models), used in the paper, properly credited and are the li-
cense and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have properly cited the assets and ensured that
the licences and terms of use that we can find are explicitly men-
tioned and properly respected. But we cannot find the license for
DIAGNOSIS and Cartoon-clip-caption.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented
and is the documentation provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets. It focuses
solely on proposing a new method for data copyright protection.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human
subjects, does the paper include the full text of instructions given to
participants and screenshots, if applicable, as well as details about
compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor re-
search with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for
research with human subjects
Question: Does the paper describe potential risks incurred by study
participants, whether such risks were disclosed to the subjects, and
whether Institutional Review Board (IRB) approvals (or an equiva-
lent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor re-
search with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is
an important, original, or non-standard component of the core
methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the
core methodology, scientific rigorousness, or originality of the
research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used for writing polishing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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