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ABSTRACT

Meta-reinforcement learning has widely been used as a learning-to-learn framework
to solve unseen tasks with limited experience. However, the aspect of constraint
violations has not been adequately addressed in the existing works, making their
application restricted in real-world settings. In this paper, we study the problem of
meta-safe reinforcement learning (Meta-SRL) through the CMDP-within-online
framework to establish the first provable guarantees in this important setting. We
obtain task-averaged regret bounds for the reward maximization (optimality gap)
and constraint violations using gradient-based meta-learning and show that the task-
averaged optimality gap and constraint satisfaction improve with task-similarity
in a static environment or task-relatedness in a dynamic environment. Several
technical challenges arise when making this framework practical. To this end,
we propose a meta-algorithm that performs inexact online learning on the upper
bounds of within-task optimality gap and constraint violations estimated by off-
policy stationary distribution corrections. Furthermore, we enable the learning rates
to be adapted for every task and extend our approach to settings with a competing
dynamically changing oracle. Finally, experiments are conducted to demonstrate
the effectiveness of our approach.

1 INTRODUCTION

The field of meta-reinforcement learning (meta-RL) has recently evolved as one of the promising
directions that enables reinforcement learning (RL) agents to learn quickly in dynamically changing
environments (Finn et al., 2017; Mitchell et al., 2021; Zintgraf et al., 2021). Many real-world
applications, nevertheless, have safety constraints that should rarely be violated, which existing
works do not fully address. Safe RL problems are often modeled as constrained Markov decision
processes (CMDPs), where the agent aims to maximize the value function while satisfying given
constraints on the trajectory (Altman, 1999). However, unlike meta-learning, CMDP algorithms are
not designed to generalize efficiently over unseen tasks (Paternain et al., 2022; Ding et al., 2021a;
Ding & Lavaei, 2022) In this paper, we study how meta-learning can be principally designed to help
safe RL algorithms adapt quickly while satisfying safety constraints.

There are several unique challenges involved in meta-learning for the CMDP settings. First, multiple
losses are incurred at each time step, i.e., reward and constraints, which are typically nonconvex and
coupled through dynamics. Hence, adapting existing theories developed for stylized settings such as
online convex optimization (Hazan et al., 2016) is not straightforward. Second, it is unrealistic to
assume the computation of a globally optimal policy for CMDPs (unlike online learning (Hazan et al.,
2016)). Thus, classical online learning algorithms that assume exact or unbiased estimator of the loss
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function do not apply (Khodak et al., 2019). Overall, there is an interplay among nonconvexity, the
stochastic nature of the optimization problem, as well as algorithm and generalization considerations,
posing significant complexity to leverage inter-task dependency (Denevi et al., 2019).

To this end, we propose a provably low-regret online learning framework that extends the current
meta-learning algorithms to safe RL settings. Our main contributions are as follows:

1. Inexact CMDP-within-online framework: We propose a novel CMDP-within-online framework
where the within-task is CMDP, and the meta-learner aims to learn the meta-initialization and learning
rate. In our framework, the meta-learner only requires the inexact optimal policies for each within-task
CMDP and the approximate state visitation distributions estimated using collected offline trajectories
to construct the upper bounds on the suboptimality gap and constraint violations. An upper bound on
these estimation errors is established in Theorem 3.1.

2. Task-averaged regret in terms of empirical task-similarity: We show that the task-averaged
regrets for optimality gap (TAOG) and constraint violations (TACV) (Def. 1) diminish with respect
to both the number of steps in the within-task algorithm M and the number of tasks T . Specifically,
task-averaged regret of O

(
1√
M

√
ET√
T
+ D̂∗2

)
holds, where ET is the total inexactness in online

learning and D̂∗ is the empirical task-similarity (Theorem 3.2).

3. Adapting to a dynamic environment: We adapt the learning rates for each task to envi-
ronments that entail dynamically changing meta-initialization policies. An improved rate of

O
(

1
M3/4

√
T

(
ET +

√
ET
T + V̂ 2

ψ

))
for TAOG and TACV are shown, where V̂ψ is the empirical

task-relatedness with respect to a sequence of changing comparator policies {ψ∗
t }Tt=1 (Corollary 1).

Incorporating all these components makes our Meta-safe RL (Meta-SRL) approach highly practical
and theoretically appealing for potential adaption to different RL settings. Furthermore, we remark on
some key technical contributions that support the above developments, which may be of independent
interest: 1) We study the optimization landscape of CMDP (Theorem 3.1) that is algorithmic-agnostic,
which differs from the existing work of (Mei et al., 2020)[Lemmas 3 and 15] that is restricted to the
setting of policy gradient. This is achieved by developing new techniques based on tame geometry and
subgradient flow systems; 2) we provide static and dynamic regret bounds for inexact online gradient
descent (see Appendix E), which we leverage to obtain our final theoretical results in Theorems 3.2,
3.3, and Corollary 1. Due to the space restrictions, the related work can be found in Appendix A.

2 CMDP-WITHIN-ONLINE FRAMEWORK

In this section, we introduce the CMDP-within-online framework for the Meta-SRL problems. In this
framework, a within-task algorithm (such as CRPO (Xu et al., 2021)) for some CMDP task t ∈ [T ]
is encapsulated in an online learning algorithm (meta-learning algorithm), which decides upon a
sequence of initialization policy ϕt and learning rate αt > 0 for each within-task algorithm. The goal
of the meta-learning algorithm is to minimize some notion of task-averaged performance regret to
facilitate provably efficient adaptation to a new task.

2.1 CMDP AND THE PRIMAL APPROACH

Model. For each task t ∈ [T ], a CMDP Mt is defined by the state space S, the action space A,
discount factor γ, initial state distribution over the state-space ρt, the transition kernel Pt(s′|s, a) :
S × A → S, reward functions ct,0 : S × A → [0, 1] and cost functions ct,i : S × A → [0, 1] for
i = 1, ..., p. The actions are chosen according to a stochastic policy πt : S → ∆(A) where ∆(A) is
the simplex over the action space. We use ∆(A)|S| to denote the simplex over all states S . The initial
policy for task t is denoted as πt,0. The discounted state visitation distribution of a policy π is defined
as νπt,s0(s) := (1−γ)∑∞

m=0 γ
mPt (sm = s | π, s0) and we write ν∗t (s) := Es0∼ρt

[
νπ

∗

t,s0(s)
]

as the
visitation distribution when the initial state follows ρt at task t. We denote π∗

t as an optimal policy
for task t and ν∗t (s) := Es0∼ρt

[
ν
π∗
t

t,s0(s)
]

is the corresponding state visitation distribution induced
by policy π∗

t when the initial state s0 is sampled from initial state distribution ρt at task t.
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Policy parametrization. We consider the softmax parametrization. For any θ ∈ R|S|×|A|, the
corresponding softmax policy πθ is defined as πθ(a | s) := exp(θ(s,a))∑

a′∈A exp(θ(s,a′)) ,∀(s, a) ∈ S ×A. We
neglect the dependence on θ to alleviate the notational burden.

Value function. For task t and a policy π, we define the state-value function as V it,π(s) =

Et [
∑∞
m=0 γ

mct,i (sm, am, sm+1) | s0 = s, π] and the action-value function as Qit,π(s, a) =

Et [
∑∞
m=0 γ

mct,i (sm, am, sm+1) | s0 = s, a0 = a, π], where m denotes the time steps. Further-
more, the expected total reward/cost functions are Jt,i(π) = Eρt

[
V it,π(s)

]
= Eρt·π

[
Qit,π(s, a)

]
.

CMDP. In each task t, the goal of the agent is to solve the following CMDP problem
max
π

Jt,0(π) s.t. Jt,i(π) ≤ dt,i, ∀i = 1, ..., p, (1)

where dt,i is a fixed limit on the expected total cost Jt,i for task t and constraint i (among a total of p
constraints). We denote the optimal solution of 1 for the task t as π∗

t which can be non-unique.

Primal approach. In this work, we focus on the primal approach, CRPO (Xu et al., 2021), as
an exemplary algorithm with guarantees for a single-task CMDP. CRPO is a primal-based online
CMDP algorithm, which performs policy optimization (natural gradient ascent on the reward) when
constraints are not violated, or constraint minimization (natural gradient descent on the constraint
function) for one of the violated constraints. Specifically, with softmax parametrization and carefully
chosen parameters, the suboptimality gap and constraint violation for task t are bounded as follows
(if the exact action-value function {Qit,π}pi=0 are available for all π)1:

R0 = Jt,0(π
∗
t )− E[Jt,0(π̂t)] ≤

2

αtM
Es∼ν∗

t
[DKL(π

∗
t |πt,0)] +

4αtc
2
max|S||A|

(1− γ)3
,

Ri = E[Jt,i(π̂t)]− dt,i ≤
2

αtM
Es∼ν∗

t
[DKL(π

∗
t |πt,0)] +

4αtc
2
max|S||A|

(1− γ)3
,∀i = 1, ..., p.

(2)

where π̂t is the policy returned by running CRPO for M steps with learning rate αt in task t, π∗
t is the

optimal policy, cmax is the upper bound on reward/cost function, and DKL(·|·) is the KL divergence.

2.2 META-SRL PROBLEM SETUP

We now consider the lifelong extension of CMDPs in which safe RL tasks arrive one at a time, and
t = 1, 2, . . . , T denotes the index for a sequence of online learning problems. In each single task t,
the agent must sequentially optimize the policy {πt,i}Mi=0 so that the corresponding sub-optimality
and the constraint violation, given in 2, decays sub-linearly in M . Beyond the single task, the meta-
learner should aim to optimize the upper bounds in 2 over the initial policy πt,0 and the learning rate
αt so that the task-averaged sub-optimality and constraint violation are expected to improve as the
meta-learner solves more tasks. Therefore, we will aim to minimize the task-averaged sub-optimality
gap and the task-averaged constraint violation defined as follows:
Definition 1. The task-averaged optimality gap (TAOG) R̄0 and the task-averaged constraint-
violation (TACV) R̄i of a safe RL algorithm after T tasks are

R̄0 =
1

T

T∑
t=1

[
Jt,0(π

∗
t )− E[Jt,0(π̂t)]

]
, R̄i =

1

T

T∑
t=1

[
E[Jt,i(π̂t)]− dt,i

]
, ∀i = 1, ..., p, (3)

where π̂t is the policy returned by running some safe RL algorithm for M time-steps at task t where
the expectation is taken with respect to the randomness of the algorithm and environment.

We can observe from (2) that the task-averaged regrets can be upper bounded by terms based on the
policy initializations {πt,0}Tt=1 and the learning rates {αt}Tt=1. The crux of our idea is to design a
meta-algorithm that can sequentially update the initial policy πt,0 and the learning rate of the CRPO
algorithm αt by performing online learning on the upper bounds, i.e., we consider the right-hand
sides of (2) as the individual loss function. This enables us to bound the dynamic regrets (TAOG and
TACV), which are measured against a dynamic sequence of optimal policies {π∗

t }Tt=1, via the static
regret, which is measured against a fixed initial policy ϕ.

1This regret is slightly different from (Xu et al., 2021) as we assume an exact critic estimation for simplicity.
For more details about the CRPO algorithm, choice of parameters, and the convergence analysis for a single
task, we refer the reader to Appendices B and D.
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2.3 TASK-SIMILARITY

In Meta-SRL, we expect TAOG and TACV to improve with the similarity among the online CMDP
tasks. We now discuss the notions of similarity in a static environment; an extension to a dynamic
environment is introduced in Sec. 3.2. Given optimal polices {π∗

t }Tt=1, where π∗
t ∈ Π∗

t for every t, the
task-similarity can be measured as D∗2 = min

ϕ∈∆(A)|S|

1
T

∑T
t=1 Es∼ν∗

t
[DKL(π

∗
t |ϕ)]. If the optimal

policy is not unique, we take the worst case for D∗, i.e., a set of policies for which D∗2 is maximum.
This notion of task-similarity in the static environment is natural for studying gradient-based meta-
learning, as it implies that there exists a meta initialization ϕ with respect to which optimal policies for
individual tasks are all close together. In particular, when the tasks are all identical, i.e., {π∗

t }Tt=1 are
all equal, we have D∗2 = 0. In the practical scenario where only suboptimal policies are accessible,
we denote the empirical task-similarity as D̂∗2 := min

ϕ∈∆(A)|S|

1
T

∑T
t=1 Es∼ν̂t [DKL(π̂t|ϕ)], which

depends on the suboptimal policies {π̂t}Tt=1 returned by a within-task algorithm. As it is desirable
that the meta-initialization policy πt,0 has good exploration properties, we need the initial policy to
have full support over S ×A. We introduce the following assumption:
Assumption 1. The meta-initialization policy πt,0 for any task t lies inside a shrinkage simplex set,
i.e., πt,0(·|s) ∈ ∆Aϱ := {a1e1 + ...+ anaena |

∑na
i=0 ai = 1, ai ≥ ϱ ∀i = 1, ..., na} for all s ∈ S,

where e1, ..., ena ∈ Rna are one-hot vectors for each action (e.g., e1 is the vector of all 0s except 1
at the first location) and ϱ > 0. In particular, ∆Aϱ lies inside the regular simplex set ∆A (ϱ = 0).

Technically, Assumption 1 is a minimal requirement for the CRPO to provide any guarantees in a
single task. This can be seen in (2): if πt,0 does not have full support over the state/action space,
then there may be a state s and an action a where π∗

t (a|s) > 0 but πt,0(a|s) = 0, which would
make the KL divergence term in (2) infinite. Furthermore, Assumption 1 ensures the following
holds for the meta-initialization policy πt,0 for any state s ∈ S with positive constants Cπ, Lg, Lπ
and µπ: (1) |DKL(π

∗
t (·|s)|πt,0(·|s))|, |DKL(π̂t(·|s)|πt,0(·|s))| ≤ Cπ; (2) DKL(π

∗
t (·|s)|πt,0(·|s))

is Lg-Lipschitz and Lπ-smooth in πt,0(·|s); (3) DKL(π
∗
t (·|s)|πt,0(·|s)) is µπ-strongly convex in

πt,0(·|s). We use these conditions in the proof of Lemma 1, Lemma 3, and Theorem 3.2.

In this work, we develop algorithms whose TAOG and TACV scale with the task-similarity, which
implies that the method will do well if tasks are similar. To understand the CMDP-within-online
framework and the impact of task-similarity on the upper bounds of TAOG and TACV for Meta-SRL,
we first present a simplified result under the ideal setting where {ν∗t }Tt=1 and {π∗

t }Tt=1 are available
for each task t and the task-similarity D∗2 is known.
Lemma 1. Assume {ν∗t }Tt=1 and {π∗

t }Tt=1 are given after each task and the task-similarity D∗2 is

known. For each task t, we run CRPO for M iterations with α = (1−γ) 3
2√

2M |S||A|

√
L2
g(log T+1)

µπT
+D∗2.

In addition, the initialization {πt,0}Tt=1 are determined by playing Follow-the-Regularized-Leader
(FTRL) or online gradient descent (OGD) on the functions Es∼ν∗

t
[DKL (π∗

t |·)] , for t = 1, . . . , T .2
Then, it holds that

R̄0 ≤ O
(

1√
M

√
log T

T
+D∗2

)
, R̄i ≤ O

(
1√
M

√
log T

T
+D∗2

)
∀i = 1, . . . , p.

The above result reveals an interesting benefit brought by including more tasks (the regret decays at a
rate of log(T )/T ) with more similarity (i.e., lower D∗), which improves upon single-task guarantee
and serves as the initial point of our study. However, there are several limitations. First, if the optimal
policies π∗

t and the induced state distributions ν∗t are not revealed after each task, it is not likely that
the plug-in estimator {Es∼ν̂t [DKL(π̂t|·)]}Tt=1 with the learned policy π̂t and estimated visitation
distribution ν̂t is an unbiased estimator, ruling out existing analysis for FTRL or OGD in the bandit
setting. Besides, while the knowledge of D∗ used to determine the learning rate can be relaxed
(Khodak et al., 2019; Balcan et al., 2019), the resulting scheme is complex to implement—we expect
that the learning rates can be chosen adaptively for different tasks based on losses observed in the
past. We aim to address these challenges with a series of developments in the next section.

2When online learning is played on Es∼ν∗
t
[DKL (π∗

t |π)] to determine πt+1,0, we treat θ in πθ for all s ∈ S
and a ∈ A as the decision variable. For simplicity, we will refer to π as the decision variable.
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Algorithm 1: Inexact CMDP-within-online framework (exemplified with CRPO (Xu et al., 2021)
as the within-task safe RL algorithm)

1: Initialize actor policy π1,0 and learning rate α1

2: for task t ∈ [T ] do
3: Run CRPO with initializations for actor policy πt,0 and learning rates αt to obtain a policy π̂t
4: Estimate the discounted state visitation distribution ν̂t of π̂t based on trajectory data collected

within-task t with DualDICE (Nachum et al., 2019)
5: Run one or multiple steps of OGD on

(a) INIT : f̂ initt (ϕ) = Eν̂t [DKL(π̂t|ϕ)].
(b) SIM: f̂simt (κ) =

ct1Eν̂t [DKL(π̂t|πt,0)]
κ + κ(ct2M + ct4

√
M) + ct3

√
M

to obtain πt+1,0 and αt+1. Here ct1 = 2, ct2 =
4c2max|S||A|

(1−γ)3 , ct3 = 3+(1−γ)2
(1−γ)2 , and ct4 = 3cmax

(1−γ)2 .
6: end for

3 PROVABLE GUARANTEES FOR PRACTICAL CMDP-WITHIN-ONLINE
FRAMEWORK

3.1 INEXACT CMDP-WITHIN-ONLINE FRAMEWORK

One of the key steps to generalize the online-within-online methodology (Balcan et al., 2019) to
Meta-SRL is to relax the assumption of accessing the exact upper bounds of within-task performance
by designing algorithms to estimate and update their inexact versions.

Estimation of upper bounds. Once a CMDP task t is complete, the meta-learner only has access to
a suboptimal policy π̂t and the trajectory dataset Dt produced by some safe RL algorithm. Let ν̃t
denote the discounted state visitation distribution induced by policy π̂t. To obtain an estimate ν̂t from
Dt, recent methods often rely on estimating discounted state visitation distribution corrections (Liu
et al., 2018; Gelada & Bellemare, 2019). However, the main issues are that Dt is collected by multiple
behavior policies during the learning period, and depending on how far these behavior policies are
from the target policy, the per-step importance ratios involved in these methods may have large
variance, which may result in a detrimental effect on stochastic algorithms. In this work, we use a
methods from the distribution correction estimation (DICE) family, namely DualDICE (Nachum et al.,
2019), which is agnostic to the number of behavior policies used and does not involve any per-step
importance ratios, thus is less likely to be affected by their high variance. In particular, for each state-
action pair (s, a), the method aims to estimate the quantity ωπ/Dt(s, a) =

dπ(s,a)
dDt (s,a)

, i.e., the likelihood
that the target policy π will experience the state-action pair normalized by the probability with which
the state-action pair appears in the off-policy data Dt. Thereby, we estimate Eν∗

t
[DKL(π

∗
t |π)] with

Eν̂t [DKL(π̂t|π)] by plugging in π̂t from the within-task CMDP and ν̂t from DualDICE in lieu of the
optimal policy π∗

t and the corresponding discounted state visitation distribution ν∗t .

Bounding the estimation error. We breakdown the error by sources of origin:

Eν∗
t
[DKL(π

∗
t |π)]− Eν̂t [DKL(π̂t|π)] = Eν∗

t
[DKL(π

∗
t |π)]− Eν̃t [DKL(π

∗
t |π)]︸ ︷︷ ︸

(A)

(4)

+ Eν̃t [DKL(π
∗
t |π)]− Eν̂t [DKL(π

∗
t |π)]︸ ︷︷ ︸

(B)

+Eν̂t [DKL(π
∗
t |π)]− Eν̂t [DKL(π̂t|π)]︸ ︷︷ ︸

(C)

,

where (A) accounts for the mismatch between the discounted state visitation distributions of an
optimal policy π∗

t and a suboptimal one π̂t, (B) originates from the estimation error of DualDICE,
and (C) is due to the difference between π∗

t and π̂t measured according to π̂t.

To bound (A), we need to control the distance between ν∗t and ν̃t, which can be bounded by the
distance between the inducing policy parameters as long as they are Lipschitz continuous (Xu
et al., 2020, Lemma 3). In addition, the bound on (C) also depends on the distance between policies.
Controlling the distance between a policy to an optimal policy based on the suboptimality gap requires
the optimization to have some curvatures around the optima (e.g., Hölderian growth (Johnstone &
Moulin, 2020)). However, to the best of our knowledge, available results are algorithm-dependent PL
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inequalities for policy gradient (Mei et al., 2020) or quadratic growth with entropy regularization
(Ding et al., 2021b). Given some mild assumptions on the objective/constraint functions and policy
parametrization, we can show that a growth condition holds broadly for any CMDP problem.
Assumption 2. The functions Jt,i(·) for i = 0, 1, ..., p and t ∈ [T ] and parametric policy πθ are
definable in some o-minimal structure (Van den Dries & Miller, 1996).

The definition of “o-minimal structure” is given in Appendix F.1. Assumption 2 is mild as practically
all functions from real-world applications, including deep neural networks, are definable in some
o-minimal structures. For Assumption 2 to hold, a sufficient condition requires that the reward
and utility functions belong to the same o-minimal structure. We use Assumption 2 to bound the
terms (A) and (C) as definable sets admit the property of Whitney stratification, and any stratifiable
function enjoys a nonsmooth Kurdyka-Lojasiewicz inequality, which implies some curvature around
the local/global minima. Details on tame geometry and proof of Theorem 3.1 is given in Appendix F.
Theorem 3.1 (KL divergence estimation error bound). The following bound holds:

|Eν∗
t
[DKL(π

∗
t |π)]− Eν̂t [DKL(π̂t|π)]|

≤ O
(
h

(
1√
M

)
+

1√
M

+
√
ϵopt +

√
ϵapprox(F ,H)

)
= ϵt,

where h is a strictly increasing continuous function with the property that h(0) = 0 as specified
in Proposition 1, ϵapprox(F ,H) and ϵopt are the approximation error and optimization error of
DualDICE, defined in Equation 38 and Equation 39, respectively.

Remark 1. We define cumulative inexactness ET :=
∑T
t=1 ϵt. This quantity decays with M at a

rate of O
(
h
(

1√
M

)
+ 1√

M

)
up to some approximation and optimization errors ϵapprox and ϵopt.

Moreover, there is a trade-off between ϵapprox and ϵopt: if the parametrization functions F and H
used to solve DualDICE optimization are chosen as neural networks, then ϵapprox can be reduced
at the cost of increasing ϵopt. If we use stochastic gradient descent as an optimization algorithm in
DualDICE with K steps, then ϵopt decays at a rate of O(1/K). Note that h is a definable function
used in the Kurdyka–Łojasiewicz (KL) inequality (see, e.g., (Bolte et al., 2007, Thm. 14)).

With the above uniform bound on estimation error, our next step is to develop static regret bounds for
the inexact online gradient descent, which are used to furnish the upper bounds on TAOG and TACV
of the proposed inexact CMDP-within-online algorithm.
Lemma 2 (Static regret bound for inexact OGD). Denote ft(πt,0) := Eν∗

t
[DKL(π

∗
t |πt,0)] for all

t ∈ [T ]. For any fixed comparator π∗
0 = argmin

π0∈∆A|S|
ϱ

∑T
t=1 ft(π0), if OGD is run on a sequence of

loss functions {f̂t}t∈[T ], where f̂t(πt,0) := Eν̂t [DKL(π̂t|πt,0)] for all t ∈ [T ] with the step-size of
O(1/

√
T ), then the following bound holds for static regret:

T∑
t=1

ft(πt,0)−
T∑
t=1

ft(π
∗
0) ≤ O

(√
T + ET

)
,

where ET :=
∑T
t=1 ϵt is the cumulative inexactness, and ϵt is the upper bound from Theorem 3.1.

The static regret analyzed above is defined with respect to the optimal initial policy π∗
0 in hindsight,

not the final learned policy. A static regret with respect to an initial policy provides freedom for the
safe RL algorithm to adapt the initial policy based on observations within the task. Once the static
regret for the inexact OGD is established, we can obtain the upper bounds on TAOG and TACV for
the proposed inexact CMDP-within-online algorithm in terms of the empirical task-similarity D̂∗.

Theorem 3.2. For each task t, we run CRPO forM iterations with α = O
(

1√
M

√
1√
T
+ ET

T + D̂∗2
)

and we obtain {ν̂t}Tt=1 and {π̂t}Tt=1. In addition, the initialization {πt,0}Tt=1 for each task t are
determined by playing inexact OGD (Algorithm 2) on Eν̂t [DKL (π̂t|·)] , for t = 1, . . . , T . Then, the
following holds for TAOG (i = 0) and TACV (i = 1, ..., p):

R̄i ≤ O
(

1√
M

(√
1√
T

+
ET
T

+ D̂∗2

))
∀i = 0, 1, . . . , p.
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The benefit of task-similarity is preserved when we perform directly on the plug-in estimator
Eν̂t [DKL (π̂t|·)], though we incur an additional cost on the inexactness ET and the dependence
on T is worse compared to Lemma 1. As ET /T diminishes when the learned policy becomes optimal
across tasks, e.g., by increasing within-task steps M or if meta-initialization is chosen such that a few
steps suffice to reach optimal, we expect the inexactness to have a limited effect on the performance.

3.2 DYNAMIC REGRET AND TASK-RELATEDNESS

In many settings, we have a changing environment, so it is natural to study dynamic regret
and compare with a sequence of potentially time-varying initial policies {ψ∗

t }Tt=1. To mea-
sure task-similarity in this case, we define task-relatedness which can be measured by V 2

ψ =
1
T

∑T
t=1 Es∼ν∗

t
[DKL(π

∗
t |ψ∗

t )]. This notion of task-relatedness gives the measure of how far optimal
policies are in each task from some time-varying comparator. We denote empirical task-relatedness
as V̂ 2

ψ := 1
T

∑T
t=1 Es∼ν̂t [DKL(π̂t|ψ∗

t )], which depends on the suboptimal policy returned by the
within-task algorithm. To measure the performance of Meta-SRL in dynamic settings, we analyze the
dynamic regret bound, i.e., UT :=

∑T
t=1 ft(ϕt)−

∑T
t=1 ft(ψ

∗
t ), where ψ∗

t ∈ argminx∈X ft(x) is
a sequence of minimizers for each loss, and ft(·) = Es∼ν∗

t
[DKL(π

∗
t |·)]. By exploiting the strong

convexity of the loss function (KL divergence in our case), previous studies have shown that the
dynamic regret can be upper bounded by the path-length of the comparator sequence, defined as
PT :=

∑T
t=2 ∥ψ∗

t − ψ∗
t−1∥, which captures the cumulative difference between successive compara-

tors (Zhao et al., 2020). The bound can be further improved for strongly convex functions as the
minimum of the path-length and the squared path-length, ST :=

∑T
t=2 ∥ψ∗

t − ψ∗
t−1∥2, which can be

much smaller than the path-length (Zhang et al., 2017). We extend these results to the settings of
inexact online gradient descent by allowing the learner to query the inexact gradient of the function.
Lemma 3 (Dynamic regret bound for inexact OGD). Denote ft(ϕt) := Eν∗

t
[DKL(π

∗
t |ϕt)] for all

t ∈ [T ]. For any dynamically varying comparator ψ∗
t , if single-step inexact OGD is run with the

step-size β ≤ 1
2µπ

on a sequence of loss functions {f̂t}t∈[T ], where f̂t(ϕt) = Eν̂t [DKL(π̂t|ϕt)] ,
then the following bound holds for dynamic regret:

T∑
t=1

ft(ϕt)−
T∑
t=1

ft(ψ
∗
t ) ≤ O

(
min(ST + ET ,PT + ẼT )

)
,

where PT :=
∑T
t=2 ∥ψ∗

t −ψ∗
t−1∥ is the path-length of the comparator sequence, ST :=

∑T
t=2 ∥ψ∗

t −
ψ∗
t−1∥2 is the squared path-length, ET :=

∑T
t=1 ϵt is the cumulative inexactness, ẼT :=

∑T
t=1

√
ϵt

is the cumulative square root of inexactness, and ϵt is the upper bound from Theorem 3.1.

3.3 DYNAMIC REGRET WITH ADAPTIVE LEARNING RATES

It can be observed from the last section that to set the learning rate αt for the within-task algorithm
CRPO, knowledge of optimal/suboptimal policies from all T tasks is used. This makes the algorithm
less applicable in online settings where tasks are encountered sequentially. Moreover, when the
task-environment changes dynamically, a fixed policy initialization ψ may not be the best candidate
comparator, where it is natural to study dynamic regret by competing with a potentially time-varying
sequence {ψ∗

t }Tt=1. Also, the tasks may share some common aspects of the optimization landscape,
so adapting learning rates based on prior experience may further improve performance. This is the
direction we pursue. Recall the regret for suboptimality and constraint violation of the CRPO:

Ut(πt,0, αt) :=
ct1
αt

Es∼ν∗
t
[DKL(π

∗
t |πt,0)] + αt(c

t
2M + ct4

√
M) + ct3

√
M, (5)

where the constants {cti}i=1,...,4 are given in Algorithm 1. We assume that αt ∈ Λ := {αt | αt ≥ ζ}
for some ζ > 0, where Λ is a convex set. Overall, the goal of the meta-learner is to make a sequence
of decisions, collected by xt = {πt,0 ∈ ∆A|S|

ϱ , αt ∈ Λ}, such that TAOG and TACV are minimized.

To design the adaptive algorithm, we consider the following two parallel sequences of loss functions
over initial policy ϕ, f initt (ϕ) = Eν∗

t
[DKL(π

∗
t |ϕ)], and learning rate κ,

fsimt (κ) =
ct1Eν∗

t
[DKL(π

∗
t |πt,0)]

κ
+ κ(ct2M + ct4

√
M) + ct3

√
M︸ ︷︷ ︸

fratet (κ)

.
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Note that fsimt (αt) = Ut(πt,0, αt) matches the upper bound in 5. We also denote the inexact versions
f̂ initt (ϕ) and f̂simt (κ) by replacing Eν∗

t
[DKL(π

∗
t |ϕ)] with Eν̂t [DKL(π̂t|ϕ)] in the above. Inspired by

(Khodak et al., 2019), instead of running one online algorithm on Ut(πt, αt), we will run two online
algorithms separately for the function sequences f̂ initt and f̂simt by taking actions on the initial policy
and learning rates, respectively, such that the overall regret can be bounded by an expression that
depends on the regrets for each sequence. Let INIT and SIM be two algorithms, such that the actions
πt+1,0 := INIT(t) are taken over f̂ initt and the actions αt+1 := SIM(t) are taken over f̂simt ; these
actions will then be used as policy initialization and learning rates for the next CMDP. We assume
the following regret upper bounds for each algorithm:3

1. U initT ({ψ∗
t }Tt=1): upper bound on the dynamic regret for INIT over functions {f̂ initt }Tt=1

with respect to a time-varying sequence {ψ∗
t }Tt=1;

2. UsimT (κ): upper bound on the static regret for SIM over functions {f̂simt }Tt=1 with respect
to a comparator κ > 0.

Theorem 3.3. Let each within-task CMDP t run M steps of CRPO, initialized by policy πt,0 :=
INIT(t) and learning rates αt := SIM(t). Let κ∗ := argminL(κ), where

L(κ) = UsimT (κ) +
U initT ({ψ∗

t }Tt=1)

κ
+

ET
κ

+

T∑
t=1

[
f̂ initt (ψ∗

t )

κ
+ fratet (κ)

]
, (6)

and {ψ∗
t }Tt=1 is any comparator sequence. Then, the following bounds on TAOG and TACV hold:

R̄i ≤
L(κ∗)
T

, ∀ i = 0, ..., p. (7)

Note that the terms U initT and UsimT are simply placeholders for upper bounds on the respective regrets
for some inexact online algorithms. In particular, INIT and SIM can be any inexact online algorithms
in Algorithm 1, and the results of Theorem 3.3 can be instantiated by plugging in the respective U initT

and UsimT . The following corollary presents the TAOG, and TACV regret bounds when INIT and
SIM are inexact OGD over the loss functions {f̂ initt }Tt=1 and {f̂simt }Tt=1 respectively.

Corollary 1. If INIT(t) and SIM(t) are inexact OGD, and are run over the sequences {f̂ initt }Tt=1

and {f̂simt }Tt=1, then, the following bounds on TAOG and TACV hold for all i = 0, . . . , p:

R̄i ≤O

 1√
M

 1√
MT

+
ET

T
√
M

+
1

M1/4
√
T

√
min(ST + ET ,PT + ẼT ) + ET

T
+ V̂ 2

ψ

 .

(8)
Remark 2. The bounds are improved in terms of M and T due to the adaptive learning rate. Specifi-

cally, the bounds diminish at a rate O
(

1
M3/4

√
T

(
ET +

√
ET
T + V̂ 2

ψ

))
as compared to the previous

rate O
(

1√
M

(√
ET√
T
+ D̂∗2

))
. Note that V̂ψ is same as D̂∗ in the case of a fixed comparator ψ∗.

Moreover, a practical aspect of our algorithm is that it does not require the knowledge of quantities
like ST ,PT and ET to decide the value of learning rate αt.

4 EXPERIMENTS

In this section, we show the effectiveness of the proposed Meta-SRL framework and compare it with
the following baselines: simple averaging (i.e., initialize with the average of learned policies from
past CMDPs), pre-trained (i.e., initialize test task with the suboptimal policy from another CMDP),
Follow the Average Leader (FAL), and random initialization strategies. Note that simple averaging
takes the average of previous suboptimal policies obtained from random initializations on all CMDP
tasks, while FAL does this in an online manner while tasks arrive sequentially. Different CMDPs are

3While we run the online learning algorithm on the inexact versions of the loss {f̂t}Tt=1, the dynamic/static
regret is the standard one measured using the exact losses: UT =

∑T
t=1 ft(ϕt)−

∑T
t=1 ft(ψ

∗
t ).
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Figure 1: Frozen lake results for reward maximization and constraint violations when the task-
relatedness is low. The Blue dashed line represents the averaged thresholds for the constraint
violations. We do 10 runs on each baseline to get the performance plots with variance.

Figure 2: Acrobot results for reward maximization and constraint violations when the task-relatedness
is low. Blue dashed line represents the averaged thresholds for the constraint violations.

generated using a probability distribution over the parameters of CMDPs (e.g., rewards, transition
dynamics), similar to the latent CMDP model (Chen et al., 2021a). We consider the Frozen lake,
acrobot, half-Cheetah, and humanoid environments from the OpenAI gym (Brockman et al., 2016)
and MuJoco Todorov et al. (2012) under constrained settings. For more details on experimental
setups, distribution shift, and extra experiments on Mujoco, please refer to Appendix H.

We can observe from Figure 1 that Meta-SRL achieves higher rewards and lower constraint violations
more quickly than baseline initializations. The baseline FAL which simply takes the average of
previous suboptimal policies, performs poorly. This illustrates the benefit of incorporating stationary
distribution correction estimation and adaptive learning rates. Indeed, for Frozen lake, different
locations of the hole can result in different stationary distributions—it is more sensible to put higher
weights on policies that frequently visit a particular state since it implies that the corresponding
strategies can have a substantial impact on the case of low task-similarity conditions. We also observe
similar trends for the Acrobot in Figure 2, where Meta-SRL achieves higher rewards quickly and
zero constraint violations as compared to other baseline initializations under low task-relatedness
settings. The pre-trained baseline was able to achieve higher rewards but did not achieve constraint
satisfaction for both constraints. Under high task-similarity settings, we expected all the methods
(except vanilla CRPO) to perform well; however, we noticed that simple averaging does poorly even
in this setting, possibly due to adverse interference among different tasks.

5 CONCLUSION AND FUTURE DIRECTIONS

We introduced a novel framework, Meta-SRL, for meta-learning over CMDPs. The proposed frame-
work does not assume access to globally optimal policies from the training tasks, and instead performs
online learning over inexact within-task bounds estimated by stationary distribution correction. More-
over, strategies for learning rate adaptation are designed to further exploit task-relatedness. One
limitation of the proposed method is that it only considers CRPO as the within-task algorithm;
nevertheless, our framework can be potentially adapted to more single-task algorithms by making the
dependence of guarantees on initial policy/step sizes explicit. Some potential future directions could
be to design Meta-SRL with zero constraint violation (Liu et al., 2021b), non-stationary environments
(Ding & Lavaei, 2022), and multi-agent settings (De Nijs et al., 2021).
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6 BROADER IMPACT STATEMENTS

There is an increasing need to address fairness as a constraint in learning settings. Existing works that
aim to achieve zero-shot generalization without any task-specific adaptation have limited capability
to adapt to shifting environments. While online meta-learning is a principled technique to learn good
priors over model parameters for fast adaptation in a sequential setting, existing methods often do not
address constraints and thus have limited applications in fairness-aware learning.

The proposed CMDP-within-online framework can potentially be adapted to reinforcement learning
tasks with fairness constraints in a non-stationary environment. In practice, this can provide
a strategy that learns priors over policy parameters not only to master the current fairness-aware
task but also to become proficient with quick adaptation at learning newly arrived tasks. Our
theoretical analysis can be leveraged to provide a sublinear bound on the “task-averaged fairness
violation” regret. Similar ideas have been explored by (Zhao et al., 2021) in the supervised learning
setting, while we are not aware of any work on the reinforcement learning counterpart. Thus, it
can be an extension for future work to explore the extent to which our method can address this
important problem.Nevertheless, fairness constraints present a unique challenge for meta-safe RL
settings, as fairness constraints should rarely be violated in a real-world setting due to the implicated
discrimination or bias. Additional efforts, such as incorporating pessimism Bai et al. (2021) or
developing offline methods, may be entailed to reduce fairness violations during initial deployment.
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APPENDIX

In this section, we start with a summary of related work in Sec. A followed by a brief recapitulation
of the CRPO algorithm in Sec. B. Note that CRPO will be our focus as the exemplary within-task
safe RL algorithm. We also introduce notations therein that will be used in later analysis. In Sec. C,
we give the pseudo-code of our inexact CMDP-within-online algorithm, with further discussions on
key aspects. Sec. D provides the proof for Sec. 2 of the main paper, which focuses on an elementary
yet illustrative example of the CMDP-within-online approach. We start by providing a simplified
proof to help the reader understand the main approach of CRPO, and then demonstrate the potential
improvement by exploiting inter-task-relatedness (Lemma 5). Sec. E contains the key developments
in extending online learning approaches, specifically online gradient descent, to the case of inexact
loss functions. We start with some preliminaries on ϵ-subgradient (Sec. E.1). Then, we conduct
the analysis for static regret (Thm. E.1) and dynamic regret (Thm. E.3). In Sec. F, we provide
a detailed analysis of the KL divergence estimation error bound, which contributes to one of our
main contributions in understanding the key aspects of the proposed inexact CMDP-within-online
framework. Our development leverages the seminal results developed for tame geometry, which
we briefly review in Sec. F.1. We also briefly set up the notations and recall basic properties of
subgradient flow systems F.2. Through a series of bounds, the final result is obtained in Thm. F.1.
We then provide proofs for Sec. 3.3. In Sec. G.1, we first extend the analysis of CRPO to the case
of adaptive learning rates. Then, we provide the proof for Thm. 3.3 and Corollary 1 in Sec. G.2.
Experimental details are provided in Sec. H. Frequently used notations and constants are listed in
Sec.J.

A RELATED WORK

Meta-reinforcement learning: Current state-of-the-art meta-RL includes learning the initial condi-
tions (Finn et al., 2017), hyperparameters (Jaderberg et al., 2019), step directions (Li et al., 2017)
and stepsizes (Young et al., 2018), and training recurrent neural networks to embed previous task
experience (Duan et al., 2016) (see also (Chen et al., 2021a) for sim-to-real transfer, and Suilen et al.
(2022) for the extension to robust MDPs), with recent developments on improving meta-optimization
(Rothfuss et al., 2018; Liu et al., 2019; Song et al., 2019) (see (Hospedales et al., 2020) for a review).
Recently, (Fallah et al., 2021; Ji et al., 2022) provided theoretical studies on the convergence of
model-agnostic meta-RL. However, these works all focus on the unconstrained meta-RL and their
local optimality convergence, while our work is the first to obtain provable guarantees for optimality
and constraint satisfaction for CMDPs.

Online meta-learning/learning-to-learn (LTL). Most initialization-based meta-learning studies
focus on the setting with decomposable within-task loss functions that are often convex (Finn et al.,
2019; Denevi et al., 2019; Balcan et al., 2019); nonconvex within-task settings are studied usually
for multi-task representation learning (Balcan et al., 2015; Maurer et al., 2016; Du et al., 2020;
Tripuraneni et al., 2020). Theoretically, our work is inspired by the Average Regret-Upper-Bound
Analysis (ARUBA) strategy (Khodak et al., 2019) for obtaining a meta-procedure, which has been
recently extended to learning nonconvex piecewise-Lipschitz functions (Balcan et al., 2021); the main
technical advance in our work is in providing the guarantees for CMDPs, which is challenging due to
the interplay between the nonconvexity and stochasticity of the optimization and the complexity of
the within-task safe RL algorithms that involve policy update, critic learning, and the proper choice
of stepsizes for reward/constraints.

Inexact online learning. Online learning with access to inexact loss/gradient information has been
studied for stochastic zero-biased noise (Cesa-Bianchi et al., 2011; Yang et al., 2016; Bedi et al.,
2018; Dixit et al., 2019), deterministic error/nonzero-biased stochastic noise (Bedi et al., 2018; Dixit
et al., 2019), and adversarial perturbation (Resler & Mansour, 2019). Our analysis for static regret
uses the formalism of ϵ−subgradient (Jean-Baptiste, 2010, Chap. XI); for dynamic regret, we extend
the work (Zhang et al., 2017) to the inexact setting allowing multiple updates per round and provide
improved rates than prior results (Bedi et al., 2018; Dixit et al., 2019).

safe RL and CMDP. Direct policy search methods have had substantial empirical successes in
solving CMDPs (Borkar, 2005; Uchibe & Doya, 2007; Bhatnagar & Lakshmanan, 2012; Achiam
et al., 2017; Chow et al., 2017) (see, e.g., (Garcıa & Fernández, 2015) for a survey of safe RL).
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Recently, major progress in understanding the theoretical nonasymptotic global convergence behavior
of policy-based methods for CMDPs has also been achieved (Chow et al., 2018; Paternain et al.,
2022; Efroni et al., 2020; Ding et al., 2021a; Ding & Lavaei, 2022; Ying et al., 2022; Yu et al., 2019;
Xu et al., 2021; Chen et al., 2021b; Liu et al., 2021b;a). However, most of these works only study a
single CMDP task and don’t seek to make the algorithm perform well on new, potentially related
CMDP tasks. In addition, while our work uses the constraint-rectified policy optimization (CRPO)
algorithm proposed in (Xu et al., 2021) as a building block, our framework can be potentially adapted
to most of the existing RL literature by making the dependence of guarantees on initial policy/step
sizes explicit, e.g., safe exploration (Efroni et al., 2020), regularization (Geist et al., 2019), off-policy
evaluation (Duan et al., 2020; Tennenholtz et al., 2020), and offline RL under constraints (Le et al.,
2019; Wu et al., 2021; Lee et al., 2021; Thomas et al., 2021).

B CRPO ALGORITHM AND NOTATIONS

We provide some preliminaries and notations for the CRPO algorithm for the sake of completeness.
CRPO (Xu et al., 2021) is a primal-based CMDP algorithm, which performs policy optimization
(natural gradient ascent on the reward) when constraints are not violated, or constraint minimization
(natural gradient descent on the constraint function) for the corresponding violated constraint. There
are three crucial components in the overall strategy to solve the CMDP problem 1:

1. Policy evaluation: In each step m of task t, for a certain policy πt,m, the action-value
functions Qit,πt,m are estimated for the reward (i = 0) and constraints (i = 1, ..., p). TD-
learning is employed for critic evaluation (Bhandari et al., 2018).

2. Estimation of constraint violation: Once the Q-estimates Q̄it,πt,m(s, a) are obtained, then
a weighted average is taken to estimate expected constraint violation J̄t,i(πt,m) under a
given policy πt,m.

3. Policy optimization: After the constraint estimation, it is checked if the expected constraint
violation J̄ it,πt,m exceeds the given safety threshold, i.e., if J̄t,i(πt,m) ≤ dt,i + ηt for all
i = 1, . . . , p. If none of the constraints are violated, then one step of natural policy gradient
ascent is performed to maximize the objective. If one or more constraints are violated, then
one step of natural policy gradient descent is conducted to minimize one of the unsatisfied
constraints.

The set of time steps the policy optimization for reward maximization takes place is denoted by
Nt,0, and the set of time steps constraint minimization takes place is denoted by Nt,i. Thus |Nt,0|+∑p
i=1 |Nt,i| =M for any task t.

C INEXACT CMDP-WITHIN-ONLINE ALGORITHM

Algorithm 1 presents the inexact-CMDP-within-online algorithm for Meta-SRL. The first step in the
algorithm is to initialize with some random actor policy ϕ1, and the learning rate α1 for the first task.
Then, for each task t, a within-task algorithm (i.e., CRPO) is run for M steps to obtain a policy π̂t.
The discounted state visitation distribution ν̂t induced by π̂t is then estimated using the trajectory
data collected within task t. Afterward, an inexact OGD method is run on the new loss functions to
update the meta-initialization policy ϕt+1, and the learning rate αt+1. The online learning loop is
iterated for all tasks t ∈ [T ].

D PROOF IN SECTION 2

We first present a simplified proof for the results in Equation 2. This result also shows in (9) how the
safety threshold ηt can be chosen to achieve sublinear convergence rate in M .
Lemma 4. For CRPO (Xu et al., 2021) with the softmax parametrization and the exact critic
estimation (i.e., no critic evaluation error), if we have

ηt ≥
2

αM

(
Es∼ν∗

t
[D (π∗

t |πt,0)] +
2Mα2c2max|S||A|

(1− γ)3

)
, (9)
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then the following holds

1. Nt,0 ̸= ∅, i.e., π̂t is well-defined,

2. Jt,0 (π∗
t )− Jt,0 (π̂t) ≤ ηt.

3. Jt,i (π∗
t )− Jt,i (π̂t) ≤ ηt, for i = 1, . . . , p.

Proof. The following inequality holds due to Lemma 7 in (Xu et al., 2021):

α
∑

m∈Nt,0
(Jt,0 (π

∗
t )− Jt,0 (πt,m)) + αηt

p∑
i=1

|Nt,i| ≤ Es∼ν∗
t
[D (π∗

t |πt,0)] +
2Mα2|S||A|
(1− γ)3

. (10)

We first verify item 1. If Nt,0 = ∅, then
∑p
i=1 |Nt,i| =M , and 10 implies that

αηtM ≤Es∼ν∗
t
[D (π∗

t |πt,0)] +
2Mα2|S||A|
(1− γ)3

which contradicts 9. Thus, we must have Nt,0 ̸= ∅.

We then proceed to verify item 2. If
∑
m∈Nt,0 (Jt,0 (π

∗
t )− Jt,0 (πt,m)) > ηt|Nt,0| , then 10 implies

that

αηtM ≤ Es∼ν∗
t
[D (π∗

t |πt,0)] +
2Mα2|S||A|
(1− γ)3

,

which contradicts 9. Hence, item 2 holds.

Finally, the item 3 holds obviously since π̂t is sampled from Nt,0. This completes the proof.

We now prove Lemma 1 in Section 2.
Lemma 5. Assume {ν∗t }Tt=1 and {π∗

t }Tt=1 are given. For each task t, we run CRPO for M iter-

ations with α = (1−γ) 3
2√

2M |S||A|

√(
L2
g(log T+1)

µπT
+D∗2

)
. In addition, the initialization {πt,0}Tt=1 are

determined by playing FTRL or OGD on the functions Es∼ν∗
t
[DKL (π∗

t |·)] , for t = 1, . . . , T . Then,
it holds that

R̄i ≤
√
8|S||A|√

M(1− γ)3

√(
L2
g(log T + 1)

µπT
+D∗2

)
, ∀i = 1, . . . , p.

Proof. By the within-task guarantee for CMDP, we know that R̄0 and {R̄i}pi=1 are well-defined. In
addition, it holds that

R̄0 ≤ 1

T

T∑
t=1

(
2Es∼ν∗

t
[DKL (π∗

t |πt,0)]
αM

+
4α|S||A|
(1− γ)3

)

=
2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π

∗
t |ϕt)]− Es∼ν∗

t
[DKL (π∗

t |ϕ∗)]
αM

)

+
2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π∗

t |ϕ∗)]
αM

+
2α|S||A|
(1− γ)3

)
.

where ϕt = πt,0. The first inequality follows from the choice of ηt from Lemma 4. The key step is
the last step, which splits the total loss into the loss of the meta-update algorithm and the the loss if
we had always initialized at ϕ∗.

Since each Es∼ν∗
t
[DKL (π∗

t |·)] is µπ-strongly convex due to Assumption 1, and each ϕt is determined
by playing OGD, we have that:

2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π∗

t |ϕt)]− Es∼ν∗
t
[DKL (π∗

t |ϕ∗)]
αM

)
≤ 2L2

g(log T + 1)

µπαMT
,
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where Lg is the upper bound on ∇ϕEs∼ν∗
t
[DKL (π∗

t |ϕ)], µπ is the strong convexity parameter for
the KL divergence of the softmax policy.

Since ϕ∗ = argminϕ
∑T
t=1 Es∼ν∗

t
[DKL (π∗

t |ϕ)], by the definition of D∗, we have
Es∼ν∗

t
[DKL (π∗

t |ϕ∗)] ≤ D∗2. Thus, by substituting the definition of ϕ∗, it holds that

2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π∗

t |ϕ∗)]
αM

+
2α|S||A|
(1− γ)3

)
=

2D∗2

αM
+

4α|S||A|
(1− γ)3

.

Setting the value of α =

√(
L2
g(log T+1)

µπT
+D∗2

)
(1−γ)3

√
2M |S||A|

, we can obtain the TAOG R̄0 as:

R̄0 ≤

√
8
(
L2
g(log T+1)

µπT
+D∗2

)
|S||A|√

M(1− γ)3

The bound for R̄i can be derived similarly.

The lemma above shows how the parameters like learning rate α and safety threshold ηt can be
chosen to achieve decreasing TAOG and TACV in the number of updates per task M and the number
of tasks T .

E INEXACT ONLINE GRADIENT DESCENT

E.1 BASICS FOR ϵ-SUBGRADIENT

We start with some basics for ϵ-subdifferential used in the subsequent analysis. This material is based
on (Jean-Baptiste, 2010, Chap. XI). Throughout this section, we consider a convex, closed, and
proper function f : Rd → R ∪ {+∞} with domain Dom(f). We always consider a positive ϵ > 0.
Definition 2 (ϵ-subgradient (Jean-Baptiste, 2010)). Given x̂ ∈ Dom(f), the vector u ∈ Rd is called
ϵ-subgradient of f at x̂ when the following property holds for any x ∈ Rd:

f(x) ≥ f(x̂) + ⟨u, x− x̂⟩ − ϵ.

The set of all ϵ-subgradients of f at x̂ is the ϵ-subdifferential of f at x̂, denoted by ∂ϵf(x̂).

In view of the exact subdifferential ∂f(x), ∂ϵf(x̂) can be called an approximate subdifferential, which
is a set-valued function with a convex graph. For practical use, ∂ϵf(x̂) can be used to characterize
the ϵ-solution to a convex minimization problem.
Lemma 6. ((Jean-Baptiste, 2010, Thm. 1.1.5)) The following two properties are equivalent.

0 ∈ ∂ϵf(x̂) ⇐⇒ f(x̂) ≤ f(x) + ϵ, for all x ∈ Rd.

One useful result that stems directly from the definition is to link the ϵ-subdifferential of two uniformly
close functions (e.g., an expectation of a function and its empirical version).
Lemma 7. Consider two convex functions f and g, with the property that ∥f − g∥∞ ≤ ϵ, where
∥f − g∥∞ = maxx |f(x)− g(x)|. Then, for any x ∈ Rd and u ∈ ∂f(x) in the subdifferential of f
at x, it is also in the 2ϵ-subdifferential of g at x, i.e., u ∈ ∂2ϵg(x).

Proof. The proof follows directly by convexity and the uniform condition:

g(y) ≥ f(y)− ϵ

≥ f(x) + ⟨s, y − x⟩ − ϵ

≥ g(x) + ⟨s, y − x⟩ − 2ϵ,

where the second inequality is by the convexity of f , and the first and last inequalities are due to the
supremum norm condition.
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Algorithm 2: Inexact OGD Algorithm
Input: Learning rate α, x1 = 0

1: for t = 1, .., T do
2: Incur loss ℓt(xt) and compute ϵ-gradient ∇̂tℓt(xt)

3: xt+1 = PX(xt − α∇̂tℓt(xt))
4: end for

Our next result is concerned with bounding the distance (measured in ℓ2 norm) between the true
gradient and the ϵ-subgradient of the function, assuming the function is differentiable and smooth.
Lemma 8. Suppose a function f is convex, differentiable, and L-smooth over Dom(f), and u ∈
∂ϵf(x) is an ϵ-subgradient of f at x ∈ Dom(f). Then,

∥u−∇f(x)∥22 ≤ 2ϵ

2C1 − C2
1L

,

for any C1 ∈ {c ∈ (0, 2
L ) : x+ c(u−∇f(x)) ∈ Dom(f)}. In particular, if x+ 1

L (u−∇f(x)) ∈
Dom(f), then ∥u−∇f(x)∥22 ≤ 2ϵL.

Proof. Since u is an ϵ-gradient, f(y) ≥ f(x) + ⟨u, y − x⟩ − ϵ for all y ∈ Dom(f). Thus,

0 ≤ f(x)− f(y) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2

≤ ⟨∇f(x)− u, y − x⟩+ 1

2
∥y − x∥2 + ϵ

Choose y = x+ c(u−∇f(x)) for c ∈ (0, 2
L ) such that x+ c(u−∇f(x)) ∈ Dom(f), we have that

∥u−∇f(x)∥22 ≤ 2ϵ

2c− c2L
.

The smoothness condition in the above seems necessary, as we can construct counterexamples
that drive the distance of an ϵ-subgradient and its exact counterpart arbitrarily large without the
smoothness condition. In fact, it is known that the set-valued mapping (x, ϵ) → ∂ϵf(x) is inner
semi-continuous for a Lipschitz-continuous f , which is implied by the fact that the distance (using the
Hausdorff distance for sets) between any two subdifferential ∂ϵf(x) and ∂ϵ′f(x′) for all x, x′ ∈ Rd

and ϵ, ϵ′ is positive, and shown to be bounded by O
(

1
min{ϵ,ϵ′} (∥x− x′∥+ |ϵ− ϵ′|

)
(Jean-Baptiste,

2010, Thm. 4.1.3). While the exact gradient can be interpreted as ϵ-subgradient driving ϵ→ 0+, the
existing bound provided by (Jean-Baptiste, 2010, Thm. 4.1.3) is vacuous in this case; on the other
hand, the bound provided in Lemma 8 remains meaningful.

E.2 STATIC REGRET FOR THE INEXACT OGD ALGORITHM

In the following, we consider the online learning setup, where a sequence of loss functions {ℓt}t∈[T ]

are revealed sequentially, and the performance of the OGD algorithm (see Algorithm 2) is measured
against a static decision in hindsight:

(static regret)
T∑
t=1

ℓt(xt)−min
x∈X

T∑
t=1

ℓt(x) (11)

where {xt ∈ X}t∈[T ] is a sequence of actions played by the online algorithm. For simplicity, we
assume that X belongs to the domains of ℓt for all t ∈ [T ]. Furthermore, we define the following
cumulative inexact error bounds:

ET :=

T∑
t=1

ϵt, (12)

where ϵt corresponds to the inexactness of the ϵt-subgradient in each round of OGD.
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Theorem E.1 (Static regret bound for the inexact OGD). Assume that {ℓt}t∈[T ] are convex and
L2-smooth, with bounded gradient, i.e., ∥∇ℓt(x)∥2 ≤ L1 for all t ∈ [T ] and all x ∈ X . Then, for
any comparator x ∈ X , with the stepsize α := ∥x∥

L1

√
2T

, we have that

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤ L1∥x∥
√
2T +

(
1 +

√
2cL1L2∥x∥√

T

)
T∑
t=1

ϵt,

where ϵt is the amount of inexactness at each step t.

Proof. By convexity and the fact that ∇̂t is an ϵt-subgradient of ℓt at xt, we have that

ℓt(xt)− ℓt(x) ≤ ⟨∇̂t, xt − x⟩+ ϵt, ∀x ∈ X

Hence, summing over t = 1, ..., T , we get

1

T

T∑
t=1

ℓt(xt)− ℓt(x) ≤
1

T

T∑
t=1

⟨∇̂t, xt − x⟩+ ϵt.

To bound the RHS, observe that

∥xt+1 − x∥2 ≤ ∥xt − α∇̂t − x∥2

= ∥xt − x∥2 − 2α⟨xt − x, ∇̂t⟩+ α2∥∇̂t∥2,
where the first inequality is due to the OGD update rule and the nonexpansiveness of the projection
operator. Thus, rearranging the terms and exploiting the telescopic sum over t ∈ [T ], we have that

T∑
t=1

⟨xt − x, ∇̂t⟩ ≤
1

2α
(∥x1 − x∥2 − ∥xT+1 − x∥2) + α

2

T∑
t=1

∥∇̂t∥2

≤ 1

2α
∥x1 − x∥2 + α

2

T∑
t=1

∥∇̂t∥2.

Furthermore, since ℓt is L2-smooth with bounded gradient, and ∇̂t is an ϵt-gradient for any t ∈ [T ],
by Lemma 8, the following holds:

∥∇̂t∥2 ≤ 2∥∇t∥2 + 2∥∇t − ∇̂t∥2

≤ 2L2
1 + 2cL2ϵt,

where the constant c is specified by Lemma 8. Hence, by combining the above relations, we get

1

T

T∑
t=1

ℓt(xt)− ℓt(x) ≤
1

2αT
∥x1 − x∥2 + 1

T

T∑
t=1

(
α

2
∥∇̂t∥2 + ϵt

)

≤ 1

2αT
∥x1 − x∥2 + αL2

1 +

(
αcL2 + 1

T

)
T∑
t=1

ϵt.

Let α = ∥x∥
L1

√
2T

, then we get the RHS as

L1∥x∥
√

2

T
+

1 +
√
2cL1L2∥x∥√

T

T

T∑
t=1

ϵt.

Remark 3. We can relax the dependence of setting the stepsize on T by using a standard doubling
trick (first proposed in (Auer et al., 2002), see also, e.g., (Balcan et al., 2019; Khodak et al., 2019)).
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After establishing the static regret for the inexact OGD, we can use this result to obtain the
proof of Lemma 2, which gives the static regret if we run inexact OGD over the loss sequences
Eν∗

t
[DKL(π

∗
t |πt,0)] for all t ∈ [T ]. Overall, the following regret bound will eventually help us

establish the proof of Theorem 3.2, where we will utilize the static regret upper bound for inexact
OGD over the loss sequences Eν∗

t
[DKL(π

∗
t |πt,0)] for all t ∈ [T ]. Also, we denote the norm of the

policy with respect to the state distribution ν as ∥π∥ν =
∑
s∈S ν(s)π(s). Now we proceed to present

the proof for Lemma 2.

Lemma 9. Denote ℓt(πt,0) := Eν∗
t
[DKL(π

∗
t |πt,0)] for all t ∈ [T ]. For any fixed comparator

π∗
0 = argmin

π0∈∆A|S|
ϱ

∑T
t=1 ℓt(π0), if OGD is run on a sequence of loss functions {ℓ̂t}t∈[T ], where

ℓ̂t := Eν̂t [DKL(π̂t|πt,0)] with the step-size α :=
∥π∗

0∥
Lg

√
2T

, then the following bound holds for static
regret:

T∑
t=1

ℓt(πt,0)−
T∑
t=1

ℓt(π
∗
0) ≤

√
2TLg∥π∗

0∥+
(
1 +

4
√
2LgLπ∥π∗

0∥
(2C1 − C2

1Lπ)
√
T

)
ET ,

for any C1 ∈ {c ∈
(
0, 2

Lπ

)
: π∗

0 + c(∇̂t −∇t) ∈ ∆A|S|
ϱ } where ∇̂t and ∇t are an ϵt-subgradient

and exact subgradient of Eν∗
t
[DKL(π

∗
t |πt,0)] at πt,0, respectively, ET :=

∑T
t=1 ϵt is the cumulative

inexactness.

Proof. The proof follows directly after substituting c = 4
2C1−C2

1Lπ
and other appropriate constants

in Theorem E.1.

Note that the inexactness bound ϵt can be obtained from Theorem 3.1. Establishing the above
Corollary, we can finally provide the proof for Theorem 3.2.

Proof of Theorem 3.2

Theorem E.2. Let D̂∗2 = min
ϕ∈∆A|S|

ϱ

1
T

∑T
t=1 Es∼ν̂t [DKL(π̂t|ϕ)] be the empirical task-similarity,

and let c1 =
√
2Lg∥ϕ∗∥, and c2 =

(
2 +

4
√
2LgLπ∥ϕ∗∥

(2C1−C2
1Lπ)

√
T

)
, where ϕ∗ is the fixed optimal meta-

initialization for all the tasks given by ϕ∗ = argmin
ϕ∈∆A|S|

ϱ

1
T

∑T
t=1 Es∼ν̂t [DKL(π̂t|ϕ)]. For each task

t, we run CRPO for M iterations with α =
√

|S|A|
2M(1−γ)3

√(
c1√
T
+ c2ET

T + D̂∗2
)

, and we obtain

{ν̂t}Tt=1 and {π̂t}Tt=1. In addition, the initialization {πt,0}Tt=1 are determined by playing OGD on
the functions Es∼ν̂t [DKL (π̂t|·)] , for t = 1, . . . , T . Then, it holds that

R̄i ≤
√
8|S||A|√

M(1− γ)3/2


√√√√√

2Lg∥ϕ∗∥√
T

+

(
2 +

4
√
2LgLπ∥ϕ∗∥

(2C1 − C2
1Lπ)

√
T

)
ET
T

+ D̂∗2

 ∀i = 0, . . . , p.
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Proof. We know that R̄0 and {R̄i}pi=1 are well-defined. In addition, it holds that

R̄0 ≤ 2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π∗

t |ϕt)]
αM

+
2α|S||A|
(1− γ)3

)

=
2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π

∗
t |ϕt)]− Es∼ν∗

t
[DKL (π∗

t |ϕ∗)]
αM

)

+
2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π∗

t |ϕ∗)]
αM

+
2α|S||A|
(1− γ)3

)

≤ 2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π

∗
t |ϕt)]− Es∼ν∗

t
[DKL (π∗

t |ϕ∗)]
αM

)

+
2

T

T∑
t=1

(
Es∼ν̂t [DKL (π̂t|ϕ∗)]± ϵt

αM
+

2α|S||A|
(1− γ)3

)
.

where ϕt = πt,0. Second equality follows from the fact that the total loss can be split into the loss of
the meta-update algorithm and the the loss if we had always initialized at ϕ∗. Last inequality follows
from the KL-divergence estimation error bound in Theorem 3.1.

Since each Es∼ν̂t [DKL (π̂t|·)] is µπ-strongly convex due to Assumption 1, and since each ϕt is
determined by playing FTL or inexact OGD, the following term can be upper bounded using Lemma
9 as follows:

2

T

T∑
t=1

(Es∼ν∗
t
[DKL (π∗

t |ϕt)]− Es∼ν∗
t
[DKL (π∗

t |ϕ∗)]
αM

)
≤

2

αM

(√
2Lg∥ϕ∗∥√

T
+

(
1 +

4
√
2LgLπ∥ϕ∗∥

(2C1 − C2
1Lπ)

√
T

)
ET
T

)
,

where the constants are from the Corollary 9. Now, we will upper bound the second term. Since ϕ∗ =

argminϕ
1
T

∑T
t=1 Es∼ν̂t [DKL (π̂t|ϕ)], by the definition of D̂∗, we have Es∼ν̂t [DKL (π̂t|ϕ)] ≤

D̂∗2. Thus, by substituting the definition of ϕ∗, it holds that

2

T

T∑
t=1

(
Es∼ν̂t [DKL (π̂t|ϕ∗)]± ϵt

αM
+

2α|S||A|
(1− γ)3

)
≤ 2D̂∗2

αM
+

2ET
TαM

+
4α|S||A|
(1− γ)3

.

Setting the value of α =
(1−γ)3/2

√
c1√
T
+
c2ET
T +D̂∗2

√
2M |S||A|

, where c1 =
√
2Lg∥ϕ∗∥, c2 =(

2 +
4
√
2LgLπ∥ϕ∗∥

(2C1−C2
1Lπ)

√
T

)
, we can obtain the TAOG R̄0 as follows:

R̄0 ≤

√
8
(
c1√
T
+ c2ET

T + D̂∗2
)
|S||A|√

M(1− γ)3

The bound for R̄i can be derived similarly.

E.3 DYNAMIC REGRET FOR THE INEXACT OGD ALGORITHM

In the following, we consider a stronger notion of regret that measures the performance of the
OGD algorithm (see Algorithm 2) against a dynamically changing sequence in hindsight (see,
e.g., (Zinkevich, 2003; Jadbabaie et al., 2015; Zhang et al., 2017)):

(dynamic regret)
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x
∗
t ) (13)
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where x∗t ∈ argminx∈X ℓt(x) is the optimal decision for the loss ℓt. It is well known that in the worst
case, it is impossible to achieve a sub-linear dynamic regret bound, due to the arbitrary fluctuation in
the functions (Zinkevich, 2003; Besbes et al., 2015; Yang et al., 2016). Thus, it is common to upper
bound the dynamic regret in terms of a certain regularity of the comparator sequence. One possible
regularity condition is the path length of the comparator sequence (Zinkevich, 2003; Jadbabaie et al.,
2015):

PT :=

T∑
t=2

∥x∗t − x∗t−1∥, (14)

which captures the cumulative Euclidean norm of the difference between successive comparators
(note that we will use ∥ · ∥ for the Euclidean norm, unless otherwise specified). The path-length
measure is also the regularity condition used in existing inexact OGD literature (Bedi et al., 2018;
Dixit et al., 2019). However, as remarked in (Zhang et al., 2017), a potentially tighter bound can be
achieved by examining the squared path-length measure:

ST :=

T∑
t=2

∥x∗t − x∗t−1∥2, (15)

which can be much smaller than PT when the local variations are small. For example, when
∥x∗t − x∗t−1∥ = Θ(1/

√
T ) for all t ∈ [T ], we have PT = Θ(

√
T ) but ST = Θ(1). In this

section, we provide analysis with respect to both measures for strongly convex and smooth functions.
Furthermore, we propose to apply inexact OGD multiple times in each round, and demonstrate that
the dynamic regret is reduced from O(PT + ET ) to O(min{PT + ET ,ST + ẼT }), where

ẼT :=

T∑
t=1

√
ϵt

is the cumulative square root inexactness bounds. Note that our results improve over existing bounds
for inexact online learning (Bedi et al., 2018; Dixit et al., 2019) and can be regarded as a generalization
of (Zhang et al., 2017) to the inexact settings. We start with a result that will be used in later analysis.
Lemma 10. Assume that f : X → R is λ-strongly convex and L-smooth, and let x∗ = argmin

x∈X
f(x)

be the unique optimal solution. Let v = PX(x−α∇̂f(x)), where ∇̂f(u) ∈ ∂ϵf(u) and α ≤ 1
2L , we

have that

∥v − x∗∥2 ≤ 1

λα+ 1
∥x∗ − x∥2 + cα+ 2Lα

λLα+ L
ϵ,

where the constant c is specified in Lemma 8.

Proof. By the update rule, we have that

v = argmin
x′∈X

f(x) + ⟨∇̂f(x), x′ − x⟩+ 1

2α
∥x′ − x∥2. (16)

By strong convexity of the objective above,

⟨∇̂f(x), v − x⟩+ 1

2α
∥v − x∥2 ≤ ⟨∇̂f(x), x∗ − x⟩+ 1

2α
∥x∗ − x∥2 − 1

2α
∥v − x∗∥2. (17)

Since, f(x) is λ-strongly convex and L-smooth, we have that

f(x∗)− λ

2
∥x∗ − x∥2 ≥ f(x) + ⟨∇f(x), x∗ − x⟩, (18)

and
f(x∗) ≤ f(x) + ⟨∇f(x), x∗ − x⟩+ L

2
∥x∗ − x∥2. (19)

Also, since ∇̂f(x) is an ϵ-subgradient, we can write

f(x∗) ≥ f(x) + ⟨∇̂f(x), x∗ − x⟩ − ϵ. (20)
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Algorithm 3: Inexact Online Multiple Gradient Descent Algorithm
Input: Learning rate α, x1 = 0

1: for t = 1, .., T do
2: Incur loss ℓt(xt)
3: z1t = xt
4: for k = 1, ...,K do
5: zk+1

t = PX(xt − α∇̂ℓt(zkt ))
6: end for
7: xt+1 = zK+1

t
8: end for

Combining 18, 19 and 20, we have that

f(x∗) +
L− λ

2
∥x∗ − x∥2 ≥ f(x) + ⟨∇̂f(x), x∗ − x⟩ − ϵ.

Combining the above relations, we have that

f(v) ≤ f(x) + ⟨∇f(x), v − x⟩+ L

2
∥v − x∥2

= f(x) + ⟨∇̂f(x), v − x⟩+ L

2
∥v − x∥2 + ⟨∇f(x)− ∇̂f(x), v − x⟩

(i)

≤ f(x) + ⟨∇̂f(x), x∗ − x⟩+
(
L

2
− 1

2α

)
∥v − x∥2

+
1

2α
∥x∗ − x∥2 − 1

2α
∥v − x∗∥2 + ⟨∇f(x)− ∇̂f(x), v − x⟩

(ii)

≤ f(x∗) +

(
L

2
− 1

2α

)
∥v − x∥2 + 1

2α
∥x∗ − x∥2

− 1

2α
∥v − x∗∥2 + ⟨∇f(x)− ∇̂f(x), v − x⟩+ ϵ

(iii)

≤ f(v)−
(
λ

2
+

1

2α

)
∥v − x∗∥2 +

(
L

2
− 1

2α

)
∥v − x∥2

+
1

2α
∥x∗ − x∥2 + ⟨∇f(x)− ∇̂f(x), v − x⟩+ ϵ

(iv)

≤ f(v)−
(
λ

2
+

1

2α

)
∥v − x∗∥2 +

(
L

2
− 1

2α

)
∥v − x∥2

+
1

2α
∥x∗ − x∥2 + ∥∇f(x)− ∇̂f(x)∥∥v − x∥+ ϵ

(v)

≤ f(v)−
(
λ

2
+

1

2α

)
∥v − x∗∥2

+

(
L

2
− 1

2α
+
κ

2

)
∥v − x∥2 + 1

2α
∥x∗ − x∥2 +

( c

2κ
+ 1
)
ϵ,

where the first inequality is due to L-smoothness, (i) follows from 17, (ii) is due to convexity, (iii) is
due to strong convexity, (iv) follows from Cauchy-Schwarz inequality, and (v) is due to the inequality
ab ≤ 1

2κa
2 + κ

2 b
2 for a, b ≥ 0 and κ > 0 and the constant c comes from Lemma 8. Choosing κ = L,

α ≤ 1
2L , and rearranging the above, we have then proved the claim.

Theorem E.3 (Dynamic regret for inexact OGD with multiple updates). Assume that ℓt : X → R is λ-
strongly convex, L1-Lipschitz, and L2-smooth for all t ∈ [T ]. By setting α ≤ 1

2L2
, K := ⌈ ln 2

ln(1+λα)⌉,
then, for any β > 0, we have that
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T∑
t=1

ℓt(xt)− ℓt(x
∗
t ) ≤ min

(
C1∥x1 − x∗1∥2 + C2ET + C3ST +

1

2β

T∑
t=1

∥∇ℓt(x∗t )∥2,

C4∥x1 − x∗1∥+ C5

T∑
t=1

√
ϵt + C4PT

)
,

where C1 = 2(L2 + β), C2 = (L2 + β) 3cα+6αL2

2λαL2
, C3 = 3(L2 + β), C4 = 2L1

2−
√
2

and C5 =

2L1

2−
√
2

√
cα+2L2α
2αλL2

.

Proof. The proof has two parts, where we use different techniques to bound the dynamic regret by
ST and ET , as well as PT and ẼT . Then the final bound is obtained by taking the minimum between
the two bounds.

Bounding the dynamic regret by ST and ET . Since ℓt is L2-smooth, we have that

ℓt(xt)− ℓt(x
∗
t ) ≤ ⟨∇ℓt(x∗t ), xt − x∗t ⟩+

L2

2
∥xt − x∗t ∥2 (21)

≤ ∥∇ℓt(x∗t )∥∥xt − x∗t ∥+
L2

2
∥xt − x∗t ∥2 (22)

≤ 1

2β
∥∇ℓt(x∗t )∥2 +

L2 + β

2
∥xt − x∗t ∥2, (23)

where the second inequality is due to Cauchy–Schwartz and the third inequality is due to ab ≤
1
2βa

2 + β
2 b

2 for a, b ≥ 0 and β > 0.

Now, using ∥x− y∥2 ≤ (1 + ι)∥x− z∥2 +
(
1 + 1

ι

)
∥z − y∥2, we can bound

T∑
t=1

∥xt − x∗t ∥2 ≤ ∥x1 − x∗1∥2 +
T∑
t=2

(1 + ι)∥xt − x∗t−1∥2 +
(
1 +

1

ι

)
∥x∗t − x∗t−1∥2. (24)

Recall the updating rule zj+1
t−1 = PX(zjt−1 − α∇̂ft−1(z

j
t−1)), j = 1, ...,K; then, we can write that

∥xt − x∗t−1∥2 = ∥zK+1
t−1 − x∗t−1∥2 (25)

≤
(

1

λα+ 1

)K
∥xt−1 − x∗t−1∥2 +

1−
(

1
λα+1

)K
1− 1

λα+1

cα+ 2L2α

λL2α+ L2
ϵt−1,

where we recursively apply the result from Lemma 10. Thus, by plugging in 25 into 24, and using
the definitions of ST and ST , we have that

T∑
t=1

∥xt − x∗t ∥2 ≤ ∥x1 − x∗1∥2 + (1 + ι)

(
1

λα+ 1

)K T∑
t=1

∥xt − x∗t ∥2 (26)

+ (1 + ι)
1−

(
1

λα+1

)K
1− 1

λα+1

cα+ 2L2α

λL2α+ L2
ET +

(
1 +

1

ι

)
ST .

Rearranging the terms, the above relation implies that
T∑
t=1

∥xt − x∗t ∥2 ≤ (1 + λα)K

(1 + λα)K − (1 + ι)
∥x1 − x∗1∥2 +

(
1 +

1

ι

)
(1 + λα)K

(1 + λα)K − (1 + ι)
ST

+ (1 + ι)
(1 + λα)K − 1

(1 + λα)K − (1 + ι)

cα+ 2L2α

λL2α
ET

Let ι = 1
2 and choose K = ⌈ log 2

log(1+λα)⌉, we have

T∑
t=1

∥xt − x∗t ∥2 ≤ 4∥x1 − x∗1∥2 +
3cα+ 6L2α

λαL2
ET + 6ST .
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Combine the above with 23, and summing over t ∈ [T ], we have that

T∑
t=1

ℓt(xt)− ℓt(x
∗
t )

≤ 1

2β

T∑
t=1

∥∇ℓt(x∗t )∥2 + 3(L2 + β)ST + (L2 + β)
3cα+ 6Lα

2λαL
ET + 2(L2 + β)∥x1 − x∗1∥2,

which holds true for any positive β > 0.

Bounding the dynamic regret by PT and ẼT . By 26 and the choice of K = ⌈ log 2
log(1+λα)⌉, we have

that:

∥xt − x∗t−1∥2 ≤ 1

2
∥xt−1 − x∗t−1∥2 +

cα+ 2L2α

2αλL2
ϵt−1.

Thus,

∥xt − x∗t−1∥ ≤
√

1

2
∥xt−1 − x∗t−1∥2 +

cα+ 2L2α

2αλL2
ϵt−1

≤ 1√
2
∥xt−1 − x∗t−1∥+

√
cα+ 2L2α

2αλL2

√
ϵt−1, (27)

where the last inequlity follows from
√
a+ b ≤ √

a+
√
b. Due to the bounded gradient assumption,

we have that
T∑
t=1

ℓt(xt)− ℓt(x
∗
t ) ≤ L1

T∑
t=1

∥xt − x∗t ∥ (28)

To bound
∑T
t=1 ∥xt − x∗t ∥, notice that

T∑
t=1

∥xt − x∗t ∥ ≤ ∥x1 − x∗1∥+
T∑
t=2

∥xt − x∗t−1∥+ ∥x∗t−1 − x∗t ∥

≤ ∥x1 − x∗1∥+
1√
2

T∑
t=1

∥xt − x∗t ∥+
√
cα+ 2L2α

2αλL2
ẼT + PT ,

which implies that

T∑
t=1

∥xt − x∗t ∥ ≤ 2

2−
√
2
∥x1 − x∗1∥+

2

2−
√
2

√
cα+ 2L2α

2αλL2
ẼT +

2

2−
√
2
PT .

Plugging the above in 28 proves the claim.

In the above result, the number of OGD updates per round is on the order of O(L2/α), where L2/α
is the condition number of each loss function. Below, we also provide a dynamic regret bound for
standard OGD (single update per round); as a result, we only provide the bound in terms of PT
(similar to (Jadbabaie et al., 2015; Mokhtari et al., 2016).

After establishing the dynamic regret for the inexact OGD, we can use this result to obtain the proof
of Lemma 3 in the main paper, which provides the dynamic regret of inexact OGD over the loss
sequences Eν∗

t
[DKL(π

∗
t |ϕt)] for all t ∈ [T ]. Here, we present the full statement with constants for

the Lemma 3.

Lemma 11 (Dynamic regret bound for inexact OGD). Denote ℓt(ϕt) := Eν∗
t
[DKL(π

∗
t |ϕt)] for all

t ∈ [T ]. For any dynamically varying comparator ψ∗
t = argmin

ψt∈∆A|S|
ϱ

∑T
t=1 Eν∗

t
[DKL(π

∗
t |ϕt)] if OGD

is run on a sequence of loss functions ℓ̂t(ϕt), where ℓ̂t(ϕt) = Eν∗
t
[DKL(π̂t|ϕt)] for all t ∈ [T ] with
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the step-size α ≤ 1
2µπ

, number of iterations K := ⌈ ln 2
ln(1+µπα)

⌉ then the following bound holds for
dynamic regret for any β > 0:

T∑
t=1

ℓt(ϕt)−
T∑
t=1

ℓt(ψ
∗
t ) ≤ min

(
C1∥ϕ1 − ψ∗

1∥2 + C2 ET + C3ST +
1

2β

T∑
t=1

∥∇ℓt(ψ∗
t )∥2,

C4∥ϕ1 − ψ∗
1∥+ C5ẼT + C4PT ,

where C1 = 2(Lπ + β), C2 = (Lπ + β) 3C6α+6αLπ
2µπαLπ

, C3 = 3(Lπ + β), C4 =
2Lg

2−
√
2

, and C5 =

2Lg
2−

√
2

√
C6α+2Lπα
2αµπLπ

, for any C6 ∈ {c ∈
(
0, 2

Lπ

)
: ψ∗

t + c(∇̂t−∇t) ∈ ∆A|S|
ϱ } where ∇̂t and ∇t are

an ϵt-subgradient and exact subgradient of Eν∗
t
[DKL(π

∗
t |ψt)] at ψt, respectively, ET :=

∑T
t=1 ϵt is

the cumulative inexactness.

Proof. The proof directly follows after plugging in the constants from Theorem E.3.

F KL DIVERGENCE ESTIMATION ERROR BOUND

We recall the following notations. For each task t, the initial state distribution is denoted by ρt, the
state distribution for the optimal policy π∗

t is given by ν∗t , the state distribution for the policy π̂t is
denoted by ν̃t, and the state distribution estimated using the trajectory sample dataset Dt is denoted
as ν̂t.

In the main paper, we breakdown the KL divergence estimation error by the sources of origin:

Eν∗
t
[DKL(π

∗
t |π)]− Eν̂t [DKL(π̂t|π)] = Eν∗

t
[DKL(π

∗
t |π)]− Eν̃t [DKL(π

∗
t |π)]︸ ︷︷ ︸

(A)

(29)

+ Eν̃t [DKL(π
∗
t |π)]− Eν̂t [DKL(π

∗
t |π)]︸ ︷︷ ︸

(B)

+Eν̂t [DKL(π
∗
t |π)]− Eν̂t [DKL(π̂t|π)]︸ ︷︷ ︸

(C)

,

where (A) accounts for the mismatch between the discounted state visitation distributions of an
optimal policy π∗

t and a suboptimal one π̂t, (B) originates from the estimation error of DualDICE,
and (C) is due to the difference between π∗

t and π̂t measured according to π̂t. By the triangle
inequality, we can bound the total error by controlling each term separately. This decomposition
is general in the sense that it provides a guideline to bound each term with potentially different
strategies. In particular, the term (B) can be bounded differently if we replace DualDICE with
another stationary distribution estimation algorithm. To bound the terms (A) and (C), we have
developed new techniques based on tame geometry and subgradient flow systems. To streamline the
presentation, we consider the tabular setting with softmax parametrization.

To bound (A), we need to control the distance between ν∗t and ν̃t, which can be bounded by the
distance between the inducing policy parameters as long as they are Lipschitz continuous (Xu et al.,
2020, Lemma 3). In addition, the bound on (C) also depends on the distance between policies. In
general, controlling the distance between a policy to an optimal policy based on the suboptimality
gap requires the optimization to have some curvatures around the optima (e.g., quadratic growth
(Drusvyatskiy & Lewis, 2018) or Hölderian growth (Johnstone & Moulin, 2020)). However, to
the best of the knowledge of the authors, the only available results are algorithm-dependent PL
inequalities for policy gradient (Mei et al., 2020) or quadratic growth with entropy regularization
(Ding et al., 2021b).

Discussion on Assumption 1: As discussed in the main text, Assumption 1 implies boundedness
and Lipschitzness of the KL divergence. We make use of this in bounding the terms (A) and (C)
in (29) and eventually obtain Theorems 3.1 and 3.3. We expect that Assumption 1 is also needed
in unconstrained meta-learning by adapting our method, i.e., the MDP-within-online framework.
Technically, Assumption 1 is a minimum requirement even for single-task CRPO to provide provable
guarantees. This can be seen in the convergence guarantee of the original CRPO method (Lemma 4
and Lemma 21 in our paper, or Theorem 3 in (Xu et al., 2021) last line of their proof before the term
DKL(π

∗
t |πt,0) is submerged in the big-O notation). For example, as shown in our (2),
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R0 = Jt,0(π
∗
t )− E[Jt,0(π̂t)] ≤

2

αtM
Es∼ν∗

t
[DKL(π

∗
t |πt,0)] +

4αtc
2
max|S||A|

(1− γ)3
.

To ensure that the bound is nontrivial, we need to bound the term DKL(π
∗
t |πt,0). However, if πt,0

does not have full support over the state/action space, then there may be a state s where π∗
t (s) > 0

but πt,0(s) = 0, which would make the KL divergence infinite.

F.1 PRELIMINARIES ON TAME GEOMETRY

For the sake of completeness, let us recall some fundamental concepts/results in tame geometry, which
allows us to study the global geometry of the solution maps of a wide range of optimization problems,
which will be used in bounding the estimation error for the KL divergence. More information can
be found in (Davis et al., 2020; Van den Dries & Miller, 1996). Recall that a class of functions on a
bounded set is called Cp smooth when it possesses the uniformly bounded partial derivatives up to
order p.

Definition 3 (Whitney Stratification). A Whitney Ck stratification of a set I is a partition of I into
finitely many nonempty Ck manifolds, called strata, satisfying the following compatibility conditions:

1. For any two strata Ia and Ib, the implication Ia∩Ib ̸= ∅ implies that Ia ⊂ clIb holds, where
clIb denotes the closure of the set Ib.

2. For any sequence of points xk in a stratum Ia, converging to a point x⋆ in a stratum Ib, if
the corresponding normal vectors vk ∈ NIa(xk) converge to a vector v, then the inclusion
v ∈ NIb(x

⋆) holds. Here NIa(xk) denotes the normal cone to Ia at xk.

Roughly speaking, stratification is a locally finite partition of a given set into differentiable manifolds,
which fit together in a regular manner (property 1 in Def. 3). Whitney stratification as defined above
is a special type of stratification for which the strata are such that their tangent spaces (as viewed
from normal cones) also fit regularly (property 2).

There are several paths to verifying Whitney stratifiability. For instance, one can show that the
function under study belongs to one of the well-known function classes, such as semialgebraic
functions (Davis et al., 2020), whose members are known to be Whitney stratifiable. However,
to study the solution function of a general convex optimization problem, we need a far-reaching
axiomatic extension of semialgebraic sets to classes of functions definable on “o-minimal structures,”
which are very general classes and share several attractive analytic features as semialgebraic sets,
including Whitney stratifiability (Davis et al., 2020; Van den Dries & Miller, 1996).

Definition 4 (o-minimal structure). (Van den Dries & Miller, 1996) An o-minimal structure is defined
as a sequence of Boolean algebras Ov of subsets of Rv, such that for each nv ∈ N, the following
properties hold:

1. If some set X belongs to Ov , then X × R belong to Ov+1.

2. Let Pproj : Rv × R → Rv denote the coordinate projection operator onto Rv , then for any
X in Ov+1, the set Pproj(X) belongs to Ov .

3. Ov contains all sets of the form {x ∈ Rv : y(x) = 0}, where y(x) is a polynomial in Rv .

4. The elements of O1 are exactly the finite unions of intervals (possibly infinite) and points.

Then all the sets that belong to Ov are called definable in the o-minimal structure.

Definable sets have broader applicability than semialgebraic sets (in the sense that the latter is a
special kind of definable sets) but enjoys the same, remarkable stability property: the composition of
definable mappings (including sum, inf-convolution, and several other classical operations of analysis
involving a finite number of definable objects) in some o-minimal structure remains in the same
structure. We will crucially exploit these properties in the following sections.
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F.2 BASIC PROPERTIES OF SUBGRADIENT FLOW SYSTEMS

We also recall some basic definitions and properties of the subgradient flow system (see, e.g., (Bolte
et al., 2010, Thm. 13)). Let f : Rd → R ∪ {+∞} be a proper lower semicontinuous function.
Definition 5 (Subgradient flow system). For every x ∈ dom(f), there exists a unique absolutely
continuous curve (called trajectory or subgradient curve) θ(τ) : [0,+∞) → Rd that satisfies{

θ̇(τ) ∈ −∂f(θ(τ)) a.e. on (0,+∞)

θ(0) = θ0 ∈ dom(f).
(30)

Moreover, the trajectory also satisfies the following properties (Bolte et al., 2010, Thm. 13):

1. θ(τ) ∈ dom(∂f) for all τ ∈ (0,+∞).

2. For all τ > 0, the right derivative θ̇(τ+) is well defined and equal to

θ̇(τ+) = −∂0f(θ(τ)),
where ∂0f(θ) is the minimum norm subgradient in ∂f(θ). In particular, we have that
θ̇(τ) = −∂0f(θ(τ)), for almost all τ .

F.3 BOUNDING THE DISTANCE ∥θ̂t − θ∗t ∥

Recall Assumption 2, which requires that the objective/constraint functions and policy parametrization
are definable in some o-minimal structure (Van den Dries & Miller, 1996). This is a mild assumption
as practically all functions from real-world applications, including deep neural networks, are definable
in some o-minimal structure (Davis et al., 2020); also, the composition of mappings, along with the
sum, inf-convolution, and several other classical operations of analysis involving a finite number of
definable objects in some o-minimal structure remains in the same structure (Van den Dries & Miller,
1996). The far-reaching consequence of definability, exploited in this study, is that definable sets
and functions admit, for each k ≥ 1, a Ck–Whitney stratification with finitely many strata (see, for
instance, (Van den Dries & Miller, 1996, Result 4.8)). This remarkable property, combined with the
result that any stratifiable functions enjoys a nonsmooth Kurdyka–Łojasiewicz inequality (Bolte et al.,
2007), provides the foundation to bound the distance ∥π∗

t − π̂t∥ by the suboptimality gap. Note that
without further specifications, π∗

t is understood as one of the optimal policies that are closest to the
policy π̂t (i.e., the projection of π̂t onto the optimal policy set).

We start with the following elementary result. Here and throughout the section, we use Ft,d̃ =

{πt,θ : Jt,i(πt,θ) ≤ d̃t,i} to denote the feasible set with upper bounds d̃. Note that Ft,d is the original
feasible set. We also let IFt,d̃(·) be the indicator function for the set Ft,d̃.

Lemma 12. The function (with variable θ) Jt,0(πt,θ) + IFt,d̃(πt,θ), where d̃t is any vector such that
Ft,d̃ is non-empty, is definable.

Proof. Since Jt,i(·) is definable for i = 1, ..., p, by the rule of composition, which is due to the
definable counterpart of the Tarski-Seidenberg theorem, Jt,i(πt,θ)− dt,i is definable for i = 1, ..., p.
Thus, Ft,d̃ is definable on the same o-minimal structure by definition. Furthermore, IFt,d̃(·) is
definable as the indicator of Ft,d̃. The definability of Jt,0(πt,θ) follows similarly. Since definability
is preserved under addition, the function Jt,0(πt,θ) + IFt,d̃(πt,θ) is definable.

For the convenience of the reader, we restate the result for non-smooth Kurdyka–Łojasiewicz (KL)
inequality from (Bolte et al., 2007, Thm. 14).
Proposition 1 (Non-smooth Kurdyka–Łojasiewicz inequality). Let f be a lower semicontinuous
definable function. There exists ρ > 0, a strictly increasing continuous definable function h :
[0, ρ] → (0,∞) which is C1 smooth on (0, ρ), with h(0) = 0, and a continuous definable function
X : R+ → (0, ρ) such that

∥∂0f(x)∥ ≥ 1

h′(|f(x)|) ,

whenever 0 < |f(x)| ≤ X (∥x∥).
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Figure 3: To bound the distance between π∗
t and π̂t, we first bound the distance between π̃∗

t and the
optimal policy with respect to a larger feasible set Ft,d̃ by an argument based on subgradient flow
curve. Note that π̂t ∈ Ft,d̃ may be infeasible with respect to the original set of constraints but feasible
with respect to the relaxed constraints. We then bound the distance between the optimal policies π∗

t
and π̃∗

t , which correspond to the original feasible set Ft,d and the enlarged set Ft,d̃. By the triangle
inequality, we can then derive the desired bound on the distance between π∗

t and π̂t. Note that for
better visualization, we vertically separate the sets Ft,d and Ft,d̃, which also aims to indicate that in
general the optimal solution π̃∗

t has a higher objective than π∗
t due to the relaxed constraints.

Let θ and θ∗t denote the parameters of a policy πθ and π∗
t , respectively. Directly bounding the distance

between θ and θ∗t is difficult because π may be infeasible (this is even true for π̂t, since it is only
guaranteed to approximately satisfy the constraints), i.e., θ /∈ Ft,d. Thus, the typical approach of
following the subgradient flow of Jt,0(πθ) + IFt,d(πθ) to reach θ∗t is not applicable. The idea is to
enlarge the feasible set Ft,d by increasing the violation threshold d̃t,i ≥ dt,i + δ, for any δ > 0, such
that with high probability, θ ∈ Ft,d̃. Then by following the subgradient flow for Jt,0(πθ) + IF̃t(πθ),
we can arrive at a critical point θ̃∗t (corresponding to the policy π̃∗

t ), which is most likely different
from θ∗t . It then remains to bound the distance between θ∗t and θ̃∗t , which is possible due to the
preservation of definability through inf projection. This is the roadmap we will follow. A graphical
illustration of the approach is shown in Fig. 3.

Bounding the term ∥θ∗t − θ̃∗t ∥. In this part, we will bound the term ∥θ∗t − θ̃∗t ∥, which will be used to
bound ∥π∗

t − π̃∗
t ∥. Firstly, we will prove that the parameter θt, which represents the solution map of

an optimization with definable objective and constraints, is definable.
Proposition 2. Let θt(d) ∈ argmin {Jt,0(πt,θ), s.t. Jt,i(πt,θ) ≤ dt,i,∀i = 1, ..., p} be the solution
map of the constraint parameters d. Then, the function θt(d) is continuous and definable. Further-
more, there exists a finite partition of the space such that the restriction of θt(d) to each partition is
Cp smooth.

Proof. First, it can be seen that the solution map θt(d) ∈ argminJt,0(πt,θ) + IFt,d(πt,θ). Let
ϕt(d) = min Jt,0(πt,θ) + IFt,d(πt,θ) be the optimal value function. Since Jt,0(πt,θ) + IFt,d(πt,θ) is
definable by Proposition 12, and definability is preserved under inf projection, ϕt(d) is definable.
Since θt(d) = {θ : Jt,0(πt,θ) + IFt,d(πt,θ) = ϕt(d)}, by the Tarski-Seidenberg Theorem, θt(d) is
definable. The continuity property follows directly from Berge’s Maximum theorem.

Following the discussion of Whitney stratifications in (Bolte et al., 2007), since the graph of a
definable function is Whitney stratifiable, we can construct a partition by projecting the stratification
into the function domain, which will be a Whitney Cp-stratification by the constant rank theorem.
Furthermore, the restriction of the definable function to each stratum is Cp-smooth. Alternatively, we
can directly use the fact that for any definable function, there exists a Cp-decomposition which has a
finite number of cells, and the restriction to each cell is Cp-smooth (Van den Dries & Miller, 1996).
This completes the proof.

Now that we have proved that the function θt(d) is definable, we can obtain the bound ∥θ∗t − θ̃∗t ∥.
Intuitively, our proof exploits the fact that continuous and definable functions exhibit controlled
behaviors along any path, even if it crosses over a finite number of Whitney strata.

Lemma 13. For any d̃ such that Ft,d̃ is non-empty, the following holds:

∥θ∗t − θ̃∗t ∥ = ∥θ(d)− θ(d̃)∥ = O(∥d− d̃∥).
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Proof. Since every smooth function over a bounded set is Lipschitz, let us denote Ld as the maximum
of the Lipschitz constants for all the cells of the Whitney stratification of θt(d). Let d(λ) = λd+(1−
λ)d̃, where 0 ≤ λ ≤ 1, be the curve that connects between d and d̃. Also, let 0 = λ1 ≤ ... ≤ λn = 1
be the partition such that θt(d(λ)) belongs to one cell for all λi < λ < λi+1 for i = 1, ..., n− 1. We
know that n <∞ since d(θt) is Whitney stratifiable. Thus,

∥θt(d)− θt(d̃)∥ ≤
n−1∑
i=1

∥θt(d(λi))− θt(d(λi+1))∥

≤ Ld

n−1∑
i=1

∥d(λi)− d(λi+1)∥

≤ Ld∥d− d̃∥
n−1∑
i=1

|λi+1 − λi|

= Ld∥d− d̃∥
where the first inequality is due to triangle inequality, the second inequality is due to Lipschitz
continuity, the third inequality is due to the definition of d(λ), the first equality is due to the non-
decreasing sequence of λi.

Bounding the term ∥θ̃∗t − θ̂t∥. Recall that θ̂t is the parameter for π̂t (output of within-task CRPO),
and θ̃∗t is the parameter for an optimal solution with an enlarged feasible set Ft,d̃. In this subsection,
we will obtain the upper bound for the term ∥θ̃∗t − θ̂t∥. Let f(θ, d̃) = Jt,0(πθ)+IFt,d̃(πθ), and choose

d̃i = O(1/
√
M) for i = 1, ..., p, which coincides with the upper bound on constraint violation for

within-task CRPO such that θ̂t ∈ Ft,d̃ with high probability. In the next result, we will condition on
this high-probability event.

Lemma 14. With the choice of d̃ = d+ δ, where δ = O(1/
√
M) coincides with the upper bound on

constraint violation for within-task CRPO such that θ̂t ∈ Ft,d̃, the following holds:

∥θ̃∗t − θ̂t∥ ≤ O
(
h
(
1/
√
M
))

,

where h is a strictly increasing continuous function with the property that h(0) = 0 as specified in
Lemma 1.

Proof. Without loss of generality, consider f(θ) = Jt,0(πθ) + IFt,d̃(πθ) + c, where c :=

− inf Jt,0(πθ) + IF̃t(πθ), so that the minimal value of f is translated to 0. For simplicity, also
assume that f(θ̂t) ≤ X (∥θ̂t∥). Note that this assumption can be relaxed by using the concept of
“curves of maximal slope” at the cost of slightly more complicated analysis and bounds (Ioffe, 2009).

Now, consider a subgradient flow θ̇(τ) ∈ −∂f(θ(τ)) (see Definition 5), initialized at θ(0) = θ̂t then,
for any 0 ≤ s′ < s, we have that

h
(
f(θ(s′))

)
− h
(
f(θ(s))

)
=

∫ s′

s

d

dτ
h
(
f(θ(τ))

)
dτ

=

∫ s

s′
h′
(
f(θ(τ))

)
∥θ̇(τ)∥2dτ

≥
∫ s

s′
∥θ̇(τ)∥dτ

≥
∥∥∥∥∥
∫ s

s′
θ̇(τ)dτ

∥∥∥∥∥
= ∥θ(s)− θ(s′)∥

where the second equality is due to the property of the subgradient flow (see Sec. F.2), the first
inequality is due to ∥∂0(hf)

(
θ(τ)

)
∥ ≥ 1 from Proposition 1, and the second inequality is due to the
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triangle inequality. Thus, by taking s′ = 0 and s→ ∞, we have shown that

h(f(θ̂t)) ≥ ∥θ̂t − θ̃∗t ∥.
Therefore,

∥θ̂t − θ̃∗t ∥ ≤ h(f(θ̂t)− f(θ̃∗t ))
(i)

≤ h(Jt,0(π̂t)− Jt,0(π̃
∗
t )),

where the first inequality is due to the optimality of π̃∗
t , and (i) follows since both π̂t and π̃∗

t are
feasible for Ft,d̃. Note that the suboptimality bound can be split as

h(Jt,0(π̂t)− Jt,0(π̃
∗
t )) = h

(
Jt,0(π̂t)− Jt,0(π

∗
t ) + Jt,0(π

∗
t )− Jt,0(π̃

∗
t )

)
.

By CRPO, we can bound the value difference Jt,0(π̂t)− Jt,0(π
∗
t ) ≤ O(1/

√
M). Moreover, Since

the value function is Lipschitz (Xu et al., 2020, Lemma 4), the value difference Jt,0(π∗
t )− Jt,0(π̃

∗
t )

can be bounded by the distance ∥θ∗t − θ̃∗t ∥, which is bounded again by O(1/
√
M) according to

Lemma 13. Hence, recognizing that h is strictly increasing, we have proved the claim.

Bounding the term ∥θ∗t − θ̂t∥. Finally, we are able to bound the term of our original interests.
Lemma 15. Under assumption 2, the following holds:

∥θ∗t − θ̂t∥ ≤ O
(
h

(
1√
M

)
+

1√
M

)
,

where h is a strictly increasing continuous function with the property that h(0) = 0 as specified in
Lemma 1.

Proof. The claim follows directly from Lemmas 13 and 14 and the triangle inequality.

Remark 4. Note that our strategy to bound ∥θ∗t − θ̂t∥ is algorithmic-agnostic as it only relies on the
optimization landscape. The only place we rely on the algorithm is to bound the suboptimality gap,
which is then converted to a bound on ∥θ̃∗t − θ̂t∥ in Lemma 14. Also, the enlargement of the feasible
set should be viewed as a proof technique and has no implications for the algorithm design. Indeed,
the motivation for the enlargement is to properly design a subgradient flow system. Thus, the result
of Lemma 15 is not conditioned on how the enlargement is performed. Also, note that definability
is used differently in Lemmas 13 and 14. In the former case, we exploit the Whitney stratification
property to provide an upper bound, while in the latter case, we exploit the KL property to obtain a
lower bound, hence they serve different purposes.

F.4 BOUNDING TERM (A): |Eν∗
t
[DKL(π

∗
t |π)]− Eν̃t [DKL(π

∗
t |π)]|

The result from Lemma 15 can be used directly to provide bounds for (A) and (C). We start with the
term (A).
Lemma 16. The following bound holds:

|Es∼ν∗
t
[DKL(π

∗
t |π)]− Es∼ν̃t [DKL(π

∗
t |π)]| = O

(
h

(
1√
M

)
+

1√
M

)
(31)

where h is a strictly increasing continuous function with the property that h(0) = 0 as specified in
Lemma 1.

Proof.

|Es∼ν∗
t
[DKL(π

∗
t |π)]− Es∼ν̃t [DKL(π

∗
t |π)]|

=

∣∣∣∣ ∑
s∈St

(
ν∗t (s)− ν̃t(s)

)
DKL(π

∗
t (s)|π(s))

∣∣∣∣
≤ Cπ∥ν∗t − ν̃t∥1
≤ 2CπCν∥θ∗t − θ̂t∥2
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where the first equality is by definition, the first inequality is due to Assumption 1, and the second
inequality is due to (Xu et al., 2020, Lem. 3), which also specifies the constant Cν , and (Levin &
Peres, 2017, Prop. 4.2). The result then follows by recalling the result from Lemma 15.

F.5 BOUNDING TERM (C): |Eν̂t [DKL(π
∗
t |π)]− Eν̂t [DKL(π̂t|π)]|

Similarly, we can prove the upper bound for the error term (C).
Lemma 17. The following bound holds:

|Es∼ν̂t [DKL(π
∗
t |π)]− Es∼ν̂t [DKL(π̂t|π)]| = O

(
h

(
1√
M

)
+

1√
M

)
(32)

Proof.

|Es∼ν̂t [DKL(π
∗
t |π)]− Es∼ν̂t [DKL(π̂t|π)]|

=

∣∣∣∣∑
s∈S

ν̂t(s)

(
DKL(π

∗
t |π)−DKL(π̂t|π)

)∣∣∣∣
≤
∑
s∈S

ν̂t(s)

∣∣∣∣DKL(π
∗
t |π)−DKL(π̂t|π)

∣∣∣∣
≤ Lg

∑
s∈S

ν̂t(s)∥π∗
t (s)− π̂t(s)∥2

≤ Lg
∑
s∈S

ν̂t(s)∥θ∗t − θ̂t − c′1∥∞

≤ Lg∥θ∗t − θ̂t∥2
where the first inequality is due to the non-negativity of ν̂t(s) and triangle inequality, the second
inequality is due to Assumption 1, the third inequality holds for any constant c′ and is due to (Mei
et al., 2020, Lem. 24), and the last inequality is due to

∑
s∈S ν̂t(s) = 1 and by choosing c′ = 0. The

result then follows by recalling the result from Lemma 15.

F.6 BOUNDING TERM (B): |Eν̃t [DKL(π
∗
t |π)]− Eν̂t [DKL(π

∗
t |π)]|

Now, we will upper bound the error term (B). The proof follows DualDICE (Nachum et al., 2019).
We introduce the following notations. Let ÊdDt denote an average of empirical samples where
{si, ai, ri, s′i}Ni=1 ∼ dDt , and ρt be the initial state distribution for the CMDP task t. The number of
data points N = O(M1+1/σ), where σ is any positive number σ ∈ (0, 1). Note that the additional
factor of O(M1/σ) results from the critic evaluation per policy update (see (Xu et al., 2021, Thm. 1)).
We will roughly bound N = O(M2) in the following to simplify the presentation. The stationary
distribution correction factor is denoted as wπ̂t/Dt(s, a) =

ν̃t(s,a)
dDt (s,a)

.

We make the following regularity assumption on the distribution dDt with respect to the target policy
π̂t (Nachum et al., 2019, Asm. 1).
Assumption 3 (Reference distribution property). For any (s, a), ν̃t(s, a) > 0 implies that
dDt(s, a) > 0. Furthermore, the correction terms are bounded by some finite constant Cω:
∥ων̃t/Dt∥∞ ≤ Cω .

For convenience, we recapitulate the key points from DualDICE, where we also omit the task
dependence t (i.e., we use dD, π, and ρ in lieu of dDt , π̂t, and ρt, respectively). The objective
function is given by

J(z, ζ) = E(s,a,s′)∼,a′∼(s′)

[
(z(s, a)− γz(s′, a′))ζ(s, a)− ζ(s, a)2/2

]
(33)

− (1− γ) Es0∼β,a0∼(s0) [z(s0, a0)] . (34)

The objective in the form prior to introduction of ζ is denoted as J(z):

J(z) =
1

2
E(s,a)∼

[
(z − z)(s, a)2

]
− (1− γ) Es0∼β,a0∼(s0) [z(s0, a0)] . (35)
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Let Ĵ(z, ζ) denotes the empirical surrogate of J(z, ζ) with optimal solution as (ẑ∗, ζ̂∗). We de-
note z∗= argminz∈ J(z) and z∗ = argminz:S×A→ R J(z). We denote L(z) = maxζ∈H J(z, ζ)

and L̂(z) = maxζ∈H Ĵ(z, ζ) as the primal objectives, and ℓ(ζ) = minz∈F J(z, ζ), ℓ̂(ζ) =

minz∈F Ĵ(z, ζ) as the dual objectives. We apply some optimization algorithm OPT for optimizing
Ĵ(z, ζ) with samples {si, ai, ri, s′i}Ni=1 ∼, {si0}Ni=1 ∼ β, and target actions a′i ∼ (s′i), a

i
0 ∼ (si0) for

i = 1, . . . , N . The output of OPT is denoted by (ẑ, ζ̂). We also make the following definitions to
capture the error of approximation with F for z and H for ζ in optimizing Ĵ(z, ζ):

ϵapprox(F) := sup
z∈S×A→ R

inf
zF∈F

(∥zF − z∥D,1 + ∥zF − z∥ρπ,1) (36)

ϵapprox(H) := sup
ζ∈S×A→ R

inf
ζH∈H

(∥ζH − ζ∥D,1 + ∥ζH − ζ∥ρπ,1) (37)

ϵapprox(F ,H) := ϵapprox(F) + ϵapprox(H) (38)

We also define
ϵopt := ∥ζ̂ − ζ̂∗∥2Dt +

∥∥(ẑ∗ − B̂π ẑ∗
)
−
(
ẑ − B̂π ẑ

)∥∥2
Dt (39)

as the optimization error of OPT from DualDICE.

Lemma 18. By estimating ν̂t with DualDICE, the following bound holds:

|Eν̃t [DKL(π
∗
t |π)]− Eν̂t [DKL(π

∗
t |π)]| = O

(√
1

M
+ ϵopt + ϵapprox(F ,H)

)
,

Proof. We begin with the following decomposition:

(Eν̃t [DKL(π
∗
t |π)]− Eν̂t [DKL(π

∗
t |π)])2 ≤

2

(
ÊdDt

∑
a

(
(ẑ − B̂π̂t ẑ)(s, a)− (ẑ∗ − B̂π̂t ẑ∗)(s, a)

)
DKL(π

∗
t |π)

)2

︸ ︷︷ ︸
ϵ1

+ 2

(
ÊdDt

∑
a

(ẑ∗ − B̂π̂t ẑ∗)(s, a)DKL(π
∗
t |π)− EdDt

∑
a

ωπ̂t/Dt(s, a)DKL(π
∗
t |π))

)2

︸ ︷︷ ︸
ϵ2

.

We will bound each term above separately.

ϵ1 ≤ 2C2
π

(
ÊdDt

∑
a

(
ẑ − B̂π̂t ẑ

)
(s, a)−

(
ẑ∗ − B̂π̂t ẑ∗

)
(s, a)

)2

≤ 2C2
π

(
∥ζ̂ − ζ̂∗∥2Dt +

∥∥(ẑ∗ − B̂π ẑ∗
)
−
(
ẑ − B̂π ẑ

)∥∥2
Dt︸ ︷︷ ︸

ϵopt

)
,

where the error ϵopt is induced by the optimization OPT. The error term ϵ2 can be decomposed as

ϵ2 ≤2C2
π

(
ÊdDt

∑
a

(
ẑ∗ − B̂π̂t ẑ∗

)
(s, a)− EdDt

∑
a

(
ẑ∗ − Bπ̂t ẑ∗

)
(s, a)

)2

︸ ︷︷ ︸
ϵstat

+ 2C2
π

(
EdDt

∑
a

((
ẑ∗ − Bπ̂t ẑ∗

)
(s, a)− ωπ̂t/Dt(s, a)

))2

=2ϵstat + 2C2
π

(
EdDt

∑
a

((
ẑ∗ − Bπ̂t ẑ∗

)
(s, a)−

(
z∗ − Bπ̂tz∗

)
(s, a)

))2

,

(40)

where the equality is due to the result that z∗ − Bπ̂tz∗(s, a) = ωπ̂t/Dt(s, a) (see (Nachum et al.,
2019, Eq. 17)) and ϵstat is the error due to the finite number error. By (Nachum et al., 2019, Lem.
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7), ϵstat = O
(

logM+log 1
δ

M2

)
with probability at least 1− δ, where we use the bound on the number

of data as O(M2). To bound the second term, use the fact that J(z) as defined in 35 is 1-strongly
convex. Hence, (

EdDt
∑
a

((
ẑ∗ − Bπ̂t ẑ∗

)
(s, a)−

(
z∗ − Bπ̂tz∗

)
(s, a)

))2

≤ ∥
(
ẑ∗ − Bπ̂t ẑ∗

)
−
(
z∗ − Bπ̂tz∗

)
∥2Dt

≤ 2
(
J(ẑ∗)− J(z∗)

)
where (i) follows from (Nachum et al., 2019, Section D.1) ϵapprox(F) is the error due to the
approximation with F for z, ϵapprox(H) is the error due to the approximation with H for ζ, and ϵest
is the estimation error, and L is the Lipschitz constant for f .

To bound the error between J(ẑ∗) and J(z∗), we use the decomposition suggested in (Nachum et al.,
2019):

J(ẑ∗)− J(z∗) = J(ẑ∗)− L(ẑ∗)︸ ︷︷ ︸
(i)

+L(ẑ∗)− L(z∗F )︸ ︷︷ ︸
(ii)

+L(z∗F )− J(z∗F )︸ ︷︷ ︸
(iii)

+ J(z∗F )− J(z∗)︸ ︷︷ ︸
(iv)

, (41)

where (i) ≤ 2Cω
1−γ ∥ζ∗H − ζ∗∥Dt,1 ≤ 2Cω

1−γ ϵapprox(H), (ii) = O
(√

logM+log 1
δ

M

)
by (Nachum

et al., 2019, Lem. 6) (by also plugging in N = O(M2)), (iii) ≤ 0 by definition,
and (iv) = O(ϵapprox(F)). Note that we refer the reader to (Nachum et al., 2019, Sec.
D.1) for the above bounds. Therefore, we can bound J(ẑ∗) − J(z∗) on the order of

O
(
ϵapprox(H) + ϵapprox(F) +

√
logM+log 1

δ

M

)
.

Combining the above relations, while noting that 1√
M

decreases slower than 1
M in terms of M and is

thus kept as the upper bound, we have shown the result.

F.7 PUTTING IT TOGETHER: BOUNDING THE KL DIVERGENCE ESTIMATION ERROR

Theorem F.1 (KL divergence estimation error bound). The following bound holds:

|Eν∗
t
[DKL(π

∗
t |π)]− Eν̂t [DKL(π̂t|π)]|

= O
(
h

(
1√
M

)
+

1√
M

+
√
ϵopt +

√
ϵapprox(F ,H)

)
,

where h is a strictly increasing continuous function with the property that h(0) = 0 as specified in
Lemma 1, ϵapprox(F ,H) is defined in 38, and ϵopt is defined in 39.

Proof. The result follows by combining the upper bounds for the error terms (A), (B) and (C),
as specified by Lemmas 16, 18, and 17. We also apply the elementary inequality

√
a+ b+ c ≤√

a+
√
b+

√
c to further simplify the bound.

Remark 5. The bound above depends on the number of iterations M per task in different ways. By
increasing M , we can expect to reduce the suboptimality gap, which can help reduce the distance
between π̂t to the optimal set of policies. Also, increasing M results in a larger dataset used to
estimate its stationary distribution offline by DualDICE, which reduces the estimation error. The
bound indicates that the only terms that do not vanish as we increase the number of iterations per task
are those due to the inherent optimization error ϵopt and function approximation error ϵapprox(F ,H).
In the case those terms are negligible (which are possible in view of the recent breakthrough in
overparametrized deep learning (Zhang et al., 2021; Neyshabur et al., 2019; Li & Liang, 2018; Zou
et al., 2018; Arora et al., 2019), see also (Fan et al., 2021) for a survey), then the KL divergence
estimation can be driven to arbitrary accuracy.
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G PROOFS FOR THE SECTION 3.3

G.1 TAOG AND TACV BOUNDS FOR CRPO WITH ADAPTIVE LEARNING RATES

This section presents the task-averaged regret upper bounds for the CRPO when the adaptive learning
rates αt are used for each task, and the Q-estimation error is accounted for. We also recall that dt,i
is the constraint upper bound for i = 1, ..., p and ηt is the tolerance for constraint violation (i.e.,
increasing the upper bound to dt,i + ηt). For a single run of CRPO in task t, we denote Nt,0 as the
set of time steps the reward is maximized and Nt,i as the set of time step constraint i is minimized.
The Q-function in the CRPO algorithm is learned through TD learning with the total number of
iterations denoted by Kin. The Q-function of objective i for policy πt,m at time step m is denoted by
Qit,m, and the estimated Q-function is denoted by Q̄it,m. The maximum value for both rewards and
constraints is assumed to be cmax.

With all notations for CRPO in place, we present the following result (Xu et al., 2021)
Lemma 19. For the CRPO algorithm in the tabular settings with learning rates αt, the following
bound holds:

αt
∑

m∈Nt,0

(
Jt,0(π

∗
t )− Jt,0(πt,m)

)
+ ηtαt

p∑
i=1

|Nt,i|

≤ Es∼ν∗
t
[DKL(π

∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

α2
t

p∑
i=0

|Nt,i|

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2

Proof. If m ∈ Nt,0, by (Xu et al., 2021, Lemma 7), we have that:

αt
(
Jt,0(π

∗
t )− Jt,0(πt,m)

)
≤ Eν∗

t
[DKL(π

∗
t |πt,m)−DKL(π

∗
t |πt,m+1)] +

2c2max|S||A|
(1− γ)3

α2
t

+
3αt(1 + αtcmax)

(1− γ)2
∥Q0

t,m − Q̄0
t,m∥2. (42)

Similarly, if m ∈ Nt,i, we can write

αt
(
Jt,i(πt,m)− Jt,i(π

∗
t )
)
≤ Eν∗

t
[DKL(π

∗
t |πt,m)−DKL(π

∗
t |πt,m+1)] +

2c2max|S||A|
(1− γ)3

α2
t

+
3αt(1 + αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2. (43)

Taking the summation of 42 and 43 from m = 0 to M − 1, we get

αt
∑

m∈Nt,0

(
Jt,0(π

∗
t )− Jt,0(πt,m)

)
+

p∑
i=1

∑
m∈Nt,i

αt
(
Jt,i(πt,m)− Jt,i(π

∗
t )
)

≤ Eν∗
t
[DKL(π

∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

p∑
i=0

α2
t |Nt,i|

+

p∑
i=0

∑
m∈Nt,i

3αt(1 + αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2

Since Jt,i(πt,m) − Jt,i(π
∗
t ) ≥ ηt − ∥Qit,m − Q̄it,m∥ (Xu et al., 2021, Eq. 15), by rearranging the

terms above, we obtain the result.

Next, we study the condition on the maximum constraint violation threshold ηt and how it affects
Nt,0 and the upper bounds for TAOG and TACV. We make the following assumption to proceed.

Assumption 4. Assume that
∑
m∈Nt,0 Jt,0(π

∗
t )− Jt,0(πt,m) ≥ cJ for some cJ ∈ (− 1

2αtηtM, 0].

37



Published as a conference paper at ICLR 2023

The assumption above indicates that the policies in Nt,0 do not have rewards higher than the optimal
policy by more than 1

2αtηt on average. Note that it is indeed possible to have rewards higher than the
optimal policy if the corresponding policy does not satisfy some safety constraints (i.e., infeasible
policy). However, it is not a strong assumption since we are comparing it with the optimal policy.
The above assumption is not present in (Xu et al., 2021), which invalidates one of its derivation steps
(in particular, (Xu et al., 2021, Thm. 3)), and is thus introduced to rectify the proof.

Lemma 20. Suppose that the following condition holds:

1

2
ηtMαt ≥ Eν∗

t
[DKL(π

∗
t |πt,0)] +

2c2max|S||A|M
(1− γ)3

p∑
i=0

α2
t

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2. (44)

Then, we have that Nt,0 ̸= ∅, i.e., π̂t is well-defined; also, one the following two statements must
hold,

1. |Nt,0| ≥M/2,

2.
∑
m∈Nt,0

(
Jt,0(π

∗
t )− Jt,0(πt,m)

)
≤ 0.

Under assumption 4, we also have the following holds:

|Nt,0| ≥
(
1

2
− κ

)
M

for some κ ∈ (0, 12 ).

Proof. The proof for Nt,0 ̸= ∅ follows directly from (Xu et al., 2021, Lem. 9). For the second

statement, we consider the case that
∑
m∈Nt,0

(
Jt,0(π

∗
t ) − Jt,0(πt,m)

)
> 0. From Lemma 19, it

implies that

ηt

p∑
i=1

αt|Nt,i| ≤ Es∼ν∗ [DKL(π
∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

p∑
i=0

α2
t |Nt,i|

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2.

Suppose that |Nt,0| < M/2, then
∑p
i=1 |Nt,i| > M/2, we have that

1

2
αtηtM < Es∼ν∗ [DKL(π

∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

p∑
i=0

α2
t |Nt,i|

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2,

which contradicts 44. Hence, we must have |Nt,0| ≥M/2.

Next, we show that |Nt,0| ≥
(
1
2 − κ

)
M for some κ ∈ (0, 12 ). Under assumption 4 and by Lemma 19,

we have that

ηt

p∑
i=1

αt|Nt,i| ≤ Es∼ν∗ [DKL(π
∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

p∑
i=0

α2
t |Nt,i|

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2 − αtcJ .
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Choose κ := −cJ
αtηtM

. Since −cJ < 1
2αtηtM by assumption, we have that κ ∈ (0, 12 ). Consider the

case that |Nt,0| <
(
1
2 − κ

)
M , which implies that

∑p
i=1 |Nt,i| >

(
1
2 + κ

)
M . This implies that

(1
2
+ κ
)
αtηtM ≤ Es∼ν∗ [DKL(π

∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

p∑
i=0

α2
t |Nt,i|

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,m − Q̄it,m∥2,

which again contradicts 44. Hence, we must have |Nt,0| ≥
(
1
2 − κ

)
M .

Now, we prove the upper bound of suboptimality and constraint violation per task.

Lemma 21. Let the violation tolerance be chosen as:

ηt =
2Es∼ν∗

t
[DKL(π

∗
t |πt,0)]

Mαt
+
αt4c

2
max|S||A|

(1− γ)3
+

p∑
i=0

2αt(3 + (1− γ)2 + 3αtcmax)√
Mαt(1− γ)2

,

Then, the following holds

Ut,0(πt,0, αt) =
ct1
αtM

Es∼ν∗
t
[DKL(π

∗
t |πt,0)] + ct2αt +

p∑
i=0

ct3αt + ct4α
2
t

αt
√
M

(45)

Ut,i(πt,0, αt) = Ut,0(πt,0, αt) +
ct5√
M
, (46)

where ct1 = 2, ct2 =
4c2max|S||A|

(1−γ)3 , ct3 = 3+(1−γ)2
(1−γ)2 , ct4 = 3cmax

(1−γ)2 , and ct5 =
2
√

(1−γ)|S||A|
1−2κ .

Proof. From Lemma 19, we have that

αt
∑

m∈Nt,0

(
Jt,0(π

∗
t )− Jt,0(πt,m)

)
+ ηt

p∑
i=1

αt|Nt,i|

≤ Es∼ν∗
t
[DKL(π

∗
t |πt,0)] +

2c2max|S||A|
(1− γ)3

p∑
i=0

α2
t |Nt,i|

+

p∑
i=0

∑
m∈Nt,i

αt(3 + (1− γ)2 + 3αtcmax)

(1− γ)2
∥Qit,πm − Q̄it,ωm∥2

If
∑
m∈Nt,0

(
Jt,0(π

∗
t )−Jt,0(πt,m)

)
≤ 0, then Jt,0(π∗

t )−E[Jt,0(π̂t)] ≤ 0. If
∑
m∈Nt,0

(
Jt,0(π

∗
t )−

Jt,0(πt,m)
)
> 0, then, by Lemma 20, we have |Nt,0| ≥M/2. Hence,

Jt,0(π
∗
t )− E[Jt,0(π̂t)] =

1

|Nt,0|
∑

m∈Nt,0
[Jt,0(π

∗
t )− Jt,0(πt,m)]

≤ 2

αtM
Eν∗

t
[DKL(π

∗
t |πt,0)] + ct2αt +

p∑
i=0

∑
m∈Nt,i

(ct3αt + ct4α
2
t )

Mαt
∥Qit,πm − Q̄it,ωm∥2,

≤ 2

αtM
Eν∗

t
[DKL(π

∗
t |πt,0)] + ct2αt +

p∑
i=0

∑
m∈Nt,i

(ct3αt + ct4α
2
t )√

Mαt

where the last inequality is due to the choice of Kin = Θ(M1/σ log2/σ(|S|2|A|2M1+2/σ/δ)) as
specified by (Xu et al., 2021, Lem. 8) for critic evaluations. Here, the constants are chosen as ct1 = 2,
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ct2 =
4c2max|S||A|

(1−γ)3 , ct3 = 3+(1−γ)2
(1−γ)2 , ct4 = 3cmax

(1−γ)2 . For constraint violation, consider any i = 1, ..., p,
we have

E[Jt,i(π̂t)]− dt,i =
1

|Nt,0|
∑

m∈Nt,0
Jt,i(πt,m)− dt,i

≤ 1

|Nt,0|
∑

m∈Nt,0

(
J̄t,i(πt,m)− dt,i

)
+

1

|Nt,0|
∑

m∈Nt,0
|J̄t,i(πt,m)− Jt,i(πt,m)|

≤ ηt +
1

|Nt,0|

p∑
i=0

∑
m∈Nt,i

∥Qit,πm − Q̄it,πm∥2

≤ ηt +
2

(1− 2κ)M

p∑
i=0

∑
m∈Nt,i

∥Qit,πm − Q̄it,πm∥2

where the first inequality is due to triangle inequality, the second inequality is by the design of the
CRPO algorithm, and the third inequality is due to Lemma 20, where κ ∈ (0, 12 ). By the choice of
Kin, we have that

∑p
i=0

∑
m∈Nt,i ∥Qit,πm − Q̄it,πm∥2 ≤

√
(1− γ)|S||A|M . Plugging the value of

ηt yields the desired result.

Finally, we are able to provide the following bounds on TAOG and TACV in the case of adaptive
learning rates.

Theorem G.1 (Bounds on TAOG and TACV). Suppose we run the CRPO algorithm for M steps per
task t with learning rates αt. Then, after T tasks, the TAOG R̄0 is given by

R̄0 =
1

T

T∑
t=1

[
ct1
αtM

Es∼ν∗
t
[DKL(π

∗
t |πt,0)] + ct2αt +

p∑
i=0

ct3αt + ct4α
2
t

αt
√
M

]
, (47)

and the TACV R̄i is given by

R̄i =
1

T

T∑
t=1

[
ct1
αtM

Es∼ν∗
t
[DKL(π

∗
t |πt,0)] + ct2αt +

p∑
i=0

ct3αt + ct4α
2
t

αt
√
M

+
ct5√
M

]
, (48)

for i = 1, ..., p, where ct1 = 2, ct2 =
4c2max|S||A|

(1−γ)3 , ct3 = 3+(1−γ)2
(1−γ)2 , ct4 = 3cmax

(1−γ)2 , and

ct5 =
2
√

(1−γ)|S||A|
1−2κ .

Proof. The proof follows directly by summing the results 45 and 46 over t = 1, ..., T .

G.2 ADAPTING TO THE DYNAMIC REGRET USING ADAPTIVE LEARNING RATES

We restate the theorem below for convenience.

Theorem G.2. Let each within-task CMDP t run M steps of CRPO, initialized by policy πt,0 :=
INIT(t) and learning rates {αt}pi=0 := SIM(t). Let κ∗ := argminL(κ), where

L(κ) = UsimT (κ) +
U initT ({ψt}Tt=1)

κ
+

ET
κ

+

T∑
t=1

[
f̂ initt (ϕt)

κ
+ fratet (κ)

]
, (49)

and {ψ∗
t }Tt=1 is any comparator sequence. Then, the following bounds on TAOG and TACV hold:

R̄i ≤
L(κ∗)
T

, ∀ i = 0, ..., p. (50)

Proof. The idea of the proof is to freeze the learning rates first to obtain a dynamic regret bound based
on policy initialization and then optimize over the learning rates to obtain a tighter characterization.
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Also, since TAOG and TACV only differ by a bias term that does not depend on either the learning
rates or the initial policy, we can treat them indistinguishably. In particular,

T∑
t=1

Ut(πt,0, αt) =

T∑
t=1

fsimt (αt) (51)

≤ min
κ

UsimT (κ) +

T∑
t=1

fsimt (κ) (52)

≤ min
κ

UsimT (κ) +
U initT (Ψ)

κ
+

T∑
t=1

[
f initt (ψt)

κ
+ fratet (κ)

]
(53)

≤ min
κ

UsimT (κ) +
U initT (Ψ)

κ
+

ET
κ

+

T∑
t=1

[
f̂ initt (ϕt)

κ
+ fratet (κ)

]
. (54)

where Ψ := {ϕt}Tt=1. Let

L(κ) = UsimT (κ) +
U initT (Ψ)

κ
+

ET
κ

+

T∑
t=1

[
f̂ initt (ϕt)

κ
+ fratet (κ)

]
(55)

and define
κ∗ = argminL(κ). (56)

Thus, plugging κ = κ∗ in 54 results in 50.

Now, we provide the regret upper bound for UsimT (κ), when SIM(t) is OGD over the sequence
f̂simt (κ).

Corollary 2. For any fixed comparator α∗ = argmin
κ

∑T
t=1 f̂

sim
t , if SIM(t) is OGD which is run

on a sequence of loss functions {f̂simt }t∈[T ] with the step-size α∗

Kα
√
2T

, then the following bound
holds for static regret:

T∑
t=1

f̂simt (κ)−
T∑
t=1

f̂simt (α∗) ≤
√
2TKα|α∗|+

(
1 +

4
√
2KαLα|α∗|

(2C1 − C2
1Lα)

√
T

)
ET ,

for any C1 ∈ {c ∈
(
0, 2

Lα

)
: α∗ + c(u − ∇̂t) ∈ Λ} where u is an ϵ-subgradient of fsimt (κ) with

respect to κ, ET :=
∑T
t=1 ϵt is the cumulative inexactness, ϵt is the upper bound from Theorem 3.1.

Proof. The proof follows directly after substituting c = 4
2C1−C2

1Lα
and other appropriate constants

in Theorem E.1.

Next, we provide the proof of Corollary 1 TAOG and TACV regret bounds when INIT and SIM are
either FTL or inexact OGD.

Corollary 3. For any fixed comparator α∗ = argmin
κ

∑T
t=1 f̂

sim
t and ct3 = 3+(1−γ)2

(1−γ)2 . If INIT(t)

and SIM(t) are FTL or inexact OGD over the sequences f̂ initt and f̂simt , then, the following bounds
on TAOG and TACV hold:

R̄i ≤
1√
M

√
2Kα|α∗|√
MT

+

(
ct3 +

4
√
2KαLα|α∗|

(2C1 − C2
1Lα)

√
T

)
ET√
MT

+
1√
ct2

√
U initT ({ψ∗

t }t∈[T ]) + ET + T V̂ 2
ψ

M1/4T

 ,

(57)
for all i = 0, . . . , p, where {ψ∗

t }t∈[T ] is any comparator sequence, ct3 = 3+(1−γ)2
(1−γ)2 , and ct2 =

4c2max|S||A|
(1−γ)3 .
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Proof. Firstly, the following inexact upper bounds hold for U initT and UsimT :

U initT ({ψ∗
t }t∈T ) = min

(
C1∥ϕ1 − ψ∗

1∥2 + C2ET + C3ST +
1

2β

T∑
t=1

∥∇ℓt(ψ∗
t )∥2,

C4∥ϕ1 − ψ∗
1∥+ C5ẼT + C4PT

)
,

(58)

UsimT (κ) =
√
2TKα|α∗|+

(
1 +

4
√
2KαLα|α∗|

(2C1 − C2
1Lα)

√
T

)
ET , (59)

where the constants in the 58 and 59 are from the Lemma 11 and Corollary 2 respectively.

Plugging these in the equation 49, we can obtain the following:

L(κ) ≤
√
2TKα|α∗|+

(
1 +

4
√
2KαLα|α∗|

(2C1 − C2
1Lα)

√
T

)
ET +

1

κ
min

(
C1∥ϕ1 − ψ∗

1∥2

+ C2ET + C3ST +
1

2β

T∑
t=1

∥∇ℓt(ψ∗
t )∥2, C4∥ϕ1 − ψ∗

1∥+ C5ẼT + C4PT
)

+
ET
κ

+
T V̂ 2

ψ

κ
+ fratet (κ),

where the relation V̂ 2
ψ = 1

T

∑T
t=1 Eν̂t [DKL(π̂t|ψ∗

t )] is used to get the second last term
T V̂ 2

ψ

κ . To get
κ∗ such that L(κ) is minimized, we proceed using the KKT optimality conditions to get dLdκ as

dL

dκ
=

−U initT ({ψ}t∈[T ])

κ2
− ET
κ2

− T V̂ψ
κ2

+ ct2M + ct4
√
M.

Therefore, we obtain κ∗ =

√
UinitT (ψ)+ET+T V̂ 2

ψ

ct2M+ct4
√
M

.

Substituting this value of κ∗ in G.2, and using the approximation
√

1
M+

√
M

≊ 1
M1/4 , we can obtain

the final result.

H ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we describe our experimental setup and other additional details for the OpenAI gym
experiments under constrained settings. We present the performance of Meta-SRL on the Acrobot and
the Frozen lake under high task-similarity conditions. We first present some details on the baselines
used to avoid any confusion.

Details of baselines used: Denote the policy initialization for task t as ϕt. First baseline is the FAL,
which initializes the policy ϕt+1 for the test task t+ 1 as ϕt+1 = 1

t

∑t
i=1 ϕi. This is done online as

the tasks are encountered sequentially.

For the simple averaging baseline, we run CRPO on 10 tasks with the random initialization and
evaluate the performance on a test task by initializing with the average of all the suboptimal policies
from the batch of suboptimal policies, i.e., ϕT = 1

T−1

∑T−1
i=1 ϕi, where T is the test task. This can

be seen as an offline method, where suboptimal policies from T − 1 tasks are stored and averaged to
get the initialization for the test task.

The pre-trained baseline uses suboptimal policy from an already trained task to initialize the policy
on the test task, i.e., ϕt = π̂t′ , where ϕt is the policy initialization for the task t, and π̂t′ is the
suboptimal policy returned some pre-trained task t′. This baseline could be thought of as the
Strawman initialization strategy, where the policy for the next task is initialized using the suboptimal
policy from the previous task, i.e., ϕt+1 = π̂t.
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For the Meta-SRL in the discrete state action space (i.e., Frozen lake), we take the weighted average of
the previous suboptimal policies weighted by the stationary distributions induced by each suboptimal
policy over all the states. We also adapt the learning rates αt for the CRPO algorithm for each task t.
The difference between FAL and Meta-SRL is that Meta-SRL weights the suboptimal policies higher
in the states which were encountered more frequently.

Random initialization baseline is using random iniitalization for the within-task algorithm CRPO.

Experimental setup: We run all the algorithms online where tasks are encountered sequentially and
present the results for the test task after the policy initialization suggested by respective baselines. We
do 10 runs for each baseline on the test task and present the variance plots. On the test task, we train
for 8 steps on the Frozen lake and for 5 steps on the Acrobot. In Frozen lake, each step corresponds to
5 episodes, and the average rewards/costs are reported for each step in the performance and constraint
violation plots.

H.1 FROZEN LAKE

Frozen lake: For the Frozen lake, we randomly generate T = 10 different orientations as tasks
over the probability of a state being frozen or a hole and evaluate the performance for the scenarios
with high task-similarity (low variance for the latent CMDP distribution) or low task-similarity (high
variance for the latent CMDP distribution). The agent gets rewarded +2 when it reaches the goal
state and incurs a cost −1 when it falls into a hole. We choose the constraint threshold dt,i = 0.3.

High task-similarity: To generate tasks with high task-similarity, we start with a random frozen lake
grid of 4× 4, where the probability of each grid being frozen is 0.7. Then, we generate 9 different
grids which differ from the first one by only one of the grids. This means the agent always encounters
the new grid, which is very similar to the previous task. From Figure 4, we can observe that baselines
pre-trained and FAL are competitive with the Meta-SRL in terms of reward maximization and almost
zero constraint violations. The good performance of the pre-trained baseline can be explained using
the fact that the the test task and the training task are very similar; the policy initialization will be
close to the optimal policy of the test task.

Figure 4: Frozen lake results for reward maximization and constraint violations when the task-
relatedness is high. The blue dashed line represents the averaged thresholds for the constraint
violations.

Low task-similarity: In this case, random tasks are generated where the probability of a tile being
frozen is kept between 0.3 and 0.7. The tasks are less similar due to the high uncertainty associated
with the changing orientations.

H.2 ACROBOT

Acrobot: Acrobot is a 2 link robot OpenAI gym environment with continuous state space. The agent
is rewarded when it achieves a certain height of the end link. Two constraints are introduced for
two links, where a −1 cost is incurred if any link swings in the prohibited direction. We randomly
generate T = 50 different tasks with different mass links and centers of gravity.
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High task-similarity: To generate tasks with high similarity for the acrobot, we considered changing
the mass of the links, the center of gravity (COG), and constraint threshold for each link. The changes
in these quantities were done by adding noise to the default quantities. We considered a Gaussian
noise with a low variance of 0.1 to change the tasks only slightly. From Figure 5, we can observe
that only pre-trained and FAL baselines are competitive with the Meta-SRL in terms of reward
maximization and almost zero constraint violations.

Figure 5: Acrobot results for reward maximization and constraint violations when the task-relatedness
is high. The blue dashed line represents the averaged thresholds for the constraint violations.

Low task-similarity: To generate low similar tasks, we increased the variance of the Gaussian
noise to 0.3. We can observe from Figure 2 that the performance of the baselines was poor for con-
straint satisfaction, while Meta-SRL could converge quickly for reward maximization and constraint
satisfaction.

Note that, in real-world settings, tasks are likely to have low similarity in terms of how close their
optimal policies are. The good performance of Meta-SRL under these settings highlights its potential
to be extended to real-world settings where safety constraints are present.

H.3 HALF CHEETAH

Half-cheetah is a simulation environment for a 2-dimensional robot. It consists of 9 links and eight
joints, where the goal for the cheetah is to run at a certain velocity. It has a 17-dimensional state
space and a 6-dimensional action space. The reward is calculated as the negative of the absolute
difference between the current cheetah velocity and the desired velocity. The original HalfCheetah
environment does not have any constraints. We introduce a constraint that penalizes the deviation of
the cheetah’s head from some desired height:

hcheetah − htarget ≤ ϵ,

where we specify the cumulative absolute difference between the cheetah head height and the desired
height to be less than a tolerance ϵ. The cheetah is trained on T = 100 tasks for both high and low
task-similarity settings.

High task-similarity: To generate tasks with high similarity, the goal velocity for each training task
is uniformly sampled from a range of [0.35, 0.65]m/s. From Figure 6, we can observe that under
high task similarity settings, Meta-SRL is able to achieve high rewards and also able to keep the
constraint violation of the cheetah’s head height below the threshold. Under high task-similarity
settings, pre-trained and Meta-SRL perform well, as expected. However, it can be observed that both
simple averaging and random initialization perform poorly in this setting.

Low task-similarity: To generate tasks with low similarity for the half-cheetah, the goal velocity for
each training task is uniformly sampled from a range of [0.0, 1.0]m/s. Tasks are less similar due to
the high variance of goal velocities that the cheetah is trained on. It can be observed from Figure 7
that Meta-SRL is able to achieve higher rewards and zero constraint violations quickly compared to
other baseline initializations under low task-relatedness settings. The pre-trained baseline can achieve
higher rewards, but similar to other baselines, it cannot achieve constraint satisfaction within 10 steps.
It can also be observed that both simple averaging and random initialization perform poorly in reward
maximization in this setting. Close inspection indicates that there is a high variance among the policy
parameters learned from each task, which may result in interference among different tasks in the
relatively high dimensional state space.
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Figure 6: Half-cheetah results for reward maximization and constraint violations when the task-
relatedness is high. The blue dashed line represents the averaged thresholds for the constraint
violations. Here, the simple averaging and random initialization perform the worst on the test task.
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Figure 7: Half-cheetah results for reward maximization and constraint violations when the task-
relatedness is low. The blue dashed line represents the averaged thresholds for the constraint
violations.

H.4 HUMANOID

Humanoid is a simulation environment of a 3D bipedal robot, which consists of a torso (abdomen)
with two arms and legs. Each leg and arm has two links (representing the knees and elbows,
respectively). It has a 376-dimensional observation space and a 17-dimensional action space. The
goal of the humanoid is to walk forward as fast as possible without falling over.

The original humanoid environment does not have any constraints. We introduce a constraint that
penalizes the deviation of the angles between the torso and the upper arm and the angle between the
upper arm and the lower arm, such that humanoid motions are smooth and graceful. The cumulative
constraint is given as: ∣∣∣θtr − π

4

∣∣∣+ ∣∣∣θtl − π

4

∣∣∣+ ∣∣∣θr − π

4

∣∣∣+ ∣∣∣θl − π

4

∣∣∣ ≤ ϵ,

where θtr, θtl, θr, and θl are the angles between the torso and right arm, the angle between the torso
and the left arm, the angle between both the upper and lower right arms, and the angle between both
the upper and lower left arms, respectively. We specify the cumulative absolute difference between
all these angles and the desired angle to be less than a tolerance ϵ. The reward is calculated on the
basis of the dot product between the direction and the velocity vector of the Center of Gravity of the
humanoid, multiplied by the default scaling value in the humanoid environment Wf . the humanoid
as follows:

r =Wf (vy sin θ + vx cos θ),

where r is the instantaneous reward that accounts for the amount of forward movement by the
humanoid, vx, and vy are the horizontal and lateral components of the velocity, and θ is the walking
direction of the humanoid. The default value of Wf is 1.25. The humanoid is trained on T = 250
tasks for both high and low task-similarity settings.
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High task-similarity: We generate different tasks by changing the direction of motion of the
humanoid. Possible direction angles in the humanoid environment range from −π/2 to π/2 (which
varies from left to right). To generate tasks with high similarity, the goal direction of the humanoid for
each training task is uniformly sampled from a range of [−π/4, π/4]. From Figure 8, we can observe
that under high task similarity settings, Meta-SRL is able to achieve high rewards and maintain the
constraint violation of the humanoid’s hand and torso angles below the threshold of ϵ = 4. Under
high task-similarity settings, both pre-trained and Meta-SRL perform well, as expected. However, it
can be observed that both simple averaging and random initialization perform poorly in this setting.
Moreover, the pre-trained baseline also fails to learn reward-maximizing behaviors.
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Figure 8: Humanoid results for reward maximization and constraint violations when the task-
relatedness is high. The blue dashed line represents the averaged thresholds for the constraint
violations.

Low task-similarity: To generate tasks with low similarity for the humanoid, the goal direction for
each training task is uniformly sampled from a range of [−π/4, π/4]. Tasks are less similar due to
the high variance of goal direction that the humanoid is trained on. Figure 9 shows that Meta-SRL
is able to quickly achieve higher rewards and zero constraint violations compared to other baseline
initializations under low task-relatedness settings. The pre-trained baseline also achieves constraint
satisfaction in this case but fails to learn behaviors to maximize the rewards within 10 steps. It can
also be observed that both simple averaging and random initialization perform poorly in reward
maximization in this setting. This can be attributed to a high variance among the policy parameters
learned from each task, which may result in interference among different tasks in the relatively
high-dimensional state space.
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Figure 9: Humanoid results for reward maximization and constraint violations when the task-
relatedness is low. The blue dashed line represents the averaged thresholds for the constraint
violations.

I RELATION OF META-SRL TO HARDNESS RESULTS IN (KWON ET AL., 2021)

There is a key difference in the problem setting of meta-learning in our study and the latent MDP
setting in (Kwon et al., 2021). The latent MDP setting is more challenging in the sense that there is no
clear boundary between tasks. In the latent MDP setting, each episode may come from an unknown
MDP drawn from a distribution (as a special case of POMDP); in the meta-learning setting, the agent
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knows when a new task has arrived and is allowed to interact with the MDP over a set of episodes
(the number is linear with respect to M in our paper). Due to the above difference, the worst-case
lower bound of requiring an exponential number of episodes to learn an ϵ-optimal policy in (Kwon
et al., 2021) does not hold in our case. Indeed, if the identity (referred to as “context” in latent MDP)
is revealed or can be inferred, (Kwon et al., 2021) is able to achieve a regret that is polynomial in the
number of episodes (Thms. 3.3 and 3.4 from (Kwon et al., 2021)).

Furthermore, a close examination of the bounds provided by (Kwon et al., 2021) also reveals some
differences from our result. In particular, let K be the number of contexts in a latent MDP and N be
the total number of episodes (N is on the order of TM in our case as we encounter T tasks, each
with M episodes). Then (Kwon et al., 2021) is able to bound the regret (without dividing by the
number of episodes N ) as O(

√
KN). To compare their bound with ours, we consider each task in

the meta-learning setting as a context, so T = O(K). Therefore, their upper bound (after dividing by
the number of episodes N = TM ) becomes O(1/

√
M), which does not diminish with the number

of tasks T . Note that our bound (see the comment after Corollary 1) is O
(

V̂ψ

M3/4
√
T

)
(after dividing

by the number of episodes N = TM ), where for simplicity we have assumed ET = 0, i.e., exact
access to the loss function. Note that V̂ψ is a measure of task-relatedness (a smaller value indicates
more relatedness among tasks). It can be seen that while we have a worse order dependence on M ,
our bound scales with task relatedness V̂ψ and diminishes with respect to the increasing number of
tasks T . This is expected as we leverage the relatedness among contexts (in fact, the result of (Kwon
et al., 2021) would hold when tasks are sufficiently different from each other to infer the contexts
with spectral methods). In summary, we refer to (Kwon et al., 2021) as an example that achieving
regret diminishing in the number of tasks T is hard, even with the assumption of observing the task
identities (contexts).

J NOTATIONS AND CONSTANTS
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Notation Definition
t index of task
k index of OGD steps
ϕt,πt,0 policy initialization for task t
αt learning rate of within-task algorithm
t ∈ [T ] set of all tasks, where [T ] = {1, . . . , T}
Mt CMDP for task t
S state space of CMDP Mt

A ∈ Rna action space of CMDP Mt

ρt initial state distribution of task t
Pt(·|s, a) transition kernel for task t
ct,0 : S ×A → [0, 1] reward function
ct,i : S ×A → [0, 1] cost function i for task t
p total number of constraints
m ∈ [M ] set of all timesteps for within-task algorithm
∆(A)|S| simplex over all state-action pairs
πt : S → ∆(A) stochastic policy for task t
νπt state visitation distribution of policy π at task t
θ softmax policy parameters
V it,π(s) state-value function for reward (i = 0) or cost i in task t with policy π
Qit,π(s, a) action-value function for reward (i = 0) or cost i in task t with policy π
Jt,i(π) expected total reward (i = 0) or cost i for task t and policy π
dt,i bound on the expected total cost i for task t
Π∗
t set of optimal solutions for task t

π∗
t optimal policy for task t
cmax maximum value of reward/cost functions
DKL(·|·) KL divergence
R̄0, R̄i TAOG and TACV
π̂t suboptimal policy returned by within-task algorithm in task t
D∗, D̂∗ true and empirical task-similarity
Vψ ,V̂ψ true and empirical task-relatedness
∆Aϱ shrinkage simplex set inside ∆A
Lg , Lπ Lipschitzness and smoothness parameter for KL divergence of policy π w.r.t. initial policy
Cπ maximum value of KL divergence of policy π w.r.t. initial policy
ωπ/Dt(s, a) stationary distribution correction for task t at state s action a
Dt off policy dataset for task t
µπ strong convexity parameter for KL divergence of policy π w.r.t. initial policy
{ψ∗

t }Tt=1 dynamically varying comparator sequence
ϵt inexactness in the KL divergence estimation using DualDICE
ν̂t state distribution induced by π̂t
ϵopt optimization error in DualDICE
ϵapprox approximation error in DualDICE
F ,H hypothesis class used in DualDICE
ET cumulative inexactness for KL divergence estimation given by

∑T
t=1 ϵt

ẼT cumulative square root of inexactness for KL divergence estimation given by
∑T
t=1

√
ϵt

h : [0, ρ] → (0,∞) strictly increasing continuous definable function used in Theorem 3.1
∇t, ∇̂t Exact and inexact gradient
β learning rate for inexact OGD
PX(·) Projection operator
PT path-length of the comparator ψ∗

t
Kin number of iterations in the critic estimation of CRPO
ηt tolerance for the constraint violation dt,i for task t
PT , ST path-length and squared path-length of the comparator ψ∗

t
∂ϵf(·) ϵ-subgradient of function f
Dom(f) Domain of the function f
f̂t(·) loss functions for suboptimal policy Eν̂t [DKL(π̂t|πt,0)]

Table 1: Table of notations
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Table 2: Table of constants.

Notation Definition Notation Definition
ct1 2 ct2

4c2max|S||A|
(1−γ)3

ct3
3+(1−γ)2
(1−γ)2 ct4

3cmax
(1−γ)2

ct5
2
√

(1−γ)|S||A|
1−2κ c c ∈

(
0, 2

Lπ

)
C1 2(Lπ + β) C2 (Lπ + β) 3cα+6αLπ

2µπαLπ

C3 3(Lπ + β) C4
2Lg

2−
√
2

C5
2Lg

2−
√
2

√
cα+2Lπα
2αµπLπ
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